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Final Exam - General Theory of Relativity
June 2023 — K. N. Anagnostopoulos

Problem 1

Consider the Schwarzschild metric in the r > 2M region, and the coordinate transformation
(t,r,0,0) = (t,€,0,9), so that
§2
—2M = =— 0. 1
T R > €))

The Metric

Show that in the (¢,&, 6, ¢) coordinate system

242
2 /ff 2 242 9 1 2.9 9 9 . 9 9
ds” = — a7l + (V€ + DA + 75 (8¢ + 1)°(d0” + sin” 0 dg?), 2
where .
SabyvE 3)

Tangent Space
Consider the coordinate basis

{8u} = {80781782,83} = {8t,8§,69,8¢}. (4)

Determine the type (spacelike, timelike or null) of the coordinate basis vectors.
Compute the orthocanonical basis

{é,} ={é0,é1,69,63} = {€1,6¢,€9,65}. (5)
Compute a null vector, and write it as a linear combination of the coordinate basis elements

{00}

Killing Vector Fields (KVF)

Show that the vector fields d; and 9, are KVF of the metric (2).
A massive particle is falling freely following a trajectory (t(7),&(7),0(7), ¢(7)). Write down the
equations that give the respective conserved quantities during the particle’s motion.



Curvature

The components of the Riemann tensor in the {0, } basis are:

Rio10 = —% 6
Rao20 = %i:;il)Q @)
Ron = — ®)
R3030 = m 9
o A— —% sin” 0 (10)
R3a30 = W . (11

Compute the components of R, 5 in the {¢,} basis.

Free fall, fixed ¢

An observer is falling freely, following a trajectory with fixed & = .
Compute the angular velocity {2 = %.
How much time elapses according to the observer (her proper time) during one revolution?

The geodesic equations are:

2 .

t+ Wff =0 (12)
E 2 s (P4 (28 1€ w07 <0 (1
9'+K;§:2iléf—cosﬁsin9q52=0 (14)
b 2cottih s IS éd=0. (15)

where
f= %, §= %, (16)

Problem 2
Consider the electromagnetic (EM) field, whose Lagrangian density is given by

L= fiFWF‘“’ : 17

where
F.=V,A, —-V,A, =0,A,-0,A,. (18)

The following questions should be answered for the case of a Minkowski (flat) metric. You may
use equations which are valid for a more general, curved spacetime.

Energy-Momentum Tensor

Show that the energy-momentum tensor of the EM field can be written in the form:

1
Tias = FupF? = {90 FopFP (19)



Given that

E; = —Fy, (20)

1 .
Bk = §6ki]‘F7’j s (21)

compute the 7}, components in terms of the E;, B;.
Compute the Lagrangian density ({[7) in terms of the E;, B.
You may use the relations:

€kij€kim = 0il0jm — Oim0ji (22)
09 = —9 909" . (23)

Energy-Momentum Conservation

Show that when the equations of motion for (I7) (Maxwell’s equations) are satified, then

9T =0. (24)

Problem 3

Consider the covariant derivative V, of the Levi-Civita connection compatible with the metric

Guv-
You may consider the following equations to be given:

V. V" =09,V +T" ,\V* (25)
[Vlw VU] Ve = Rp)\;wv)\ (26)
Rp)\pu = a,qul/)\ - 6VFPIL)\ + Fpuarau)\ - Fpuorau)\ . (27)

Connections

The vectors W#, U# are parallel transported along a curve, whose tangent vector is V*. Show
that the inner products W*W,, U*U,,, WH*U,, remain constant along the curve.
Show that, if w,, is a one-form field, then

V,w, = Ouw, — T wy (28)
Curvature
Show that
[Vﬂa vl/} Wp = _R/\ppuw)\ (29)
[V;u vu} Fap = RUA;WF/\p - RAp;uzFU)\ . (30)

Symmetries of the Riemann Tensor

Show that
Rfiype) = 0. (31



