Problems in General Relativity

 K.N. Anagnostopoulos

 K.N. Anagnostopoulos}

The Gödel Universe

Consider the Gödel spacetime:

$$
\begin{equation*}
d s^{2}=-d t^{2}-2 \frac{r^{2}}{\sqrt{2} a} d t d \phi+\frac{d r^{2}}{1+\left(\frac{r}{2 a}\right)^{2}}+r^{2}\left[1-\left(\frac{r}{2 a}\right)^{2}\right] d \phi^{2}+d z^{2} \tag{1}
\end{equation*}
$$

1. Determine whether ∂_{μ} are timelike, null, or spacelike. From the kind of ∂_{ϕ}, discuss if it is possible to have (local future pointing) timelike geodesics moving in the negative t direction.
2. Show that $\xi_{0}=\partial_{t}, \xi_{2}=\partial_{\phi}, \xi_{3}=\partial_{z}$, are Killing Vector Fields (KVF), and compute the corresponding conserved quantities k_{0}, k_{2}, and k_{3} along a geodesic with tangent vector $u^{\mu}=$ $(\dot{t}, \dot{r}, \dot{\phi}, \dot{z})$.
3. Compute $\dot{t}, \dot{\phi}$ and \dot{z} in terms of k_{0}, k_{2}, and k_{3}.
4. Show that $u^{\mu} u_{\mu}=\kappa, \kappa=0,-1$ for null/timelike geodesics yield

$$
\begin{equation*}
\mathcal{E}=\frac{1}{2}(\dot{r})^{2}+\frac{1}{2} A^{2} r^{2}+\frac{L^{2}}{2 r^{2}} \tag{2}
\end{equation*}
$$

where \mathcal{E}, A, and L are constants, which you should calculate. Find conditions for motion $r_{1} \leq r \leq r_{2}$, and compute $r_{1,2}$ in terms of \mathcal{E}, A, and L. (Notice that the problem of the radial motion is similar to the 3 -dimensional harmonic oscillator)
5. Compute an orthonormal basis $\left\{e_{a}\right\}$. If $u=u^{(a)} e_{a}=u^{\mu} \partial_{\mu}$, compute $u^{(a)}$ in terms of u^{μ}, and vice-versa.
6. Compute k_{0}, k_{2}, and k_{3} in terms of $u^{(a)}$, so that the $u^{(a)}$ can be used as initial conditions in the geodesic equations.
7. Free massless particle goes through the local inertial frame $\left\{e_{a}\right\}$ with 4-velocity $\left(u^{(0)}, u^{(1)}, 0,0\right)$. Write down the geodesic equations for $(\dot{t}, \dot{r}, \dot{\phi}, \dot{z})$ in terms of $u^{(0)}, u^{(1)}$.
8. Compute all the null vectors at a point with coordinate r (i.e. compute the lightcone). Give expressions for both $u^{(a)}$ and u^{μ} (Hint: You will need a 3-parameter family of vectors, start from $u^{(a)}$ which is easier).
9. Compute the Christoffel symbols of the Levi-Civita connection of the metric. The nonzero components of the inverse metric are

$$
\begin{gather*}
g^{t t}=-\frac{1-\left(\frac{r}{2 a}\right)^{2}}{1+\left(\frac{r}{2 a}\right)^{2}}, \quad g^{r r}=1+\left(\frac{r}{2 a}\right)^{2}, \quad g^{z z}=1, \quad g^{t \phi}=-\frac{1}{\sqrt{2} a\left(1+\left(\frac{r}{2 a}\right)^{2}\right)} \tag{3}\\
g^{\phi \phi}=\frac{1}{r^{2}\left(1+\left(\frac{r}{2 a}\right)^{2}\right)}, \quad g^{t \phi}=-\frac{1}{\sqrt{2} a\left(1+\left(\frac{r}{2 a}\right)^{2}\right)} \tag{4}
\end{gather*}
$$

The result is:

$$
\begin{gather*}
\Gamma_{r t}^{t}=\frac{r}{2 a^{2}} \frac{1}{1+\left(\frac{r}{2 a}\right)^{2}}, \quad \Gamma_{\phi r}^{t}=\frac{r^{3}}{4 \sqrt{2} a^{3}} \frac{1}{1+\left(\frac{r}{2 a}\right)^{2}}, \quad \Gamma_{r r}^{r}=-\frac{r}{4 a^{2}} \frac{1}{1+\left(\frac{r}{2 a}\right)^{2}} \tag{5}\\
\Gamma_{\phi t}^{r}=\frac{r}{\sqrt{2} a}\left(1+\left(\frac{r}{2 a}\right)^{2}\right), \quad \Gamma_{\phi \phi}^{r}=r\left(1+\left(\frac{r}{2 a}\right)^{2}\right)\left(2\left(\frac{r}{2 a}\right)^{2}-1\right) \tag{6}\\
\Gamma_{\phi r}^{\phi}=\frac{1}{r} \frac{1}{1+\left(\frac{r}{2 a}\right)^{2}}, \quad \Gamma_{r t}^{\phi}=-\frac{1}{\sqrt{2} a r} \frac{1}{1+\left(\frac{r}{2 a}\right)^{2}} \tag{7}
\end{gather*}
$$

10. Consider the massive particle moving on the trajectory with $t=0, r=R, \phi=\omega \tau, z=0$, where R, ω are constants. Determine when the 4 -velocity of the particle is timelike, in which case we have a closed timelike curve (CTC).
11. Compute the relation $\omega=\omega(R)$.
12. Compute the 4-acceleration of the particle $a^{\mu}=\ddot{x}^{\mu}+\Gamma_{\nu \rho}^{\mu} \dot{x}^{\nu} \dot{x}^{\rho}$, where $\dot{x}^{\mu}=d x^{\mu} / d \tau$. Conclude that the particle is not falling freely.
13. The vectors with components in the coordinate basis below are KVFs:

$$
\begin{align*}
\xi_{1} & =\frac{1}{\sqrt{1+\left(\frac{r}{2 a}\right)^{2}}}\left(\frac{r}{\sqrt{2}} \cos \phi, a\left(1+\left(\frac{r}{2 a}\right)^{2}\right) \sin \phi, \frac{a}{r}\left(1+2\left(\frac{r}{2 a}\right)^{2}\right) \cos \phi, 0\right) \tag{8}\\
\xi_{4} & =\frac{1}{\sqrt{1+\left(\frac{r}{2 a}\right)^{2}}}\left(\frac{r}{\sqrt{2}} \sin \phi,-a\left(1+\left(\frac{r}{2 a}\right)^{2}\right) \cos \phi, \frac{a}{r}\left(1+2\left(\frac{r}{2 a}\right)^{2}\right) \sin \phi, 0\right) \tag{9}
\end{align*}
$$

Compute the corresponding conserved quantities k_{1} and k_{4} along a geodesic with tangent vector $u^{\mu}=(\dot{t}, \dot{r}, \dot{\phi}, \dot{z})$.
14. The $\mathrm{KVF} \xi_{4}$ deforms isometrically the constant- t, circular, closed CTC, to a closed CTC on which the coordinate t varies. Show that $\mathcal{L}_{\xi}\left(u^{\mu} u_{\mu}\right)=0$, so that the timelike kind of the curve does not change under this deformation.
15. Verify that $\nabla_{t} \xi_{1 r}+\nabla_{r} \xi_{1 t}=0$ for the KVF ξ_{1}.

Reference: Frank Grave, Michael Buser, Thomas Müller, Günter Wunner, and Wolfgang P. Schleich, "'The Gödel universe: Exact geometrical optics and analytical investigations on motion", Phys. Rev. D 80, 103002 (2009)

