The emergence of expanding space-time in a novel large-N limit of the Lorentzian type IIB matrix model

Mitsuaki Hirasawa¹

Based on the collabolation with Konstantinos Anagnostopoulos², Takehiro Azuma³, Kohta Hatakeyama⁴, Jun Nishimura^{4,5}, Stratos Papadoudis², Asato Tsuchiya⁶

¹INFN Milano-Bicocca, ²NTUA , ³Setsunan Univ., ⁴KEK, ⁵SOKENDAI, ⁶Shizuoka Univ.

Workshop on Noncommutative and generalized geometry in string theory, gauge theory and related physical models

18-25 September 2022, Corfu, Greece

[N. Ishibashi, H. Kawai, Y. Kitazawa, A. Tsuchiya (1997)]

partition function and the action

c.f.) related talks at the workshop: Prandanharga

$$S_{\rm b} = -\frac{N}{4} \operatorname{Tr} \left\{ -2[A_0, A_i]^2 + [A_i, A_j]^2 \right\}$$
$$S_{\rm f} = -\frac{N}{2} \operatorname{Tr} \left\{ \bar{\Psi}_{\alpha} (C\Gamma^{\mu})_{\alpha\beta} [A_{\mu}, \Psi_{\beta}] \right\}$$

 $A_{\mu}, \Psi_{\alpha} : N \times N$ Hermitian matrices $(\mu = 0, \dots, 9, \alpha = 1, 2, \dots, 16)$

- a promising candidate for non-perturbative formulation of superstring theory
 - matrix regularization of the worldsheet action
 - The interactions of D-branes can be reproduced.
 - The string field Hamiltonian can be derived from Schwinger-Dyson equations for the Wilson loop operators.

[M. Fukuma, H. Kawai, Y. Kitazawa, A. Tsuchiya (1998)]

[N. Ishibashi, H. Kawai, Y. Kitazawa, A. Tsuchiya (1997)]

• partition function and the action

$$\begin{split} Z &= \int dA d\Psi d\bar{\Psi} \ e^{i(S_{\rm b}+S_{\rm f})} \\ S_{\rm b} &= -\frac{N\beta}{4} \mathrm{Tr} \left\{ -2[A_0,A_i]^2 + [A_i,A_j]^2 \right\} \\ S_{\rm f} &= -\frac{N\beta}{2} \mathrm{Tr} \left\{ \bar{\Psi}_{\alpha} (C\Gamma^{\mu})_{\alpha\beta} [A_{\mu},\Psi_{\beta}] \right\} \end{split}$$

 $A_{\mu}, \Psi_{\alpha} : N \times N$ Hermitian matrices $(\mu = 0, \dots, 9, \alpha = 1, 2, \dots, 16)$

- This model has $\mathcal{N} = 2$ SUSY. evidence for the fact that this model includes gravity
- Geometry emerges from matrix degrees of freedom. In the SUSY algebra, translation corresponds to shift of A_{μ} . \rightarrow The eigenvalues of A_{μ} are identified as space-time coordinates.
- This model has SO(9,1) Lorentz symmetry.

- 2) relation between the Euclidean and Lorentzian model
- regularization of the Lorentzian model
 - 4 numerical simulation of the model

2 relation between the Euclidean and Lorentzian model

- 3 regularization of the Lorentzian model
- 4 numerical simulation of the model

5 results

o summary and discussion

Wick rotation in the type IIB matrix model

$$Z_{\rm L} = \int dA d\Psi d\bar{\Psi} e^{i(S_{\rm b}+S_{\rm f})} = \int dA e^{iS_{\rm b}} {\rm Pf}\mathcal{M}$$

• Wick rotation in this model

$$\begin{split} S_{\rm b} &\to \tilde{S}_b = N\beta \underbrace{e^{i\frac{\pi}{2}u}}_{\nearrow} \operatorname{Tr} \left\{ \frac{1}{2} \underbrace{e^{-i\pi u}}_{\kappa} [\tilde{A}_0, \tilde{A}_i]^2 - \frac{1}{4} [\tilde{A}_i, \tilde{A}_j]^2 \right\},\\ & \text{on the worldsheet} \quad \text{in the target space} \\ & u = \left\{ \begin{array}{l} 0: \text{ Lorentzian} \\ 1: \text{ Euclidean} \end{array} \right. \end{split}$$

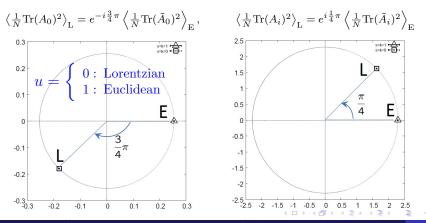
This Wick rotation is equivarent to the contour deformation:

$$\begin{array}{rcl} A_0 & \to & \tilde{A}_0 = e^{i\frac{\pi}{2}u} e^{-i\frac{\pi}{8}u} A_0 = e^{i\frac{3}{8}\pi u} A_0 \\ A_i & \to & \tilde{A}_i = e^{-i\frac{\pi}{8}u} A_i \end{array}$$

equivalence between the Euclidean and Lorentzian model

Cauchy's theorem $\left\langle \mathcal{O}(e^{-i\frac{3}{8}\pi u}\tilde{A_0}, e^{i\frac{\pi}{8}u}\tilde{A_i}) \right\rangle_u$ is independent of u.

numerical confirmation of the equivalence using complex Langevin method



The emergence of expanding space-time in a novel large-N limit of the Lorentzian type IIB matrix model

previous works on the Euclidean type IIB matrix model

- $\bullet ~{\rm Pf}\mathcal{M}$ is complex valued in the Euclidean model.
 - SSB of SO(10) does not occur in the phase quenched model.

[J. Ambjørn, K. Anagnostopoulos, W. Bietenholz, T. Hotta, J. Nishimura (2000)]

 \rightarrow The phase of $\mathrm{Pf}\mathcal{M}$ plays an important role.

[J. Nishimura, G. Vernizzi (2000)]

• Gaussian expansion analysis [J. Nishimura, T. Okubo, and F. Sugino (2011)]

free energy for SO(d) symmetric vacuum



non-perturbative aspects of the Euclidean model

[K. Anagnostopoulos, T. Azuma, Y. Ito, J. Nishimura, T. Okubo, S. Papadoudis (2020)]

• sign problem ($:: Pf\mathcal{M}$ is complex valued.)

Conventional Monte Carlo methods are not applicable.

 \rightarrow The problem was overcome by using complex Langevin method.

- SSB: SO(10) \rightarrow SO(3) occurs dynamically.
 - SO(4) does not appear.
- Relation between the emergent space and our universe is not clear.

2) relation between the Euclidean and Lorentzian model

- regularization of the Lorentzian model
 - 4 numerical simulation of the model

5 results

o summary and discussion

classical solutions of the Lorentzian type IIB matrix model

[K. Hatakeyama, A. Matsumoto, J. Nishimura, A. Tsuchiya, A. Yosprakob (2019)]

• solving the equation of motion.

$$[A^{\nu}, [A_{\nu}, A_{\mu}]] = 0.$$

- The solution to this EOM is exhausted by diagonal matrices.
- no strong reasons for the emergence of expanding space
- introducing an additional term

$$[A^{\nu}, [A_{\nu}, A_{\mu}]] - \gamma A_{\mu} = 0.$$

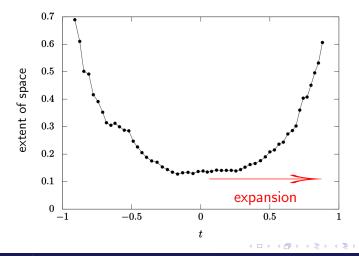
(\gamma > 0)

• Typical solutions have expanding space although its dimensionality is not fixed.

classical solution with (3+1)D space-time

[K. Hatakeyama, A. Matsumoto, J. Nishimura, A. Tsuchiya, A. Yosprakob (2019)]

- (3+1)D solutions (The dimensionality is chosen by hand)
 - The 3d space expands in typical classical solutions.



The emergence of expanding space-time in a novel large-N limit of the Lorentzian type IIB matrix model

novel large-N limit

• In order to obtain a large-N limit inequivalent to the Euclidean model, we add a Lorentz invariant "mass" term to the action.

$$S_{\gamma} = -\frac{1}{2} N \gamma \operatorname{Tr}(A_{\mu})^{2} = \frac{1}{2} N \gamma \left\{ \operatorname{Tr}(A_{0})^{2} - \operatorname{Tr}(A_{i})^{2} \right\}$$

(\gamma > 0)

Motivation for this extra mass term comes from the previous work on classical solutions.

$$[A^{\nu}, [A_{\nu}, A_{\mu}]] - \gamma A_{\mu} = 0$$

[K. Hatakeyama, A. Matsumoto, J. Nishimura, A. Tsuchiya, A. Yosprakob (2019)] [H. Steinacker (2017)]

We consider taking the $\gamma \to 0^+$ limit after taking the large-N limit. We will see that γ can be also interpreted as an "infrared regulator" for the expanding space-time.

The emergence of expanding space-time in a novel large-N limit of the Lorentzian type IIB matrix model

$$Z = \int dA e^{-S(A)} \operatorname{Pf} \mathcal{M}(A), \qquad e^{-S(A)} = e^{i(S_{\mathrm{b}}(A) + S_{\gamma}(A))}$$

• contour deformation
$$ilde{F}_{\mu\nu} \equiv -i[ilde{A}_{\mu}, ilde{A}_{\nu}]$$
 positive real part for $0 < u \leq 1$

$$\begin{split} S(A) &\to S(\tilde{A}) \sim 2e^{i\frac{\pi}{2}(1-u)} \mathrm{Tr}(\tilde{F}_{0i})^2 + e^{-i\frac{\pi}{2}(1-u)} \mathrm{Tr}(\tilde{F}_{ij})^2 \\ &+ \gamma e^{-i\frac{\pi}{2}(1+\frac{3}{2}u)} \mathrm{Tr}(\tilde{A}_0)^2 + \gamma e^{i\frac{\pi}{2}(1+\frac{1}{2}u)} \mathrm{Tr}(\tilde{A}_i)^2 \\ &\text{negative real part for } 0 < u \leq 1 \end{split}$$

The action is unbounded for $0 < u \leq 1$

One cannot define the model by contour deformation any more! (.:. The corresponding Euclidean model is ill-defined.)

< □ > < □ > < □ > < □ > < □ > < □ >

introduction

- 2 relation between the Euclidean and Lorentzian model
- 3 regularization of the Lorentzian model

Inumerical simulation of the model

5 results

5 summary and discussion

• We choose an SU(N) basis :

$$A_0 = \operatorname{diag}(\alpha_1, \alpha_2, \dots, \alpha_N)$$
$$(\alpha_1 < \alpha_2 < \dots < \alpha_N)$$

sign problem

$$Z_{\rm L} = \int dA e^{i(S_{\rm b}+S_{\gamma})} \mathrm{Pf}\mathcal{M}\left(A\right)$$
phase factor

We cannot regard the Boltzmann weight as the probability. \rightarrow Conventional Monte Carlo methods are not applicable.

We use complex Langevin method to overcome the problem.

complex Langevin method

[G. Parisi (1983)] [J. Klauder (1984)]

• a way to realize the ordering : $\alpha_1 < \alpha_2 < \cdots < \alpha_N$ $(A_0 = \operatorname{diag}(\alpha_1, \alpha_2, \ldots, \alpha_N))$

$$\alpha_1 = 0, \ \alpha_2 = e^{\tau_1}, \ \alpha_3 = e^{\tau_1} + e^{\tau_2}, \ \dots, \ \alpha_N = \sum_{a=1}^{N-1} e^{\tau_a}$$

[J. Nishimura, A. Tsuchiya (2019)]

complexify the variables

 A_i : Hermitian matrices \rightarrow general matrices τ_a : real \rightarrow complex

complex Langevin equation

cri

$$\frac{d\tau_{a}}{dt_{L}} = -\frac{\partial S}{\partial \tau_{a}} + \eta_{a}(t_{L}), \quad \frac{d(A_{i})_{ab}}{dt_{L}} = -\frac{\partial S}{\partial (A_{i})_{ba}} + (\eta_{i})_{ab}(t_{L})$$
criterion for the correct convergence
The drift histogram falls off exponentially or faster
with the magnitude of the drift term.
[K. Nagata, J. Nishimura, S. Shimasaki (2016)]

The emergence of expanding space-time in a novel large-N limit of the Lorentzian type IIB matrix model

• singular drift problem - a cause of wrong convergence -

If the Dirac operator has near-zero eigenvalues, the criterion is not satisfied.

adding fermionic mass term

 $S_{m_{\rm f}} = iNm_{\rm f} {\rm Tr}[\bar{\Psi}_{\alpha}(\Gamma_7\Gamma_8^{\dagger}\Gamma_9)_{\alpha\beta}\Psi_{\beta}]$

[K. Anagnostopoulos, T. Azuma, Y. Ito, J. Nishimura, T. Okubo, S. Papadoudis (2020)] $m_{\rm f}=\infty$ corresponds to the fermion quenched model.

We need to make the $m_{\rm f} \rightarrow 0$ extrapolation eventually.

• We perform the following procedure at each Langevin step for stabilization. (c.f. dynamical stabilization for QCD [F. Attanasio, B. Jäger (2018)])

$$A_i \to \frac{1}{1+\epsilon} \left(A_i + \epsilon A_i^{\dagger} \right)$$

18 / 28

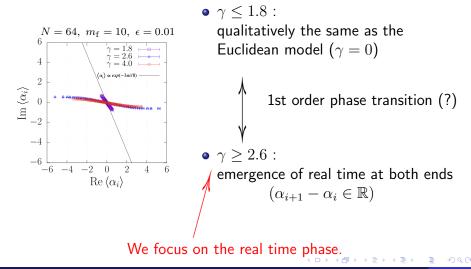
introduction

- 2 relation between the Euclidean and Lorentzian model
- 3 regularization of the Lorentzian model
- 4 numerical simulation of the model

summary and discussion

phase structure for various γ

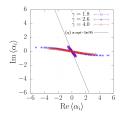
Lorentz invariant mass term: $\frac{1}{2}N\gamma \left\{ \operatorname{Tr}(A_0)^2 - \operatorname{Tr}(A_i)^2 \right\}$

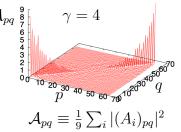


20 / 28

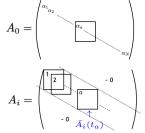
how to extract time-evolution

• band diagonal structure (dynamical property)





how to extract time-evolution

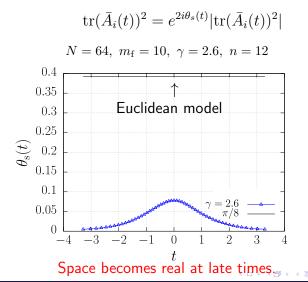


• definition of time $t_a = \sum_{i=1}^{a} |\bar{\alpha}_i - \bar{\alpha}_{i-1}|, \quad \bar{\alpha}_i = \frac{1}{n} \sum_{j=0}^{n-1} \alpha_{i+j}$ (n: block size) • $\bar{A}_i(t_a)$ ($n \times n$ matrix) represents the state of the universe at t_a .

The emergence of expanding space-time in a novel large-N limit of the Lorentzian type IIB matrix model

emergence of real space

• phase of space



The emergence of expanding space-time in a novel large-N limit of the Lorentzian type IIB matrix model

SSB of SO(9) symmetry

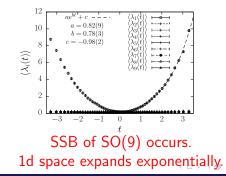
• order parameter for SSB of SO(9)

the eigenvalues of "moment of inertia tensor"

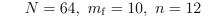
$$T_{ij}(t) = \frac{1}{n} \operatorname{tr} \left(X_i(t) X_j(t) \right), \quad X_i(t) \equiv \frac{1}{2} \left(\bar{A}_i(t) + \bar{A}_i^{\dagger}(t) \right)$$

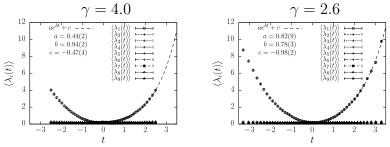
- SO(9) symmetric: 9 eigenvalues are almost degenerate.
- SO(9) broken: 9 eigenvalues are NOT degenerate.

$$N = 64, \ m_{\rm f} = 10, \ \gamma = 2.6, \ n = 12$$



γ dependence

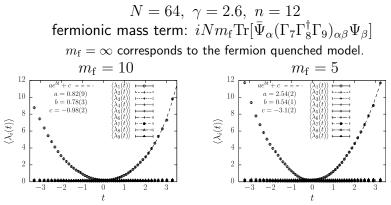




- 1d expansion occurs.
- The extent of time becomes larger at smaller γ .
- In the real time phase, the expansion of space gets more pronounced as γ decreases.

 $\rightarrow \gamma$ can be thought of as an "infrared regulator".

fermionic effects



- In the real time phase, the expansion of space gets more pronounced as $m_{\rm f}$ decreases.
 - The attractive force between space-time eigenvalues is weakened by the SUSY effects.

c.f.) Euclidean model [H. Aoki, S. Iso, H. Kawai, Y. Kitazawa, T. Tada (1998)]

- (日)

introduction

- 2 relation between the Euclidean and Lorentzian model
- 3 regularization of the Lorentzian model
- 4 numerical simulation of the model

summary

- We successfully applied the complex Langevin method to the Lorentzian type IIB matrix model.
- $\bullet\,$ equivalence between the Euclidean and Lorentzian model in the conventional large- $N\,$ limit
 - Euclidean model exhibits SSB: $SO(10) \rightarrow SO(3)$. The space-time becomes complex and it has Euclidean signature.
- introducing the Lorentz invariant mass term
 - An expanding real space-time appears at late times as expected from classical solutions.
 - the dimensionality of the expanding space:
 - not fixed at the classical level
 - turned out to be 1D for $m_{\rm f} > 5$.

Does 3d expanding space appear at smaller $m_{\rm f}$? (SUSY : $m_{\rm f} = 0$)

discussion

- a possible mechanism for the emergence of the 3d expanding space
 - a mechanism for collapsing space Quantum fluctuation is suppressed most when $Tr[A_i, A_j]^2 \sim 0$. \rightarrow 1d expanding space is favored.
 - property of the Pfaffian (at $m_{\rm f} = 0$) Pfaffian becomes zero if there are only two large matrices: $A_1, A_2 \neq 0, A_3, \ldots, A_9 = 0$. [W. Krauth, H. Nicolai, M. Staudacher (1998)] [J. Nishimura, G. Vernizzi (2000)] (Due to the exponential expansion of space, A_0 cannot play any role here.)

 \rightarrow 3d expanding space may be favored by the Pfaffian.

- We are now trying to see whether $SO(9) \rightarrow SO(3)$ occurs by decreasing m_f further. (*c.f.* results for the Euclidean model)
- We expect that 3d expanding space appears for sufficiently small $m_{\rm f}.$

Thank you for listening!

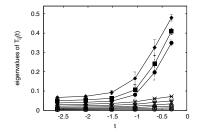
◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

- One of the candidates for non-perturbative definition of superstring theory
 - Monte Carlo method is applicable.
- · Previous works about Monte Carlo simulation of the model

Kim, Nishimura, Tsuchiya ('12)

<ロト (四) (三) (三)

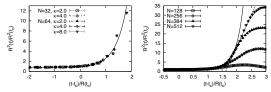
훈



- One of the candidates for non-perturbative definition of superstring theory
 - Monte Carlo method is applicable.
- · Previous works about Monte Carlo simulation of the model
 - ► SSB: SO(9,1) -> SO(3,1) Kim, Nishimura, Tsuchiya ('12)
 - expansion of the 3d space
 - exponential expansion in the early time Ito, Kim, Nishimura, Tsuchiya ('13)

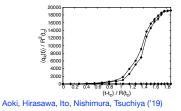
훈

- power law expansion in the late time Ito, Nishimura, Tsuchiya ('15)



- · Previous works about Monte Carlo simulation of the model (cont'd)
 - structure of the 3d space
 - Pauli-matrix structure

Space is not continuous.



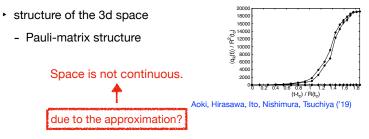
<ロト (四) (三) (三)

E

So far, we had used an approximation for the partition function to avoid the sign problem.

$$e^{iS_{\rm b}} \to e^{\beta S_{\rm b}} \quad (\beta > 0)$$

· Previous works about Monte Carlo simulation of the model (cont'd)



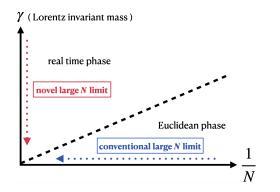
So far, we had used an approximation for the partition function to avoid the sign problem.

$$e^{iS_{\rm b}} \to e^{\beta S_{\rm b}} \quad (\beta > 0)$$

<ロト (四) (三) (三)

E

our prediction for a phase diagram $(\gamma, 1/N)$



We expect the phase appearing in the novel large-N limit is inequivalent to that in the conventional one.

<ロ> (四) (四) (三) (三) (三) (三)