

Dynamical Cobordism of a 9d Domain Wall and its companion 7-brane

Based on 2205.09782, with R. Blumenhagen, N. Cribiori, C. Kneißl

Andriana Makridou

Workshop on Holography and the Swampland Corfu, September 9th 2022

- Swampland and the Cobordism Conjecture
- Dynamical Cobordism and Tadpoles
- An explicit case of Breaking: Dynamical Cobordism for a 9d domain wall and a new 7-brane object
 [2205.09782, Blumenhagen, Cribiori, Kneißl, AM]

The Swampland Program [Recent reviews: 1903.06239, 2102.0111]

Not all low-energy EFTs can be UV-completed to Quantum Gravity

The Swampland Program [Recent reviews: 1903.06239, 2102.0111]

Not all low-energy EFTs can be UV-completed to Quantum Gravity

Cobordism

For oriented manifolds: $[M] + [\overline{M}] = 0$, $[M] + [N] = [M \sqcup \overline{N}]$

Cobordism

Compactify d-dimensional theory on M^k down to D=d-k dimensions:

 \rightarrow Finite-energy transition between EFTs

Cobordism and String Theory

What are the relevant structures for String Theory?

Type I $\leftrightarrow \xi = \text{Spin}$

Type II $\leftrightarrow \xi = \operatorname{Spin}^c$

Full Quantum Gravity $\leftrightarrow \xi = ?$

	п	0	1	2	3	4	5	6	7	8	9	10	
	Ω_n^{Spin}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	0	0	\mathbb{Z}	0	2ℤ	$2\mathbb{Z}_2$	$3\mathbb{Z}_2$	
9	$\Omega_n^{\mathrm{Spin}^{\mathrm{c}}}$	\mathbb{Z}	0	\mathbb{Z}	0	2ℤ	0	2Z	0	4ℤ	0	$4\mathbb{Z}\oplus\overline{\mathbb{Z}}$	\mathbb{Z}_2

Cobordism and String Theory

What are the relevant structures for String Theory?

Type I $\leftrightarrow \xi = \text{Spin}$

Type II $\leftrightarrow \xi = \operatorname{Spin}^c$

Full Quantum Gravity $\leftrightarrow \xi = ?$

п	0	1	2	3	4	5	6	7	8	9	10	
Ω^{Spin}_n	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	0	0	\mathbb{Z}	0	2ℤ	$2\mathbb{Z}_2$	$3\mathbb{Z}_2$	
$\Omega_n^{\mathrm{Spin}^{\mathrm{c}}}$	\mathbb{Z}	0	\mathbb{Z}	0	2ℤ	0	2ℤ	0	4ℤ	0	$4\mathbb{Z}\oplus$	\mathbb{Z}_2
п	0	1	2	3	4	5	6	7	8	9	10	
KO^{-n}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	0	0	\mathbb{Z}	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	
K^{-n}	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
[See Cribiori's talk]												

Cobordism Conjecture

Cobordism Group $\Omega_k^{\xi} \leftrightarrow$ Cobordism Invariant μ_k For empty set: $\mu_k[\emptyset] = 0$

If cobordism class $[M] \neq 0 \leftrightarrow$ obstruction to decay into "nothing"

 $\Omega_k^{\xi} \neq 0 \Leftrightarrow (d - k - 1)$ -dim. global symmetry with charges labelled by $[M] \in \Omega_k^{\xi}$

Cobordism Conjecture

Cobordism Group $\Omega_k^{\xi} \leftrightarrow$ Cobordism Invariant μ_k

For empty set: $\mu_k[\emptyset] = 0$

If cobordism class $[M] \neq 0 \leftrightarrow$ obstruction to decay into "nothing"

$$\Omega_k^{\xi} \neq 0 \Leftrightarrow (d - k - 1)$$
-dim. global symmetry with charges labelled by $[M] \in \Omega_k^{\xi}$

But: No global symmetries in quantum gravity → Cobordism Conjecture e.g. [Banks, Seiberg '10] [McNamara, Vafa '19]

Cobordism Conjecture

[McNamara, Vafa '19]

But: No global symmetries in quantum gravity → Cobordism Conjecture e.g. [Banks, Seiberg '10] [McNamara, Vafa '19]

Cobordism Conjecture Consequences

[See talk by Niccolò]

Cobordism Conjecture Consequences

[Sugimoto '99] [Antoniadis, Dudas, Sagnotti '99] [Angelantonj '99]

recently : [Raucci '22]

 $V(\phi)$

Dynamical tadpoles (vs RR tadpoles)

Naturally occurring in supersymmetry-breaking potentials

Indicate lack of maximally-symmetric vacuum

[Sugimoto '99] [Antoniadis, Dudas, Sagnotti '99] [Angelantonj '99]

recently : [Raucci '22]

Naturally occurring in supersymmetry-breaking potentials Indicate lack of maximally-symmetric vacuum

Example: Sugimoto Model (USp(N) Type I with N D8 and N $O9_{-}$) [Sugimoto '99]

Dynamical tadpoles (vs RR tadpoles)

Action:

 $V(\phi)$

$$S = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-G} \left(\mathscr{R} - \frac{1}{2} (\partial \Phi)^2 \right) - T_9 \int d^{10}x \left((N+32)\sqrt{-G}e^{\frac{3}{2}\Phi} - (N-32)A_{10} \right) + \dots$$

Solution preserving 9d Poincaré invariance:

[Dudas, Mourad '00]

$$ds_E^2 = |\sqrt{\alpha_E}|^{1/9} e^{-\frac{\alpha_E y^2}{8}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + |\sqrt{\alpha_E} y|^{-1} e^{-\frac{3\phi_0}{2}} e^{-\frac{9\alpha_E}{8} y^2} dy^2, \quad \alpha_E = 64k^2 T_9$$

 \rightarrow singularities at finite spacetime distance, spontaneous compactification to 9d

[Buratti, Delgado, Uranga '21] Reinterpretation in Cobordism Terms [Buratti, Calderon-Infante, Delgado, Uranga '21] [Angius, Calderon-Infante, Delgado, Huertas, Uranga '22] [Angius, Delgado, Uranga '22] Solution extends in finite spacetime distance Δ , with $\Delta \sim \mathcal{T}^{-n}$ Tadpole strength Mechanism: "apparent singularity" = cobordism defect. For field distance $D \rightarrow \infty$ at singularity: Wall of Nothing/End-of-the-world brane Cobordism distance conjecture: $\Delta \sim e^{-\frac{1}{2}\delta D}$, $|\mathcal{R}| \sim e^{\delta D}$

9-dimensional Domain Wall

Goal: Backreaction of gauge neutral, non-supersymmetric 9-dimensional object w/ brane-like dilaton coupling

Physical realisation: non-BPS $\tilde{D}8$ -brane, non-SUSY stack of $16 \times \bar{D8} + O8^{++}$ [Blumenhagen, Font '00]

Action:
$$S = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-G} \left(\mathscr{R} - \frac{1}{2} (\partial \Phi)^2 \right) - T \int d^{10} \sqrt{-g} e^{\frac{5}{4}\Phi} \delta(r) .$$

Solution Ansatz: $ds^2 = e^{2\mathscr{A}(r,y)}ds_8^2 + e^{2\mathscr{B}(r,y)}(dr^2 + dy^2)$.

 $\mathcal{A} = A(r) + U(y) \qquad \qquad \mathcal{B} = B(r) + V(y) \qquad \qquad \Phi = \chi(r) + \psi(y)$

9-dimensional Domain Wall

Solution Ansatz:
$$ds^2 = e^{2\mathscr{A}(r,y)}ds_8^2 + e^{2\mathscr{B}(r,y)}(dr^2 + dy^2)$$
.
 $\mathscr{A} = A(r) + U(y)$ $\mathscr{B} = B(r) + V(y)$ $\Phi = \chi(r) + \psi(y)$

Solution I

$$A(r) = B(r) = \frac{1}{8} \log \left| \sin \left(8K(|r| - \frac{R}{2}) \right) \right|$$
$$\chi(r) = -\frac{3}{2} \log \left| \tan \left(4K(|r| - \frac{R}{2}) \right) \right| + \phi_0$$
$$U(y) = -Ky$$
$$\psi(y) = V(y) = 0$$

Solutions II^{\pm}

$$A(r) = \frac{1}{8} \log \left| \sin \left(8K(|r| - \frac{R}{2}) \right) \right|$$

$$\chi(r) = \frac{\alpha^{\pm}}{8} \log \left| \sin \left(8K(|r| - \frac{R}{2}) \right) \right|$$

$$\approx 2 \log \left| \tan \left(4K(|r| - \frac{R}{2}) \right) \right| + \phi_0$$

$$B(r) = \frac{\mu}{8} \log \left| \sin \left(8K(|r| - \frac{R}{2}) \right) \right|$$

$$= \frac{\alpha^{\pm}}{8} \log \left| \tan \left(4K(|r| - \frac{R}{2}) \right) \right|$$

$$U(y) = \frac{1}{8} \log \left(\cosh(8Ky) \right)$$

$$\psi(y) = \alpha U(y), \quad V(y) = -\frac{5}{4} U(y)$$

r-direction spontaneously compactified on S^1 with radius R: $e^{\frac{5}{4}\phi_0} \sim \frac{1}{\frac{\lambda R}{\kappa_{10}^2 T}}$ Logarithmic singularities at $r = \pm \frac{R}{2}$, string coupling diverges

r-direction spontaneously compactified on S^1 with radius R: $e^{\frac{5}{4}\phi_0} \sim \frac{1}{\frac{\lambda R}{\kappa_{10}^2 T}}$ Logarithmic singularities at $r = \pm \frac{R}{2}$, string coupling diverges

r-direction spontaneously compactified on S^1 with radius R: $e^{\frac{5}{4}\phi_0} \sim \frac{1}{\frac{\lambda R}{\kappa_{10}^2 T}}$ Logarithmic singularities at $r = \pm \frac{R}{2}$, string coupling diverges

r-direction spontaneously compactified on S^1 with radius R: $e^{\frac{5}{4}\phi_0} \sim \frac{1}{\frac{\lambda R}{\kappa_{10}^2 T}}$ Logarithmic singularities at $r = \pm \frac{R}{2}$, string coupling diverges

ETW Defects

Input: 8-dimensional defect : log-singularity, S^1 direction capped off Poincaré symmetry along the "brane" preserved 2d transversal rotational symmetry broken

Non-Isotropic Solution Ansatz: $ds^2 = e^{2\hat{\mathscr{A}}(\rho,\phi)}ds_8^2 + e^{2\hat{\mathscr{B}}(\rho,\phi)}(d\rho^2 + \rho^2 d\phi^2)$. of variables

ETW Defects

Input: 8-dimensional defect : log-singularity, S¹ direction capped off Poincaré symmetry along the "brane" preserved 2d transversal rotational symmetry broken

Non-Isotropic Solution Ansatz:
$$ds^{2} = e^{2\hat{\mathcal{A}}(\rho,\phi)}ds_{8}^{2} + e^{2\hat{\mathcal{B}}(\rho,\phi)}(d\rho^{2} + \rho^{2}d\phi^{2}).$$

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$$
Solutions:
$$\hat{A}(\rho) = \frac{1}{8}\log\left|\cosh\left(8\hat{K}\log(\frac{\rho}{\rho_{0}})\right)\right| \quad \hat{B}(\rho) = -\log\left(\frac{\rho}{\rho_{0}}\right) + \left(\frac{\hat{\alpha}^{2}}{32} - \frac{7}{2}\right)\hat{A}(\rho)$$

$$\hat{\chi}(\rho) = \hat{\alpha}\hat{A}(\rho)$$

$$\vdots$$

$$\hat{\psi}(\phi) = \frac{\hat{\alpha}}{8}\log\left|\cos(8\hat{K}\phi)\right| \stackrel{(\pm)}{=} 2\log\left|\tan(4\hat{K}\phi + \frac{\pi}{4})\right|$$
ETW 7[±] solutions

Logarithmic singularities at $\rho = 0$, string coupling diverges

For appropriate constant ($\hat{\alpha} = \alpha^+$) same scaling as 9d defect

Dynamical Cobordism scaling satisfied: $\Delta \sim e^{-\sqrt{2}D}$, $|\mathcal{R}| \sim e^{2\sqrt{2}D}$

Cobordism Interpretation

Cobordism Interpretation

Cobordism Interpretation

We have provided:

Concrete example for physical realisation of dynamical cobordism

Explanation of singularities in preexisting solution, expected scalings satisfied

Eom for defect solved \rightarrow new 7-brane defect

We have provided:

Concrete example for physical realisation of dynamical cobordism

Explanation of singularities in preexisting solution, expected scalings satisfied

Eom for defect solved \rightarrow new 7-brane defect

Future directions:

Stability of solution - time dependence?

Generalisation to higher co-dimension objects

Independent verification of new defect

We have provided:

Concrete example for physical realisation of dynamical cobordism

Explanation of singularities in preexisting solution, expected scalings satisfied

Eom for defect solved \rightarrow new 7-brane defect

Future directions:

Stability of solution - time dependence?

Generalisation to higher co-dimension objects

Independent verification of new defect

