

Universität Siegen

Bundesministerium für Bildung und Forschung

Overview of recent ATLAS results

Markus Cristinziani, Universität Siegen Workshop on the Standard Model and Beyond Corfu, August 28 – September 8, 2022

Nice to be with you in person!

ATLAS experiment at the CERN LHC collider

Vast and rich physics program at the energy frontier

- understanding of electroweak symmetry breaking and of the BEH mechanism
- - also sensitive to feeble interactions
- - indirect probes pf BSM physics
- studies of the quark-gluon plasma properties

Fantastic dataset recorded in Run-2 (2015–2018) after the Run-1 data set (2010–2012)

(incl. PbPb, XeXe and pPb collisions)

1078 papers submitted for publication so far

broad search program at the TeV scale addressing naturalness, dark matter, flavour

precise measurements of SM (EW, top, QCD) processes and heavy-flavour properties

Very well understood detector performance

Full Run-2 dataset

- simulation of pileup condition, $\langle \mu \rangle \sim 35$ pp interactions per bunch crossing continuous improvements of identification and calibration of reconstructed objects

ATLAS results @ Corfu2022

JINST 14 (2019) P12006

Standard Model cross section measurements

Large benefit from recent theory developments and computations

Elastic cross-section measurement

Differential $d\sigma/dt \ pp \rightarrow pp$ elastic cross section

- measure scattered protons with detectors located in roman pots 240m from IP
- special data taking with large β^* optics (2.5km)
- Iuminosity calibration from Van Der Meer scans

ATLAS results @ Corfu2022

arXiv:2207.12246

Elastic cross-section measurement

From precise $d\sigma/dt$ measurement can extract • $\rho(\Re/\Im \text{ of elastic amplitude for } t \rightarrow 0)$ 0.098 ± 0.011 Most accurate measurement of total cross section at high energy • total cross section (from optical theorem) 104.7 ± 1.1 mb common models don't accommodate well both measurements at the same time

Polarisation in WZ production

Precise studies of rare SM processes

- study W and Z polarisation in WZ events reconstructed in 3l+v decay mode
- joint measurement of W and Z polarisation fraction, using deep neural network

• observation of simultaneous production of long. polarised W and Z bosons with 7.1σ

AILAS-COI	<u>NF-202</u>	<u>.2-053</u>

Observation of di-charmonium excess

Four-muon final state; motivated by tetraquark

- search for $T_{cc\bar{c}\bar{c}} \to J/\psi J/\psi \to 4\mu$ and also in $T_{cc\bar{c}\bar{c}} \to J/\psi \psi(2S) \to 4\mu$ (new)
- background from single-parton and double-parton scattering
- see large structures near threshold as well as narrow resonance at 6.9 GeV
- confirming LHCb observation in di- J/ψ

ATLAS results @ Corfu2022

Top-quark cross-section measurements

σ_{ti} [pb]

Inclusive .

4% precision !

- result is in excellent agreement with the NNLO-NNLL prediction - gluon pdf constraint improves prediction of ggF Higgs production

Single top + photon observation

Associated t or tt + $\gamma/Z/H \rightarrow$ constraints of t ewk couplings • measured: σ_{fid} (tyq) = 580 ± 19 (stat.) ± 63 (syst.) fb

- predicted: 406^{+25}_{-32} fb
- dominant systematics: $t\bar{t}\gamma$ modelling and jets/ E_{T}^{miss}

M. Cristinziani

ATLAS results @ Corfu2022

Single top s-channel producer n

Most difficult single-top channel at LHC

- first time measured at 13 TeV
- matrix-element based likelihoods for signal/bkg
- evidence at 3.3σ (3.9σ exp.)

•
$$\sigma = 8.2^{+3.5}_{-2.9} \, \text{pb}$$

fit to signal region

ATLAS-CONF-2022-030

summary single top

Measurement of 4t production cross section

Combination of 1 ℓ / 2 ℓ OS and 2 ℓ SS / 3 ℓ

• $\sigma_{t\bar{t}t\bar{t}} = 24^{+7}_{-6}$ pb with 4.7 σ (2.6 σ exp.) significance

To improve results, will need

- better $t\bar{t}$ +HF modelling for 1 ℓ / 2 ℓ OS
- better ttw modelling for 2l SS / 3l

Higgs-boson physics

Higgs plays a key role in SM, discovered in Run-1 by ATLAS and CMS • 2022 is the 10th anniversary of the Higgs-boson discovery!

Run-2, 30x more Higgs bosons recorded by the ATLAS detector

rare decay modes, and test phase space that hasn't been probed before.

• allows for precise measurements of cross sections, couplings and properties, search for

Higgs-boson coupling measurements

Total cross section / Standard-Model prediction

- $\mu = 1.05 \pm 0.06 = 1.05 \pm 0.03$ (stat.) ± 0.03 (exp.) ± 0.04 (sig th.) ± 0.02 (bkg th.)
- benefits also from reduced theory uncertainty

Measurements per production mode x decay channel

 $\mu = 1.05 \pm 0.06 = 1.05 \pm 0.03$ (stat.) ± 0.03 (exp

Higgs-boson coupling measurements

Coupling modifier interpretation

Nature 607 (2022) 52

Higgs-production cross section

ATLAS results @ Corfu2022

tionistinziani

1 Brookhaven[®]

19

CP structure in the Higgs sector

Run-1 data identified H as a CP-even scalar

room for CP-odd admixtures – potential for CP violation

How to look for signs of CP violation in Higgs couplings?

- modified rates not immediately distinguishable from CP-even BSM
- characteristic: interference effects on shapes of CP-odd observables \rightarrow can extract limits from rate measurements, but dedicated CPV searches typically use shape information

Fermion couplings

- CP-odd contribution allowed at **tree level**
- Mainly third-generation couplings
- ttH production and $H \rightarrow \tau \tau$ decays

Example model: $\mathcal{L}_{HFF} \propto \kappa_F (\cos \phi \,\overline{F}F + \sin \phi \overline{F}i\gamma_5 F) H$ odd even

Boson couplings

- CP-odd contribution from higher order operators suppressed by BSM scale
- VBF/VH production and WW/ZZ decays

Example model: $\mathcal{L}_{HVV} \supset \mathcal{L}_{HVV,SM} + \frac{1}{\Lambda^2} C \underbrace{H\tilde{V}_{\mu\nu}V^{\mu\nu}}_{V} + \cdots$ frequently: dim-6 BSM embedded in CP-odd scale EFT framework

CP in $H\tau\tau$

Tests CP properties of the τ Yukawa

First ATLAS analysis to use tau decay classification

M. Cristinziani

CP mixing angle ϕ_{τ} is reflected in decay kinematics

ATLAS results @ Corfu2022

Further Higgs CP measurements

Fermionic coupling: $t\bar{t}H$ with $H \rightarrow bb$ Bosonic coupling: VBF $H \rightarrow \gamma \gamma$

 exploit properties of dijet system form top candidates from jets & leptons to define CP-sensitive observables • optimal observable (M.E. dis

M. Cristinziani

- direct measure of interferenc^{^x}
- pure shape analysis signal

ATLAS results @ Corfu2022

ATLAS Prelimi $\sqrt{s} = 13$ TeV, 139

SR.^{24*j*, 24*b*}

Searching for Higgs pair production

Probe Higgs self-interaction and Higgs potential

- main challenges
 - very small cross section 32.7 fb (< 1/1000 of single H)
 - negative interference between main contributions
- compromise between stats. and S/B:
 - $(H \to b\bar{b}) \times (H \to \gamma\gamma, \tau\tau, b\bar{b})$
- sensitivity with full Run-2 data set significantly improved over partial Run-2 results

M. Cristinziani

-2	022	2-0	50

Searching for Higgs pair production

Probe Higgs self-interaction and Higgs potential

- main challenges
 - very small cross section 32.7 fb (< 1/1000 of single H)
 - negative interference between main contributions
- compromise between stats. and S/B:
 - $(H \to b\bar{b}) \times (H \to \gamma\gamma, \tau\tau, b\bar{b})$
- sensitivity with full Run-2 data set significantly improved over partial Run-2 results

M. Cristinziani

-2	02	2-	05	0

Searches for extended scalar sector

Search for $Y \rightarrow XH$

- fully hadronic final state
- high mass Y and boosted X and H
- anomaly detection search + exclusion limits with "standard" selection
- merged and resolved categories for X

ATLAS results @ Corfu2022

Searches motivated by Dark Matter

Search for $H \rightarrow Dark$ matter (invisible)

arXiv:2202.07953

• BR (H \rightarrow invisible) < 14.5% (obs), 10.3% (exp) from search with VBF topology (95% C.L.)

Searches motivated by Dark Matter

Part of wide mono-X searches + $E_{\rm T}^{\rm miss}$

- fully hadronic boosted final state
- mass reach for V mediator ~ 2.5 TeV
- probe also non-resonant model
- large increase of sensitivity wrt previous analysis
- most restrictive limit on single production of a singlet VLQ

Production in non-resonant and resonant case

Production of a single vector-like top quark

(here X=top)

ATLAS results @ Corfu2022

M. Cristinziani

Searches for heavy resonances

Many searches reaching few TeV sensitivity in mass

ATLAS Heavy Particle Searches* - §

Status: July 2022

	Model	<i>ℓ</i> ,γ	Jets†	E_T^miss	∫£ dt[f
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell \nu qq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ \end{array}$ multi-channe 1 e, μ 1 e, μ 1 e, μ	1 – 4 j 2 j ≥3 j 1 2 j / 1 J ≥1 b, ≥1 J/2 ≥2 b, ≥3 j	Yes - - Yes Yes Yes	139 36.7 37.0 3.6 139 36.1 139 36.1 36.1
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{SSM } W' \to tb \\ \text{HVT } W' \to WZ \to \ell\nu qq \text{ mode} \\ \text{HVT } W' \to WZ \to \ell\nu d\ell' \ell' \text{ mod} \\ \text{HVT } W' \to WH \to \ell\nu bb \text{ mode} \\ \text{HVT } W' \to ZH \to \ell\ell/\nu\nu bb \text{ mode} \\ \text{HVT } Z' \to ZH \to \ell\ell/\nu\nu bb \text{ mode} \\ \text{LRSM } W_R \to \mu N_R \end{array}$	$2 e, \mu 2 \tau - 0 e, \mu 1 e, \mu 1 r - el B 1 e, \mu del C 3 e, \mu el B 1 e, \mu del B 0,2 e, \mu 2 \mu $	$\begin{array}{c} - \\ 2 b \\ \geq 1 b, \geq 2 J \\ - \\ 2 j / 1 J \\ 2 j / 1 J \\ 2 j (VBF) \\ 1 - 2 b, 1 - 0 j \\ 1 - 2 b, 1 - 0 j \\ 1 J \end{array}$	- Yes Yes Yes Yes Yes Yes	139 36.1 36.1 139 139 139 139 139 139 139 139 139 80
C	Cl qqqq Cl ℓℓqq Cl eebs Cl μμbs Cl tttt	_ 2 e,μ 2 e 2 μ ≥1 e,μ	2 j - 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1
Μ	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac D Pseudo-scalar med. 2HDM+a	0 e, μ, τ, γ l) 0 e, μ, τ, γ DM) 0 e, μ multi-channe	1 – 4 j 1 – 4 j 2 b I	Yes Yes Yes	139 139 139 139
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	$2 e 2 \mu 1 \tau 0 e, \mu \ge 2 e, \mu, \ge 1 \tau 0 e, \mu, \ge 1 \tau 1 \tau$		Yes Yes Yes - Yes Yes	139 139 139 139 139 139 139
Vector-like fermions	$ \begin{array}{l} VLQ \ TT \rightarrow Zt + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} T_{5/3} T_{5/3} \rightarrow Wt + X \\ VLQ \ T \rightarrow Ht/Zt \\ VLQ \ Y \rightarrow Wb \\ VLQ \ B \rightarrow Hb \\ VLL \ \tau' \rightarrow Z\tau/H\tau \end{array} $	$\begin{array}{c} 2e/2\mu/\geq 3e,\mu\\ \text{multi-channe}\\ (2(SS))\geq 3e,\mu\\ 1e,\mu\\ 1e,\mu\\ 0e,\mu\geq\\ \text{multi-channe} \end{array}$	$\geq 1 \text{ b}, \geq 1 \text{ j}$ $ 1 \text{ b}, \geq 1 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 1 \text{ j}$ $\geq 2 \text{ b}, \geq 1 \text{ j}, \geq 1 \text{ j}$ $ 2 \text{ c}, \geq 1 \text{ j}$	- Yes Yes J - Yes	139 36.1 36.1 139 36.1 139 139
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j –	- - - -	139 36.7 36.1 20.3 20.3
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles	$2,3,4 e, \mu$ 2μ $2,3,4 e, \mu (SS)$ $2,3,4 e, \mu (SS)$ $3 e, \mu, \tau$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	≥2 j 2 j) various) – – – –	Yes Yes 	139 36.1 139 139 20.3 139 34.4
	$\gamma s = 8 \text{ Iev}$	artial data	full de	ata	

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

Status: July 2022

	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[fb	-1]	Liı
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell\nu q$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ multi-channel \\ q \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 – 4 j 	Yes - - - Yes Yes Yes	139 36.7 37.0 3.6 139 36.1 139 36.1 36.1	MD Ms Mth GKK mass GKK mass GKK mass GKK mass KK mass KK mass	
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{SSM } W' \to tb \\ \text{HVT } W' \to WZ \to \ell\nu qq \text{ model} \\ \text{HVT } W' \to WZ \to \ell\nu \ell'\ell' \text{ model} \\ \text{HVT } W' \to WH \to \ell\nu bb \text{ model} \\ \text{HVT } W' \to ZH \to \ell\ell/\nu\nu bb \text{ model} \\ \text{HVT } Z' \to ZH \to \ell\ell/\nu\nu bb \text{ model} \\ \text{LRSM } W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ - \\ 0 \ del \ B \\ 1 \ e, \mu \\ 1 \ del \ B \\ 1 \ e, \mu \\ 0 \ del \ B \\ 1 \ e, \mu \\ 0 \ del \ B \\ 1 \ e, \mu \\ 0 \ del \ B \\ 1 \ e, \mu \\ 0 \ del \ B \\ 2 \ \mu \end{array}$	- 2 b ≥1 b, ≥2 J - 2 j / 1 J 2 j (VBF) 1-2 b, 1-0 j 1 J	– Yes Yes Yes Yes Yes Yes Yes	139 36.1 139 139 139 139 139 139 139 139 139 13	Z' mass Z' mass Z' mass W' mass W' mass W' mass W' mass W' mass W' mass Z' mass Z' mass	340 GeV
C	Cl qqqq Cl ℓℓqq Cl eebs Cl μμbs Cl tttt	_ 2 e,μ 2 e 2 μ ≥1 e,μ	2 j - 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ Λ	
MD	Axial-vector med. (Dirac DM Pseudo-scalar med. (Dirac I Vector med. Z'-2HDM (Dira Pseudo-scalar med. 2HDM-	l) 0 e, μ, τ, γ DM) 0 e, μ, τ, γ c DM) 0 e, μ -a multi-channel	1 – 4 j 1 – 4 j 2 b	Yes Yes Yes	139 139 139 139	m _{med} m _{med} m _{med}	376 GeV 56
70	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	$\begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \ge 2 \ e, \mu, \ge 1 \ \tau \\ 0 \ e, \mu, \ge 1 \ \tau \end{array}$	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 2 \ j, \geq 2 \ b \\ \geq 1 \ j, \geq 1 \ b \\ 0 - 2 \ j, 2 \ b \\ 2 \ b \end{array} $	Yes Yes Yes - Yes Yes	139 139 139 139 139 139 139	LQ mass LQ mass LQ ⁴ mass LQ ³ mass LQ ³ mass LQ ³ mass LQ ³ mass	
Vector-like fermions	$ \begin{array}{l} VLQ \ TT \rightarrow Zt + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} T_{5/3} T_{5/3} \rightarrow Wt + Y \\ VLQ \ T \rightarrow Ht/Zt \\ VLQ \ Y \rightarrow Wb \\ VLQ \ Y \rightarrow Hb \\ VLQ \ B \rightarrow Hb \\ VLL \ \tau' \rightarrow Z\tau/H\tau \end{array} $	$\begin{array}{c} 2e/2\mu/\geq 3e,\mu\\ \text{multi-channel}\\ -X 2(SS)/\geq 3e,\mu\\ 1e,\mu\\ 1e,\mu\\ 0e,\mu\\ 0e,\mu\\ \end{array}$	$\geq 1 \text{ b}, \geq 1 \text{ j}$ $\geq 1 \text{ b}, \geq 1 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 1 \text{ j}$ $\geq 20, \geq 1 \text{ j}, \geq 10, \geq 1 \text{ j}$	- Yes Yes J - Yes	139 36.1 36.1 139 36.1 139 139	T mass B mass T _{5/3} mass T mass Y mass B mass τ' mass	
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton γ^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j - -	- - - -	139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass l* mass v* mass	
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles	$2,3,4 e, \mu$ 2μ $2,3,4 e, \mu (SS)$ $2,3,4 e, \mu (SS)$ $3 e, \mu, \tau$	≥2 j 2 j) various) - - -	Yes Yes _ _ _ _	139 36.1 139 139 20.3 139 34.4	N ⁰ mass N _R mass H ^{±±} mass H ^{±±} mass H ^{±±} mass multi-charged particle ma monopole mass	350 GeV 400 GeV
	$\sqrt{s} = 8 \text{ TeV}$	√s = 13 TeV partial data	√s = 13 full da	TeV ta		10 ⁻¹	

*Only a selection of the available mass limits on new states or phe †Small-radius (large-radius) jets are denoted by the letter j (J).

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

~ v

Summary of pair-produced leptoquarks

ATL-PHYS-PL

	022	012
JD-Z	022	<u>-012</u>

Scalar leptoquark in btt final state

Search for singly-produced scalar leptoquarks

- complementary to pair-production searches
- TlepThad and Thad Thad final states, non-resonant production
- final discriminant = $\Sigma p_T(\tau, b)$

Searches for long-lived particles

Large program to search for long-lived particles exploiting a comprehensive set of signatures

- displaced vertices in inner tracking detector
- lepton not consistent with originating from pp vertex
- decay in the calorimeter or muon spectrometer
- dE/dx measurement for charged metastable particles + multi-charge

Status: July 2022

	Model
	RPV $\tilde{t} \rightarrow \mu q$
	$\operatorname{RPV} \widetilde{\chi}_1^0 \to eev/e$
	$\operatorname{GGM} \widetilde{\chi}_1^0 \to Z \widetilde{G}$
	GMSB
	GMSB $\tilde{\ell} \to \ell \tilde{G}$
۶۲	GMSB $\tilde{\tau} \rightarrow \tau \tilde{G}$
SU	AMSB $pp \rightarrow \tilde{\chi}_1^{\pm j}$
	AMSB $pp \rightarrow \tilde{\chi}_1^{\pm j}$
	Stealth SUSY
	Split SUSY
	Split SUSY
	Split SUSY
	$H \rightarrow s s$
\ 0	$H \rightarrow s s$
10%	VH with $H \rightarrow ss$
BR =	FRVZ $H \rightarrow 2\gamma_d$
ggs I	FRVZ $H \rightarrow 4\gamma_d$
Η̈́	$H \rightarrow Z_d Z_d$
	$H \rightarrow ZZ_d$
	Φ(200 GeV) → s
alar	Φ(600 GeV) → s
S	$\Phi(1 \text{ TeV}) \rightarrow s s$
	$W \rightarrow N\ell, N \rightarrow \eta$
	$W \rightarrow N\ell, N \rightarrow 0$
ĮNL	$W \rightarrow N\ell, N \rightarrow \ell$
1	$W \to N\ell, N \to \ell$

*Only a selection of the available lifetime limits is shown

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

ATLAS $\int \mathcal{L} dt = (32.8 - 139) \text{ fb}^{-1}$

ATLAS results @ Corfu2022

Preliminary
\sqrt{s} = 13 TeV
eference
2003.11956
1907.10037
1808.03057
RN-EP-2022-096
2011.07812
2011.07812
2201.02472
2205.06013
1811.07370
2205.06013
1710.04901
AS-CONF-2018-003
2203.00587
2203.01009
2107.06092
AS-CONF-2022-001
1909.01246
1808.03057
1811.02542
1902.03094
1902.03094
1902.03094
2204.11988
2204.11988
2204.11988
2204.11988

τ [ns]

Searches for long-lived particles

Search for H or Z produced far from interaction point

- exploiting calorimeter pointing to reconstructed vertex + photon time
- interpretation in GMSB model with LL NLSP
- reach 350/700 GeV for 2 ns lifetime for decay to H / Z

ATLAS results @ Corfu2022

H/Z

Search for heavy, LLP with large dE/dx

Signal particles should

- reconstructed in the pixel layers probing $\tau = 1$ ns and m = 0.1–3 TeV.

A 3.3 σ excess is observed in ~1.4 TeV mass hypothesis, but close investigation (calorimeter, muon spectrometer) of the 7 tracks show $\beta \sim 1$

move significantly slower than c, have high p_T and have anomalously large dE/dx.

Search for displaced y in exotic Higgs decays

First LHC constraints on exotic Higgs-boson decays to displaced photons measurement relies on pointing and timing information from the LAr calorimeter

M. Cristinziani

Exotic Higgs decays summary

Branching ratios probed well below 10%

ATLAS results @ Corfu2022

ATL-PHYS-PL

JB-	-202	22-	00	7

M. Cristinziani

JB-2022-037

Physics with Pb Pb collisions

Comprehensive studies of jet quenching in quark-gluon plasma suppression in PbPb wrt pp via nuclear modification factor RAA for

Physics with Pb Pb collisions

Observation of the $\gamma\gamma \rightarrow \tau\tau$ process in ultra-peripheral collisions • constraints on the τ -lepton anomalous magnetic moment

arXiv:2204.13478

Run: 366268 Event: 3305670439 2018-11-18 16:09:33 CEST

ATLAS for Run-3

(NSW)

Installed new muon detectors with precision tracking and muon selection capabilities. Key preparation for the HL-LHC.

TRIGGER AND DATA ACQUISITION SYSTEM (TDAQ)

Upgraded hardware and software allowing the trigger to spot a wider range of collision events while maintaining the same acceptance rate.

ATLAS results @ Corfu2022

MUON NEW SMALL WHEELS

NEW READOUT SYSTEM FOR THE NSWs

The NSW system includes two million micromega readout channels and 350 000 small strip thin-gap chambers (sTGC) electronic readout channels.

LIQUID ARGON CALORIMETER

New electronics boards installed, increasing the granularity of signals used in event selection and improving trigger performance at higher luminosity.

NEW MUON CHAMBERS IN THE CENTRE **OF ATLAS**

Installed small monitored drift tube (sMDT) detectors alongside a new generation of resistive plate chamber (RPC) detectors, extending the trigger coverage in preparation for the HL-LHC.

ATLAS FORWARD PROTON (AFP)

Re-designed AFP time-of-flight detector, allowing insertion into the LHC beamline with a new "out-ofvacuum" solution.

New Small Wheel

Muon trigger + measurement

NSW being positioned

900 GeV pp collision data

Recorded in May

during stable-beam periods provided by the LHC during its commissioning

13.6 TeV pp collision data

Started July 5th

µ reconstructed using new NSW detector

See also https://atlas.web.cern.ch/Atlas/GROUPS/DATAPREPARATION/DataSummary/2022/

M. Cristinziani

 $pp \rightarrow t\bar{t} \rightarrow e\mu vvb\bar{b}$ candidate

Detector performance with early 2022 data

13.6 TeV data

M. Cristinziani

ATL-PHYS-PL

JB-2022-033						
	JB	-2	02	2-	-03	33

Phase-2 preparations

ern.ch/cameras/acr.html?slide=2#carousel

ATLAS Phase-2 Upgrade for HL-LHC

Detailed scope described in 7 TDRs approved by the CERN Research Board in 2017, 2018, 2020

M. Cristinziani

Tile calorimeters

LAr hadronic end-cap and forward calorimeters

ATLAS results @ Corfu2022

Upgraded Trigger and Data Acquisition system

Level-0 Trigger at 1 MHz Improved High-Level Trigger (150 kHz full-scan tracking)

Electronics Upgrades

LAr Calorimeter Tile Calorimeter Muon system

High Granularity Timing Detector (HGTD)

Forward region (2.4 < $|\eta|$ < 4.0)

Low-Gain Avalanche Detectors (LGAD) with 30 ps track resolution

Additional small upgrades

Luminosity detectors (1% precision goal)

HL-ZDC

ATLAS Phase-2 Upgrade for HL-LHC

HGTD LGAD wafer under testing

M. Cristinziani

module

ATLAS results @ Corfu2022

Summary and conclusions

ATLAS continues to produce exciting physics results, exploiting the full Run-2 dataset and preparing for combinations with Run-3 data

- Standard Model measurements over a wide range of phase space
- reaching 5–10% constraints on main Higgs-boson couplings
- wide program for BSM physics search

Run-3 has started with $\sqrt{s} = 13.6$ TeV • expect to collect a large dataset until 2025, ~double of run-2 dataset

Very significant effort to prepare detector upgrades for HL-LHC

- and many other measurements and searches

precision measurement of Higgs boson, rare decays and sensitivity to HH production

Further ATLAS (+ CMS) talks at this Workshop

Today

- Higgs boson property measurements (ATLAS/CMS) Lydia Brenner
- Measurements of quartic coupling and VBS (ATLAS) Diana Pyatiizbyantseva
- ATLAS Inner tracker upgrade in view of HL-LHC **Dimitris Varouchas**

Tomorrow

• Searches for new phenomena in leptonic final states (ATLAS) - Daniel Wilbern

Saturday

Searches for Supersymmetry (ATLAS/CMS) – Vasiliki Mitsou

Monday next week

- Searches for dark matter (ATLAS/CMS) Nishu Nishu
- Searches for additional Higgs bosons (ATLAS) Liljana Morvaj

