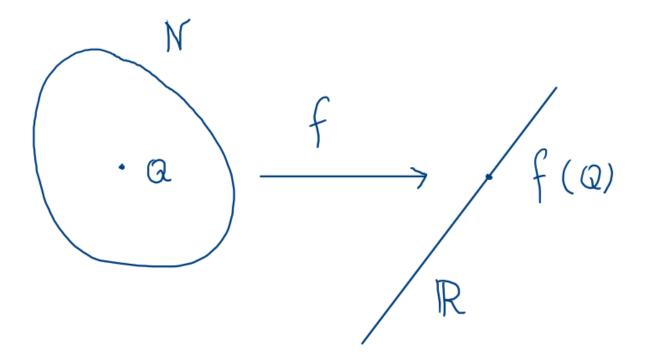


S. Carroll, Appendix A

Maps

Maps between manifolds

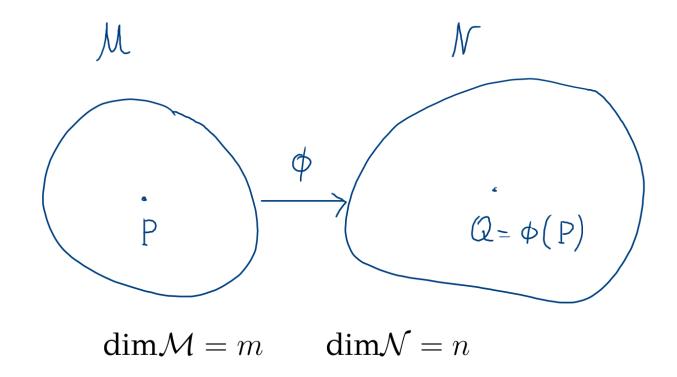
Pullback/Push-forward



$$f \in \mathcal{F}(\mathcal{N})$$

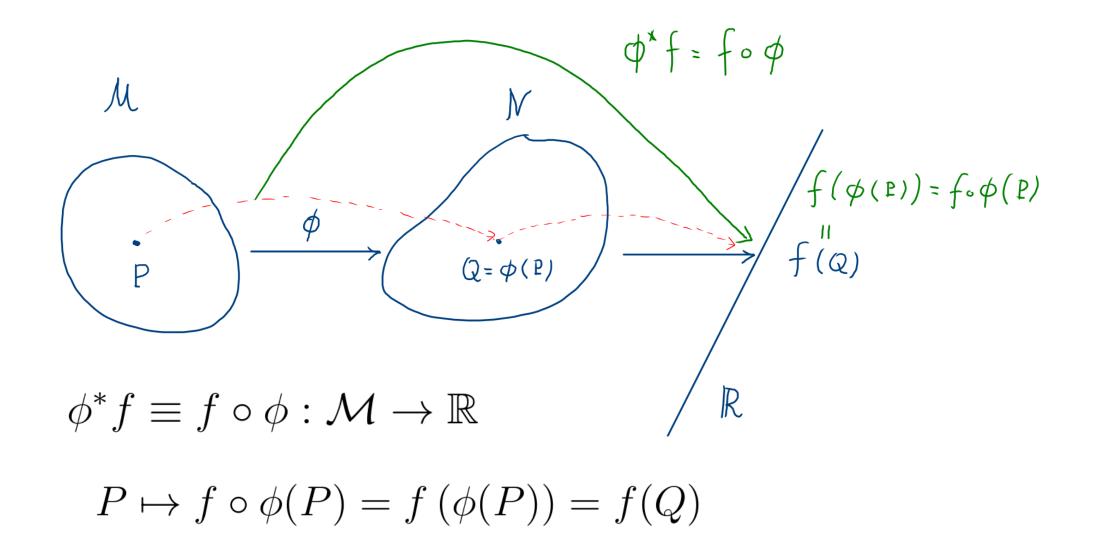
$$f: \mathcal{N} \to \mathbb{R}$$

$$Q \mapsto f(Q)$$

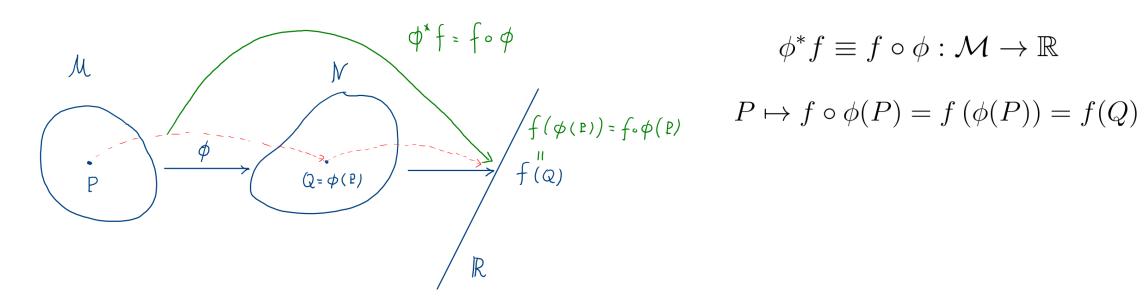


$$\phi: \mathcal{M} \to \mathcal{N} \qquad C^{\infty}$$

$$P \mapsto Q = \phi(P)$$



- If $P \mapsto Q$, then P,Q have the same value under ϕ^*f and f respectively
- $\phi^* f$: pullback of f on \mathcal{M}



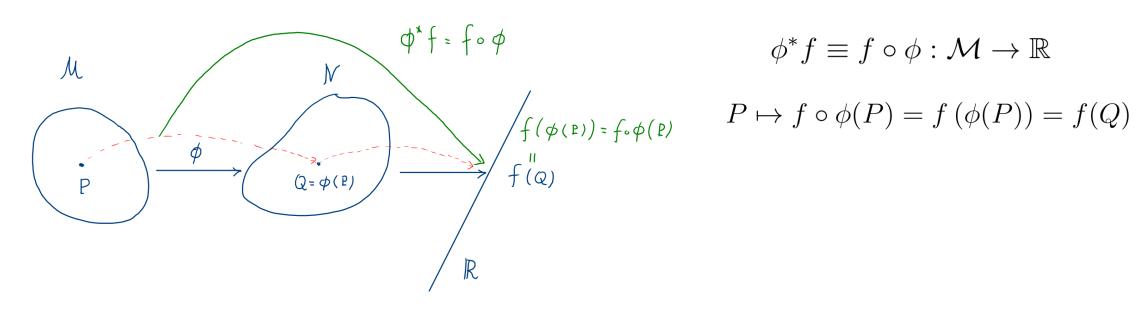
$$\phi^* f \equiv f \circ \phi : \mathcal{M} \to \mathbb{R}$$

$$P \mapsto f \circ \phi(P) = f(\phi(P)) = f(Q)$$

- If $P \mapsto Q$, then P,Q have the same value under ϕ^*f and f respectively
- $\phi^* f$: pullback of f on \mathcal{M}

•
$$\phi^* : \bar{\mathcal{F}}(\mathcal{N}) \to \mathcal{F}(\mathcal{M})$$

$$f \mapsto \phi^* f = f \circ \phi$$



$$\phi^* f \equiv f \circ \phi : \mathcal{M} \to \mathbb{R}$$

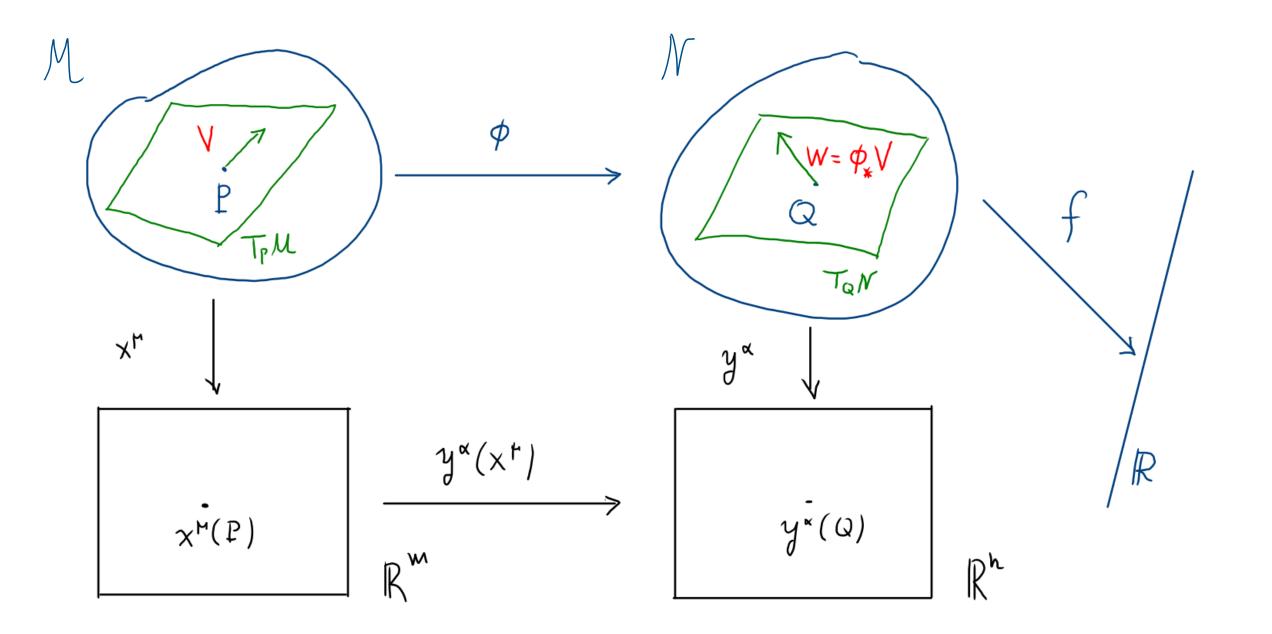
$$P \mapsto f \circ \phi(P) = f(\phi(P)) = f(Q)$$

• Now use ϕ^* to map $T_P\mathcal{M} \to T_Q\mathcal{N}$

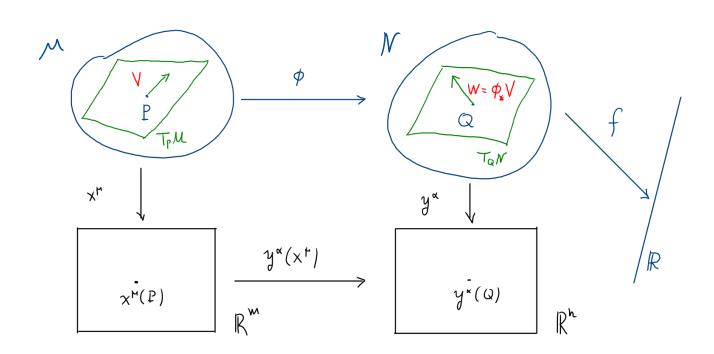
$$\phi_*: T_P \mathcal{M} \to T_Q \mathcal{N}$$

$$V \mapsto W = \phi_* V$$

- ϕ_* : push forward of $T_P\mathcal{M}$ to $T_Q\mathcal{N}$
- There is no $T_Q \mathcal{N} \to T_P \mathcal{M}$ (unless $\exists \phi^{-1}$, more later...)



$$\phi_*: T_P\mathcal{M} \to T_Q\mathcal{N}$$
 push-forward



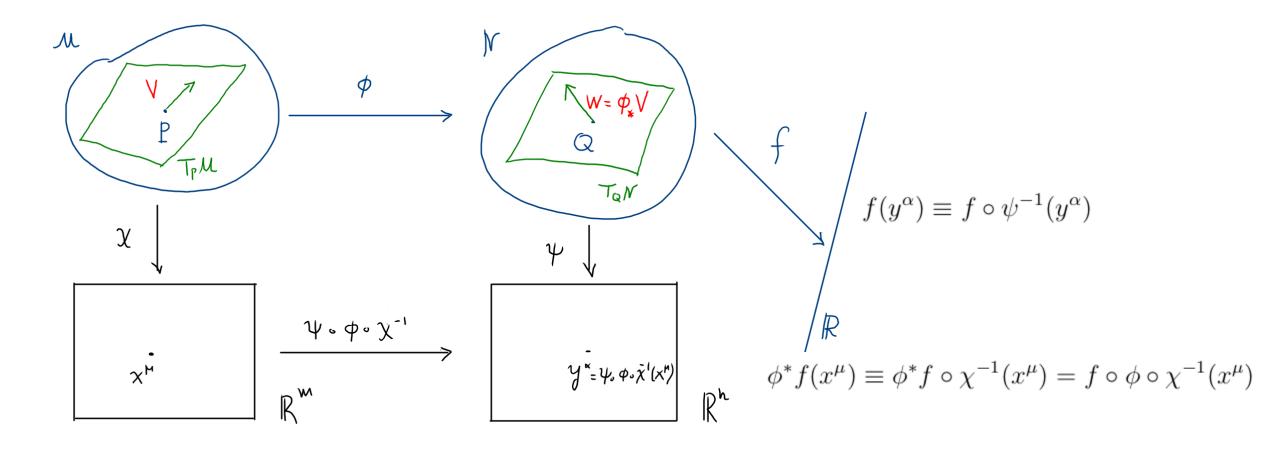
•
$$V \in T_P \mathcal{M}$$
 $V : \mathcal{F}(\mathcal{M}) \to \mathbb{R}$

then
$$g \in \mathcal{F}(\mathcal{M}) \Rightarrow V(g) \in \mathbb{R}$$

•
$$\phi^* f \in \mathcal{F}(\mathcal{M})$$
 so $V(\phi^* f) \in \mathbb{R}$

• define
$$W \equiv \phi_* V : \mathcal{F}(\mathcal{N}) \to \mathbb{R}$$
 s.t $W(f) = V(\phi^* f)$
i.e. $\phi_* V(f) = V(\phi^* f)$

From the definition: $\phi_*V(f) = (\phi_*V)^{\alpha}\partial_{\alpha}f$



$$y^{\alpha}(x^{\mu}) = \psi \circ \phi \circ \chi^{-1}(x^{\mu})$$

$$f(y^{\alpha}(x^{\mu})) = [f \circ \psi^{-1}] \circ [\psi \circ \phi \circ \chi^{-1}](x^{\mu})$$

$$f(y^{\alpha}) \equiv f \circ \psi^{-1}(y^{\alpha})$$

$$\phi^* f(x^{\mu}) \equiv \phi^* f \circ \chi^{-1}(x^{\mu}) = f \circ \phi \circ \chi^{-1}(x^{\mu})$$

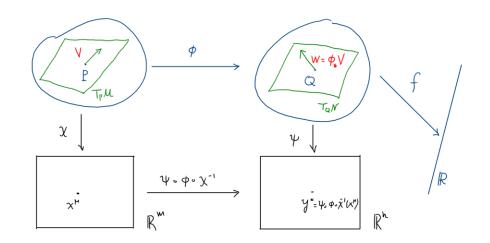
$$y^{\alpha}(x^{\mu}) = \psi \circ \phi \circ \chi^{-1}(x^{\mu})$$

$$f(y^{\alpha}(x^{\mu})) = [f \circ \psi^{-1}] \circ [\psi \circ \phi \circ \chi^{-1}](x^{\mu})$$

$$\partial_{\alpha} f \equiv \frac{\partial}{\partial y^{\alpha}} f \circ \psi^{-1}(y^{\alpha})$$

$$\frac{\partial y^{\alpha}}{\partial x^{\mu}} \equiv \frac{\partial}{\partial x^{\mu}} \psi \circ \phi \circ \chi^{-1}(x^{\mu})$$

$$\partial_{\mu}(\phi^*f) = \partial_{\mu}(f \circ \phi) \equiv \frac{\partial}{\partial x^{\mu}} f \circ \phi \circ \chi^{-1}(x^{\mu})$$



$$f(y^{\alpha}) \equiv f \circ \psi^{-1}(y^{\alpha})$$

$$\phi^* f(x^{\mu}) \equiv \phi^* f \circ \chi^{-1}(x^{\mu}) = f \circ \phi \circ \chi^{-1}(x^{\mu})$$

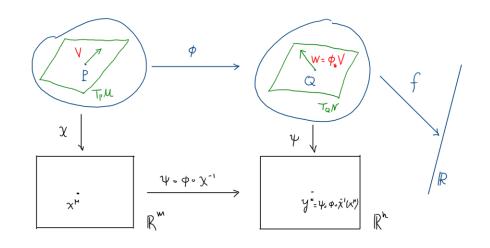
$$y^{\alpha}(x^{\mu}) = \psi \circ \phi \circ \chi^{-1}(x^{\mu})$$

$$f(y^{\alpha}(x^{\mu})) = [f \circ \psi^{-1}] \circ [\psi \circ \phi \circ \chi^{-1}](x^{\mu})$$

$$\partial_{\alpha} f \equiv \frac{\partial}{\partial y^{\alpha}} f \circ \psi^{-1}(y^{\alpha})$$

$$\frac{\partial y^{\alpha}}{\partial x^{\mu}} \equiv \frac{\partial}{\partial x^{\mu}} \psi \circ \phi \circ \chi^{-1}(x^{\mu})$$

$$\partial_{\mu}(\phi^*f) = \partial_{\mu}(f \circ \phi) \equiv \frac{\partial}{\partial x^{\mu}} f \circ \phi \circ \chi^{-1}(x^{\mu})$$



$$\partial_{\mu}(\phi^* f) = \partial_{\mu}(f \circ \phi) \equiv \frac{\partial}{\partial x^{\mu}} f \circ \phi \circ \chi^{-1}(x^{\mu})$$

$$= \frac{\partial}{\partial x^{\mu}} [f \circ \psi^{-1}] \circ [\psi \circ \phi \circ \chi^{-1}](x^{\mu})$$

$$= \frac{\partial}{\partial x^{\mu}} f \circ \psi^{-1}(y^{\alpha}(x^{\mu}))$$

$$\equiv \frac{\partial}{\partial x^{\mu}} f(y^{\alpha}(x^{\mu})) = \frac{\partial f(y^{\alpha})}{\partial y^{\alpha}} \frac{\partial y^{\alpha}}{\partial x^{\mu}}$$

$$f(y^{\alpha}) \equiv f \circ \psi^{-1}(y^{\alpha})$$

$$\phi^* f(x^{\mu}) \equiv \phi^* f \circ \chi^{-1}(x^{\mu}) = f \circ \phi \circ \chi^{-1}(x^{\mu})$$

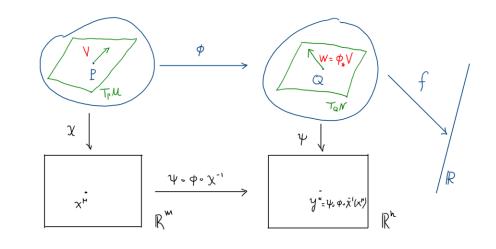
$$y^{\alpha}(x^{\mu}) = \psi \circ \phi \circ \chi^{-1}(x^{\mu})$$

$$f(y^{\alpha}(x^{\mu})) = [f \circ \psi^{-1}] \circ [\psi \circ \phi \circ \chi^{-1}](x^{\mu})$$

$$\partial_{\alpha} f \equiv \frac{\partial}{\partial y^{\alpha}} f \circ \psi^{-1}(y^{\alpha})$$

$$\frac{\partial y^{\alpha}}{\partial x^{\mu}} \equiv \frac{\partial}{\partial x^{\mu}} \psi \circ \phi \circ \chi^{-1}(x^{\mu})$$

$$\partial_{\mu}(\phi^*f) = \partial_{\mu}(f \circ \phi) \equiv \frac{\partial}{\partial x^{\mu}} f \circ \phi \circ \chi^{-1}(x^{\mu})$$

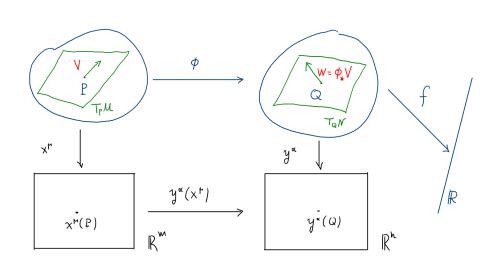


$$\partial_{\mu}(\phi^*f) = \partial_{\mu}(f \circ \phi) = \frac{\partial y^{\alpha}}{\partial x^{\mu}} \partial_{\alpha} f$$

From the definition:

$$\phi_*V(f) = (\phi_*V)^\alpha \partial_\alpha f$$

$$V(\phi^* f) = V^{\mu} \partial_{\mu} (\phi^* f)$$
$$= V^{\mu} \partial_{\mu} (f \circ \phi)$$
$$= V^{\mu} \frac{\partial y^{\alpha}}{\partial x^{\mu}} \partial_{\alpha} f$$



From the definition:

$$\phi_* V(f) = (\phi_* V)^{\alpha} \partial_{\alpha} f$$

$$V(\phi^* f) = V^{\mu} \partial_{\mu} (\phi^* f)$$

$$= V^{\mu} \partial_{\mu} (f \circ \phi)$$

$$= V^{\mu} \frac{\partial y^{\alpha}}{\partial x^{\mu}} \partial_{\alpha} f$$

$$\Rightarrow (\phi_* V)^{\alpha} = \frac{\partial y^{\alpha}}{\partial x^{\mu}} V^{\mu}$$
$$= (\phi_*)^{\alpha}_{\mu} V^{\mu}$$

From the definition:

$$\phi_* V(f) = (\phi_* V)^{\alpha} \partial_{\alpha} f$$

$$V(\phi^* f) = V^{\mu} \partial_{\mu} (\phi^* f)$$
$$= V^{\mu} \partial_{\mu} (f \circ \phi)$$
$$= V^{\mu} \frac{\partial y^{\alpha}}{\partial x^{\mu}} \partial_{\alpha} f$$

$$\Rightarrow (\phi_* V)^{\alpha} = \frac{\partial y^{\alpha}}{\partial x^{\mu}} V^{\mu}$$
$$= (\phi_*)^{\alpha}_{\mu} V^{\mu}$$

$$(\phi_*)^{\alpha}_{\ \mu} = \frac{\partial y^{\alpha}}{\partial x^{\mu}}$$

$$\phi_{*} = \begin{pmatrix} \frac{1}{3} \frac{1}{3} & \frac{1}{3} \frac{1}{3} & \frac{1}{3} \frac{1}{3} \\ \frac{1}{3} \frac{1}{3} & \frac{1}{3} \frac{1}{3} & \frac{1}{3} \frac{1}{3} \\ \frac{1}{3} \frac{1}{3} & \frac{1}{3} \frac{1}{3} & \frac{1}{3} \frac{1}{3} & \frac{1}{3} \frac{1}{3} \\ \frac{1}{3} \frac{1}{3} & \frac{1}{3} \frac{1}{3} \frac{1}{3} & \frac{1}{3} \frac{1}{3} \frac{1}{3} & \frac{1}{3} \frac{1}{3} \frac{1}{3} \\ \frac{1}{3} \frac{1}{3$$

$$(\phi_*)^{\alpha}_{\mu} = \frac{\partial y^{\alpha}}{\partial x_{\mu}}$$

$$column$$

$$\phi^{*} = \begin{pmatrix} \frac{9^{\times}}{9^{\times}}, & \frac$$

$$(\phi_* V)^{\alpha} = (\phi_*)^{\alpha}_{\mu} V^{\mu}$$

Matrix notation for components: ϕ_* is a $n \times m$ mtrix

$$(\phi_*)^{\alpha} = \frac{\partial y^{\alpha}}{\partial x_{\mu}}$$

$$column$$

$$\phi_* V = \phi_* \cdot V_{m \times 1}$$

$$\phi_* = \begin{pmatrix}
\frac{\partial y^1}{\partial x^1} & \frac{\partial y^1}{\partial x^2} & \cdots & \frac{\partial y^1}{\partial x^m} \\
\frac{\partial y^2}{\partial x^3} & \frac{\partial y^2}{\partial x^2} & \cdots & \frac{\partial y^n}{\partial x^m} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial y^n}{\partial x^3} & \frac{\partial y^n}{\partial x^2} & \cdots & \frac{\partial y^n}{\partial x^m}
\end{pmatrix}$$

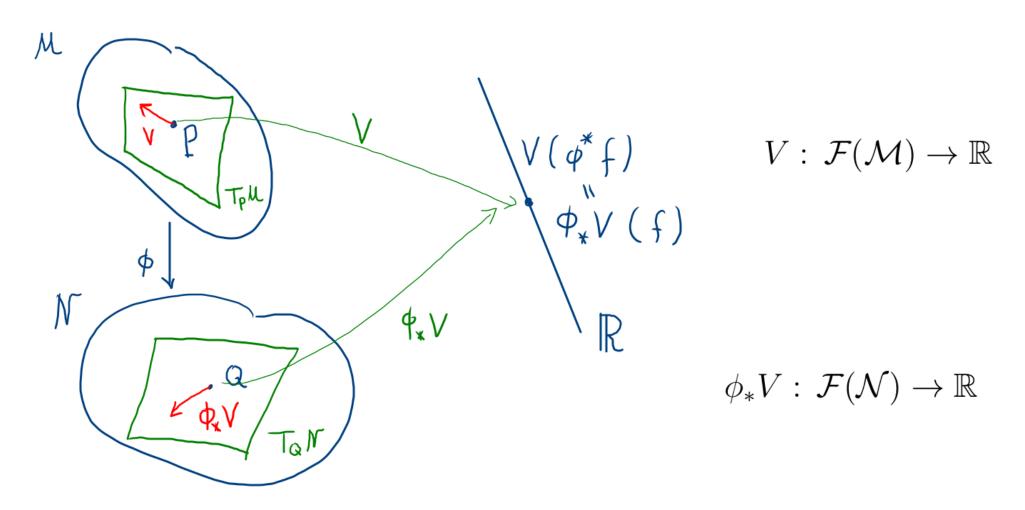
$$\phi_* V = \phi_* \cdot V \\
n \times 1 \qquad n \times m \qquad m \times 1$$

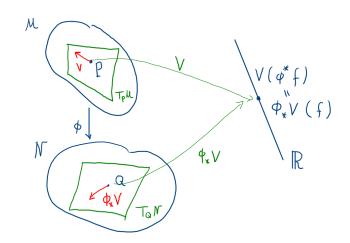
Abstract notation:

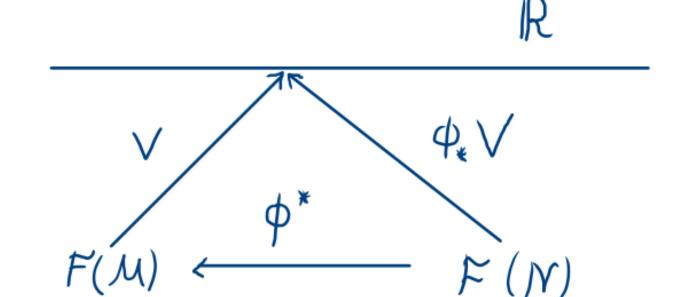
$$\phi_* V = (\phi_* V)^{\alpha} \partial_{\alpha} = \left(\frac{\partial y^{\alpha}}{\partial x^{\mu}} V^{\mu}\right) \partial_{\alpha} = \left[(\phi_*)^{\alpha}_{\ \mu} V^{\mu}\right] \partial_{\alpha}$$

$$(\phi_*)^{\alpha}_{\mu} = \frac{\partial y^{\alpha}}{\partial x_{\mu}}$$

$$column$$

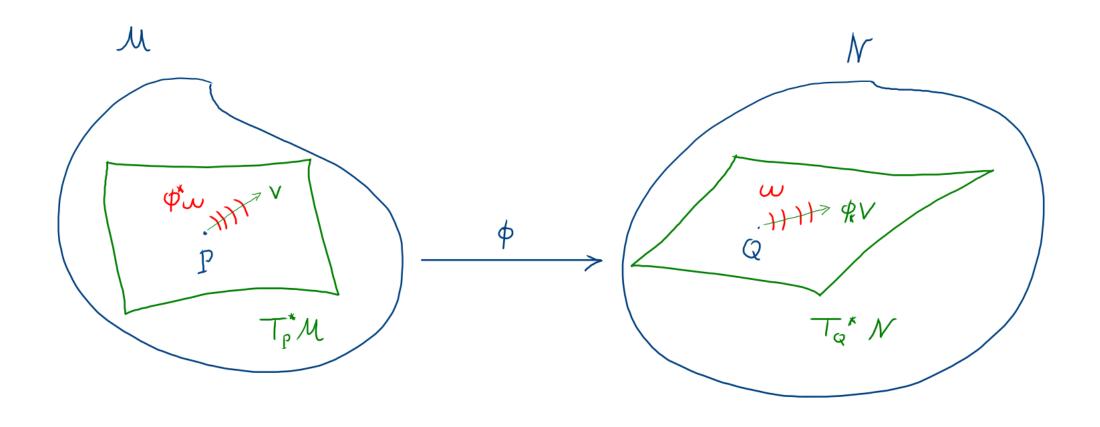




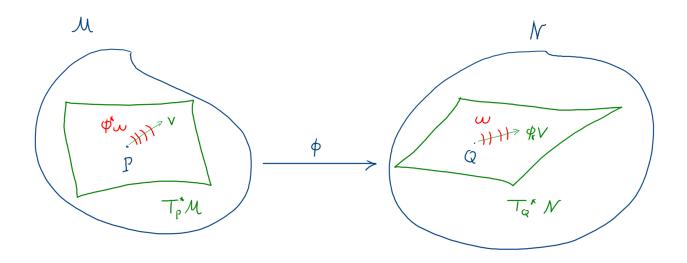


 $V: \mathcal{F}(\mathcal{M}) \to \mathbb{R}$

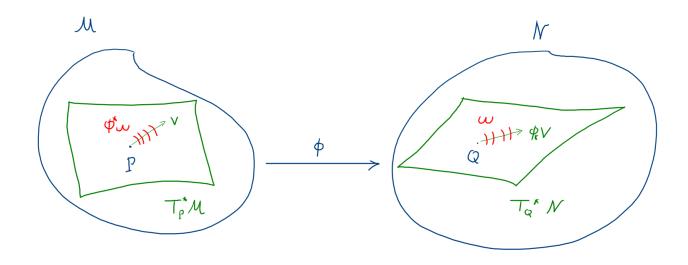
 $\phi_*V: \mathcal{F}(\mathcal{N}) \to \mathbb{R}$



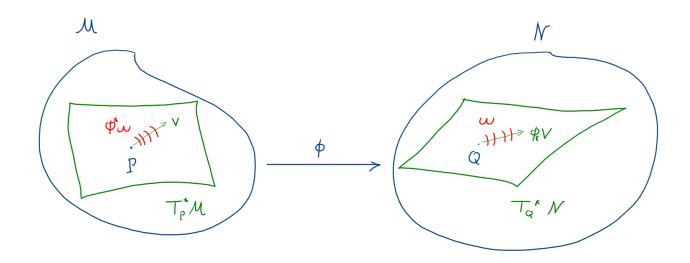
• use ϕ^* to map $T_Q^*\mathcal{N} \to T_P^*\mathcal{M}$



- use ϕ^* to map $T_Q^*\mathcal{N} \to T_P^*\mathcal{M}$
- pullback $\omega \in T_Q^* \mathcal{N}$ to $\phi^* \omega \in T_P^* \mathcal{M}$

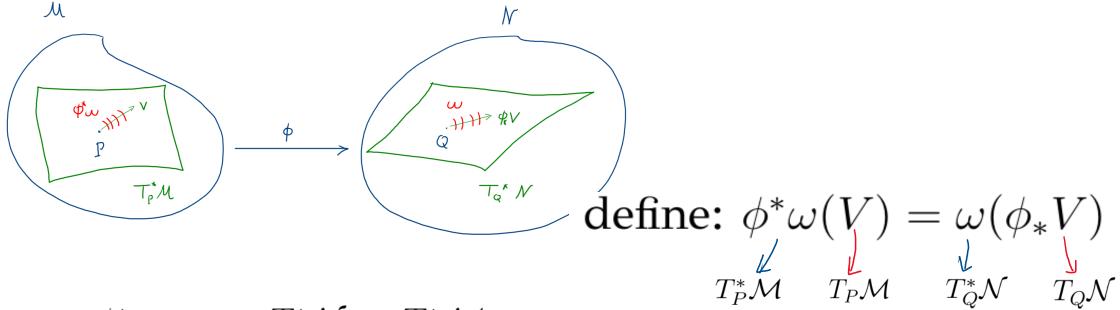


- use ϕ^* to map $T_Q^*\mathcal{N} \to T_P^*\mathcal{M}$
- pullback $\omega \in T_Q^* \mathcal{N}$ to $\phi^* \omega \in T_P^* \mathcal{M}$
- definition: $\omega: T_Q \mathcal{N} \to \mathbb{R}$ linear, s.t. $W \mapsto \omega(W)$



- use ϕ^* to map $T_Q^*\mathcal{N} \to T_P^*\mathcal{M}$
- pullback $\omega \in T_Q^* \mathcal{N}$ to $\phi^* \omega \in T_P^* \mathcal{M}$
- definition: $\omega: T_Q \mathcal{N} \to \mathbb{R}$ linear, s.t. $W \mapsto \omega(W)$
- use it to define $\phi^*\omega \in T_P^*\mathcal{M}$

$$\phi^*\omega: T_P\mathcal{M} \to \mathbb{R}$$
 linear s.t. $V \mapsto \phi^*\omega(V)$



- use ϕ^* to map $T_Q^*\mathcal{N} \to T_P^*\mathcal{M}$
- pullback $\omega \in T_Q^* \mathcal{N}$ to $\phi^* \omega \in T_P^* \mathcal{M}$
- definition: $\omega: T_Q \mathcal{N} \to \mathbb{R}$ linear, s.t. $W \mapsto \omega(W)$
- use it to define $\phi^*\omega \in T_P^*\mathcal{M}$

$$\phi^*\omega: T_P\mathcal{M} \to \mathbb{R}$$
 linear s.t. $V \mapsto \phi^*\omega(V)$

Compute the $\phi^*\omega$ components:

Definition: $\forall V \in T_P \mathcal{M}$ $\phi^* \omega(V) = (\phi^* \omega)_{\mu} V^{\mu}$

Compute the $\phi^*\omega$ components:

Definition: $\forall V \in T_P \mathcal{M}$

$$\phi^*\omega(V) = (\phi^*\omega)_{\mu}V^{\mu}$$

$$\phi^* \omega(V) = \omega(\phi_* V)$$

$$= \omega_\alpha \left(\frac{\partial y^\alpha}{\partial x^\mu} V^\mu \right)$$

$$= \left(\frac{\partial y^\alpha}{\partial x^\mu} \omega_\alpha \right) V^\mu$$

Compute the $\phi^*\omega$ components:

Definition: $\forall V \in T_P \mathcal{M}$

$$\phi^*\omega(V) = (\phi^*\omega)_{\mu}V^{\mu}$$

$$\phi^* \omega(V) = \omega(\phi_* V)$$

$$= \omega_\alpha \left(\frac{\partial y^\alpha}{\partial x^\mu} V^\mu \right)$$

$$= \left(\frac{\partial y^\alpha}{\partial x^\mu} \omega_\alpha \right) V^\mu$$

$$\Rightarrow (\phi^* \omega)_{\mu} = \frac{\partial y^{\alpha}}{\partial x^{\mu}} \omega_{\alpha} = (\phi^*)_{\mu}^{\ \alpha} \omega_{\alpha} \quad \text{where } (\phi^*)_{\mu}^{\ \alpha} = \frac{\partial y^{\alpha}}{\partial x^{\mu}}$$

$$\phi^{*} = \begin{pmatrix} \frac{\partial y^{1}}{\partial x^{1}} & \frac{\partial y^{2}}{\partial x^{2}} & \cdots & \frac{\partial y^{n}}{\partial x^{1}} \\ \frac{\partial y^{1}}{\partial x^{2}} & \frac{\partial y^{2}}{\partial x^{2}} & \cdots & \frac{\partial y^{n}}{\partial x^{n}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial y^{1}}{\partial x^{n}} & \frac{\partial y^{2}}{\partial x^{n}} & \cdots & \frac{\partial y^{n}}{\partial x^{n}} \end{pmatrix}$$

Matrix notation for components:

$$\phi^* \omega = \phi^* \cdot \omega$$

$$m \times 1 \qquad m \times n \qquad n \times 1$$

observe that:

$$\phi^* = (\phi_*)^\mathsf{T}$$

$$(\phi^*)_{\mu}^{\alpha} = \frac{\partial y^{\alpha}}{\partial x^{\mu}}$$

$$\phi^{*} = \begin{pmatrix} \frac{\partial y^{1}}{\partial x^{1}} & \frac{\partial y^{2}}{\partial x^{2}} & \cdots & \frac{\partial y^{n}}{\partial x^{2}} \\ \frac{\partial y^{1}}{\partial x^{2}} & \frac{\partial y^{2}}{\partial x^{2}} & \cdots & \frac{\partial y^{n}}{\partial x^{2}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial y^{1}}{\partial x^{n}} & \frac{\partial y^{2}}{\partial x^{n}} & \cdots & \frac{\partial y^{n}}{\partial x^{n}} \end{pmatrix}$$

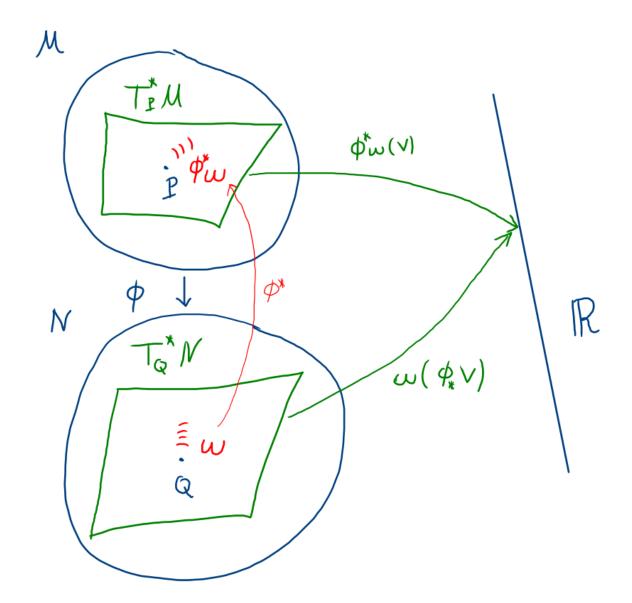
Matrix notation for components:

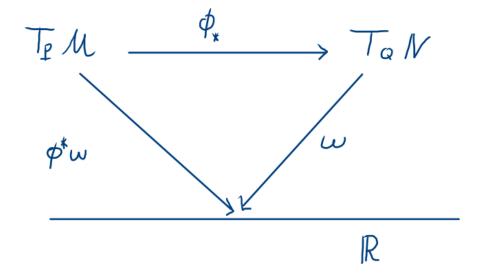
$$\phi^* \omega = \phi^* \cdot \omega_{m \times 1}$$

observe that:

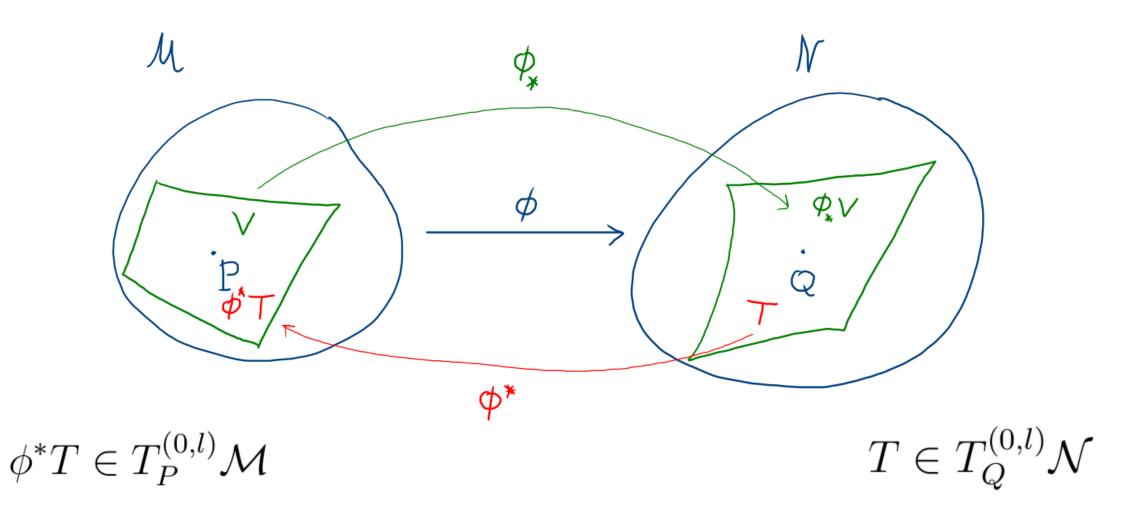
$$\phi^* = (\phi_*)^\mathsf{T}$$

Abstract notation:
$$\phi^* \omega = (\phi^* \omega)_{\mu} dx^{\mu}$$
$$= \left(\frac{\partial y^{\alpha}}{\partial x^{\mu}} \omega_{\alpha}\right) dx^{\mu}$$
$$= \left[(\phi^*)_{\mu}^{\ \alpha} \omega_{\alpha}\right] dx^{\mu}$$

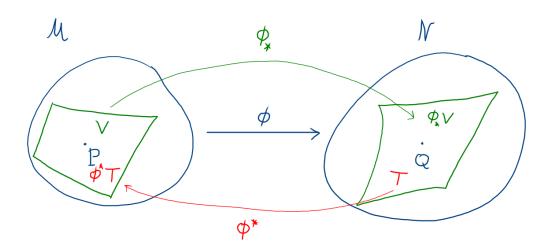




Tensors: only (0, l) or (l, 0)



Tensors: only (0, l) or (l, 0)



$$\phi^*T \in T_P^{(0,l)}\mathcal{M}$$

$$T \in T_Q^{(0,l)} \mathcal{N}$$

$$\phi^*T(V^{(1)},\dots,V^{(l)}) = T(\phi_*V^{(1)},\dots,\phi_*V^{(l)})$$

Tensors: only (0, l) or (l, 0)

 $\phi^*T \in T_P^{(0,l)}\mathcal{M}$

$$\begin{pmatrix}
\phi_{*} & \mathcal{N} \\
\phi_{*} & \mathcal{N}
\end{pmatrix}$$

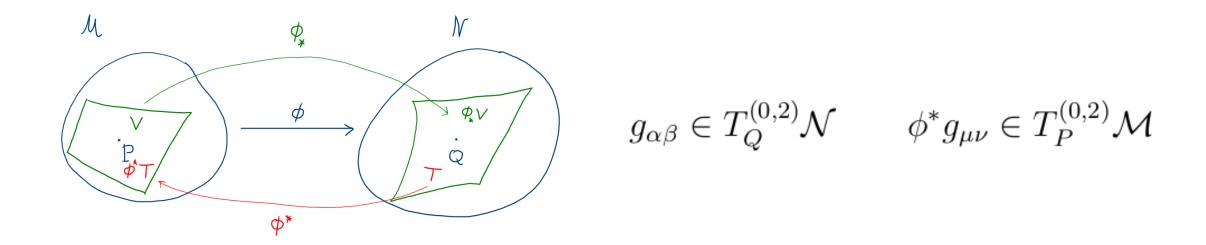
$$(\phi^{*}T)_{\mu_{1}...\mu_{l}} = \frac{\partial y^{\alpha_{1}}}{\partial x^{\mu_{1}}} \dots \frac{\partial y^{\alpha_{l}}}{\partial x^{\mu_{l}}} T_{\alpha_{1}...\alpha_{l}}$$

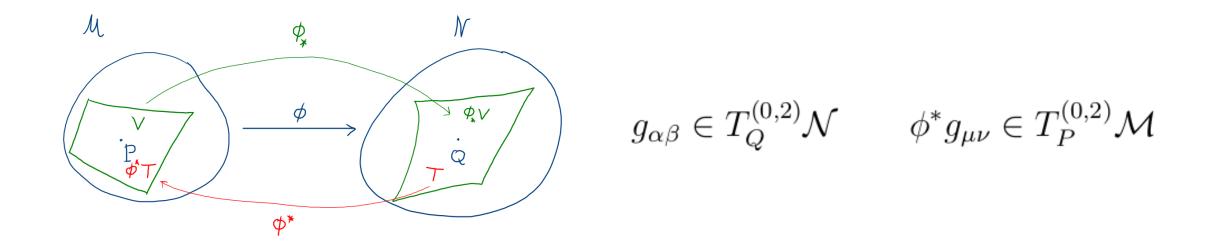
$$= (\phi^{*})_{\mu_{1}}^{\alpha_{1}} \dots (\phi^{*})_{\mu_{l}}^{\alpha_{l}} T_{\alpha_{1}...\alpha_{l}}$$

 $T \in T_O^{(0,l)} \mathcal{N}$

$$\phi^*T(V^{(1)},\dots,V^{(l)}) = T(\phi_*V^{(1)},\dots,\phi_*V^{(l)})$$

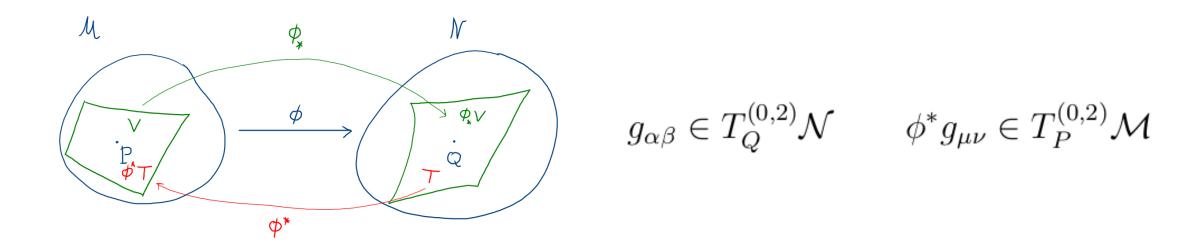
Example: Pullback metric $g_{\alpha\beta}$ to $(\phi^*g)_{\mu\nu}$





$$\phi^*g(V,U) = g(\phi_*V,\phi_*U)$$

 ϕ^*g not necessarily a metric on $T_P\mathcal{M}$



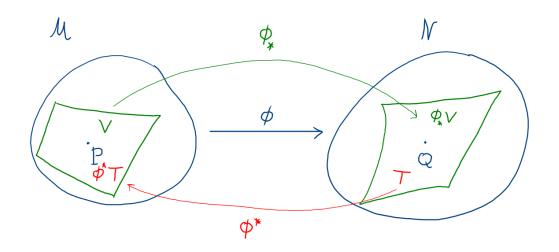
$$\phi^* g(V, U) = g(\phi_* V, \phi_* U)$$

$$(\phi^* g)_{\mu\nu} = \frac{\partial y^{\alpha}}{\partial x^{\mu}} \frac{\partial y^{\beta}}{\partial x^{\nu}} g_{\alpha\beta}$$

$$= (\phi^*)_{\mu}^{\alpha} (\phi^*)_{\nu}^{\beta} g_{\alpha\beta}$$

$$= (\phi^*)_{\mu}^{\alpha} g_{\alpha\beta} (\phi^*)_{\nu}^{\beta}$$

$$= (\phi^*)_{\mu}^{\alpha} g_{\alpha\beta} (\phi^*)^{\mathsf{T}\beta}_{\nu}$$



$$\phi^* g(V, U) = g(\phi_* V, \phi_* U)$$

$$(\phi^* g)_{\mu\nu} = \frac{\partial y^{\alpha}}{\partial x^{\mu}} \frac{\partial y^{\beta}}{\partial x^{\nu}} g_{\alpha\beta}$$

$$= (\phi^*)_{\mu}{}^{\alpha} (\phi^*)_{\nu}{}^{\beta} g_{\alpha\beta}$$

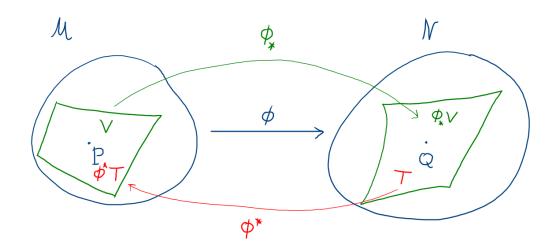
$$= (\phi^*)_{\mu}{}^{\alpha} g_{\alpha\beta} (\phi^*)_{\nu}{}^{\beta}$$

$$= (\phi^*)_{\mu}{}^{\alpha} g_{\alpha\beta} (\phi^*)^{\mathsf{T}}_{\nu}{}^{\beta}_{\nu}$$

Or, in matrix notation for components:

$$\phi^* g = \phi^* \cdot g \cdot (\phi^*)^\mathsf{T}$$

$$m \times m \qquad m \times n \qquad n \times n \qquad n \times m$$



$$\phi^* g(V, U) = g(\phi_* V, \phi_* U)$$

$$(\phi^* g)_{\mu\nu} = \frac{\partial y^{\alpha}}{\partial x^{\mu}} \frac{\partial y^{\beta}}{\partial x^{\nu}} g_{\alpha\beta}$$

$$= (\phi^*)_{\mu}^{\ \alpha} (\phi^*)_{\nu}^{\ \beta} g_{\alpha\beta}$$

$$= (\phi^*)_{\mu}^{\ \alpha} g_{\alpha\beta} (\phi^*)_{\nu}^{\ \beta}$$

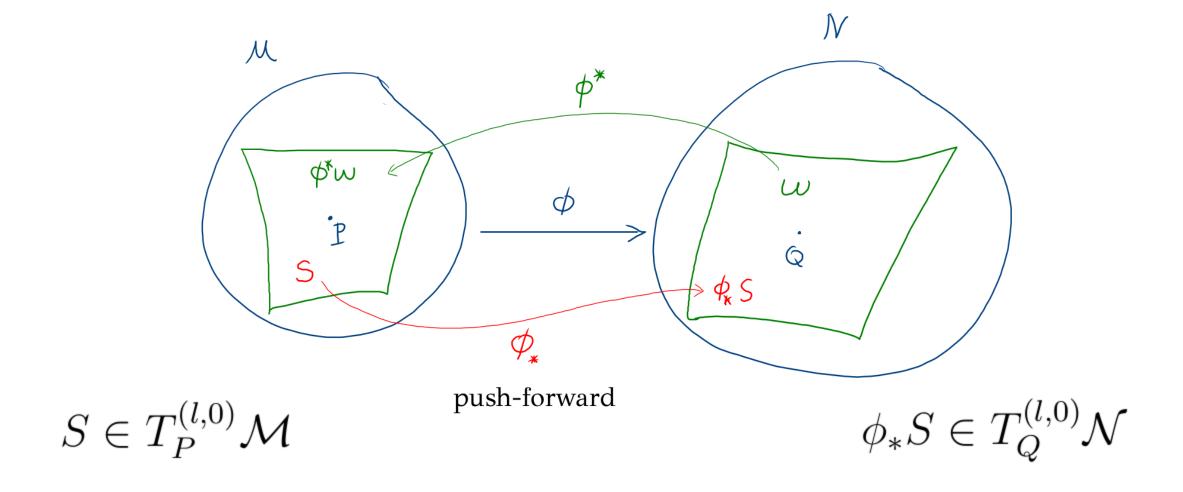
$$= (\phi^*)_{\mu}^{\ \alpha} g_{\alpha\beta} (\phi^*)^{\mathsf{T}}_{\ \nu}^{\ \beta}$$

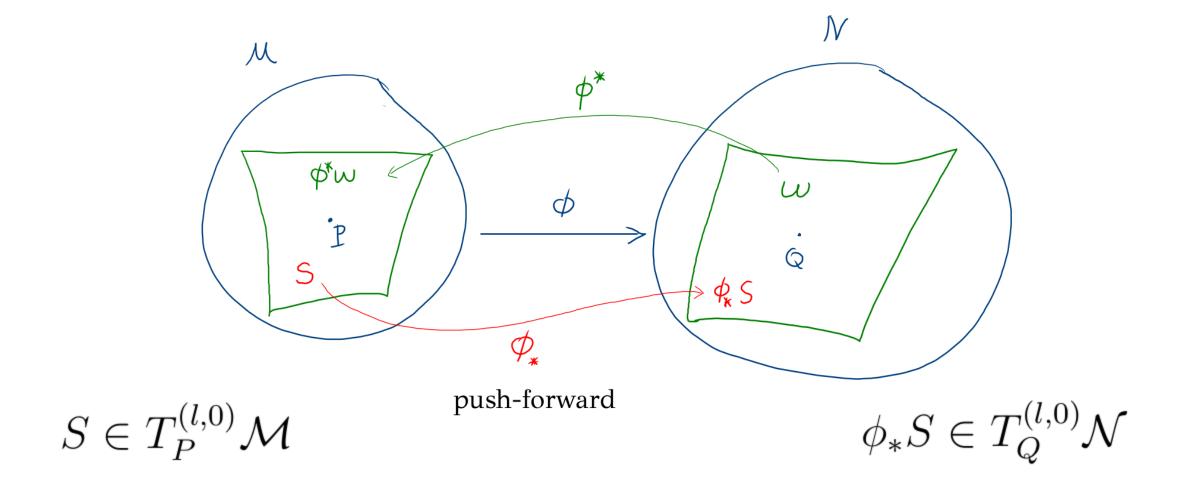
$$= (\phi^*)_{\mu}^{\ \alpha} g_{\alpha\beta} (\phi^*)^{\mathsf{T}}_{\ \nu}^{\ \beta}$$

$$\phi^* g = \phi^* \cdot g \cdot (\phi^*)^{\mathsf{T}}_{\ n \times m}$$

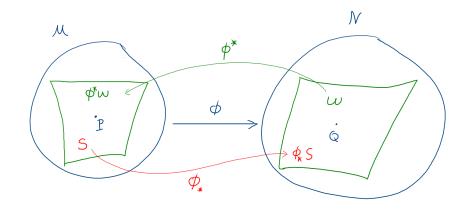
$$\phi^* g = \phi^* \cdot g \cdot (\phi^*)^{\mathsf{T}}_{\ n \times m}$$

If n > m and g is a metric on \mathcal{N} , then ϕ is an *embedding* of \mathcal{M} in \mathcal{N} , and ϕ^*g , if non-degenerate, is the induced metric on \mathcal{M} by ϕ





$$\phi_* S(\omega^{(1)}, \dots, \omega^{(l)}) = S(\phi^* \omega^{(1)}, \dots, \phi^* \omega^{(l)})$$



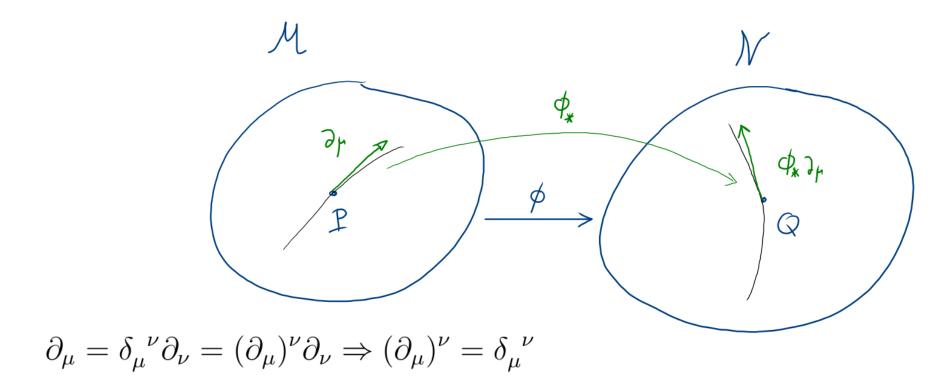
$$S \in T_P^{(l,0)} \mathcal{M}$$

$$\phi_* S \in T_Q^{(l,0)} \mathcal{N}$$

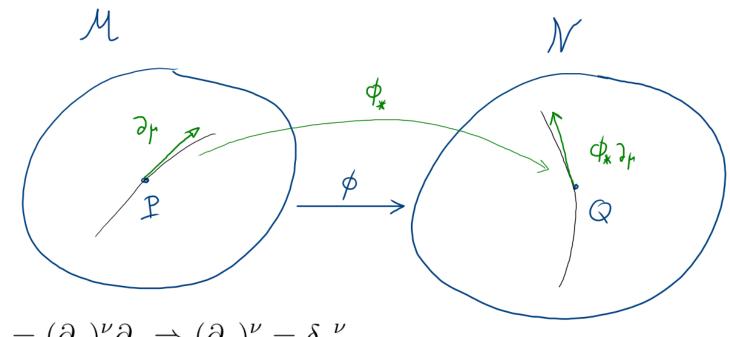
$$\phi_* S(\omega^{(1)}, \dots, \omega^{(l)}) = S(\phi^* \omega^{(1)}, \dots, \phi^* \omega^{(l)})$$

$$\phi_* S^{\alpha_1 \dots \alpha_l} = \frac{\partial y^{\alpha_1}}{\partial x^{\mu_1}} \dots \frac{\partial y^{\alpha_l}}{\partial x^{\mu_l}} S^{\mu_1 \dots \mu_l}$$
$$= (\phi_*)^{\alpha_1}_{\mu_1} \dots (\phi_*)^{\alpha_l}_{\mu_l} S^{\mu_1 \dots \mu_l}$$

Example: coordinate vectors



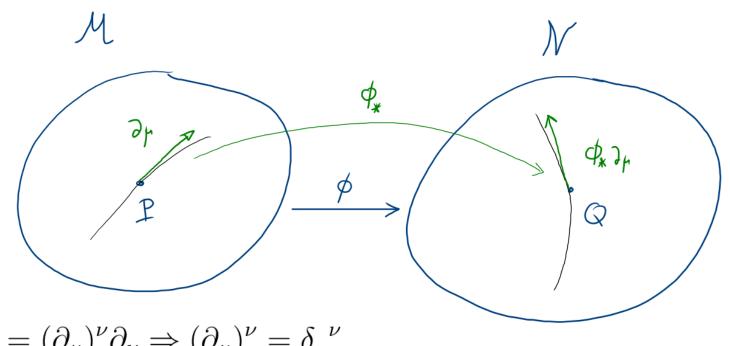
Example: coordinate vectors



$$\partial_{\mu} = \delta_{\mu}{}^{\nu} \partial_{\nu} = (\partial_{\mu})^{\nu} \partial_{\nu} \Rightarrow (\partial_{\mu})^{\nu} = \delta_{\mu}{}^{\nu}$$

$$(\phi_* \partial_\mu)^\alpha = \frac{\partial y^\alpha}{\partial x^\nu} (\partial_\mu)^\nu = \frac{\partial y^\alpha}{\partial x^\nu} \delta_\mu^{\ \nu} = \frac{\partial y^\alpha}{\partial x^\mu}$$

Example: coordinate vectors

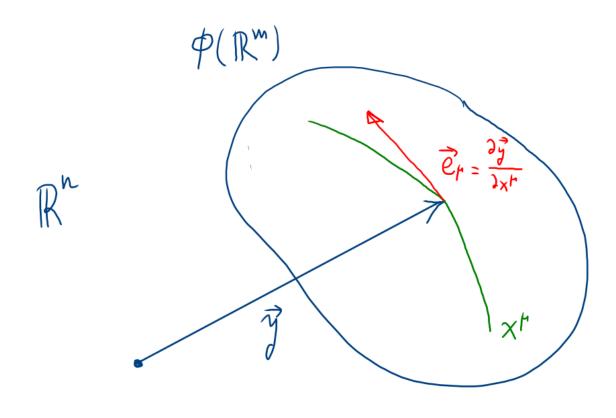


$$\partial_{\mu} = \delta_{\mu}^{\ \nu} \partial_{\nu} = (\partial_{\mu})^{\nu} \partial_{\nu} \Rightarrow (\partial_{\mu})^{\nu} = \delta_{\mu}^{\ \nu}$$

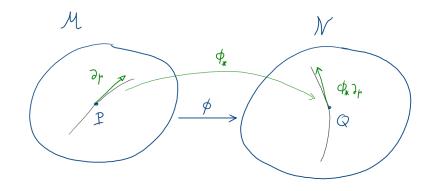
$$(\phi_* \partial_\mu)^\alpha = \frac{\partial y^\alpha}{\partial x^\nu} (\partial_\mu)^\nu = \frac{\partial y^\alpha}{\partial x^\nu} \delta_\mu^{\ \nu} = \frac{\partial y^\alpha}{\partial x^\mu}$$

$$\Rightarrow \phi_* \partial_\mu = \frac{\partial y^\alpha}{\partial x^\mu} \partial_\alpha$$

Example: embedding

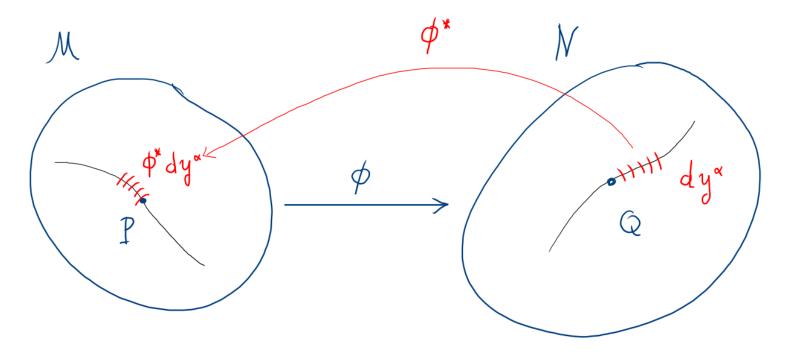


$$\vec{e}_{\mu} = \frac{\partial \vec{y}}{\partial x^{\mu}}$$



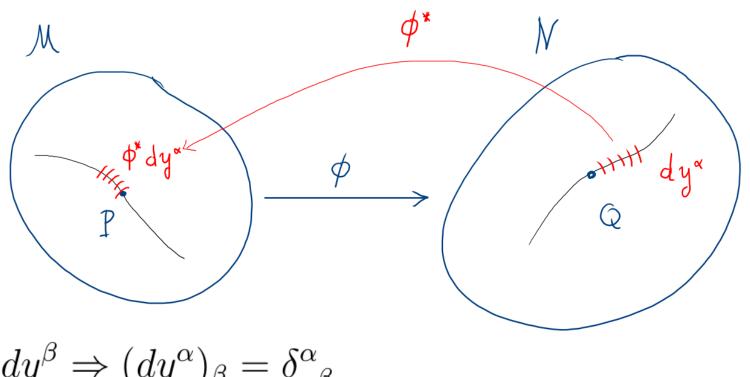
$$\phi_* \partial_\mu = \frac{\partial y^\alpha}{\partial x^\mu} \partial_\alpha$$

Example: coordinate forms



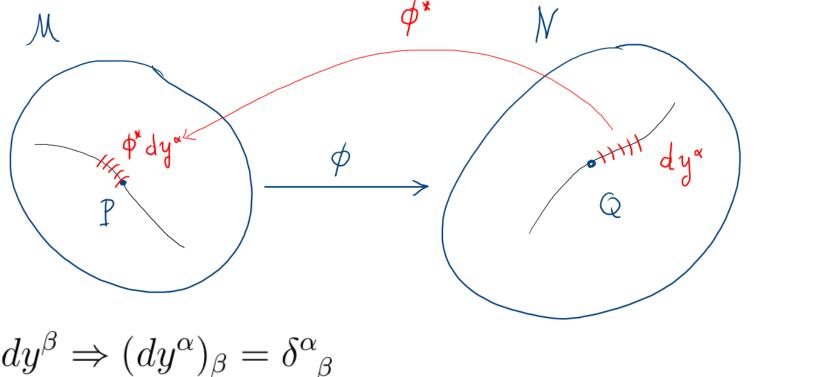
$$dy^{\alpha} = \delta^{\alpha}{}_{\beta} dy^{\beta} \Rightarrow (dy^{\alpha})_{\beta} = \delta^{\alpha}{}_{\beta}$$

Example: coordinate forms



$$dy^{\alpha} = \delta^{\alpha}{}_{\beta} dy^{\beta} \Rightarrow (dy^{\alpha})_{\beta} = \delta^{\alpha}{}_{\beta}$$
$$(\phi^* dy^{\alpha})_{\mu} = \frac{\partial y^{\beta}}{\partial x^{\mu}} (dy^{\alpha})_{\beta} = \frac{\partial y^{\beta}}{\partial x^{\mu}} \delta^{\alpha}{}_{\beta} = \frac{\partial y^{\alpha}}{\partial x^{\mu}}$$

Example: coordinate forms



$$dy^{\alpha} = \delta^{\alpha}{}_{\beta} dy^{\beta} \Rightarrow (dy^{\alpha})_{\beta} = \delta^{\alpha}{}_{\beta}$$
$$(\phi^* dy^{\alpha})_{\mu} = \frac{\partial y^{\beta}}{\partial x^{\mu}} (dy^{\alpha})_{\beta} = \frac{\partial y^{\beta}}{\partial x^{\mu}} \delta^{\alpha}{}_{\beta} = \frac{\partial y^{\alpha}}{\partial x^{\mu}} \qquad \Rightarrow \phi^* dy^{\alpha} = \frac{\partial y^{\alpha}}{\partial x^{\mu}} dx^{\mu}$$

Example
$$\mathcal{M} = \mathbb{R}^2 \setminus \{0\}$$

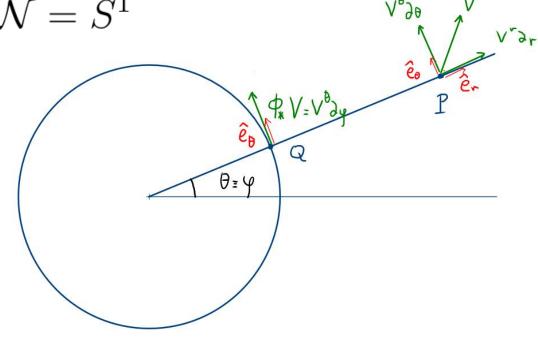
$$(r,\theta) \rightarrow \varphi$$
 with $\varphi = \theta$

$$\partial_r = r\cos\theta\,\partial_x + r\sin\theta\,\partial_y$$

$$\partial_{\theta} = -\sin\theta \,\partial_x + \cos\theta \,\partial_y$$

$$\hat{e}_r = \frac{1}{|\partial_r|} \partial_r = \frac{1}{r} \partial_r$$

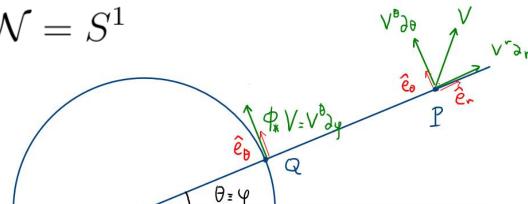
$$\mathcal{N} = S^1$$



$$\hat{e}_{\theta} = \frac{1}{|\partial_{\theta}|} \partial_{\theta} = \partial_{\theta}$$

Example
$$\mathcal{M} = \mathbb{R}^2 \setminus \{0\}$$

$$\mathcal{N} = S^1$$



$$(r,\theta) \to \varphi$$
 with $\varphi = \theta$

$$\partial_r = r\cos\theta\,\partial_x + r\sin\theta\,\partial_y$$

$$\partial_{\theta} = -\sin\theta \,\partial_x + \cos\theta \,\partial_y$$

$$\hat{e}_r = \frac{1}{|\partial_r|} \partial_r = \frac{1}{r} \partial_r$$

$$\hat{e}_{\theta} = \frac{1}{|\partial_{\theta}|} \partial_{\theta} = \partial_{\theta}$$

$$\phi_* \hat{e}_\theta = \phi_* \partial_\theta = \partial_\varphi$$

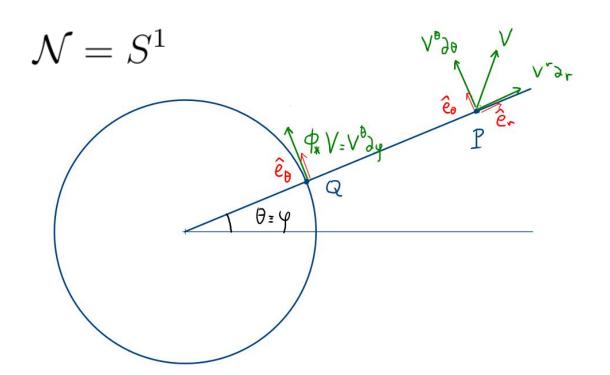
$$\phi_* \hat{e}_r = 0$$

$$\phi_*\partial_r = 0$$

Example $\mathcal{M} = \mathbb{R}^2 \setminus \{0\}$ $\mathcal{N} = S^1$

$$(r,\theta) \to \varphi$$
 with $\varphi = \theta$

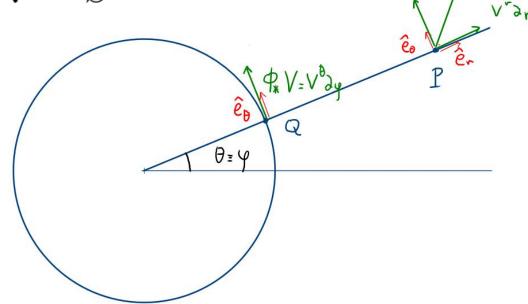
$$V = V^r \partial_r + V^\theta \partial_\theta$$



Example
$$\mathcal{M} = \mathbb{R}^2 \setminus \{0\}$$
 $\mathcal{N} = S^1$

$$\mathcal{N} = S^1$$

$$V = V^r \partial_r + V^\theta \partial_\theta$$

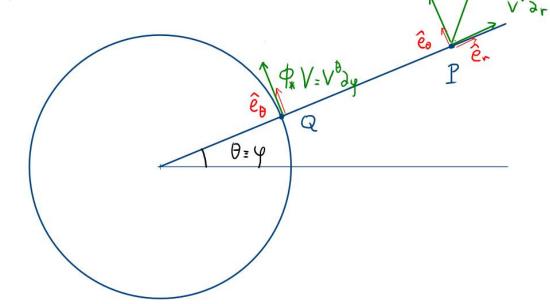


$$(\phi^* V)^{\varphi} = \frac{\partial \varphi}{\partial r} V^r + \frac{\partial \varphi}{\partial \theta} V^{\theta} = 0 \cdot V^r + 1 \cdot V^{\theta} = V^{\theta}$$

Example
$$\mathcal{M} = \mathbb{R}^2 \setminus \{0\}$$
 $\mathcal{N} = S^1$

$$\mathcal{N} = S^1$$

$$V = V^r \partial_r + V^\theta \partial_\theta$$



$$(\phi^* V)^{\varphi} = \frac{\partial \varphi}{\partial r} V^r + \frac{\partial \varphi}{\partial \theta} V^{\theta} = 0 \cdot V^r + 1 \cdot V^{\theta} = V^{\theta}$$

$$\phi^* V = (\phi^* V)^{\varphi} \partial_{\varphi} = V^{\theta} \partial_{\varphi}$$