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Lorentzian type IIB matrix model

partition function and the action

Z =

∫
dAdΨdΨ̄ ei(Sb+Sf )

Sb = −
N

4
Tr

{
−2[A0, Ai]

2 + [Ai, Aj ]
2
}

Sf = −
N

2
Tr

{
Ψ̄α(CΓµ)αβ [Aµ,Ψβ ]

}
Aµ,Ψα : N ×N Hermitian matrices (µ = 0, . . . , 9, α = 1, 2, . . . , 16)

a promising candidate for non-perturbative formulation of
superstring theory

matrix regularization of the worldsheet action

The interactions of D-branes can be reproduced.

The string field Hamiltonian can be derived from
Schwinger-Dyson equations for the Wilson loop operators.

[M. Fukuma, H. Kawai, Y. Kitazawa, A. Tsuchiya (1998)]
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c.f.) related talks at the workshop:

Brandenberger on 19/9

Battista on 19/9

Tran on 21/9



Lorentzian type IIB matrix model

partition function and the action

Z =

∫
dAdΨdΨ̄ ei(Sb+Sf )

Sb = −
Nβ

4
Tr

{
−2[A0, Ai]

2 + [Ai, Aj ]
2
}

Sf = −
Nβ

2
Tr

{
Ψ̄α(CΓµ)αβ [Aµ,Ψβ ]

}
Aµ,Ψα : N ×N Hermitian matrices (µ = 0, . . . , 9, α = 1, 2, . . . , 16)

This model has N = 2 SUSY.
evidence for the fact that this model includes gravity

Geometry emerges from matrix degrees of freedom.
In the SUSY algebra, translation corresponds to shift of Aµ .

→ The eigenvalues of Aµ are identified as space-time coordinates.

This model has SO(9,1) Lorentz symmetry.
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Wick rotation in the type IIB matrix model

ZL =

∫
dAdΨdΨ̄ei(Sb+Sf) =

∫
dAeiSbPfM

Wick rotation in this model

Sb → S̃b = Nβ ei
π
2
u Tr

{
1

2
e−iπu[Ã0, Ãi]

2 − 1

4
[Ãi, Ãj]

2

}
,

u =

{
0 : Lorentzian
1 : Euclidean

This Wick rotation is equivarent to the contour deformation:

A0 → Ã0 = ei
π
2 ue−iπ

8 uA0 = ei
3
8πuA0

Ai → Ãi = e−iπ
8 uAi
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→
on the worldsheet

→
in the target space



equivalence between the Euclidean and Lorentzian model

Cauchy’s theorem〈
O(e−i 3

8πuÃ0, e
iπ
8 uÃi)

〉
u
is independent of u.

numerical confirmation of the equivalence using complex Langevin method

〈
1
N
Tr(A0)2

〉
L
= e−i 3

4
π
〈

1
N
Tr(Ã0)2

〉
E
,

〈
1
N
Tr(Ai)

2
〉
L
= ei

1
4
π
〈

1
N
Tr(Ãi)

2
〉
E
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u =

{
0 : Lorentzian
1 : Euclidean



previous works on the Euclidean type IIB matrix model

PfM is complex valued in the Euclidean model.
SSB of SO(10) does not occur in the phase quenched model.

[J. Ambjørn, K. Anagnostopoulos, W. Bietenholz, T. Hotta, J. Nishimura (2000) ]

→ The phase of PfM plays an important role.
[J. Nishimura, G. Vernizzi (2000)]

Gaussian expansion analysis [J. Nishimura, T. Okubo, and F. Sugino (2011)]

free energy for SO(d) symmetric vacuum
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SO(10) → SO(3) is predicted.
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previous works on the Euclidean type IIB matrix model

non-perturbative aspects of the Euclidean model
[K. Anagnostopoulos, T. Azuma, Y. Ito, J. Nishimura, T. Okubo, S. Papadoudis (2020)]

sign problem (∵ PfM is complex valued.)

Conventional Monte Carlo methods are not applicable.

→ The problem was overcome by using complex Langevin method.

SSB: SO(10) → SO(3) occurs dynamically.

SO(4) does not appear.

Relation between the emergent space and our universe is not
clear.
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classical solutions of the Lorentzian type IIB matrix model

[K. Hatakeyama, A. Matsumoto, J. Nishimura, A. Tsuchiya, A. Yosprakob (2019)]

solving the equation of motion.

[Aν , [Aν , Aµ]] = 0.

The solution to this EOM is exhausted by diagonal matrices.
no strong reasons for the emergence of expanding space

introducing an additional term

[Aν , [Aν , Aµ]]− γAµ = 0.

(γ > 0)

Typical solutions have expanding space although
its dimensionality is not fixed.
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classical solution with (3+1)D space-time
[K. Hatakeyama, A. Matsumoto, J. Nishimura, A. Tsuchiya, A. Yosprakob (2019)]

(3+1)D solutions (The dimensionality is chosen by hand)
The 3d space expands in typical classical solutions.
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novel large-N limit

In order to obtain a large-N limit inequivalent to the Euclidean
model, we add a Lorentz invariant “mass” term to the action.

Sγ = −1

2
NγTr(Aµ)

2 =
1

2
Nγ

{
Tr(A0)

2 − Tr(Ai)
2
}

Motivation for this extra mass term
comes from the previous work on classical solutions.

[Aν , [Aν , Aµ]]− γAµ = 0

[K. Hatakeyama, A. Matsumoto, J. Nishimura, A. Tsuchiya, A. Yosprakob (2019)] [H. Steinacker (2017)]

We consider taking the γ → 0+ limit after taking the large-N limit.

We will see that γ can be also interpreted as
an “infrared regulator” for the expanding space-time.
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novel large-N limit

Z =

∫
dAe−S(A)PfM(A), e−S(A) = ei(Sb(A)+Sγ(A))

contour deformation

S(A) → S(Ã) ∼ 2ei
π
2
(1−u)Tr(F̃0i)

2 + e−iπ
2
(1−u)Tr(F̃ij)

2

+ γe−iπ
2
(1+ 3

2
u)Tr(Ã0)

2 + γei
π
2
(1+ 1

2
u)Tr(Ãi)

2

The action is unbounded for 0 < u ≤ 1

One cannot define the model by contour deformation any more!
(∴ The corresponding Euclidean model is ill-defined.)
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positive real part for 0 < u ≤ 1

negative real part for 0 < u ≤ 1

F̃µν ≡ −i[Ãµ, Ãν ]
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setup

We choose an SU(N) basis :

A0 = diag(α1, α2, . . . , αN)

(α1 < α2 < · · · < αN)

sign problem

ZL =

∫
dAei(Sb+Sγ)PfM (A)

We cannot regard the Boltzmann weight as the probability.
→ Conventional Monte Carlo methods are not applicable.

We use complex Langevin method to overcome the problem.
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complex Langevin method [G. Parisi (1983)] [J. Klauder (1984)]

a way to realize the ordering : α1 < α2 < · · · < αN

α1 = 0, α2 = eτ1 , α3 = eτ1 + eτ2 , . . . , αN =

N−1∑
a=1

eτa

[J. Nishimura, A. Tsuchiya (2019)]

complexify the variables

Ai : Hermitian matrices → general matrices

τa : real → complex

complex Langevin equation
dτa

dtL
= −

∂S

∂τa
+ ηa(tL),

d(Ai)ab

dtL
= −

∂S

∂(Ai)ba
+ (ηi)ab(tL)

criterion for the correct convergence
The drift histogram falls off exponentially or faster

with the magnitude of the drift term.
[K. Nagata, J. Nishimura, S. Shimasaki (2016)]
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complex Langevin method [G. Parisi (1983)] [J. Klauder (1984)]

singular drift problem - a cause of wrong convergence -
If the Dirac operator has near-zero eigenvalues,

the criterion is not satisfied.

adding fermionic mass term

Smf
= iNmfTr[Ψ̄α(Γ7Γ

†
8Γ9)αβΨβ]

[K. Anagnostopoulos, T. Azuma, Y. Ito, J. Nishimura, T. Okubo, S. Papadoudis (2020)]

mf = ∞ corresponds to the fermion quenched model.

We need to make the mf → 0 extrapolation eventually.

We perform the following procedure at each Langevin step
for stabilization. (c.f. dynamical stabilization for QCD [F. Attanasio, B. Jäger (2018)])

Ai → 1
1+ϵ

(
Ai + ϵA†

i

)
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phase structure for various γ

Lorentz invariant mass term: 1
2
Nγ {Tr(A0)

2 − Tr(Ai)
2}

N = 64, mf = 10, ϵ = 0.01

γ ≤ 1.8 :
qualitatively the same as the
Euclidean model (γ = 0)

1st order phase transition (?)

γ ≥ 2.6 :
emergence of real time at both ends

(αi+1 − αi ∈ R)

We focus on the real time phase.
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how to extract time-evolution

band diagonal structure (dynamical property)

Apq ≡ 1
9

∑
i |(Ai)pq|2

how to extract time-evolution

definition of time

ta =

a∑
i=1

|ᾱi − ᾱi−1|, ᾱi =
1

n

n−1∑
j=0

αi+j

(n: block size)

Āi(ta) (n× n matrix) represents
the state of the universe at ta.
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p
q

γ = 4

↑
Āi(ta)



emergence of real space

phase of space

tr(Āi(t))
2 = e2iθs(t)|tr(Āi(t))

2|

N = 64, mf = 10, γ = 2.6, n = 12

Space becomes real at late times.
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SSB of SO(9) symmetry

order parameter for SSB of SO(9)
the eigenvalues of “moment of inertia tensor”

Tij(t) =
1

n
tr (Xi(t)Xj(t)) , Xi(t) ≡

1

2

(
Āi(t) + Ā†

i (t)
)

SO(9) symmetric: 9 eigenvalues are almost degenerate.
SO(9) broken: 9 eigenvalues are NOT degenerate.

N = 64, mf = 10, γ = 2.6, n = 12

SSB of SO(9) occurs.
1d space expands exponentially.
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γ dependence

N = 64, mf = 10, n = 12

γ = 4.0 γ = 2.6

1d expansion occurs.

The extent of time becomes larger at smaller γ.

In the real time phase, the expansion of space gets more
pronounced as γ decreases.

→ γ can be thought of as an “infrared regulator”.
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fermionic effects

N = 64, γ = 2.6, n = 12
fermionic mass term: iNmfTr[Ψ̄α(Γ7Γ

†
8Γ9)αβΨβ]

mf = ∞ corresponds to the fermion quenched model.

mf = 10 mf = 5

In the real time phase, the expansion of space gets more
pronounced as mf decreases.

The attractive force between space-time eigenvalues is
weakened by the SUSY effects.

c.f.) Euclidean model [H. Aoki, S. Iso, H. Kawai, Y. Kitazawa, T. Tada (1998)]
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summary

We successfully applied the complex Langevin method to the
Lorentzian type IIB matrix model.

equivalence between the Euclidean and Lorentzian model in the
conventional large-N limit

Euclidean model exhibits SSB: SO(10) → SO(3).
The space-time becomes complex and it has Euclidean signature.

introducing the Lorentz invariant mass term
An expanding real space-time appears at late times as expected from
classical solutions.

the dimensionality of the expanding space:

– not fixed at the classical level
– turned out to be 1D for mf > 5.

Does 3d expanding space appear at smaller mf?
(SUSY : mf = 0)
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discussion

a possible mechanism for the emergence of the 3d expanding
space

a mechanism for collapsing space
Quantum fluctuation is suppressed most when Tr[Ai, Aj ]

2 ∼ 0.

→ 1d expanding space is favored.

property of the Pfaffian (at mf = 0)
Pfaffian becomes zero if there are only two large matrices:

A1, A2 ̸= 0, A3, . . . , A9 = 0. [W. Krauth, H. Nicolai, M. Staudacher (1998)]

[J. Nishimura, G. Vernizzi (2000)]

(Due to the exponential expansion of space, A0 cannot play any role here.)

→ 3d expanding space may be favored by the Pfaffian.

We are now trying to see whether SO(9) → SO(3) occurs by
decreasing mf further. (c.f. results for the Euclidean model)

We expect that 3d expanding space appears for sufficiently small mf .
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• One of the candidates for non-perturbative definition of 
superstring theory


‣ Monte Carlo method is applicable.


• Previous works about Monte Carlo simulation of the model


‣ SSB: SO(9,1) -> SO(3,1)

Lorentzian type IIB matrix model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-2.5 -2 -1.5 -1 -0.5  0

ei
ge

nv
al

ue
s 

of
 T

ij(t
)

t

Kim, Nishimura, Tsuchiya (’12)



• One of the candidates for non-perturbative definition of 
superstring theory


‣ Monte Carlo method is applicable.


• Previous works about Monte Carlo simulation of the model


‣ SSB: SO(9,1) -> SO(3,1)


‣ expansion of the 3d space


- exponential expansion in the early time


- power law expansion in the late time

Lorentzian type IIB matrix model
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• Previous works about Monte Carlo simulation of the model (cont’d)


‣ structure of the 3d space


- Pauli-matrix structure

Lorentzian type IIB matrix model
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So far, we had used an approximation for the partition function

to avoid the sign problem. 

Space is not continuous.

 eiSb → eβSb (β > 0)



• Previous works about Monte Carlo simulation of the model (cont’d)


‣ structure of the 3d space


- Pauli-matrix structure
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So far, we had used an approximation for the partition function

to avoid the sign problem. 

Space is not continuous.

 eiSb → eβSb (β > 0)

due to the approximation?



Novel large-N limit

our prediction for a phase diagram (γ, 1/N)

We expect the phase appearing in the novel large-N limit is
inequivalent to that in the conventional one.
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