

ATLAS Inner tracker (ITk) upgrade in view of HL-LHC

Dimitris Varouchas (IJCLab-Orsay, CNRS/IN2P3), on behalf of the ATLAS-ITk collaboration

HL-LHC rich physics programme

- Estimated integrated luminosity of HL-LHC: 3000-4000 fb⁻¹
- Highlights of HL-LHC physics programme
 - High precision on Higgs boson properties: couplings, mass, width, access to self coupling
 - Increase precision in EW sector measurements: vector boson scattering, triboson couplings, rare processes
 - Search for BSM physics: SUSY, dark matter, exotic resonances, long-lived particles, etc
- Huge statistics: stringent test of our physics models
- Indirect search of new physics through deviations from the theory (differential measurements, EFTs, etc)

Higgs Physics at the HL-LHC, <u>CERN-LPCC-2018-04</u> Snowmass, <u>ATLAS-PHYS-PUB-2022-018</u>

SM di-Higgs production in ATLAS @ 3000 fb⁻¹

Measured μ	Statistical-only	Statistical + Systematic
$HH \rightarrow b \overline{b} b \overline{b}$	1.0 ± 0.6	1.0 ± 1.6
$HH ightarrow b ar{b} au au$	1.0 ± 0.4	1.0 ± 0.5
$HH ightarrow b ar{b} \gamma \gamma$	1.0 ± 0.6	1.0 ± 0.6
Combined	1.00 ± 0.31	1.0 ± 0.4

- Higgs boson couplings uncertainty < ~4%
- Di-higgs production
 - 40% signal strength uncertainty
 - 4σ significance after ATLAS & CMS combination at 3000 fb⁻¹
- LHC history teaches us that we often do better wrt the projections.
 (We will most likely do better)

LHC timeline including HL-LHC

- HL-LHC phase currently scheduled to start in 2029
- Data taking foreseen up to ~2040

- Instantaneous luminosity to increase from 2 to $\sim 7.5 \times 10^{34}$ cm⁻²s⁻¹ : very high detector occupancy
- Pile-up increase to ~200, from ~40 currently
- Estimated integrated luminosity at the end of HL-LHC: 3000-4000 fb⁻¹, factor of 10 increase

ATLAS ITK ATLAS upgrades for HL-LHC

- New **muon chambers** at the innermost part
 - Trigger efficiency and momentum resolution improvements
- High Granularity Timing Detector (HGTD)
 - Improved pileup suppression at the forward region
- Upgrades on calorimeter and muon chambers off-detector electronics and trigger
- New inner tracker (ITk)
 - Higher granularity
 - Reduced material
 - Radiation hardness
 - Faster readout
 - Goal: new tracker to have similar, or better, performance compared to current inner detector

Focus of this talk

Inner Tracker upgrade (ITk)

• Outer strip detector: 4 barrel layers + 6 end-cap disks

- Inner pixel detector: 5 barrel layers + inclined and vertical rings
 - ~13m² of active area
 - ~9000 modules
 - 5.1 Giga-pixels

ATLAS

• Pixel pitch: $25x100 \ \mu m^2$ for L0, $50x50 \ \mu m^2$ elsewhere

Current pixel system ~1.9 m² of active area 2000 modules 92 Mega-pixels Pixel pitch at L0: 50x250 μm²

- All-silicon inner tracker with increased acceptance from $|\eta|$ < 2.5 (current ID) to $|\eta|$ < 4 (ITk)
 - Improved pile-up suppression in the forward region

Inner Tracker upgrade (ITk)

• Outer strip detector: 4 barrel layers + 6 end-cap disks

- Inner pixel detector: 5 barrel layers + inclined and vertical rings
 - ~13m² of active area
 - ~9000 modules
 - 5.1 Giga-pixels

ATLAS

 Pixel pitch: 25x100 μm² for L0, 50x50 μm² elsewhere

Main focus today

- All-silicon inner tracker with increased acceptance from $|\eta|$ < 2.5 (current ID) to $|\eta|$ < 4 (ITk)
 - Improved pile-up suppression in the forward region

ATLAS TIK Material budget

- **Reduced material** with respect to current inner tacker
 - Sophisticated CO2 cooling system ٠
 - Ultra light carbon structures for mechanical mounting •
 - **Innovative serial powering** for the ITk-Pixel detector: less cabling/services ٠

ATLAS TTK ITK tracking performance

- Target: **similar** or **better performance** wrt current inner detector, even if HL-LHC conditions will be much harsher
 - Finer granularity of detector •
 - → Cope with higher occupancies
 - Reduced material budget •
 - → Less multiple scattering, photon conversions, etc
 - Big pseudorapidity coverage, increased number of layers
 - \rightarrow More hits on track
 - Minimum 9 hits per track at central region, 13 hits at the **forward** region
 - Track hits redundancy is mandatory to solve the high **combinatorics** expected at HL-LHC

ATLAS TIK ITK-Strip detector in one slide

• 4 barrel layers + 12 end-cap disks

- Dimensions: 6m long, 2m wide
- ~17k modules
- 60M readout channels
- Sensor / Electronics
 - Three dedicated ASICs
- **Production status**
 - Sensors in production
 - ASICs in production
 - Hybrids and modules in pre-production

• ITk-Pixel detector composed by 3 parts: outer barrel, outer end-cap, and inner system

- **Outer barrel:** 3 barrel layers, 2x23 inclined disks
- Outer endcap: 2x28 outer disks
- Inner system: 2 barrel layers and 2x44 disks
 - Most innermost layer: 34 mm from the beam pipe

ITk-Pixel building blocks: modules

- Bare module: silicon sensor flip-chip assembled to FE via indium bump bonding
- Flexible printed circuit board (Flex PCB) glued on sensor, and then wire bonded to ASIC
- Two types of modules
 - Quad modules: 4 Fs bump bonded to one sensor;
 95% of the total modules (everywhere but Layer-0)
 - Triplet modules: 3 single-chip bare modules connected to the same flex; 5% of the total modules (Layer-0)
- All chips are thinned to $150\ \mu m$
- All sensors are 150 μm thick, apart from Layer-1, which are 100 μm

Poond Readout chip Bump bond Pixel implant Guard rings

LinearTriplet Flex (Layer-0 barrel)

Photostory of module assembly

ATLAS **XIT**k

- We are using a manual and simple assembly tooling based on mechanical jigs and a mask (stencil) to control the glue pattern
- Epoxy adhesive used, radiation hard

Photo story of gluing an ITk-pixel module

8h later

Assembled module

A novel readout chip

- Common ATLAS and CMS R&D: RD53 collaboration (<u>https://rd53.web.cern.ch</u>)
- Reduced pixel size: $50 \times 50 \ \mu m^2$
- First prototype for: RD53A
 - Common for ATLAS and CMS
 - Three different analog front end (FE) for comparison
- Final ATLAS-ITk chip (ITkPix)
 - Radiation hard > 5 MGy (fluence $\sim 10^{16} n_{eq}/cm^2$)
 - Trigger rate: 1 MHz
 - High hit rate: 3 GHz/cm²

- Finished prototyping with RD53A-chip modules, O(200) modules were built among 20 sites
- Set up complete procedures for assembly and testing of modules
- **Bare modules**
 - Currently in pre-production
 - Process entirely done in industry
- Flex PCB
 - Design is finalised
 - Order being placed at the vendors (industry) •
 - Pre-production to start the next month

Module assembly (mostly), and testing @ ITk institutes

About 20 laboratories in ATLAS (France, Germany, Italy, UK, USA, Japan, Norway, CERN/Switzerland) have developed the experience to assemble and test modules

Loading onto local supports and cooling structures in 4 sites

ATLAS ITK Highlights from prototyping

- Important number of assembled modules were thermally cycled (to extreme values) and irradiated to the HL-LHC expected fluence: no damages or drop in efficiency
- Extensive electrical tests of assembled modules to catch production problems: Quality Control (QC)
 - Sensor electrical measurement: on wafer, before assembly, after assembly and after thermal cycles
 - **Cold test at operating temperature** (-15°C): catch defects induced by thermal stress (delamination)
 - Look for module failure after 24-long operation (burn-in test)

 Final site qualification ongoing to tackle pre-production (to start early 2023)

Loaded supports and demonstrators

ATL-ITK-PUB-2022-002

ATLASXITK

Tools developed for precision placing

- Building system test infrastructure for testing loaded local supports
- Preparing for thermal cycles of bare and loaded support structures

- Serial power chain tests with real modules
 - On irradiated and non-irradiated modules
 - No damaging effect from serial powering

• Demonstrators development for both endcap and outer barrel

ATLAS ITk Pixel Module FDR

ITk-Pixel timeline

• Autumn 2022

ATLAS为

• Submission and production of final chip

- Submission and production of final Flex PCBs
- 2023: Year of the pre-production → 10% of the total modules production
- 2024-2025: Modules production for ITk-Pixel
- Beginning of 2026, modules should be ready to start the loading and installation during Long Shutdown 3 (2026-2029)
- Schedule is already very tight

• ATLAS is building a new tracker, ITk, to face the harsh conditions of HL-LHC

- Radiation hard
- Low material budget
- Fine granularity
- Performance: same or better comparted to current inner detector
- ITk: full silicon tracker
 - ITk-Strip: 4 barrel layers and 12 disks
 - ITk-Pixel: 5 barrel layers with inclined geometry, and rings at forward region

• R&D and prototyping has now ended, we're entering the (pre-)production phase

- ITk-Strip: already in pre-production, for some parts even in production
- ITk-Pixel: some parts in pre-production, modules pre-production in 2023
- 2024-2025: Critical years for producing and building ITk detector

ITk tracking reconstruction efficiency

A

- Need to have robust tracking reconstruction efficiency at x5 pileup wrt to Run2-3
 - Similar performance at the barrel region
 - Very high efficiency at the forward region!

Number of reconstructed tracks exhibits a very linear behaviour wrt the number of interactions with the Itk: very low tracking fake rate in spite of <µ> = 200 environment

General production model

ATLAS TIK Pixel sensors

Saverio D'Auria, ICHEP2022

Two types of sensors:

Planar:

Various design detail left up to vendor :

- *p*-stop vs. *p*-spray insulation
- Polysilicon bias or punch-through
- Guard-ring geometry

Requirements defined on performance

50 µm

50 µm

=35 µm

Inner system uses 3D sensors

- High radiation tolerance
- Lower bias voltage

ATLAS Trechnology challenges

Saverio D'Auria, ICHEP2022

Technology challenges

- Large area ASIC, 20 x 20 mm², large area sensor 40 x 40 mm²
- High density, low pitch bump bonding 50 μm x 50 μm
- Radiation hardness •
- Large temperature range: operating at [-25 to -10°C] to limit radiation damage effects, heat to +20°C during maintenance
 - Avoid delamination of bumps: thin metal flex circuit
- Low-mass services, to reduce X₀
- Serial powering (see <u>talk by F. Hinterkeuser</u>, this session)
- Large Bias voltage across thin air gap (10 μ m) \rightarrow conformal coating
 - 54 quad modules (RD53a) coated with parylene N
 - Excellent reproducibility and adhesion
 - Both commercial and in-house lab coating
 - Tested after irradiation and thermal cycles

Adhesion tests of Parylene on Silicon after 1 10¹⁶ neutron eq. cm⁻² (nucl. reactor irradiation)