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Quantum Gravity
gravitational interactions of matter and energy described by quantum theory

Quantum Gravity
= quantum effects and gravitational 
interactions are equally strong

It happens at the Planck scale
(unless extra dimensional theories are correct).

Quantum Mechanics

General Relativitys
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points on manifold M                                   algebra of functions on M

Noncommutative Geometry: 
origin of quantum space-times

At the Planck scale

Example: κ - Minkowski space-time
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Generated by the position xμ and momentum P
μ

generators
(the Heisenberg algebra)

admitting Hilbert space operator representation (CCR)

⚫ Archetype of a noncommutative space.

Replacing 'space' by a noncommutative algebra.

⚫ The Heisenberg uncertainty principle:

The phase space of Quantum Mechanics
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Noncommutative geometry - generalised notion of geometry
taking into account noncommuatative algebraic structure

The deformation nature allows for obtaining quantum
gravitational corrections to the classical (commutative)
solutions.

Can be helpful in providing the phenomenological models
quantifying the effects of quantum gravity.

One of the mostly studied possible phenomenological effects
of quantum gravity is the modification in wave dispersion.
Such investigations were inspired by the observations of
gamma ray bursts (GRBs).
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Quantum symmetries

Deformed relativistic symmetries = Hopf algebras
quantum spacetimes = Hopf module algebras

Hopf algebra H(µ, η,∆, ε,S) is a structure composed by

1 a (unital associative) algebra (H, µ, η)

2 a (counital coassociative) coalgebra (H,∆, ε)

with S : H � H the antipode.

From any Lie algebra g one can make a Hopf algebra

H = (Ug ,∆0, S0, ε)
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Quantum deformations

Classical                                                                Quantum
deformation = quantization

Space-time

Symmetry

Lie Algebra              Hopf Algebra

(Quantum Group)
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Lie algebra of vector fields as Hopf algebra

Deformations of spacetime symmetries - Lie algebra g of
vector fields ξ

In the coordinate basis: ξ = ξµ ∂
∂xµ = ξµ∂µ.

This algebra generates the diffeomorphism symmetry; one can
also consider subalgebras of g like Poincaré algebra or
conformal algebra as symmetry.

Universal enveloping algebra UΞ of vector fields includes
linear differential operators.
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Lie algebra of vector fields as Hopf algebra

1 Ug as Hopf algebra (Ug ,∆0, ε,S0), for ξ ∈ g
(in the coordinate basis : ξ = ξµ ∂

∂xµ = ξµ∂µ):

[ξ, η] = (ξµ∂µη
ρ − ηµ∂µξρ)∂ρ,

∆0(ξ) = ξ ⊗ 1 + 1⊗ ξ,
ε(ξ) = 0, S(ξ) = −ξ.

2 The module algebra A 3 xµ, xν is an underlying spacetime
of given symmetry:

ξ . (xµ · xν) = (ξ1 . x
µ) · (ξ2 . x

ν)

where ∆(ξ) = ξ1 ⊗ ξ2 (Sweedler notation).
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Drinfeld twisting techniques
provides quantized universal enveloping algebras (= Quantum
Groups)

(Ug ,A)
++

(UgF ,AF )mm

The twist F is an invertible element of (Ug ⊗ Ug)[[h]].

F = 1⊗ 1 +O(h), (ε⊗ id)F = 1 = (ε⊗ id)F
satisfying normalization and two-cocycle condition
(F12 = F ⊗ 1 ,F23 = 1⊗F)

F12(∆⊗ id)F = F23(id ⊗∆)F ∈ (Ug ⊗ Ug ⊗ Ug)[[h]] .

It provides quantum (triangular) R-matrix: R = F21F−1;
R−1 = R21 satisfying the quantum Yang-Baxter equation

R12R13R23 = R23R13R12 .

Notation: F = f1 ⊗ f2 =
∞∑
α=0

(fα ⊗ fα)hα, F−1 = f̄1 ⊗ f̄2 = f2 ⊗ f1,

(sum over α = 1, 2, ... assumed, in fact infinite formal power series in h)

fα, f̄α ∈ Ug . 11/45



Twist quantization can be applied to any bigger Lie algebra
g ⊂ g ′.

The twist changes the symmetry to twisted symmetry (as
deformed Hopf algebra) UgF

[ξ, η] = (ξµ∂µη
ρ − ηµ∂µξρ)∂ρ,

∆F (ξ) = F∆0(ξ)F−1

ε(ξ) = 0, SF (ξ) = f1S0(f2)S0(ξ)S0(̄f1′ )̄f2′

the algebra ([·, ·]) remains undeformed;

the deformation depends on formal parameter h; which
provides an undeformed case at the zero-th order in the
deformation parameter h.

Coassociativity of the deformed coproduct and associativity of the
star-multiplication is ensured by the two-cocycle condition.
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Star-product (deformation of module algebras)

A = (C∞(M), ·) =⇒ AF = (C∞(M)[[h]], ?)

the algebra of smooth functions becomes a noncommutative
spacetime with the twisted ?-product

xµ ? xν = · F−1(xµ ⊗ xν) = f̄1(xµ)̄f2(xν)

xµ, xν ∈ C∞(M).

such ?-product is noncommutative and associative.

AF can be represented by deformed, ?-commutators of
noncommutative coordinates:

[x̂µ, x̂ν ] = [xµ, xν ]? = xµ ? xν − xµ ? xµ
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Examples of quantum (noncommutative) spacetimes

1 Canonical (Moyal-Weyl) spacetime Aθ:
[x̂µ, x̂ν ] = ihθµν

with deformation parameter h of length2 (LP) dim.
S. Doplicher, K. Fredenhagen, J. E. Roberts,

Commun. Math. Phys. 172 (1995),
[arXiv:hep-th/0303037].

2 Lie-algebraic type spacetime:
[x̂µ, x̂ν ] = i

κθ
µν
ρ x̂ρ

with deformation parameter κ = L−1
p of mass (MP) dim.

Special case: Aκ

[x̂0, x̂k ] =
i

κ
x̂k , [x̂ i , x̂k ] = 0

- the so-called: κ-Minkowski spacetime.
S. Majid, H. Ruegg Phys.Lett. B334

(1994) [hep-th/9405107] ;
S. Zakrzewski J. Phys. A 127 (1994).
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Twisted generators

P. Aschieri, A. Schenkel, Adv. Theor. Math. Phys.
18 3 (2014), arXiv:1210.0241.

Within the Hopf algebra HF =
(
UgF ,∆F , ε,SF

)
we can

introduce a notion of quantum Lie algebra gF .

g and of gF are in 1-1 correspondence, for all χ ∈ g we have

χF = f̄1(χ) f̄2 ∈ gF

where ξ(χ) = ξ1χS(ξ2) is the Ug adjoint action.

the subspace gF generates UgF .

has a deformed Lie bracket [ , ]F : gF ⊗ gF → gF - given by
the adjoint action of UgF :

[χ, ξ]F = χ1F ξS
F (χ2F ) ∈ gF

where ∆F (χ) = χ1F ⊗ χ2F .
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Twisted differential calculus - general framework
[S. Majid, R. Oeckl, Commun.Math.Phys. 205 (1999)

arXiv:math/9811054
P. Aschieri, M. Dimitrijevic, F. Meyer, J. Wess , Class.Quant.Grav. 23 (2006)

arXiv:hep-th/0510059 ]

The star-product between functions g ∈ C∞(M) and 1-forms
ω ∈ Ωr (M):

g ? ω = f̄1(g )̄f2(ω)

the action of f̄α - via the Lie derivative;

Cartan’s (magic) formula for the Lie derivative along the
vector field ξ of an arbitrary form ω

Lξω = diξω + iξdω.

where d is the exterior derivative and iξ is the contraction
along the vector field ξ.

The ?-wedge product on two arbitrary forms ω and ω′ is

ω ∧? ω′ = f̄1(ω) ∧ f̄2(ω′) = (−1)|ω||ω
′|r̄1(ω) ∧? r̄2(ω′)
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In general, Cartan exterior differential d : A→ Ω

df = (∂µf )dxµ

is consistent with the quantized wedge product ∧? for any Drinfeld
twist and many formulas known from standard differential
geometry can be generalized to the new setting, , e.g.

d(ω ∧? ω′) = dω ∧? ω′ + (−1)|ω|ω ∧? dω′

In particular

d(f ? g) = df ? g + f ? dg ,

d2 = 0,

For twist quantization of other geometric objects on manifolds
and their morphisms, see P. Aschieri et al.
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Part I
Flat spacetime (/background
independent)
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Symmetry
• Poincaré-Weyl-Lie algebra

[Mµν ,Mρλ] = i(ηµλMνρ − ηνλMµρ + ηνρMµλ − ηµρMνλ),

[Mµν ,Pρ] = i(ηνρPµ − ηµρPν) , [Pµ,Pλ] = 0,

[D,Pµ] = iPµ , [D,Mµν ] = 0.

The differential representation of the generators of Poincaré-Weyl

algebra is

Pµ = −i∂µ ; Mµν = −i (xµ∂ν − xν∂µ) ; D = −ixµ∂µ

Universal enveloping algebra of Poincaré-Weyl algebra - as Hopf algebra :

∆0(Mµν) = Mµν ⊗ 1 + 1⊗Mµν

∆0(Pµ) = Pµ ⊗ 1 + 1⊗ Pµ and ∆0(D) = D ⊗ 1 + 1⊗ D

with antipodes

S(Mµν) = −Mµν ; S(Pµ) = −Pµ; S(D) = −D

and counits
ε(Mµν) = ε(Pµ) = ε(D) = 0
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Jordanian twist [D,P0] = i P0
A.B., A.Pacho l, Phys.Rev.D79:045012 (2009)

[arXiv:0812.0576].

For the deformation we can use Jordanian twist (with support in
Poincaré-Weyl Hopf algebra)

F = exp (−iD ⊗ σ) ; σ = ln

(
1 +

1

κ
P0

)

F−1 = 1⊗ 1 + iD ⊗ 1

κ
P0 +

1

2
iD(iD − 1)⊗ 1

κ2
P2

0 + . . .

κ - deformation parameter (classical limit when κ �∞)

it provides

[x0, xk ]? = x0 ? xk − xk ? x0 =
i

κ
xk , [x i , xk ]? = 0

κ-Minkowski spacetime 20/45
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Twisted generators
P. Aschieri, A.B., A.Pacho l,JHEP 152 (2017)

[arXiv:1703.08726 ].

Twisted generators of Poincaré-Weyl algebra:

PFµ = f̄α(Pµ)̄fα = Pµ
1

1 + 1
κP0

MFµν = Mµν ; DF = D

Twisted Poincaré Casimir from PFµ

�F = PFµ PµF = PµP
µ 1(

1 + 1
κP0

)2

Twisted commutation relations[
�F ,PFµ

]
F = 0 =

[
�F ,MFµν

]
F[

�F ,DF
]
F = −2i�F
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Twisted Poincaré Casimir

Poincaré Casimir � = PµP
µ can be deformed through twist

into:

�F =
PµP

µ(
1 + 1

κP0

)2

This type of invariant on momentum space leading to
deformed dispersion relation was already considered in DSR
framework.

[J. Magueijo and L. Smolin in Phys.Rev.Lett.88 (2002), hep-th/0112090;
and in Phys.Rev.D67 (2003), gr-qc/0207085.]
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Twisted observables

Twisted generators XF ∈ gF as the observables.

given F −→ unique gF ;

XF act on fields as quantum infinitesimal transformations;

they are the generators of the twisted Lie algebra gF and are
closed under the twisted commutator [·, ·]F :[
MFρλ,M

F
µν

]
F = −i(ηµλMFνρ − ηνλMFµρ + ηνρM

F
µλ − ηµρMFνλ),[

MFµν ,P
F
ρ

]
F = i(ηνρP

F
µ − ηµρPFν ),

[PFµ ,P
F
λ ]F = 0 ,

[
DF ,PFλ

]
F = iPFλ .

PFµ are Hermitean.
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Twisted observables

PFµ - have the interpretations as the generators of
infinitesimal (deformed) translations;

we confirm this by recalling their associated differential
geometry (Part II);

they allow us to define the appropriate (Poincaré) Casimir
operator in the twisted Lie algebra:[
�F ,PFµ

]
F = 0 =

[
�F ,MFµν

]
F ,

[
�F ,DF

]
F = −2i�F
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Dispersion relation: Flat spacetime

Deformed wave equation: �Fφ = PFµ PµFφ for massless
particles is equivalent to �φ = 0.

The energy-momentum dispersion relations PFµ PµF = 0 are
undeformed.

The group velocity vg = dω
dk = c is as in the classical case due

to the fact that the (usual) plane waves are the ’eigenvectors’
of the twisted observables.

PFµ e ikµx
µ

= kFµ e ikµx
µ

evaluation of the energy momentum
operator on the monochromatic wave leads to modified
Einstein -Planck relatons:

EF = ωF =
ω

1− i
κω

and pF =
k

1− i
κω

κ→ Ep (Planck energy).
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Differential calculus deformed with Jordanian twist

P. Aschieri, A.B., A.Pacho l,JHEP 152 (2017)
[arXiv:1703.08726 ].

For the twisted differential calculus we use the coordinate
basis where the basis 1-forms are denoted as dxµ.

The action of a vector fields in the twist is via Lie derivative:

LPµ(dxν) = 0, LD(dxµ) = −idxµ

since d(∂0x
µ) = 0.

Using these relations one can show that the basis 1-forms
anticommute:

dxµ ∧? dxν = dxµ ∧ dxν

Therefore we have:

dxµ ∧? dxν = dxµ ∧ dxν = −dxν ∧ dxµ = −dxν ∧? dxµ
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In our particular model, one gets

f ? dxµ = f dxµ

dxµ ? f = dxµ(1 +
1

κ
P0)f

Therefore:

[f , dxµ]? =
i

κ
dxµ∂0f
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Part II
Noncommutative cosmology
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Noncommutative differential geometry approach is based on
Drinfeld twist (F) deformation.

Can be implemented for any twist (F) and any curved
background (g).

Toy model:
Jordanian twist - giving κ-Minkowski spacetime in flat space
([x0, xk ]? = x0 ? xk − xk ? x0 = i

κx
k)

- in the presence of a Friedman-Lemaitre-Robertson-Walker
(FLRW) cosmological background (in 2D).
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Wave equation in curved spacetime

The wave equation in curved spacetime is governed by the
Laplace-Beltrami operator (for Lorenzian even dimensional
manifolds):

�LBϕ = ∗d ∗ dϕ , (+d ∗ d ∗ ϕ = 0)

The Laplace-Beltrami operator is a generalization to curved
spacetime of the D’Alembert operator and on a scalar field ϕ
we have (using local coordinates)

�LBϕ = ∗d ∗ dϕ =
1
√
g
∂ν [
√
ggνµ∂µϕ]
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Hodge star deformed
A linear map ∗ : Ωr (M)→ Ωn−r (M). In local coordinates for an
r -form is given by

∗ω =

√
g

r ! (n − r)!
ωµ1....µr ε

µ1....µr
νr+1......νn dxνr+1 ∧ . . . dxνn

where
√
g is the square root of the absolute value of the

determinant of the metric, the completely antisymmetric tensor
εν1...νn is normalized to ε1...n = 1 and indices are lowered and raised
with the metric g and its inverse.

The deformation of the Hodge ∗ operation is explicitly
dependent on the twist form:

∗F = f̄1
(1) . ◦ ∗ ◦S

(
f̄1
(2)

)
. ◦f̄2.

For Jordanian twist (LPν (dxµ) = 0) the non vanishing is only
the zero-th order:

∗F (dxµ1 ∧ ... ∧ dxµs ) = ∗ (dxµ1 ∧ ... ∧ dxµs )
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Deformed Laplace-Beltrami operator

P. Aschieri, A. B., A.Pacho l,
[arXiv:2009.01051].

Deformation of the Laplace-Beltrami operator for any twist:

�FLBϕ = ∗Fd ∗F dϕ

The wave equation for the scalar field in terms of twisted
momenta for deformed LB op. with Jordanian twist:

�FLBϕ =
1
√
g
?

∂Fρ(
1 + i

κ∂
F
0

)1−n

(
(
√
ggµρ) ?

∂Fµ(
1 + i

κ∂
F
0

)n−1
ϕ

)
= 0
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Solutions of deformed wave eq. for FRWL metric

Friedman-Robertson-Walker-Lemaitre (FRWL) metric

(for simplicity in 2 dimensions)

g = −dt2 + a2 (t) dx2

where a (t) - scale factor

2-dim twisted wave equation

−a ? ∂2
0ϕ− (∂0a) ?

(
1− i

κ
∂0

)
∂0ϕ+ a−1 ? ∂2

xϕ = 0

In the classical limit it reduces to:
−a∂2

0ϕ− ȧ∂0ϕ+ 1
a∂

2
i ϕ = 0 where ȧ = ∂0a(t)
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Classical version of equation

−a∂2
0ϕ− ȧ∂0ϕ+

1

a
∂2
i ϕ = 0

separation of variables: ϕ = λ (t) e−ikx

aλ̈+ λ̇ȧ + k2λ
1

a
= 0

it corresponds (in conformal time dη = dt
a to harmonic

oscillator type equation

(∂2
η + k2)λ = 0

which has the well known solution λ = exp iωη: ω2 = k2.

φ = A(k) exp i(kη(t)− kx) , vp = vg =
dη

dt
=

1

a
.

vph = avg = 1 = c
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Twisted wave equation

a ? ∂2
0ϕ+ (∂0a) ?

(
1− i

κ
∂0

)
∂0ϕ− a−1 ? ∂2

xϕ = 0

In the noncommutative case in 2 dimensions we consider the
solution of the form: ϕ = λ (t) ? e−ikx = λ (t) e−ikx

We simplify the equation as:

a ? ∂2
0λ+ ∂0 (a) ?

(
1− i

κ
∂0

)
∂0λ+ a−1 ? k2λ = 0

Expand star-product in the first order of 1
κ

a∂2
0λ+∂0 (a)

(
1− i

κ
∂0

)
∂0λ+a−1k2λ− i

κ
t
(
∂0a ∂3

0λ+ ∂2
0 a ∂2

0λ+ k2∂0a−1∂0λ
)

= 0
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Conformal time - classical case strategy

As in the classical case - change the coordinates into
conformal time η, and ′ = ∂η

Introduce simplified notation s = ln a; s ′ = a′

a ; a′′

a = s ′′ + (s ′)2;

Look for the (perturbative) solution of the type:

λ = exp

(
iωη +

i

κ
F

)
Classical part (at 0-th order) remains:(

ω2 − k2
)
λ = 0

And equation on F (η) becomes:

(using the zero-th order solution ω = k),

F ′′+2ikF ′ =
ikt(η)

a2

(
2
(
s ′
)3 − 2s ′s ′′ − 2k2s ′ + ik

(
s ′′ − 3

(
s ′
)2 ))− ik

a
s ′
(
s ′ − ik

)
.

36/45



Conformal time - classical case strategy

As in the classical case - change the coordinates into
conformal time η, and ′ = ∂η

Introduce simplified notation s = ln a; s ′ = a′

a ; a′′

a = s ′′ + (s ′)2;

Look for the (perturbative) solution of the type:

λ = exp

(
iωη +

i

κ
F

)
Classical part (at 0-th order) remains:(

ω2 − k2
)
λ = 0

And equation on F (η) becomes:

(using the zero-th order solution ω = k),

F ′′+2ikF ′ =
ikt(η)

a2

(
2
(
s ′
)3 − 2s ′s ′′ − 2k2s ′ + ik

(
s ′′ − 3

(
s ′
)2 ))− ik

a
s ′
(
s ′ − ik

)
.
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Group velocity for the wave

Starting from

ϕk(x , t) = λ(t)?e−ikx = λ(t)e−ikx = exp
(
ikη+

i

κ
F
)
e−ikx = e i(fk (t)−kx)

we get:

fk (t) =

(
kη +

1

κ
F

)
(t)

Group velocity expression

vg =
∂x

∂t
=

∂

∂k

∂fk(t)

∂t

=⇒ we need to compute Ḟ = ∂F/∂t.
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=⇒ we need to compute Ḟ = ∂F/∂t

easily obtained from the differential equation for F in the
physical regime we are interested in: cosmic time related to
large scale structure formation, and high frequency waves.

There are three frequency parameters in the differential
equation on F : ω = k , t−1 and the Hubble parameter H;

we obviously have ω >> t−1 for the present cosmic time as
well as the cosmic time of emission of the travelling γ-ray,
typically at redshift below z = 10.

Similarly ω >> H ∼ t−1

In this regime equation for F simplifies to

2ikF ′ = −2ik3ts ′

a2

Ḟ = −k2tȧ

a3
.
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The group velocity, at the first order in the 1
κ deformation,

results

vg =
∂x

∂t
=

∂

∂k

∂fk(t)

∂t
=

1

a
+

1

κ

∂Ḟ

∂k
=

1

a

(
1−2

κ

ktȧ

a2

)
=

1

a

(
1−2

κ

ωtȧ

a2

)
.

Taking into account the 1
a factor due to the comoving

coordinates and inserting the flat spacetime speed of light c
we see that κ-spacetime noncommutativity in the presence of
a FLRW metric leads to a velocity of photons vph = vga given
by

vph = c(1− 2

κ

ωtȧ

a2
) .
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If we define (as usual) the energy where classical Lorentz
violation (in our case Lorentz deformation) is manifested
ELV := |κ|~.

The variation of the speed of light vph with respect to the
usual one c (of photons in flat spacetime, or of low energetic
photons) is then given by

|1− vph/c | ∼
Eph

ELV

2tȧ

a2
.
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Comments on the results

vph = c(1− 2

κ

ωtȧ

a2
) .

The combined effects of noncommutativity and gravity
affect the velocity of light by a term linearly dependent on the
frequency ω, the cosmic time t, the Hubble parameter
H = ȧ/a and inversely proportional to the scale factor.

We have vph < c for 1
κ a positive time (as it is usually

considered, and in an expansion phase of the universe ȧ > 0).

In flat spacetime (ȧ = 0) as well as in commutative spacetime
(κ→∞) there are no modified dispersion relations.

This result offers an explicit cosmological correction to the
usually considered models, which assume as the leading power
for the correction to the light speed the expression

vph ∼ c(1− Eph

ELV
).

one can actually estimate the order of magnitude of the
variation of the speed of light.
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Comments on the results
We can also study the time lag ∆t between the arrival of a
low energetic and a high energetic photon emitted
simultaneously during a gamma ray burst.
the comoving distance between the gamma ray burst and the
observer is the same for both photons;
for the high energy photon it reads

∫ t0+∆t
tem

vg dt

for the low energy one it reduces to
∫ t0

tem
c
a dt.

Equating these distances, and considering only first order
corrections we obtain that the time delay ∆t is given by

∆t =
2Eph

ELV

∫ t0

tem

tȧ

a3
dt =

2Eph

ELV

∫ z

0

t (1 + z ′)dz ′ .

For the range of redshifts we are interested into (up to z ∼ 10) we can
use the analytic solution a(t) = (1 + z)−1 = ( Ωm

ΩΛ
)1/3 sinh2/3(t/tΛ),

tΛ = 2

3H0

√
ΩΛ

and obtain the time lag

∆t = 2
Eph

ELV
tΛ

∫ z

0

arcsinh

√
ΩΛ

Ωm
(1 + z ′)−3 (1 + z ′)dz ′ .

Our model gives a time lag that is ∼ 3 times the ones considered in the
typical ’Lorentz invariance violation’ literature.
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Comments on the results

In the present work, as a first approximation, we have
considered a commutative gravity background, hence
noncommutativity affects only propagation of light.

In a noncommutative theory of gravity consistently coupled to
light, one should consider the backreaction effects of turning
on noncommutativity also on the gravitational field.



Summary

Quantum spacetimes - motivated by the Planck scale effects.

Twist deformation and Noncommutative Geometry - allow for
obtaining quantum corrections to the classical solutions.
Twisted generators as observables.

Framework is valid not only for the flat spacetimes, but allows
for more general curved background as well.

The result that the combined effects of noncommutativity and
curvature produce modified dispersion relations is expected to
be a general feature of wave equations in noncommutative
curved spacetime.
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Summary
we used a top-down approach that complements the
bottom-up one of phenomenological models.

we applied noncommutative differential geometry to derive
the propagation of waves in noncommutative cosmology.

we studied a noncommutative deformation of the wave
equation in curved background and we discuss the
modification of dispersion relations due to the presence of
both noncommutativity and curvature of spacetime.

as a first approximation we turn on noncommutativity in the
usual (classical) homogeneous and isotropic gravity solution
given by FLRW spacetime, and derive the wave equation for
massless particles in this context.

This is a first step toward a more comprehensive approach
that encompasses both the dynamics of light and of gravity in
a noncommutative spacetime. We have considered a classical
gravity background.

Thank you for your attention!
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