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Abstract

We present the tensor computer algebra package xTras, which provides functions
and methods frequently needed when doing (classical) field theory. Amongst
others, it can compute contractions, make Ansätze, and solve tensorial equations.
It is built upon the tensor computer algebra system xAct, a collection of packages
for Mathematica.
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1 Introduction

xAct [1] is a free collection of powerful Mathematica packages for tensor computer algebra.
Thanks to its implementation [2, 3] of the Butler-Portugal algorithm [4–6], it can canoni-
calize tensor indices with respect to permutation symmetries extremely fast. On this solid
basis a great number of applications have been build [7–13] that range from tensor spherical
harmonics to perturbations around homogeneous cosmological backgrounds.

This paper describes the xTras package, one of these applications. xTras provides func-
tions and methods that are frequently needed when doing (classical) field theory: computing
contractions, making Ansätze, and solving equations, just to name a few. The package grew
out of a need of the author for these particular functions, which were not present in any other
xAct package.1

1 Some of the functionality of xTras did however already exist in another computer algebra system, namely
Cadabra [14].
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This paper is organized as follows. Section 2 describes how to install and run the pack-
age, section 3 briefly reviews the basics usage of xAct, section 4 demonstrates of capabilities of
xTras with a couple of examples, and section 5 contains function documentation. In addition
to this paper, a complete list of all functions and their options can be found in either the built-
in documentation of the package, or the online documentation at www.xact.es/xtras/documentation.

2 Installation

xTras can be installed by downloading the package from its website www.xact.es/xtras,
unzipping it, and following the supplied instructions. Once installed, xTras can be loaded
with the following command:

In := <<xAct`xTras`
––––––––––––––––––––––––––––––

Package xAct`xPerm` version 1.2.0, {2013,1,27}

CopyRight (C) 2003-2013, Jose M. Martin-Garcia, under the General Public

License.
––––––––––––––––––––––––––––––

Package xAct`xTensor` version 1.0.5, {2013,1,30}

CopyRight (C) 2002-2013, Jose M. Martin-Garcia, under the General Public

License.
––––––––––––––––––––––––––––––

Package xAct`xPert` version 1.0.3, {2013,1,27}

CopyRight (C) 2005-2013, David Brizuela, Jose M. Martin-Garcia and Guillermo

A. Mena Marugan, under the General Public License.
––––––––––––––––––––––––––––––

Package xAct`Invar` version 2.0.4, {2013,1,27}

CopyRight (C) 2006-2013, J. M. Martin-Garcia, D. Yllanes and R. Portugal,

under the General Public License.
––––––––––––––––––––––––––––––

Package xAct`xCoba` version 0.8.0, {2013,1,30}

CopyRight (C) 2005-2013, David Yllanes and Jose M. Martin-Garcia, under the

General Public License.
––––––––––––––––––––––––––––––

Package xAct`SymManipulator` version 0.8.5, {2013,4,13}

CopyRight (C) 2011-2013, Thomas Bäckdahl, under the General Public License.

––––––––––––––––––––––––––––––

Package xAct`xTras` version 1.1.1, {2013,1,26}

CopyRight (C) 2012-2013, Teake Nutma, under the General Public License.

––––––––––––––––––––––––––––––

This loaded not only xTras, but also all other xAct packages that it depends on: xPerm
[2], xTensor [3], xPert [7], Invar [9, 10], xCoba [15], and SymManipulator [12]. Note that we
have suppressed some print messages in the Mathematica output above, and have only shown
the package info. In the rest of this paper, all print message will be suppressed.

Once xTras is loaded, the built-in documentation may be opened with the command

In := xTrasHelp[] (1)

or alternatively by first opening Mathematica’s Documentation Center by pressing F1 and
then searching for “xTras”. Furthermore, information about xTras functions can be displayed,
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like all regular Mathematica functions, by typing ? functionname. For example,

In := ? MakeTraceless

MakeTraceless[expr ] returns the traceless version of expr. >>
(2)

gives a brief description of the function MakeTraceless. Pressing the >> link opens its help
page where more detailed documentation can be found.

3 xTensor basics

Before we discuss xTras, it is convenient to go over the basics of xTensor [3]. The xTensor
package is more or less the cornerstone of xAct, as it implements the basic structures of
manifolds, tensors, and Riemannian geometry.

DefManifold[M, d, {i1, i2, . . . , in}] defines the d-dimensional manifold M whose
tensors will have indices i1, i2, . . . , in.

DefMetric[sign, g[i1,i2], cd] defines a metric g of signature sign on the
manifold of which i1 and i2 are indices, a co-
variant derivative cd, and all curvature ten-
sor of g.

DefTensor[T[i1,...,im], M, sym] defines a tensor T with indices i1,. . . ,im and
symmetry sym on the manifold M.

ContractMetric[expr] contracts all metrics in expr.

ToCanonical[expr] canonicalizes all tensors in expr.

Table 1: Basic commands in xTensor.

The first step in any xAct calculation is always to define a manifold. This can be done
with the aptly named command DefManifold:

In := DefManifold[M, 4, IndexRange[a,m]] (3)

The first argument is the name of the manifold, in this case M. The second is its dimension.
This either has to be an integer or a constant symbol (which needs to be defined as such
with the command DefConstantSymbol). The last argument of DefManifold specifies the
indices which will be used by tensors on the manifold; here IndexRange[a,m] is a convenient
short-hand for {a,b,c,d,e,f,g,h,i,j,k,l,m}.

After defining a manifold, it is possible to define a metric on that manifold with the
command DefMetric:

In := DefMetric[-1, metric[-a,-b], CD, PrintAs -> "g"] (4)

This defined a metric metric of signature −1 on the manifold M, because a and b are indices
of M. Note that we could not use g for the name of the metric, because g is already an index.
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The option PrintAs makes sure that every time the metric appears in any output, it gets
printed as g:

In := metric[-a, -b]

Out = gab

(5)

The minus signs in front of the indices indicate that they’re covariant indices. Indices without
a minus sign are contravariant:

In := metric[a, b]

Out = gab
(6)

Besides defining a metric, the command DefMetric also defined curvature tensors, like for
instance the Riemann tensor,

In := RiemannCD[-a, -b, -c, -d]

Out = Rabcd

(7)

and the Ricci tensor:

In := RicciCD[-a, -b]

Out = Rab

(8)

Their name indicates that they’re associated to the covariant derivative CD, which also has
been defined:

In := CD[-a][RicciCD[-c, -d]]

Out = ▽aRcd

(9)

By default, DefMetric defines a torsionless and metric compatible connection, and uses the
conventions [∇a, ∇b]Tc = Rabc

dTd and Rab = Racb
c for the curvature tensors. Contractions of

the Riemann tensor are automatically converted to Ricci tensors2:

In := RiemannCD[-c, -b, -a, b]

Out = Rca

(10)

But contractions with an explicit metric are not converted:

In := metric[b, d] RiemannCD[-c, -b, -a, -d]

Out = gbdRcbad

(11)

This is because xTensor does not automatically contract metrics. Contracting metrics can
be done with the command ContractMetric, which does as its name suggests:

In := metric[a, c] RicciCD[-c, -b] // ContractMetric

Out = Ra
b

(12)

2 This behavior is actually controlled by the option CurvatureRelations of DefMetric (and DefCovD),
which defaults to True. Torsion can be turned on by setting the option Torsion to True, and the relative signs
for the Riemann and Ricci tensors are set via the global variables $RiemannSign and $RicciSign.
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And indeed, applying ContractMetric to the previous example gives the Ricci tensor:

In := metric[b, d] RiemannCD[-c, -b, -a, -d] // ContractMetric

Out = Rca

(13)

Note, however, that xTensor also does not automatically rewrite Rca to Rac, even though the
Ricci tensor is symmetric. To achieve this, we have to use the function ToCanonical:

In := RicciCD[-c, -a] // ToCanonical

Out = Rac

(14)

Very loosely speaking, ToCanonical tries to sort indices as much as possible based on the
symmetries of the tensors in the expression (see [2] for more details). Needless to say, it also
works on more complicated expressions:

In := RicciCD[c, d] RiemannCD[-d, -b, -a, -c] // ToCanonical

Out = −RcdRacbd

(15)

At the moment, ToCanonical only simplifies so-called mono-term symmetries, which are
of the form Ti1···in

= ±Tσ(i1···in), where σ ∈ Sn is a permutation of the indices. It does
not simplify so-called multi-term symmetries, which are of the form Ti1···in

= ±Tσ1(i1···in) ±
Tσ2(i1···in) + · · · . One example of a multi-term symmetry is for instance the Bianchi identity
R[abc]d = 0.

After having covered the very basics of xTensor, we are now ready to tackle more advanced
examples with the help of functions in xTras.

4 Examples

We will now demonstrate the features of xTras, or at least some of them, on the basis of two
examples. The functions used here are described in more detail in section 5.

4.1 Spin 2 on a flat background

In this section we will construct a gauge invariant theory of a free spin 2 field on a flat
background. In doing so, we will recover the linearized Einstein equations.

AllContractions[expr] computes all possible contractions of expr.

MakeAnsatz[{e1, e2, . . .}] makes an Ansatz out of the list entries e1, e2, . . ..

CollectTensors[expr] groups all tensorial terms in expr together.

SolveConstants[expr] attempts to solve the system expr of tensorial equations
for all constant symbols appearing in expr.

Table 2: xTras functions used in this example. They are described in more detail in section 5.
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After loading the package, we have to define a manifold and a flat metric. This can be
done as follows:

In := DefManifold[M, dim, IndexRange[a,m]];

In := DefMetric[
-1, metric[-a,-b], PD, PrintAs -> "η",

FlatMetric -> True, SymbolOfCovD -> {",","∂"}

]

(16)

This did not define a new covariant derivative, but instead set the pre-existing partial deriva-
tive PD to be metric compatible with metric. Furthermore, we need to tell the function
SymmetryOf that the metric is constant:

In := SetOptions[SymmetryOf, ConstantMetric -> True]; (17)

Besides defining a manifold and a metric, we also need to define a symmetric spin two field
and a gauge vector:

In := DefTensor[H[-a, -b], M, Symmetric[{-a, -b}], PrintAs -> "h"];

In := DefTensor[xi[a], M, PrintAs -> "ξ"]
(18)

We are now ready to begin the actual computation. We will construct all possible terms
for the action, and make an Ansatz out of them. Because we are not interested in total
derivatives, it suffices to consider terms of the form h · ∂ · ∂ · h. First, find all of these terms:

In := Sterms = AllContractions[ H[a, b] PD[c]@PD[d]@H[e, f] ]

Out = {hab∂b∂ahc
c, hab∂c∂bha

c, ha
a∂c∂bhbc, hab∂c∂chab, ha

a∂c∂chb
b}

(19)

Now construct the action:

In := S = MakeAnsatz[Sterms]

Out = C1hab∂b∂ahc
c + C2hab∂c∂bha

c + C3ha
a∂c∂bhbc + C4hab∂c∂chab + C5ha

a∂c∂chb
b

(20)

The equations of motion are then:

In := eom = VarD[H[-a, -b], PD][S] // CollectTensors

Out = (C1 + C3)∂b∂ahc
c + C2∂c∂ahbc + C2∂c∂bhac + 2C4∂c∂chab + (C1 + C3)ηab∂d∂chcd

+2C5ηab∂d∂dhc
c

(21)

We want to make the action and the equations of motion gauge invariant under the following
gauge transformation of the spin two field:

In := δH = 2 Symmetrize[ PD[-a]@xi[-b] ]

Out = ∂aξb + ∂bξa

(22)

To that end, we compute the gauge variation of the action δS to be

In := δS = δH eom // CollectTensors

Out = 2(C1 + C3)∂b∂ahc
c∂bξa + 2C2∂bξa∂c∂ahb

c + 2C2∂bξa∂c∂bha
c+

2(C1 + C3)∂aξa∂c∂bhbc + 4C4∂bξa∂c∂chab + 4C5∂aξa∂c∂chb
b

(23)
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Up to total derivatives, this should be zero. We can eliminate total derivatives by removing
all derivatives from the gauge parameter with the help of VarD:

In := δS = xi[a] VarD[xi[a], PD][δS] // CollectTensors

Out = −2(C1 + C2 + C3)ξa∂c∂b∂ahbc − 2(C1 + C3 + 2C5)ξa∂c∂c∂ahb
b

−2(C2 + 2C4)ξa∂c∂c∂bha
b

(24)

Finally, we demand the above to be zero by solving for the unknown constants:

In := sols = SolveConstants[δS == 0]

Out = {{C3 → −C1 − C2, C4 → −1
2
C2, C5 → 1

2
C2}}

(25)

Plugging this solution into the action, we find

In := S /. First[sols]

Out = C1hab∂b∂ahc
c + C2hab∂c∂bha

c + (−C1 − C2)ha
a∂c∂bhbc − 1

2
C2hab∂c∂chab

+1
2
C2ha

a∂c∂chb
b

(26)

The coefficient C2 parameterizes an overall normalization, and the coefficient C1 a total
derivative. Indeed, C1 does not appear in the final equations of motion:

In := eom /. First[sols] /. C2 -> 1

Out = −∂b∂ahc
c + ∂c∂ahbc + ∂c∂bhac − ∂c∂chab − ηab∂d∂chcd + ηab∂d∂dhc

c

(27)

These are precisely the linearized Einstein equations.

4.2 Gauss-Bonnet term

In this section we will show that the Euler density in four dimensions, also known as the
Gauss-Bonnet term, is topological. That is, we will show that its equations of motion vanish
identically.

EulerDensity[cd] gives the Euler density associated to the covariant
derivative cd.

VarL[g[-a,-b]][L] computes 1√
|g|

δ
√

|g|L

δgab

.

FullSimplification[][expr] tries to simplify expr as much as possible, taking
Bianchi identities into account and sorting covariant
derivatives.

ConstructDDIs[expr] constructs all scalar dimensional dependent
identities that can be build out of expr.

SolveTensors[expr] attempts to solve the system expr of tensorial
equations for all tensors in expr.

Table 3: New xTras functions used in this example. They are described in more detail in section 5.
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We will begin from scratch, and define a manifold and metric:

In := DefManifold[M, 4, IndexRange[a,m]];

In := DefMetric[-1, metric[-a,-b], CD, PrintAs->"g"];
(28)

Next, we determine the Gauss-Bonnet term via the function EulerDensity:

In := GBterm = NoScalar @ EulerDensity[CD]

Out = 4RabRab − R2 − RabcdRabcd
(29)

The NoScalar call removed any Scalar heads in the expression (see also section 5.4.3). Note
that EulerDensity omits the overall factor

√−g, so technically speaking GBterm is not a
density. The equations of motion of the Gauss-Bonnet term can be determined with the
function VarL, and simplified with FullSimplification:

In := eom = FullSimplification[] @ VarL[metric[-a, -b]] @ GBterm

Out = −4RacRb
c + 2gabRcdRcd + 2RabR − 1

2
gabR2 − 4RcdRa

c
b

d + 2RacdeRb
cde

−1
2
gabRcdefRcdef

(30)

Because the Gauss-Bonnet term is topological, the above should identically be zero. There
are no further simplifications coming from Bianchi identities that we can use: FullSimplifi-

cation took care of most of them, and if there were some remaining we still could not use
them to get rid of the Ricci tensors.

So the above equations of motion can only be zero due to dimensionally dependent iden-
tities. We can obtain the relevant identities with a call to ConstructDDIs:

In := ddis = ConstructDDIs[
RiemannCD[a, b, c, d] RiemannCD[e, f, g, h],

{a, b}
]

Out = {RacRb
c − 1

2
gabRcdRcd − 1

2
RabR + 1

8
gabR2 + RcdRa

c
b

d − RacdeRb
cde + RacdeRb

dce

+ 1
4
gabRcdefRcdef − 1

4
gabRcedfRcdef,

RacdeRb
cde − 2RacdeRb

dce − 1
4
gabRcdefRcdef + 1

2
gabRcedfRcdef,

RacRb
c − 1

2
gabRcdRcd − 1

2
RabR + 1

8
gabR2 + RcdRa

c
b

d − 1
2
RacdeRb

cde + 1
8
gabRcdefRcdef,

RacRb
c − 1

2
gabRcdRcd − 1

2
RabR + 1

8
gabR2 + RcdRa

c
b

d − RacdeRb
dce + 1

4
gabRcedfRcdef}

(31)

This constructed all dimensionally dependent identities that have two Riemann tensors (or
contractions thereof) and free indices a and b. All of these four expression are zero. Even
though there are four identities, only two of them are independent (not taking Bianchi iden-
tities into account). This can be verified with SolveTensors:

In := ddisols = SolveTensors[
ddis == 0,
UseSymmetries -> False, MetricOn -> None

]

(32)
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Out = {{HoldPattern[R
acde

R
b

cde] Module[{f, h, i, g, j, k, l, m},

2RafRb
f − gabRhiRhi − RabR + 1

4
gabR2 + 2RfgRa

f
b

g + 1
4
gabRjklmRjklm],

HoldPattern[R
acde

R
b

dce] Module[{f, h, i, g, j, k, l, m},

RafRb
f − 1

2
gabRhiRhi − 1

2
RabR + 1

8
gabR2 + RfgRa

f
b

g + 1
4
gabRjlkmRjklm]}}

The two options are needed to prevent SolveTensors from making rules for every index
combination on the left-hand-side related by symmetries (UseSymmetries) and by raising
and lowering of the indices (MetricOn). Because SolveTensors returns a solution for two
tensor structures in terms of others, only two of the four found DDIs are independent.3

The above output consists of rules that we can use to enforce the identities on the equations
of motion:

In := eom /. ddisols // ToCanonical

Out = {0}
(33)

So, indeed, the equations of motion are zero.
Alternatively, we could have made an Ansatz with arbitrary coefficients from the identities,

In := ddiAnsatz = CollectTensors @ MakeAnsatz[ddis]

Out = (C1 + C2 + C3)RacRb
c + 1

2
(−C1 − C2 − C3)gabRcdRcd + 1

2
(−C1 − C2 − C3)RabR

+1
8
(C1 + C2 + C3)gabR2 + (C1 + C2 + C3)RcdRa

c
b

d + (−1
2
C1 − C2 + C4)RacdeRb

cde

+(C2 − C3 − 2C4)RacdeRb
dce + 1

8
(C1 + 2C2 − 2C4)gabRcdefRcdef

+1
4
(−C2 + C3 + 2C4)gabRcedfRcdef

(34)

and tried to make this equal to the equations of motion by solving for the coefficients:

In := SolveConstants[eom == ddiAnsatz]

Out = {{C3 → −4 − C1 − C2, C4 → 2 + 1
2
C1 + C2}}

(35)

So again, the equations of motion are equal to particular linear combination of the dimen-
sionally dependent identities, and hence they are zero.

5 xTras functions

This section documents the most important functions in xTras. The list of functions below is
not exhaustive, nor are the functions described in full detail (for example, most options are
not described here). For a complete list of functions and all their options, please refer to the
built-in documentation or the online documentation at www.xact.es/xtras/documentation.

3 Again, this is true up to Bianchi identities. If we take those into account, there is only one truly
independent DDI because RacdeR

bdce = 1
2
RacdeR

bcde. This identity is derived in section 5.3.2.
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Throughout this section, we assume we have a manifold M, a metric metric, a covariant
derivative CD and associate curvature tensors (RiemannCD, RicciCD, etc). These can be defined
with the commands

In := DefManifold[M, dim, IndexRange[a,m]];

In := DefMetric[-1, metric[-a,-b], CD, PrintAs->"g"];
(36)

where dim is a predefined constant symbol.

5.1 Combinatorics

In this section we discuss some of the xTras functions that are of a combinatorial nature.

5.1.1 AllContractions

AllContractions[expr]
returns a sorted list of all possible full contractions of expr over its free indices.

AllContractions[expr, frees]
returns all possible contractions of expr that have frees as free indices.

AllContractions[expr, frees, sym]

returns all possible contractions of expr with the symmetry sym imposed on the
free indices frees.

Details A recurring problem in field theory is to make the most general Ansatz that contains
a specific set of fields and derivatives. For constructing for example the most general gauge-
invariant action for a particular set of fields (like we did for the free spin-2 field on a flat
background in section 4.1), one would need to know all possible vertices and all possible
gauge transformations. While this problem is still tractable at lowest orders, it becomes
complicated very fast at higher orders. In fact, the naive number of possible contractions of
a tensorial expression that has n free indices is (n − 1)!!, which is the number of independent
products of n

2 metrics. The problem of finding all contractions when n is large is, if not
error-prone, tedious at the very least. That’s where the command AllContractions comes
in.

The problem of finding all possible contractions of the input expression is equivalent to
enumerating all double coset representatives of K\Sn/H, where n is the number of indices
of the input expression, K its symmetry group, and H the symmetry group of n

2 metrics.
However, double coset enumeration is known the be an NP-hard problem in general [16], and
to the author’s knowledge no satisfactory algorithm has been found to date.

So instead of doing a proper double coset enumeration, AllContractions uses a brute-
force-method to find all contractions. The algorithm it uses is as follows:

1. Take all single contractions of the input expression.

2. Canonicalize the single contractions, and throw away duplicates.
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3. Take all second contractions of the canonicalized single contractions.

4. Canonicalize the second contractions, and throw away duplicates.

5. . . .

. . . and so on and so forth until all indices are contracted. This algorithm is reasonably fast
if the input expression has a large degree of symmetry, but in general it is exponential in the
number of indices to be contracted.

Examples In its most basic form, AllContractions takes a single argument and computes
all of its possible independent full contractions. Take for instance the Riemann tensor:

In := AllContractions[RiemannCD[-a, -b, -c, -d]]

Out = {R}
(37)

As we could have expected, its only possible full contraction is the Ricci scalar. If we take
two Riemann tensors, things get a bit more interesting:

In := AllContractions[
RiemannCD[-a, -b, -c, -d] RiemannCD[-e, -f, -g, -h]

]

Out = {RabRab, R2, RabcdRabcd, RacbdRabcd}

(38)

The last two contractions are actually not independent, but are related via the Bianchi iden-
tity. The Bianchi identity is a multi-term symmetry, and AllContractions does not take
these symmetries into account. Hence AllContractions does not necessarily return an irre-
ducible basis of contractions, but it does always return a complete basis.

It is also possible to ask for contractions of expressions with derivatives:

In := AllContractions[ RicciCD[a, b] CD[c]@CD[d]@RicciCD[e, f] ]

Out = {R▽a▽
aR, R▽b▽aRab, Rab

▽b▽aR, Rab
▽b▽cRa

c, Rab
▽c▽bRa

c, Rab
▽c▽

cRab}
(39)

Note that besides not taking Bianchi identities into account, AllContractions also does not
automatically sort covariant derivatives.

AllContractions takes an optional second argument, which specifies what free indices the
final contractions should have. This effectively adds an auxiliary tensor in the first argument
with the specified indices, and varies the contractions afterwards with respect to this auxiliary
tensor. Here’s an example with two free indices:

In := AllContractions[
RiemannCD[-a, -b, -c, -d] RiemannCD[-e, -f, -g, -h],

{-a, -b}
]

Out = {Ra
cRbc, gabRcdRcd, RabR, gabR2, RcdRacbd, Ra

cdeRbcde, Ra
cdeRbdce,

gabRcdefRcdef, gabRcedfRcdef}

(40)
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We can also specify an optional third argument to AllContractions. This third argument
specifies the symmetry of the indices in the second argument. For instance, we can try to see
if there are any antisymmetric contractions in the above example:

In := AllContractions[
RiemannCD[-a,-b,-c,-d] RiemannCD[-e,-f,-g,-h],

{-a, -b},
Antisymmetric[{-a,-b}]

]

Out = {}

(41)

As is obvious from the previous example, there are none.

5.1.2 MakeTraceless

MakeTraceless[expr]
returns the traceless version of expr.

Any tensor can be projected onto its irreducible traceless components. The way to do this
by hand is to write down all possible traces of the tensor, make an Ansatz for a linear
combination of them, and then demand that single traces of this Ansatz are zero. Needless
to say, for tensors of large rank this task is perfectly suited for the computer.

The function MakeTraceless does exactly this: it takes its argument and makes it trace-
less. For the Ricci tensor, it gives the traceless Ricci tensor:

In := MakeTraceless[RicciCD[-a, -b]]

Out = Rab − gabR

d

(42)

And if we enter the Riemann tensor, it returns the Weyl tensor:

In := MakeTraceless[RiemannCD[-a, -b, -c, -d]]

Out = Rabcd +
2

(d − 2)(d − 1)
R Sym

1234

(gacgbd) − 4

−2 + d
Sym
1234

(gbdRac)
(43)

MakeTraceless uses the power of the SymManipulator package [12] to implicitly impose
symmetry of the Riemann tensor without expanding all required terms. This is what the
Sym objects in the above output do. We can remove them and expand all terms with the
command ExpandSym, thereby recovering the usual expression for the Weyl tensor:

In := MakeTraceless[RiemannCD[-a,-b,-c,-d]] // ExpandSym // ToCanonical

Out = − gbdRac

−2 + d
+

gbcRad

−2 + d
+

gadRbc

−2 + d
− gacRbd

−2 + d
− gadgbcR

2 − 3d + d2
+

gacgbdR

2 − 3d + d2
+ Rabcd

(44)

We can convert this to the actual Weyl tensor with the xTensor command RiemannToWeyl:

In := RiemannToWeyl[%] // ToCanonical // Simplify

Out = W[▽]abcd

(45)
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MakeTraceless works on any expression without dummy indices. For example, here is the
traceless version of a generic rank-3 tensor:

In := DefTensor[T[a,b,c], M];

In := MakeTraceless[T[a, b, c]]

Out = Tabc − (1 + d)gbcTad
d

−2 + d + d2
+

gacTbd
d

−2 + d + d2
+

gabTcd
d

−2 + d + d2
+

gbcTda
d

−2 + d + d2

−(1 + d)gacTdb
d

−2 + d + d2
+

gabTdc
d

−2 + d + d2
+

gbcTd
d

a

−2 + d + d2
+

gacTd
d

b

−2 + d + d2
− (1 + d)gabTd

d
c

−2 + d + d2

(46)

5.1.3 ConstructDDIs

ConstructDDIs[expr]
constructs all scalar dimensional dependent identities that can be build out of expr.

ConstructDDIs[expr, frees]
constructs all dimensional dependent identities that can be build out of expr and
that have free indices frees.

ConstructDDIs[expr, frees, sym]

constructs all dimensional dependent identities that can be build out of expr and
that have the symmetry sym imposed on their free indices frees.

Details Dimensional dependent identities (DDIs) are identities that only hold in specific
dimensions. Typically, they can be derived from over–antisymmetrizations: that is, antisym-
metrization over more indices than the number of dimensions. In d dimensions, one such
identity is for example the generalized Kronecker delta with 2(d + 1) indices:

δ
b1···bd+1
a1···ad+1 = (d + 1)! δb1

[a1
δb2

a2
· · · δbd

ad

δ
bd+1

ad+1] = 0. (47)

By contracting this identity with other tensors, it is possible to construct derived identities.
For instance, in three dimensions we can contract it with a traceless {2, 2} tensor, such as the
Weyl tensor, and find

δe
[aδf

b δg
c δh

d]W
ij

gh = δe
[aδf

b W ij
cd] = 0. (48)

Contracting over d and j gives

δ
[e
[aW

f ]i
bc] = 0, (49)

and a further contraction over i and c gives the well-known fact that they Weyl tensor iden-
tically vanishes in three dimensions:

W ef
ab = 0. (50)

All DDIs that stem from over–antisymmetrizations can in fact be derived from the ‘basic’
identity (47) because it is always possible to pull out deltas on the over-antisymmetrized
indices. Over–antisymmetrization over more than d+ 1 indices will give not give independent
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DDIs, because they can be written as linear combinations of antisymmetrizations over d + 1
indices.

A systematic way of enumerating all DDIs is to consider all possible contractions of the
fundamental identity (47) with the relevant tensors. This is exactly what ConstructDDIs

does: it computes via AllContractions all contractions between the input expression and
the basic identity (47) in the relevant dimension. In performing these contractions, two
observations make life computationally easier: the independent index configurations of the
basic identity are given by its standard Young tableaux, and the basic identity is completely
traceless.

The latter is important for the following reason. While we can still write down meaningful
derived identities with the uncontracted basic identity, this is not possible with any of its
contractions – attempting to do so results in the trivial statement 0 = 0. The difference
between the vanishing of the uncontracted and the contracted basic identity is that the former
is identically zero only when explicitly writing the indices out as a, b, . . . ∈ {0, . . . , d − 1},
whereas the latter is identically zero without doing so.

To see why the basic identity is traceless, consider for example the basic identity in one
dimension:

ga[bgc]d = 0. (51)

Writing out the antisymmetrization and contracting a pair of indices gives

1
2gab (gabgcd − gacgbd) =

d − 1

2
gcd = 0, (52)

where d is the number of dimensions. Doing the same exercise for the basic identity in two
dimensions gives

gabg[ab gcd ge]f =
d − 2

3
g[cd ge]f = 0, (53)

while three dimensions gives

gabg[ab gcd gef gg]h =
d − 3

4
g[cd gef gg]h = 0. (54)

The same holds true for other contractions. Thus the fact that the basic identity is traceless
is a dimensionally dependent statement.

The tracelessness of the basic identity allows us to only consider contractions of the form

δa1···a2(d+1) 〈x〉a1···a2(d+1)
, (55)

where δa1···a2(d+1) is the basic identity (47), and by 〈x〉a1···a2(d+1)
we mean all contractions of

x with 2(d + 1) free indices. Taking all possible combinations of these contractions with the
standard Young tableaux of the basic identity then yields all (scalar) DDIs.

Examples In two dimensions, the Einstein tensor vanishes. This can be reproduced by
asking for all DDIs with two free indices constructed out of the Riemann tensor:

In := dim = 2;

In := ConstructDDIs[RiemannCD[a, b, c, d], {a, b}]

Out = {Rab − 1
2
gabR}

(56)
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Note that ConstructDDIs returns a list of expressions that are zero, and not equations.
In three dimensions, the Weyl tensor is zero. This time, we need four free indices that

have the symmetry of the Riemann tensor:

In := dim = 3;

In := ConstructDDIs[
RiemannCD[a, b, c, d],
{a, b, c, d},
RiemannSymmetric[{a, b, c, d}]

]

Out = {gbdRac − gbcRad − gadRbc + gacRbd + 1
2
gadgbcR − 1

2
gacgbdR − Rabcd,

gbdRac − gbcRad − gadRbc + gacRbd + 1
2
gadgbcR − 1

2
gacgbdR − 2Rabcd + Racbd − Radbc,

gbdRac − gbcRad − gadRbc + gacRbd + 1
2
gadgbcR − 1

2
gacgbdR − Racbd + Radbc,

Rabcd − Racbd + Radbc}

(57)

Converting the above to Weyl tensors, we find:

In := % // RiemannToWeyl // CollectTensors

Out = { − W[▽]abcd, − 2W[▽]abcd + W[▽]acbd − W[▽]adbc, − W[▽]acbd + W[▽]adbc,

W[▽]abcd − W[▽]acbd + W[▽]adbc}

(58)

As is obvious from this example, ConstructDDIs, like AllContractions, does not take multi-
term symmetries like the Bianchi identity into account.

5.1.4 IndexConfigurations

IndexConfigurations[expr]
gives a list of all independent index configurations of expr.

Details The command IndexConfigurations gives all possible independent permutations
of the free indices of the input expression. A permutation of the free indices (or index config-
uration) is independent when it cannot be related to another index configuration by canoni-
calizing. The heavy lifting in IndexConfigurations is actually done by the SymManipulator
package [12], which can compute the right transversal of H in Sn, where H is the symmetry
group of the input expression, and n the number of free indices. A right transversal is the set
of representatives of the right cosets H/Sn, which in turn is in one-to-one correspondence to
the set of independent index configurations.

Examples Here’s one simple example of how to use IndexConfigurations:

In := IndexConfigurations[metric[a, b]]

Out = {gab}
(59)
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Because the metric is symmetric, there is only one index configuration. For two metrics we
get:

In := IndexConfigurations[metric[a, b] metric[c, d]]

Out = {gadgbc, gacgbd, gabgcd}
(60)

And for three metrics:

In := IndexConfigurations[metric[a, b] metric[c, d] metric[e, f]]

Out = {gafgbegcd, gaegbfgcd, gafgbdgce, gadgbfgce, gaegbdgcf,

gadgbegcf, gafgbcgde, gacgbfgde, gabgcfgde, gaegbcgdf,

gacgbegdf, gabgcegdf, gadgbcgef, gacgbdgef, gabgcdgef}

(61)

Lastly, for the Riemann tensor we obtain:

In := IndexConfigurations[RiemannCD[-a, -b, -c, -d]]

Out = {Rabcd, Racbd, Radbc}
(62)

Note that IndexConfigurations does not take multi-term symmetries like the Bianchi iden-
tity into account, and hence it does not see that the last term can actually be written in terms
of the first two.

5.1.5 MakeAnsatz

MakeAnsatz[{e1, e2, · · · }]

returns C1e1 + C2e2 + . . ., where the Ci’s are newly defined constant symbols.

MakeAnsatz is a convenience function that, out of a list of terms, constructs an Ansatz with
constant Symbols. Here’s an example of how it works:

In := MakeAnsatz[{metric[-a, -b], RicciCD[-a, -b]}]

Out = C1gab + C2Rab

(63)

Even though the constant symbols print as Ci, their Mathematica symbol name is Ci:

In := {C1, C2}

Out = {C1, C2}
(64)

In combination with other functions such as IndexConfigurations or AllContractions,
MakeAnsatz becomes very handy:

In := MakeAnsatz @ IndexConfigurations[metric[a, b] metric[c, d]]

Out = C1gadgbc + C2gacgbd + C3gabgcd
(65)

In := MakeAnsatz @ AllContractions[
RiemannCD[a, b, c, d] RiemannCD[e, f, g, h]

]

Out = C1RabRab + C2R2 + C3RabcdRabcd + C4RacbdRabcd

(66)
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5.2 Tensor algebra

This section describes the functions in xTras that can be used for doing basic algebra with
tensors. There are two functions for rewriting expressions (CollectTensors and Collect-

Constants), and two functions for solving equations (SolveTensors and SolveConstants).

5.2.1 CollectTensors

CollectTensors[expr]
collects all tensorial terms in expr.

CollectTensors works like the Mathematica function Collect, with the difference that you
do not have to specify a second argument: it collects all tensorial terms it can find in the
input expression. A ‘tensorial term’ is a single tensor, or a product of tensors that cannot be
expanded into a sum.

For example, assuming the scalars T1[], T2[], and T3[] are defined, we can make the
following expression:

In := expr = MakeAnsatz[

{T1[], T1[], T2[], T2[], T3[], T3[], T1[] T2[], T1[] T2[]}
]

Out = C1T1 + C2T1 + C3T2 + C4T2 + C7T1T2 + C8T1T2 + C5T3 + C6T3

(67)

By calling CollectTensors, the tensors in this expression will be collected together:

In := CollectTensors[expr]

Out = (C1 + C2)T1 + (C3 + C4)T2 + (C7 + C8)T1T2 + (C5 + C6)T3
(68)

CollectTensors also handles non-scalar tensors, which by default will be canonicalized before
being collected:

In := CollectTensors[
C1 RicciCD[-b, -a] + C2 metric[-a, -c] RicciCD[c, -b]

]

Out = (C1 + C2)Rab

(69)

5.2.2 CollectConstants

CollectConstants[expr]
collects all constant symbols in expr.

CollectConstants is the sibling of CollectTensors. Instead of collecting all tensorial terms
in the input expression, it collects all constant symbols it can find. For example:

In := CollectConstants[
C1 T1[] + C1 T2[] + C2 T3[] + C2 T1[] + C3 T3[] + C3 T1[] T2[]

]

Out = C1(T1 + T2) + C2(T1 + T3) + C3(T1 T2 + T3)

(70)
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5.2.3 SolveConstants

SolveConstants[expr]
attempts to solve the system expr of tensorial equations for all constant symbols
appearing in expr.

The function SolveConstants solves equations with respect to constant symbols. Not only
does it do that, it also makes sure no tensors appear on the right-hand-side of the solutions.
To achieve this, it uses the following three-step procedure:

1. Use CollectTensors on the equation to group tensorial terms.

2. Read of equations for the prefactors from each of the tensorial terms.

3. Solve the prefactor equations simultaneously with built-in Mathematica function Solve.

To illustrate this procedure, take for example the same expression we had in section 5.2.1,
namely

In := expr = MakeAnsatz[

{T1[], T1[], T2[], T2[], T3[], T3[], T1[] T2[], T1[] T2[]}
]

Out = C1T1 + C2T1 + C3T2 + C4T2 + C7T1T2 + C8T1T2 + C5T3 + C6T3

(71)

The first step towards solving the equation expr == 0 for the constant symbols Ci is to collect
the tensorial terms:

In := CollectTensors[expr]

Out = (C1 + C2)T1 + (C3 + C4)T2 + (C7 + C8)T1T2 + (C5 + C6)T3
(72)

The second step is to read off equations for the constant symbols from each tensorial term.
The xTras function ToConstantSymbolEquations does exactly this:

In := ToConstantSymbolEquations[% == 0]

Out = C1 + C2 == 0 && C3 + C4 == 0 && C5 + C6 == 0 && C7 + C8 == 0
(73)

The result is then fed into Solve:

In := Solve[%, {C2, C4, C6, C8}]

Out = {{C2 → −C1, C4 → −C3, C6 → −C5, C8 → −C7}}
(74)

Indeed, this is the same answer we would have gotten if we had directly asked SolveConstants:

In := SolveConstants[expr == 0]

Out = {{C2 → −C1, C4 → −C3, C6 → −C5, C8 → −C7}}
(75)
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5.2.4 SolveTensors

SolveTensors[expr]
attempts to solve the system expr of tensorial equations for all tensors in expr.

SolveTensors[expr, tens]
attempts to solve the system expr of tensorial equations for the tensors tens.

Solving equations for tensors in an automated fashion is a tricky proposition. Not only does
one have to deal with dummy indices and different forms of tensors, but also with the fact
the equations may be solved only after taking one or more contractions. SolveTensors does
not address these issues; instead, it rather solves tensorial equations for any (product of)
tensor(s) that is not contracted with another tensor. This does not always return the most
general space of solutions, but a subset of it.

For example, it solves the Einstein equation as

In := SolveTensors[
RicciCD[-a, -b] - 1/2 metric[-a, -b] RicciScalarCD[] == 0

]

Out = {{HoldPattern[R
ab

] Module[{}, 1
2
gbaR]}}

(76)

The double line underneath the indices on the left-hand-side ensures that all Ricci tensors
get replaced when using this rule, regardless whether their indices are up or down:

In := RicciCD[c, -d] /. %

Out = {1
2
δd

cR}
(77)

In some simple cases, SolveTensors does return the general solution,

In := SolveTensors[T3[] T1[] == T3[] T2[]]

Out = {{HoldPattern[T2] Module[{}, T1]},

{HoldPattern[T3] Module[{}, 0]}}

(78)

but, as said, in general it does not. Hence SolveTensors should more be used as a way to
easily obtain proper xAct tensor replacement rules than as a method to solve generic tensorial
equations.

It is worth mentioning that the second argument of SolveTensors, which specifies what
tensors to solve for, also takes patterns:

In := SolveTensors[
RicciCD[-a, -b] - 1/2 metric[-a, -b] RicciScalarCD[] == 0,
metric[__]

]

Out = {{HoldPattern[g
ab

] Module[{},
2Rab

R
]}}

(79)

Because the pattern metric[__] matches the explicit form metric[-a, -b], this solved for
the metric. For higher rank tensors using patterns is particularly convenients, as this avoids
having to type all indices.
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5.3 Young tableaux

Conspicuously absent in xAct are functions that deal with Young tableaux and multi-term
symmetries. xTras provides a few functions in an attempt to partly fill this void, but it is by
no means a complete treatment of the subject.

5.3.1 YoungProject

YoungProject[expr, tab]

projects the tensorial expression expr onto the Young tableau tab.

Details If you try to antisymmetrize the Riemann tensor over three indices in xAct, you
will find that the result is non-zero:

In := ToCanonical @ Antisymmetrize[RiemannCD[-a,-b,-c,-d], {-a,-b,-c}]

Out = 1
3
Rabcd − 1

3
Racbd + 1

3
Radbc

(80)

This is because ToCanonical does not take multi-term symmetries, like the Bianchi iden-
tity R[abc]d = 0, into account. However, these symmetries can be made explicit by pro-
jecting tensors onto their respective Young tableaux [17]. The projection can be done with
so-called Young projectors [18], which are sequential row-by-row symmetrizations and column-
by-column antisymmetrizations of the Young tableau. To be precise, if we have a Young
diagram λ (i.e. a partition of the integer n) and one of its Young tableaux λa, then the Young
projector reads

P λa

A =
fλ

n!

∏

k∈col(λa)

Ak
∏

l∈row(λa)

Sl (81)

where fλ is the dimension of the Young diagram, and Sn (An) the (anti-)symmetrization of the
nnth row (column). Here, both S and A are without any weight, i.e. S({x, y}) = {x, y}+{y, x}
and not 1

2 ({x, y} + {y, x}).
The above Young projector is manifestly antisymmetric, because the columns are antisym-

metrized after the rows are symmetrized. Changing this order gives the manifestly symmetric
Young projector PS :

P λa

S =
fλ

n!

∏

l∈row(λa)

Sl
∏

k∈col(λa)

Ak (82)

which is also a perfectly fine projector. By default, YoungProject uses the manifestly an-
tisymmetric projector PA, but by setting the option ManifestSymmetry to Symmetric it is
possible to use the manifestly symmetric projector PS .

Examples Projecting a tensor Sab onto the Young tableau a b can be done as follows:

In := YoungProject[S[a, b], {{a, b}}]

Out = 1
2
Sab + 1

2
Sba

(83)
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And projecting it onto the tableau a

b
gives:

In := YoungProject[S[a, b], {{a}, {b}}]

Out = 1
2
Sab − 1

2
Sba

(84)

Projecting the Riemann tensor onto the tableau a c

b d
goes as follows:

In := YoungProject[RiemannCD[-a, -b, -c, -d], {{-a, -c}, {-b, -d}}]

Out = 2
3
Rabcd + 1

3
Racbd − 1

3
Radbc

(85)

And indeed, the Bianchi identity is manifest after projection:

In := ToCanonical @ Antisymmetrize[%, {-a, -b, -c}]

Out = 0
(86)

By default, YoungProject uses a manifestly antisymmetric projection. It projects for

example a rank-3 tensor T abc onto the Young tableau a b

c
as

In := YoungProject[T[a, b, c], {{a, b}, {c}}]

Out = 1
3
Tabc + 1

3
Tbac − 1

3
Tbca − 1

3
Tcba

(87)

which is indeed antisymmetric in a and c. We can switch to a manifestly symmetric projection
with the option ManifestSymmetry:

In := YoungProject[

T[a, b, c],
{{a, b}, {c}},
ManifestSymmetry -> Symmetric

]

Out = 1
3
Tabc + 1

3
Tbac − 1

3
Tcab − 1

3
Tcba

(88)

The result is now no longer antisymmetric in a and c, but symmetric in a and b.

5.3.2 RiemannYoungProject

RiemannYoungProject[expr]
projects all Riemann tensors and their first derivatives in expr onto their Young
tableaux.

The function RiemannYoungProject automatizes the projection of Riemann tensors onto their
Young tableaux; it replaces every occurrence of a Riemann tensor or a first derivative of it
with their Young projected versions. That is, it does the replacements

Rabcd → P

a c

b d

A (Rabcd) , (89a)

∇eRabcd → P

a c e

b d

A (∇eRabcd) . (89b)
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For example, a single Riemann tensor is replaced as follows:

In := RiemannYoungProject @ RiemannCD[-a, -b, -c, -d]

Out = 2
3
Rabcd + 1

3
Racbd − 1

3
Radbc

(90)

A first derivative of the Riemann tensor gets replaced as:

In := RiemannYoungProject[CD[-e] @ RiemannCD[-a, -b, -c, -d]]

Out = 1
12
▽aRbcde − 1

12
▽aRbdce − 1

6
▽aRbecd − 1

12
▽bRacde + 1

12
▽bRadce + 1

6
▽bRaecd

−1
6
▽cRabde − 1

12
▽cRadbe + 1

12
▽cRaebd + 1

6
▽dRabce + 1

12
▽dRacbe − 1

12
▽dRaebc

+1
3
▽eRabcd + 1

6
▽eRacbd − 1

6
▽eRadbc

(91)

This enables us to easily prove e.g. the second Bianchi identity ∇[aRbc]de = 0:

In := ToCanonical @ RiemannYoungProject @ Antisymmetrize[

CD[-a] @ RiemannCD[-b, -c, -d, -e],
{-a, -b, -c}

]

Out = 0

(92)

Another nice example is the identity RacdeRbdce = 1
2RacdeRbcde, which can be proven as

follows:

In := ToCanonical @ RiemannYoungProject[

RiemannCD[-a,-c,-d,-e](RiemannCD[b,d,c,e]-1/2RiemannCD[b,c,d,e])
]

Out = 0

(93)

5.3.3 TableauSymmetric

TableauSymmetric[tab]

gives the symmetry of the tableau tab.

TableauSymmetric generalizes the xAct functions Symmetric, Antisymmetric, and Riemann-

Symmetric to arbitrary Young tableaux. This comes in particularly handy when defining
tensors that have more complicated symmetry structures than just complete (anti-)symmetry.

Say, for instance, we have a tensor T abcdef that lives in the Young diagram . If we define

it without any symmetry,

In := DefTensor[T[a,b,c,d,e,f], M] (94)

and subsequently project it onto its Young tableau, we get no less than 144 terms:

In := Length @ YoungProject[

T[a, b, c, d, e, f],
{{a, b, c}, {d, e}, {f}}

]

Out = 144

(95)
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However, if we had instead defined it with the appropriate symmetry,

In := DefTensor[
T[a,b,c,d,e,f], M,
TableauSymmetric[{{a,b,c}, {d,e}, {f}}

]

(96)

we would have gotten just 57 terms:

In := Length @ YoungProject[

T[a, b, c, d, e, f],
{{a, b, c}, {d, e}, {f}}

]

Out = 57

(97)

This is because the tensor T abcdef now has all the mono-term symmetries that come from its
Young diagram. For example,

In := ToCanonical[T[f, e, c, a, b, d]]

Out = −Tabcdef
(98)

It are these mono-term symmetries that reduce the number of terms in the Young projection.

5.4 Miscellaneous

Lastly, this section describes some xTras functions that do not fall in any of the other cate-
gories.

5.4.1 VarL

VarD[g[-a,-b], cd][S]

returns δS
δgab

while integrating by parts with respect to the covariant derivative cd.

VarL[g[-a,-b], cd][L]

returns 1√
|g|

δ
√

|g|L

δgab

while integrating by parts with respect to the covariant deriva-

tive cd.

Details Because of the non-linear metric dependence of curvature tensors, computing their
equations of motion with respect to the metric can be a rather involved affair. While the
variation of the Einstein-Hilbert term is relatively easy, things like

δ

δgab

(

Rcd
ghRcdef ∇f ∇lRh

l
ik∇j∇gRe

ijk
)

(99)

can be quite cumbersome. By using the power of the xPert package [7], xTras can compute
variations like the above with relative ease. It does this by first computing the total variation,
and then integrating by parts. Schematically, this reads

δF = f1δg + f2∇δg + f3∇∇δg + · · · =
δF

δg
δg + total derivative (100)
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where F and fi are a functionals that depend on the metric g, and δF
δg

is the quantity we’re
after.

Computing the total variation is the first step towards reading off δF
δg

, and is carried out
by the xPert commands Perturbation and ExpandPerturbation:

In := ExpandPerturbation @ Perturbation[RicciScalarCD[]]

// ContractMetric // ToCanonical

Out = −△g1abRab + ▽b▽a△g1ab − ▽b▽
b△g1a

a

(101)

Here △g1
ab is the same as δgab above, namely the perturbation of the metric. The second

step, integrating by parts and peeling off δgab, is done with the xTensor command VarD:

In := VarD[△g1
ab, CD][%]

Out = −δ1
1gacgbdRcd

(102)

The spurious δ1
1 comes from the way xAct handles the variation

δ△g1
ab

δ△g1
cd

and is equal to one,

even though it is not automatically simplified.
xTras overwrites the VarD command such that the above two-step procedure is carried

out whenever the variation is with respect to a metric. When the variation is with respect to
another tensor, xTensor ’s VarD is used.

Examples The variation of the Ricci scalar with respect to the metric can be computed
with the following command:

In := VarD[metric[-a, -b], CD][RicciScalarCD[]]

Out = −gacgbdRcd

(103)

Using VarL instead of VarD automatically takes care of overall factors of
√

|g|:

In := VarL[metric[-a, -b], CD][RicciScalarCD[]]

Out = −gacgbdRcd + 1
2
gabR

(104)

Note that VarD and VarL do not contract metrics and canonicalize on their own. If we want,
we have to do this ourselves afterwards. Varying the Einstein-Hilbert term coupled to a scalar
field φ with respect to the metric gives:

In := VarL[metric[-a, -b], CD][phi[] RicciScalarCD[]]

// ContractMetric // ToCanonical

Out = −φRab + 1
2
gabφR + 1

2
▽

a
▽

bφ + 1
2
▽

b
▽

aφ − gab
▽c▽

cφ

(105)

Higher powers of R can also be varied easily:

In := VarL[metric[-a, -b], CD][RicciScalarCD[]^2]
// ContractMetric // ToCanonical

Out = −2RabR + 1
2
gabR2 + ▽

a
▽

bR + ▽
b
▽

aR − 2gab
▽c▽

cR

(106)
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And higher still:

In := VarL[metric[-a, -b], CD][RicciScalarCD[]^4]
// ContractMetric // ToCanonical

Out = −4RabR3 + 1
2
gabR4 + 6R2

▽
a
▽

bR + 24R▽aR▽bR + 6R2
▽

b
▽

aR − 12gabR2
▽c▽

cR

−24gabR▽cR▽cR

(107)

5.4.2 FullSimplification

FullSimplification[][expr]
tries to simplify expr as much as possible, taking Bianchi identities into account
and sorting covariant derivatives.

When dealing with curvature tensors, it is often desirable to use the Bianchi identities to
rewrite expression in the simplest form possible. ToCanonical cannot be used for this, since
it only simplifies mono-term symmetries, and Bianchi identities are multi-term symmetries.
The Bianchi identities are however implemented in the simplification methods of the Invar
package [9, 10]. But unfortunately, Invar can only simplify scalar monomials of Riemann
tensors.

The function FullSimplification extends the capabilities of Invar slightly by also sim-
plifying the contracted second Bianchi identities in any expression, not just scalar monomials.
When given an input expression, FullSimplification does the following:

1. Simplify scalar monomials with the help of the Invar package.

2. Apply the contracted second Bianchi identities ∇aRbcd
a = ∇cRbd −∇bRcd and ∇aRb

a =
1
2∇bR.

3. Sort covariant derivatives.

For example, when given the expression ∇a∇bRca, FullSimplification commutes covariant
derivatives to divergences such that it can use the contracted Bianchi identities, and then
afterwards sorts covariant derivatives:

In := FullSimplification[][CD[a] @ CD[-b] @ RicciCD[-c, -a]]

Out = Rb
aRca − RadRbacd + 1

2
▽c▽bR

(108)

Note that covariant derivatives are sorted with the xAct command SortCovDs, which sorts
them in alphabetical order in postfix notation. Thus ∇c∇bR = R;b;c is sorted.

As said, FullSimplification also simplifies scalar monomials by using all Bianchi iden-
tities, not just the contracted Bianchi identities:

In := FullSimplification[][RiemannCD[a,b,c,d] RiemannCD[-a,-c,-b,-d]]

Out = 1
2
RabcdRabcd

(109)

This is a contraction of the identity we found in section 5.3.2.
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5.4.3 EulerDensity

EulerDensity[cd]

gives the Euler density associated to the covariant derivative cd.

EulerDensity[cd, dim]

gives the Euler density associated to the covariant derivative cd in the dimension
dim if the underlying manifold has a generic dimension.

Details The Euler density E2n in dimension d = 2n is given by

E2n =
1

2n
Ri1i2j1j2 · · · Rin−1injn−1jn

ǫi1···inǫj1···jn (110)

where ǫ is the Levi-Civita tensor, not the Levi-Civita symbol. Note that this technically is
not a density because it has zero weight. In order to obtain a density, we would need to
multiply it with

√

|g|.
In order to prevent dummy index collisions, the results of EulerDensity are wrapped in a

special head Scalar, which is indicated by a red bracket. The Scalar heads can be removed
with the xTensor command NoScalar.

Examples Because we have a manifold with generic dimension, we need to specify the
second argument of EulerDensity. For two dimensions, the Euler density reads:

In := EulerDensity[CD, 2]

Out = −R
(111)

And for four dimensions it is:

In := EulerDensity[CD, 4]

Out = −R2 + 4
(

RabRab
)

−
(

RabcdRabcd
)

(112)

In six dimensions the Euler density becomes:

In := EulerDensity[CD, 6]

Out = −R3 + 12R
(

RabRab
)

− 16
(

Ra
cRabRbc

)

− 24
(

RabRcdRacbd

)

− 3R
(

RabcdRabcd
)

+24
(

RabRa
cdeRbcde

)

+ 8
(

Ra
e

c
fRabcdRbfde

)

− 2
(

Rab
efRabcdRcdef

)

(113)
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And lastly, in eight dimensions, it is:

In := EulerDensity[CD, 8]

Out = −R4 + 24R2
(

RabRab
)

− 64R
(

Ra
cRabRbc

)

+ 96
(

Ra
cRabRb

dRcd

)

− 48
(

RabRab
)(

RcdRcd
)

−96R
(

RabRcdRacbd

)

− 6R2
(

RabcdRabcd
)

+ 96R
(

RabRa
cdeRbcde

)

+ 384
(

Ra
cRabRdeRbdce

)

−96
(

RabRcdRac
efRbdef

)

− 192
(

RabRcdRa
e

c
fRbedf

)

+ 32R
(

Ra
e

c
fRabcdRbfde

)

−8R
(

Rab
efRabcdRcdef

)

− 192
(

Ra
cRabRb

defRcdef

)

+ 192
(

RabRcdRa
e

b
fRcedf

)

−384
(

RabRa
cdeRb

f
d

gRcgef

)

+ 24
(

RabRab
)(

RcdefRcdef
)

+ 96
(

RabRa
cdeRbc

fgRdefg

)

−192
(

RabRa
c

b
dRc

efgRdefg

)

+ 96
(

Ra
e

c
fRabcdRb

g
e

hRdgfh

)

+ 96
(

Rab
efRabcdRc

g
e

hRdhfg

)

−6
(

Rab
efRabcdRcd

ghRefgh

)

+ 48
(

Rabc
eRabcdRd

fghRefgh

)

− 48
(

Ra
e

c
fRabcdRb

g
d

hRegfh

)

−3
(

RabcdRabcd
)(

RefghRefgh
)

(114)
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