S. Carroll, Appendix A

Maps

Maps between manifolds

Pullback/Push-forward

$$
f \in \mathcal{F}(\mathcal{N})
$$

$$
f: \mathcal{N} \rightarrow \mathbb{R}
$$

$$
Q \mapsto f(Q)
$$

$$
\begin{aligned}
\phi: \mathcal{M} & \rightarrow \mathcal{N} \quad C^{\infty} \\
P & \mapsto Q=\phi(P)
\end{aligned}
$$

- If $P \mapsto Q$, then P, Q have the same value under $\phi^{*} f$ and f respectively
- $\phi^{*} f$: pullback of f on \mathcal{M}

$$
\begin{gathered}
\phi^{*} f \equiv f \circ \phi: \mathcal{M} \rightarrow \mathbb{R} \\
P \mapsto f \circ \phi(P)=f(\phi(P))=f(Q)
\end{gathered}
$$

- If $P \mapsto Q$, then P, Q have the same value under $\phi^{*} f$ and f respectively
- $\phi^{*} f$: pullback of f on \mathcal{M}
- $\phi^{*}: \mathcal{F}(\mathcal{N}) \rightarrow \mathcal{F}(\mathcal{M})$

$$
f \mapsto \phi^{*} f=f \circ \phi
$$

$$
\begin{gathered}
\phi^{*} f \equiv f \circ \phi: \mathcal{M} \rightarrow \mathbb{R} \\
P \mapsto f \circ \phi(P)=f(\phi(P))=f(Q)
\end{gathered}
$$

- Now use ϕ^{*} to map $T_{P} \mathcal{M} \rightarrow T_{Q} \mathcal{N}$

$$
\begin{aligned}
\phi_{*}: T_{P} \mathcal{M} & \rightarrow T_{Q} \mathcal{N} \\
V & \mapsto W=\phi_{*} V
\end{aligned}
$$

- ϕ_{*} : push forward of $T_{P} \mathcal{M}$ to $T_{Q} \mathcal{N}$
- There is no $T_{Q} \mathcal{N} \rightarrow T_{P} \mathcal{M}$ (unless $\exists \phi^{-1}$, more later...)

$$
\phi_{*}: T_{P} \mathcal{M} \rightarrow T_{Q} \mathcal{N}
$$

push-forward

- $V \in T_{P} \mathcal{M} \quad V: \mathcal{F}(\mathcal{M}) \rightarrow \mathbb{R} \quad$ then $g \in \mathcal{F}(\mathcal{M}) \Rightarrow V(g) \in \mathbb{R}$
- $\phi^{*} f \in \mathcal{F}(\mathcal{M})$ so $V\left(\phi^{*} f\right) \in \mathbb{R}$
- define $W \equiv \phi_{*} V: \mathcal{F}(\mathcal{N}) \rightarrow \mathbb{R}$
s.t $W(f)=V\left(\phi^{*} f\right)$
i.e. $\phi_{*} V(f)=V\left(\phi^{*} f\right)$

Compute components of $W=W^{\alpha} \partial_{\alpha}$ or $\phi_{*} V=\left(\phi_{*} V\right)^{\alpha} \partial_{\alpha}$

From the definition: $\quad \phi_{*} V(f)=\left(\phi_{*} V\right)^{\alpha} \partial_{\alpha} f$

Explain sloppiness

$$
\begin{aligned}
& y^{\alpha}\left(x^{\mu}\right)=\psi \circ \phi \circ \chi^{-1}\left(x^{\mu}\right) \\
& f\left(y^{\alpha}\left(x^{\mu}\right)\right)=\left[f \circ \psi^{-1}\right] \circ\left[\psi \circ \phi \circ \chi^{-1}\right]\left(x^{\mu}\right)
\end{aligned}
$$

Explain sloppiness

$$
\begin{aligned}
f\left(y^{\alpha}\right) & \equiv f \circ \psi^{-1}\left(y^{\alpha}\right) \\
\phi^{*} f\left(x^{\mu}\right) & \equiv \phi^{*} f \circ \chi^{-1}\left(x^{\mu}\right)=f \circ \phi \circ \chi^{-1}\left(x^{\mu}\right) \\
y^{\alpha}\left(x^{\mu}\right) & =\psi \circ \phi \circ \chi^{-1}\left(x^{\mu}\right) \\
f\left(y^{\alpha}\left(x^{\mu}\right)\right) & =\left[f \circ \psi^{-1}\right] \circ\left[\psi \circ \phi \circ \chi^{-1}\right]\left(x^{\mu}\right)
\end{aligned}
$$

$$
\begin{aligned}
\partial_{\alpha} f & \equiv \frac{\partial}{\partial y^{\alpha}} f \circ \psi^{-1}\left(y^{\alpha}\right) \\
\frac{\partial y^{\alpha}}{\partial x^{\mu}} & \equiv \frac{\partial}{\partial x^{\mu}} \psi \circ \phi \circ \chi^{-1}\left(x^{\mu}\right) \\
\partial_{\mu}\left(\phi^{*} f\right) & =\partial_{\mu}(f \circ \phi) \equiv \frac{\partial}{\partial x^{\mu}} f \circ \phi \circ \chi^{-1}\left(x^{\mu}\right)
\end{aligned}
$$

Explain sloppiness

$$
\begin{aligned}
f\left(y^{\alpha}\right) & \equiv f \circ \psi^{-1}\left(y^{\alpha}\right) \\
\phi^{*} f\left(x^{\mu}\right) & \equiv \phi^{*} f \circ \chi^{-1}\left(x^{\mu}\right)=f \circ \phi \circ \chi^{-1}\left(x^{\mu}\right) \\
y^{\alpha}\left(x^{\mu}\right) & =\psi \circ \phi \circ \chi^{-1}\left(x^{\mu}\right) \\
f\left(y^{\alpha}\left(x^{\mu}\right)\right) & =\left[f \circ \psi^{-1}\right] \circ\left[\psi \circ \phi \circ \chi^{-1}\right]\left(x^{\mu}\right)
\end{aligned}
$$

$$
\begin{aligned}
\partial_{\alpha} f & \equiv \frac{\partial}{\partial y^{\alpha}} f \circ \psi^{-1}\left(y^{\alpha}\right) \\
\frac{\partial y^{\alpha}}{\partial x^{\mu}} & \equiv \frac{\partial}{\partial x^{\mu}} \psi \circ \phi \circ \chi^{-1}\left(x^{\mu}\right) \\
\partial_{\mu}\left(\phi^{*} f\right) & =\partial_{\mu}(f \circ \phi) \equiv \frac{\partial}{\partial x^{\mu}} f \circ \phi \circ \chi^{-1}\left(x^{\mu}\right)
\end{aligned}
$$

$$
\begin{aligned}
\partial_{\mu}\left(\phi^{*} f\right)=\partial_{\mu}(f \circ \phi) & \equiv \frac{\partial}{\partial x^{\mu}} f \circ \phi \circ \chi^{-1}\left(x^{\mu}\right) \\
& =\frac{\partial}{\partial x^{\mu}}\left[f \circ \psi^{-1}\right] \circ\left[\psi \circ \phi \circ \chi^{-1}\right]\left(x^{\mu}\right) \\
& =\frac{\partial}{\partial x^{\mu}} f \circ \psi^{-1}\left(y^{\alpha}\left(x^{\mu}\right)\right) \\
& \equiv \frac{\partial}{\partial x^{\mu}} f\left(y^{\alpha}\left(x^{\mu}\right)\right)=\frac{\partial f\left(y^{\alpha}\right)}{\partial y^{\alpha}} \frac{\partial y^{\alpha}}{\partial x^{\mu}}
\end{aligned}
$$

Explain sloppiness

$$
\begin{aligned}
f\left(y^{\alpha}\right) & \equiv f \circ \psi^{-1}\left(y^{\alpha}\right) \\
\phi^{*} f\left(x^{\mu}\right) & \equiv \phi^{*} f \circ \chi^{-1}\left(x^{\mu}\right)=f \circ \phi \circ \chi^{-1}\left(x^{\mu}\right) \\
y^{\alpha}\left(x^{\mu}\right) & =\psi \circ \phi \circ \chi^{-1}\left(x^{\mu}\right) \\
f\left(y^{\alpha}\left(x^{\mu}\right)\right) & =\left[f \circ \psi^{-1}\right] \circ\left[\psi \circ \phi \circ \chi^{-1}\right]\left(x^{\mu}\right)
\end{aligned}
$$

$$
\begin{aligned}
\partial_{\alpha} f & \equiv \frac{\partial}{\partial y^{\alpha}} f \circ \psi^{-1}\left(y^{\alpha}\right) \\
\frac{\partial y^{\alpha}}{\partial x^{\mu}} & \equiv \frac{\partial}{\partial x^{\mu}} \psi \circ \phi \circ \chi^{-1}\left(x^{\mu}\right) \\
\partial_{\mu}\left(\phi^{*} f\right) & =\partial_{\mu}(f \circ \phi) \equiv \frac{\partial}{\partial x^{\mu}} f \circ \phi \circ \chi^{-1}\left(x^{\mu}\right)
\end{aligned}
$$

$$
\partial_{\mu}\left(\phi^{*} f\right)=\partial_{\mu}(f \circ \phi)=\frac{\partial y^{\alpha}}{\partial x^{\mu}} \partial_{\alpha} f
$$

Compute components of $W=W^{\alpha} \partial_{\alpha}$ or $\phi_{*} V=\left(\phi_{*} V\right)^{\alpha} \partial_{\alpha}$

From the definition:

$$
\begin{aligned}
\phi_{*} V(f) & =\left(\phi_{*} V\right)^{\alpha} \partial_{\alpha} f \\
V\left(\phi^{*} f\right) & =V^{\mu} \partial_{\mu}\left(\phi^{*} f\right) \\
& =V^{\mu} \partial_{\mu}(f \circ \phi) \\
& =V^{\mu} \frac{\partial y^{\alpha}}{\partial x^{\mu}} \partial_{\alpha} f
\end{aligned}
$$

Compute components of $W=W^{\alpha} \partial_{\alpha}$ or $\phi_{*} V=\left(\phi_{*} V\right)^{\alpha} \partial_{\alpha}$

From the definition:

$$
\phi_{*} V(f)=\left(\phi_{*} V\right)^{\alpha} \partial_{\alpha} f
$$

$$
\begin{aligned}
V\left(\phi^{*} f\right) & =V^{\mu} \partial_{\mu}\left(\phi^{*} f\right) \\
& =V^{\mu} \partial_{\mu}(f \circ \phi) \\
& =V^{\mu} \frac{\partial y^{\alpha}}{\partial x^{\mu}} \partial_{\alpha} f \\
\Rightarrow\left(\phi_{*} V\right)^{\alpha} & =\frac{\partial y^{\alpha}}{\partial x^{\mu}} V^{\mu} \\
& =\left(\phi_{*}\right)^{\alpha}{ }_{\mu} V^{\mu}
\end{aligned}
$$

Compute components of $W=W^{\alpha} \partial_{\alpha}$ or $\phi_{*} V=\left(\phi_{*} V\right)^{\alpha} \partial_{\alpha}$

From the definition: $\quad \phi_{*} V(f)=\left(\phi_{*} V\right)^{\alpha} \partial_{\alpha} f$

$$
\begin{aligned}
V\left(\phi^{*} f\right) & =V^{\mu} \partial_{\mu}\left(\phi^{*} f\right) \\
& =V^{\mu} \partial_{\mu}(f \circ \phi) \\
& =V^{\mu} \frac{\partial y^{\alpha}}{\partial x^{\mu}} \partial_{\alpha} f \\
\Rightarrow\left(\phi_{*} V\right)^{\alpha} & =\frac{\partial y^{\alpha}}{\partial x^{\mu}} V^{\mu} \\
& =\left(\phi_{*}\right)^{\alpha}{ }_{\mu} V^{\mu}
\end{aligned}
$$

$$
\phi_{*}=\left(\begin{array}{cccc}
\frac{\partial y^{1}}{\partial x^{1}} & \frac{\partial y^{1}}{\partial x^{2}} & \cdots & \frac{\partial y^{1}}{\partial x^{m}} \\
\frac{\partial y^{2}}{\partial x^{3}} & \frac{\partial y^{2}}{\partial x^{2}} & \cdots & \frac{\partial y^{2}}{\partial x^{m}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial \dot{y}^{n}}{\partial x^{3}} & \frac{\partial y^{n}}{\partial x^{2}} & \cdots & \frac{\partial y^{n}}{\partial x^{m}}
\end{array}\right)
$$

$$
\left(\phi_{*}\right)_{\underbrace{\Omega}_{\mu}}^{\text {vow }}=\frac{\partial y^{\alpha}}{\left.\partial x^{(\mu}\right)}
$$

$$
\left(\phi_{*} V\right)^{\alpha}=\left(\phi_{*}\right)^{\alpha}{ }_{\mu} V^{\mu}
$$

Matrix notation for components: ϕ_{*} is a $n \times m$ mtrix

$$
\begin{gathered}
\left(\phi_{*} \sqrt{\alpha} \underset{\mu}{\mu}=\frac{\partial y^{\alpha}}{\partial x^{\mu}}\right. \\
\text { column }
\end{gathered}
$$

$$
\underset{n \times 1}{\phi_{*} V}=\underset{n \times m}{\phi_{*}} \cdot \underset{m \times 1}{V}
$$

$$
\begin{aligned}
& m
\end{aligned}
$$

$\left(\begin{array}{llll}\frac{\partial y^{1}}{\partial x^{1}} & \frac{\partial y^{1}}{\partial x^{2}} & \cdots \cdot \frac{\partial y^{1}}{\partial x^{m}} \\ \partial y^{2} & \partial y^{2} & & \partial y^{2}\end{array}\right) \quad\left(\phi_{*}\right)^{\alpha}=\alpha$

$$
\phi_{*} V=\begin{array}{ccc}
& \phi_{*} & \cdot \\
n \times 1 & & n \times m
\end{array} \quad m \times 1
$$

Abstract notation:

$$
\phi_{*} V=\left(\phi_{*} V\right)^{\alpha} \partial_{\alpha}=\left(\frac{\partial y^{\alpha}}{\partial x^{\mu}} V^{\mu}\right) \partial_{\alpha}=\left[\left(\phi_{*}\right)^{\alpha}{ }_{\mu} V^{\mu}\right] \partial_{\alpha}
$$

$$
\left(\phi_{*} \stackrel{\leftrightarrow}{(\Theta)}_{\substack{\text { row } \\ \text { column }}}=\frac{\partial y^{@}}{\partial x_{\Theta}^{(}}\right.
$$

R $V: \mathcal{F}(\mathcal{M}) \rightarrow \mathbb{R}$

$$
\phi_{*} V: \mathcal{F}(\mathcal{N}) \rightarrow \mathbb{R}
$$

- use ϕ^{*} to $\operatorname{map} T_{Q}^{*} \mathcal{N} \rightarrow T_{P}^{*} \mathcal{M}$

- use ϕ^{*} to $\operatorname{map} T_{Q}^{*} \mathcal{N} \rightarrow T_{P}^{*} \mathcal{M}$
- pullback $\omega \in T_{Q}^{*} \mathcal{N}$ to $\phi^{*} \omega \in T_{P}^{*} \mathcal{M}$

- use ϕ^{*} to $\operatorname{map} T_{Q}^{*} \mathcal{N} \rightarrow T_{P}^{*} \mathcal{M}$
- pullback $\omega \in T_{Q}^{*} \mathcal{N}$ to $\phi^{*} \omega \in T_{P}^{*} \mathcal{M}$
- definition: $\omega: T_{Q} \mathcal{N} \rightarrow \mathbb{R}$ linear, s.t. $W \mapsto \omega(W)$

- use ϕ^{*} to $\operatorname{map} T_{Q}^{*} \mathcal{N} \rightarrow T_{P}^{*} \mathcal{M}$
- pullback $\omega \in T_{Q}^{*} \mathcal{N}$ to $\phi^{*} \omega \in T_{P}^{*} \mathcal{M}$
- definition: $\omega: T_{Q} \mathcal{N} \rightarrow \mathbb{R}$ linear, s.t. $W \mapsto \omega(W)$
- use it to define $\phi^{*} \omega \in T_{P}^{*} \mathcal{M}$

$$
\phi^{*} \omega: T_{P} \mathcal{M} \rightarrow \mathbb{R} \text { linear } \quad \text { s.t. } V \mapsto \phi^{*} \omega(V)
$$

- use ϕ^{*} to $\operatorname{map} T_{Q}^{*} \mathcal{N} \rightarrow T_{P}^{*} \mathcal{M}$
- pullback $\omega \in T_{Q}^{*} \mathcal{N}$ to $\phi^{*} \omega \in T_{P}^{*} \mathcal{M}$
- definition: $\omega: T_{Q} \mathcal{N} \rightarrow \mathbb{R}$ linear, s.t. $W \mapsto \omega(W)$
- use it to define $\phi^{*} \omega \in T_{P}^{*} \mathcal{M}$

$$
\phi^{*} \omega: T_{P} \mathcal{M} \rightarrow \mathbb{R} \text { linear } \quad \text { s.t. } V \mapsto \phi^{*} \omega(V)
$$

Compute the $\phi^{*} \omega$ components:

Definition: $\forall V \in T_{P} \mathcal{M}$

$$
\phi^{*} \omega(V)=\left(\phi^{*} \omega\right)_{\mu} V^{\mu}
$$

Compute the $\phi^{*} \omega$ components:

Definition: $\forall V \in T_{P} \mathcal{M}$

$$
\begin{aligned}
\phi^{*} \omega(V) & =\left(\phi^{*} \omega\right)_{\mu} V^{\mu} \\
\phi^{*} \omega(V) & =\omega\left(\phi_{*} V\right) \\
& =\omega_{\alpha}\left(\frac{\partial y^{\alpha}}{\partial x^{\mu}} V^{\mu}\right) \\
& =\left(\frac{\partial y^{\alpha}}{\partial x^{\mu}} \omega_{\alpha}\right) V^{\mu}
\end{aligned}
$$

Compute the $\phi^{*} \omega$ components:

Definition: $\forall V \in T_{P} \mathcal{M}$

$$
\begin{aligned}
\phi^{*} \omega(V) & =\left(\phi^{*} \omega\right)_{\mu} V^{\mu} \\
\phi^{*} \omega(V) & =\omega\left(\phi_{*} V\right) \\
& =\omega_{\alpha}\left(\frac{\partial y^{\alpha}}{\partial x^{\mu}} V^{\mu}\right) \\
& =\left(\frac{\partial y^{\alpha}}{\partial x^{\mu}} \omega_{\alpha}\right) V^{\mu} \\
\Rightarrow\left(\phi^{*} \omega\right)_{\mu} & =\frac{\partial y^{\alpha}}{\partial x^{\mu}} \omega_{\alpha}=\left(\phi^{*}\right)_{\mu}{ }^{\alpha} \omega_{\alpha} \quad \text { where }\left(\phi^{*}\right)_{\mu}{ }^{\alpha}=\frac{\partial y^{\alpha}}{\partial x^{\mu}}
\end{aligned}
$$

$$
\underset{m \times 1}{\phi^{*}} \omega=\underset{m \times n}{\phi^{*}} \cdot \underset{n \times 1}{\omega}
$$

observe that:

$$
\phi^{*}=\left(\phi_{*}\right)^{\top}
$$

$$
\phi^{*}=\left(\begin{array}{cccc}
\frac{\partial y^{1}}{\partial x^{1}} & \frac{\partial y^{2}}{\partial x^{1}} & \ldots . & \frac{\partial y^{n}}{\partial x^{1}} \\
\frac{\partial y^{1}}{\partial x^{2}} & \frac{\partial y^{2}}{\partial x^{2}} & \ldots & \frac{\partial y^{n}}{\partial x^{2}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial y^{1}}{\partial x^{m}} & \frac{\partial y^{2}}{\partial x^{m}} & \cdots & \frac{\partial y^{n}}{\partial x^{m}}
\end{array}\right) \nmid
$$

Matrix notation for components:

$$
\underset{m \times 1}{\phi^{*} \omega}=\underset{m \times n}{\phi^{*}} \cdot \underset{n \times 1}{\omega}
$$

observe that:

$$
\phi^{*}=\left(\phi_{*}\right)^{\top}
$$

Abstract notation: $\quad \phi^{*} \omega=\left(\phi^{*} \omega\right)_{\mu} d x^{\mu}$

$$
\begin{aligned}
& =\left(\frac{\partial y^{\alpha}}{\partial x^{\mu}} \omega_{\alpha}\right) d x^{\mu} \\
& =\left[\left(\phi^{*}\right)_{\mu}^{\alpha} \omega_{\alpha}\right] d x^{\mu}
\end{aligned}
$$

Tensors: only $(0, l)$ or $(l, 0)$

Tensors: only $(0, l)$ or $(l, 0)$

$$
\phi^{*} T \in T_{P}^{(0, l)} \mathcal{M} \quad T \in T_{Q}^{(0, l)} \mathcal{N}
$$

$$
\phi^{*} T\left(V^{(1)}, \ldots, V^{(l)}\right)=T\left(\phi_{*} V^{(1)}, \ldots, \phi_{*} V^{(l)}\right)
$$

Tensors: only $(0, l)$ or $(l, 0)$

$$
\begin{aligned}
\left(\phi^{*} T\right)_{\mu_{1} \ldots \mu_{l}} & =\frac{\partial y^{\alpha_{1}}}{\partial x^{\mu_{1}}} \cdots \frac{\partial y^{\alpha_{l}}}{\partial x^{\mu_{l}}} T_{\alpha_{1} \ldots \alpha_{l}} \\
& =\left(\phi^{*}\right)_{\mu_{1}}^{\alpha_{1}} \cdots\left(\phi^{*}\right)_{\mu_{l}}{ }^{\alpha_{l}} T_{\alpha_{1} \ldots \alpha_{l}}
\end{aligned}
$$

$$
\phi^{*} T \in T_{P}^{(0, l)} \mathcal{M} \quad T \in T_{Q}^{(0, l)} \mathcal{N}
$$

$$
\phi^{*} T\left(V^{(1)}, \ldots, V^{(l)}\right)=T\left(\phi_{*} V^{(1)}, \ldots, \phi_{*} V^{(l)}\right)
$$

Example: Pullback metric $g_{\alpha \beta}$ to $\left(\phi^{*} g\right)_{\mu \nu}$

$$
g_{\alpha \beta} \in T_{Q}^{(0,2)} \mathcal{N} \quad \phi^{*} g_{\mu \nu} \in T_{P}^{(0,2)} \mathcal{M}
$$

Example: Pullback metric $g_{\alpha \beta}$ to $\left(\phi^{*} g\right)_{\mu \nu}$

$\phi^{*} g$ not necessarily a metric on $T_{P} \mathcal{M}$

Example: Pullback metric $g_{\alpha \beta}$ to $\left(\phi^{*} g\right)_{\mu \nu}$

$$
g_{\alpha \beta} \in T_{Q}^{(0,2)} \mathcal{N} \quad \phi^{*} g_{\mu \nu} \in T_{P}^{(0,2)} \mathcal{M}
$$

$$
\begin{aligned}
\phi^{*} g(V, U) & =g\left(\phi_{*} V, \phi_{*} U\right) \\
\left(\phi^{*} g\right)_{\mu \nu} & =\frac{\partial y^{\alpha}}{\partial x^{\mu}} \frac{\partial y^{\beta}}{\partial x^{\nu}} g_{\alpha \beta} \\
& =\left(\phi^{*}\right)_{\mu}{ }^{\alpha}\left(\phi^{*}\right)_{\nu}{ }^{\beta} g_{\alpha \beta} \\
& =\left(\phi^{*}\right)_{\mu}{ }^{\alpha} g_{\alpha \beta}\left(\phi^{*}\right)_{\nu}{ }^{\beta} \\
& =\left(\phi^{*}\right)_{\mu}{ }^{\alpha} g_{\alpha \beta}\left(\phi^{*}\right)^{\top}{ }_{\nu}{ }_{\nu}
\end{aligned}
$$

Example: Pullback metric $g_{\alpha \beta}$ to $\left(\phi^{*} g\right)_{\mu \nu}$

$$
\begin{aligned}
\phi^{*} g(V, U) & =g\left(\phi_{*} V, \phi_{*} U\right) \\
\left(\phi^{*} g\right)_{\mu \nu} & =\frac{\partial y^{\alpha}}{\partial x^{\mu}} \frac{\partial y^{\beta}}{\partial x^{\nu}} g_{\alpha \beta} \\
& =\left(\phi^{*}\right)_{\mu}{ }^{\alpha}\left(\phi^{*}\right)_{\nu}{ }^{\beta} g_{\alpha \beta} \\
& =\left(\phi^{*}\right)_{\mu}{ }^{\alpha} g_{\alpha \beta}\left(\phi^{*}\right)_{\nu}{ }^{\beta} \\
& =\left(\phi^{*}\right)_{\mu}{ }^{\alpha} g_{\alpha \beta}\left(\phi^{*}\right)^{\top}{ }_{\nu}{ }_{\nu}
\end{aligned}
$$

Or, in matrix notation for components:

$$
\underset{m \times m}{\phi^{*}} \underset{m \times n}{g}=\underset{m \times n}{\phi^{*}} \cdot \underset{n \times m}{g} \cdot \underset{n}{\left(\phi^{*}\right)^{\top}}
$$

Example: Pullback metric $g_{\alpha \beta}$ to $\left(\phi^{*} g\right)_{\mu \nu}$

$$
\begin{aligned}
\phi^{*} g(V, U) & =g\left(\phi_{*} V, \phi_{*} U\right) \\
\left(\phi^{*} g\right)_{\mu \nu} & =\frac{\partial y^{\alpha}}{\partial x^{\mu}} \frac{\partial y^{\beta}}{\partial x^{\nu}} g_{\alpha \beta} \\
& =\left(\phi^{*}\right)_{\mu}{ }^{\alpha}\left(\phi^{*}\right)_{\nu}{ }^{\beta} g_{\alpha \beta} \\
& =\left(\phi^{*}\right)_{\mu}{ }^{\alpha} g_{\alpha \beta}\left(\phi^{*}\right)_{\nu}{ }^{\beta} \\
& =\left(\phi^{*}\right)_{\mu}{ }^{\alpha} g_{\alpha \beta}\left(\phi^{*}\right)^{\top}{ }_{\nu} \\
\underset{m \times m}{\phi^{*}} g & =\underset{m \times n}{\phi^{*}} \cdot \underset{n \times n}{g} \cdot \underset{n \times m}{\left(\phi^{*}\right)^{\top}}
\end{aligned}
$$

If $n>m$ and g is a metric on \mathcal{N}, then ϕ is an embedding of \mathcal{M} in \mathcal{N}, and $\phi^{*} g$, if non-degenerate, is the induced metric on \mathcal{M} by ϕ

$$
\phi_{*} S\left(\omega^{(1)}, \ldots, \omega^{(l)}\right)=S\left(\phi^{*} \omega^{(1)}, \ldots, \phi^{*} \omega^{(l)}\right)
$$

$$
S \in T_{P}^{(l, 0)} \mathcal{M} \quad \phi_{*} S \in T_{Q}^{(l, 0)} \mathcal{N}
$$

$$
\phi_{*} S\left(\omega^{(1)}, \ldots, \omega^{(l)}\right)=S\left(\phi^{*} \omega^{(1)}, \ldots, \phi^{*} \omega^{(l)}\right)
$$

$$
\begin{aligned}
\phi_{*} S^{\alpha_{1} \ldots \alpha_{l}} & =\frac{\partial y^{\alpha_{1}}}{\partial x^{\mu_{1}}} \ldots \frac{\partial y^{\alpha_{l}}}{\partial x^{\mu_{l}}} S^{\mu_{1} \ldots \mu_{l}} \\
& =\left(\phi_{*}\right)^{\alpha_{1}}{ }_{\mu_{1}} \cdots\left(\phi_{*}\right)^{\alpha_{l}}{ }_{\mu_{l}} S^{\mu_{1} \ldots \mu_{l}}
\end{aligned}
$$

Example: coordinate vectors

Example: coordinate vectors

$$
\partial_{\mu}=\delta_{\mu}{ }^{\nu} \partial_{\nu}=\left(\partial_{\mu}\right)^{\nu} \partial_{\nu} \Rightarrow\left(\partial_{\mu}\right)^{\nu}=\delta_{\mu}^{\nu}
$$

$\left(\phi_{*} \partial_{\mu}\right)^{\alpha}=\frac{\partial y^{\alpha}}{\partial x^{\nu}}\left(\partial_{\mu}\right)^{\nu}=\frac{\partial y^{\alpha}}{\partial x^{\nu}} \delta_{\mu}^{\nu}=\frac{\partial y^{\alpha}}{\partial x^{\mu}}$

Example: coordinate vectors

$$
\partial_{\mu}=\delta_{\mu}{ }^{\nu} \partial_{\nu}=\left(\partial_{\mu}\right)^{\nu} \partial_{\nu} \Rightarrow\left(\partial_{\mu}\right)^{\nu}=\delta_{\mu}{ }^{\nu}
$$

$\left(\phi_{*} \partial_{\mu}\right)^{\alpha}=\frac{\partial y^{\alpha}}{\partial x^{\nu}}\left(\partial_{\mu}\right)^{\nu}=\frac{\partial y^{\alpha}}{\partial x^{\nu}} \delta_{\mu}{ }^{\nu}=\frac{\partial y^{\alpha}}{\partial x^{\mu}} \quad \Rightarrow \phi_{*} \partial_{\mu}=\frac{\partial y^{\alpha}}{\partial x^{\mu}} \partial_{\alpha}$

Example: embedding

$$
\vec{e}_{\mu}=\frac{\partial \vec{y}}{\partial x^{\mu}}
$$

Example: coordinate forms

$$
d y^{\alpha}=\delta_{\beta}^{\alpha} d y^{\beta} \Rightarrow\left(d y^{\alpha}\right)_{\beta}=\delta_{\beta}^{\alpha}
$$

Example: coordinate forms

$$
d y^{\alpha}=\delta_{\beta}^{\alpha} d y^{\beta} \Rightarrow\left(d y^{\alpha}\right)_{\beta}=\delta^{\alpha}{ }_{\beta}
$$

$$
\left(\phi^{*} d y^{\alpha}\right)_{\mu}=\frac{\partial y^{\beta}}{\partial x^{\mu}}\left(d y^{\alpha}\right)_{\beta}=\frac{\partial y^{\beta}}{\partial x^{\mu}} \delta^{\alpha}{ }_{\beta}=\frac{\partial y^{\alpha}}{\partial x^{\mu}}
$$

Example: coordinate forms

$$
d y^{\alpha}=\delta^{\alpha}{ }_{\beta} d y^{\beta} \Rightarrow\left(d y^{\alpha}\right)_{\beta}=\delta^{\alpha}{ }_{\beta}
$$

$$
\left(\phi^{*} d y^{\alpha}\right)_{\mu}=\frac{\partial y^{\beta}}{\partial x^{\mu}}\left(d y^{\alpha}\right)_{\beta}=\frac{\partial y^{\beta}}{\partial x^{\mu}} \delta^{\alpha}{ }_{\beta}=\frac{\partial y^{\alpha}}{\partial x^{\mu}} \quad \Rightarrow \phi^{*} d y^{\alpha}=\frac{\partial y^{\alpha}}{\partial x^{\mu}} d x^{\mu}
$$

Example $\quad \mathcal{M}=\mathbb{R}^{2} \backslash\{0\} \quad \mathcal{N}=S^{1}$

$$
(r, \theta) \rightarrow \varphi \text { with } \varphi=\theta
$$

$\partial_{r}=r \cos \theta \partial_{x}+r \sin \theta \partial_{y}$ $\partial_{\theta}=-\sin \theta \partial_{x}+\cos \theta \partial_{y}$

$$
\hat{e}_{r}=\frac{1}{\left|\partial_{r}\right|} \partial_{r}=\frac{1}{r} \partial_{r}
$$

$$
\hat{e}_{\theta}=\frac{1}{\left|\partial_{\theta}\right|} \partial_{\theta}=\partial_{\theta}
$$

Example $\quad \mathcal{M}=\mathbb{R}^{2} \backslash\{0\} \quad \mathcal{N}=S^{1}$

$$
\begin{aligned}
& (r, \theta) \rightarrow \varphi \text { with } \varphi=\theta \\
& \partial_{r}=r \cos \theta \partial_{x}+r \sin \theta \partial_{y} \\
& \partial_{\theta}=-\sin \theta \partial_{x}+\cos \theta \partial_{y}
\end{aligned}
$$

$$
\hat{e}_{r}=\frac{1}{\left|\partial_{r}\right|} \partial_{r}=\frac{1}{r} \partial_{r}
$$

$$
\hat{e}_{\theta}=\frac{1}{\left|\partial_{\theta}\right|} \partial_{\theta}=\partial_{\theta}
$$

$$
\phi_{*} \hat{e}_{\theta}=\phi_{*} \partial_{\theta}=\partial_{\varphi}
$$

$$
\phi_{*} \hat{e}_{r}=0
$$

$$
\phi_{*} \partial_{r}=0
$$

Example $\quad \mathcal{M}=\mathbb{R}^{2} \backslash\{0\} \quad \mathcal{N}=S^{1}$
$(r, \theta) \rightarrow \varphi$ with $\varphi=\theta$

$$
V=V^{r} \partial_{r}+V^{\theta} \partial_{\theta}
$$

Example $\quad \mathcal{M}=\mathbb{R}^{2} \backslash\{0\} \quad \mathcal{N}=S^{1}$
$(r, \theta) \rightarrow \varphi$ with $\varphi=\theta$

$$
V=V^{r} \partial_{r}+V^{\theta} \partial_{\theta}
$$

$$
\left(\phi^{*} V\right)^{\varphi}=\frac{\partial \varphi}{\partial r} V^{r}+\frac{\partial \varphi}{\partial \theta} V^{\theta}=0 \cdot V^{r}+1 \cdot V^{\theta}=V^{\theta}
$$

Example $\quad \mathcal{M}=\mathbb{R}^{2} \backslash\{0\} \quad \mathcal{N}=S^{1}$
$(r, \theta) \rightarrow \varphi$ with $\varphi=\theta$

$$
V=V^{r} \partial_{r}+V^{\theta} \partial_{\theta}
$$

$$
\left(\phi^{*} V\right)^{\varphi}=\frac{\partial \varphi}{\partial r} V^{r}+\frac{\partial \varphi}{\partial \theta} V^{\theta}=0 \cdot V^{r}+1 \cdot V^{\theta}=V^{\theta}
$$

$$
\phi^{*} V=\left(\phi^{*} V\right)^{\varphi} \partial_{\varphi}=V^{\theta} \partial_{\varphi}
$$

