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| By studying the space and properties of anti-de Sitter solutions we can gain

insight into the space and properties of conformal field theories.

| Vice versa, we can hope to shed light to characteristics of quantum gravity.
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AdS3/CFT, dualities provide a hospitable environment for finding answers to

questions on both sides of the holographic correspondence.

| Conformal field theories in two dimensions feature a highly-constraining
infinite-dimensional algebra of conformal transformations that often al-

lows for their exact solution.

| Gravity in three-dimensional asymptotically anti-de Sitter spacetime pro-

vides a toy model for quantum gravity.
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AdS3/CFT, correspondence

Owing to the high dimensionality of the internal space, the problem of explor-

ing the space of AdS; backgrounds is challenging.

| Away forward is to impose a symmetry on the background, at the expense
of the size of the subspace of backgrounds one can access, depending on

the degree of the symmetry.

| We imposed supersymmetry, as (i) a technically simplifying assumption,

(i) a computational tool and (iii) a way out of swampland.
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. Classification of minimally supersymmetric solutions.
Il. Classification and construction of N = (2, 0) supersymmetric solutions.

I1l. Construction of N' = (2, 2) supersymmetric solutions from D3-branes on
Riemann surfaces.
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M; acquires a G-structure characterized by a set of tensors constructed as
bilinears of {x1, x2}
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The exterior derivatives of the G-structure tensors determine its intrinsic tor-
sion, which is parametrized by torsion classes
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Supersymmetry Equations
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Supersymmetry Equations
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Classification

| We obtain a set of constraints on the intrinsic torsion of the G-structure

and expressions for the supergravity fields in terms of the geometric data.

| This allows for charting the AdS3 landscape and the discovery of new so-

lutions.



Classification

| A family of solutions for the strict SU(3)-structure case, were examined in
[AP, Prins '19]: the internal manifold M7 is a U(1) fibration over a conformally
Kahler base, and they feature a varying axio-dilaton, a primitive (2, 1)-form
flux H + ie®F5, and five-form flux Fs.
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’ The solutions of [Kim '05], [Donos, Gauntlett, Kim '08], [Benini, Bobev "13], [Benini,

Bobev, Crichigno "15], [Couzens, Martelli, Schafer-Nameki '17], with N = (2, O) super-

symmetry, belong in this family.



[Gauntlett, Kim '0O7]
Y2n.11 consisting of a metric, a scalar function B and a closed two-form F.

The metric on Y41 has a unit norm Killing vector & defining a foliation ¢ of

Y2n—|—1

2 n—2
:—a , = —
§ 1 m >

(dz + P)
The metric on Y, then has the form
ds%n—H — nz + eBdsgn

where ds3_ is a Kahler metric transverse to Js.



This Kahler metric, with transverse Kahler two-form J, Ricci two-form p = dP

and Ricci scalar R, determines all of the remaining fields.
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These off-shell geometries become solutions provided that the transverse Kahler

metric satisfies the non-linear partial differential equation
1 )
[OR = =R* — RyRY .
2

One can define an extremal problem which is dual to c-extremization. [Couzens,

Gauntlett, Martelli, Sparks 18]
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| The ten-dimensional background admits a Killing vector which can be ei-

ther time-like or null. We have explored the null class.

| The internal geometry admits a Killing vector which generates a symmetry
of the whole solution. This no other than the U(1) R-symmetry of the N =
(2,0) superalgebra.

| The six-dimensional space transverse to the Killing vector supports an SU(2)-
structure characterized by (z, j,, w;). The SU(2)-structure “lives” on a four-

dimensional subspace which is complex.

| The problem of finding solutions to the equations of motion consists of
solving PDEs coming from the Bianchi identities for the p-form fields.



N = (2,0) AdS; x M

In order to make progress we have imposed an additional isometry. The metric

of the internal space reads

2A

i
dss = :—mz(dtl) + A)2 +e® A e D 4+ e dy? + e25A~ P~ q52(Mmy)

with the metric on M4 Kahler at fixed y coordinate.



N = (2,0) AdS; x M

Taking
ds®(M4) = "V ds?(5) + €2 ds?(5,)

we have solved the differenetial equations coming from the Bianchi identities
and found explicit solutions: (i) one class for non-zero Romans mass (ii) two

classes for zero Romans mass



N = (2,0) AdS; x M

ds*(M4(X,y)) = e ds*(Mu(X)).

1
ds? = e*A [dsZ(AdS3) + 4—mz(d1|) 4+ Px)?+ (do +4X)2 + P4 (e‘l’—Ady2 + dsZ(M4)>]

R 2f >/4/R
e = Kz V2foy +c, e 2? = (2foy +¢) i
8m 2v/2m

where the metric on My is Kahler and satisfies the master equation

OkRk — IR% + R™ Ry = 8mAt7[dZ|*.

For t; = O we have a five-dimensional GK geometry and an extremal problem

can be setup for the calculation fo the central charge.
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Compactifying Higher Dimensional Field Theories

| Large classes of theories in lower dimensions.

| Their properties admit a description in terms of the geometry and topology
of the compact manifold.



D3-branes on a Riemann surface

| We considered D3-branes compactified on a Riemann surface with a twist,
P
preserving N = (2, 2) supersymmetry and flowing to a two-dimensional
SCFT.

| SU(4) — U(1)® = UL x U(Nr x U(1)r



D3-branes on a Riemann surface

5
SU(1)3 — M7



D3-branes on a Riemann surface

[Couzens, Martelli, Schafer-Nameki '17]

1 Y
ﬁdls2 = % |ds®(AdS3) + ds*(X7)]
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ds?(X7) = cos? {(dy+0)%+sin? (dps+ dy’+
SU(2)-structure (], Q) on the four-dimensional base; g* is Kahler

RL = Oy, — Oy, Rr = Oy + Oy,

The geometry is supported by Fs



D3-branes on a Riemann surface

| Assumption: g!*) contains an addditional flavour U(1)

| We have reduced the torsion conditions under this assumption. The solu-
tion is determined by a potential D satisfying a

(9%, + 0%,)D = 16y?(92Dd6D — (3,00D)? ) P



D3-branes on a Riemann surface

he?A
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D3-branes on a Riemann surface

* similar system for D4-D8/08 [Bah, AP, Weck 18] and M5 -branes [Bah 15] on

Riemann surfaces



D3-branes on a Riemann surface

Riemann surface of constant curvature:
eZA — f(y; @)eZAo(X1,X2)
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D3-branes on a Riemann surface
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D3-branes on a Riemann surface

topological disc of non-constant curvature

3
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where p; embed a unit radius two-sphere into R> and the functions of x are

1
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Limiting case of [Boido, Ipina, Sparks "21]



D3-branes on a Riemann surface

X =x_: R?/Zy
X = Xo : regular
(x, u3) = (x0, 0) : flavour D3-branes smeared over S3

MZ

ugra — 3N2
Csugra 4%(1+ 2M)




Future Directions

‘ Study the field theory of D3-branes on a topological disc and reproduce the holographic

central charge.
Find topological disc solutions for the D4-0O8/D8 and M5 -brane configurations.

Classify & construct N = (2, O) solutions in the “time-like class”.

A generalized geometry formulation of the master equation and the gravity dual of c-

extremization (beyond CK geometries).



The End. Thank you!



