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viii CONTENTS

This book has been written assuming that the reader executes
all the commands presented in the text and follows all the
instructions at the same time. If this advice is neglected, then
the book will be of little help and some parts of the text may
seem incomprehensible.

The book’s website is at
http://www.physics.ntua.gr/ konstant/ComputationalPhysics/
From there, you can can download the accompanying software, which con-
tains, among other things, all the programs presented in the book.

Some conventions: Text using the font shown below refers to com-
mands given using a shell (the “command line”), input and output of
programs, code written in Fortran (or any other programming language),
as well as to names of files and programs:

> echo Hello world
Hello world

When a line starts with the prompt

>

then the text that follows is a command, which can be given from the
command line of a terminal. The second line, Hello World, is the output
of the command.

The contents of a file with Fortran code is listed below:

program add
z = 1
y = 2

z

X =

+ oo

y
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print *, x
end program add

What you need in order to work on your PC:

An operating system of the GNU/Linux family and its basic tools.

A Fortran compiler. The gfortran compiler is freely available
for all major operating systems under an open source license at
http://www.gfortran.org.

An advanced text editor, suitable for editing code in several pro-
gramming languages, like Emacsﬁ.

A good plotting program, suitable for data analysis, like gnuplotf.
The shell tcshi.

The programs awkﬁ, grep, sort, cat, head, tail, less. Make sure
that they are available in your computer environment.

If you have installed a GNU/Linux distribution on your computer,
all of the above can be installed easily. For example, in a Debian like
distribution (Ubuntu, ...) the commands

> sudo apt—get install tcsh emacs gnuplot—x11 gnuplot—doc
> sudo apt—get install gfortran gawk gawk—doc binutils
> sudo apt—get install manpages—dev coreutils liblapack3

install all the necessary tools.
If you don’t wish to install GNU/Linux on your computer, you can
try the following:

Boot your computer using a usb/DVD live GNU/Linux, like Ubuntuf.
This will not make any permanent changes in your hard drive but
it will start and run slower. On the other hand, you may save all

*http://www.gnu.org/software/emacs/
*http://www.gnuplot.info
“http://www.tcsh.org
*http://www.gnu.org/software/gawk
*http://www.ubuntu. com
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your computing environment and documents and use it on any
computer you like.

e Install Cygwinf in your Microsoft Windows. It is a very good solu-
tion for Microsoft-addicted users. If you choose the full installation,
then you will find all the tools needed in this book.

* Mac OS X is based on Unix. It is possible to install all the software
needed in this book and follow the material as presented. Search

2 ¢

the internet for instructions, e.g. google “gfortran for Mac”, “emacs

2% ¢

for Mac”, “tecsh for Mac”, etc.

"http://www.cygwin. com
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Foreword

This book is the culmination of my ten years’ experience in teaching
three introductory, undergraduate level, scientific computing/computational
physics classes at the National Technical University of Athens. It is suit-
able mostly for junior or senior level science courses, but I am currently
teaching its first chapters to sophomores without a problem. A two
semester course can easily cover all the material in the book, including
lab sessions for practicing.

Why another book in computational physics? Well, when I started
teaching those classes there was no bibliography available in Greek, so I
was compelled to write lecture notes for my students. Soon, I realized that
my students, majoring in physics or applied mathematics, were having
a hard time with the technical details of programming and computing,
rather than with the physics concepts. I had to take them slowly by the
hand through the “howto” of computing, something that is reflected in
the philosophy of this book. Hoping that this could be useful to a wider
audience, I decided to translate these notes in English and put them in
an order and structure that would turn them into “a book”.

I also decided to make the book freely available on the web. I was
partly motivated by my anger caused by the increase of academic (e)book
prices to ridiculous levels during times of plummeting publishing costs.
Publishers play a diminishing role in academic publishing. They get an
almost ready-made manuscript in electronic form by the author. They
need to take no serious investment risk on an edition, thanks to print-
on-demand capabilities. They have virtually zero cost ebook publishing.
Moreover, online bookstores have decreased costs quite a lot. Academic
books need no advertisement budget, their success is due to their aca-
demic reputation. I don’t see all of these reflected on reduced book
prices, quite the contrary, I'm afraid.

Xi



xii FOREWORD

My main motivation, however, is the freedom that independent pub-
lishing would give me in improving, expanding and changing the book
in the future. It is great to have no length restrictions for the presenta-
tion of the material, as well as not having to report to a publisher. The
reader/instructor that finds the book long, can read/print the portion of
the book that she finds useful for her.

This is not a reference book. It uses some interesting, I hope, physics
problems in order to introduce the student to the fundamentals of solv-
ing a scientific problem numerically. At the same time, it keeps an eye
in the direction of advanced and high performance scientific computing.
The reader should follow the instructions given in each chapter, since
the book teaches by example. Several skills are taught through the solution
of a particular problem. My lectures take place in a (large) computer
lab, where the students are simultaneously doing what I am doing (and
more). The program that I am editing and the commands that I am
executing are shown on a large screen, displaying my computer monitor
and actions live. The book provides no systematic teaching of a program-
ming language or a particular tool. A very basic introduction is given in
the first chapter and then the reader learns whatever is necessary for the
solution of her problem. There is more than one way to do itf and the
problems can be solved by following a basic or a fancy way, depending
on the student’s computational literacy. The book provides the necessary
tools for both. A bibliography is provided at the end of the book, so that
the missing pieces of a puzzle can be sought in the literature.

This is also not a computational physics playground. Of course I
hope that the reader will have fun doing what is in the book, but my
goal is to provide an experience that will set the solid foundation for
her becoming a high performance computing, number crunching, heavy
duty data analysis expert in the future. This is why the programming
language of the core numerical algorithms has been chosen to be Fortran,
a highly optimized, scientifically oriented, programming language. The
computer environment is set in a Unix family operating system, enriched
by all the powerful GNU tools provided by the FSFﬁ. These tools are
indispensable in the complicated data manipulation needed in scientific
research, which requires flexibility and imagination. Of course, Fortran

!A Perl moto!
*Free Software Foundation, www.fsf.org.
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is not the best choice for heavy duty object oriented programming, and is
not optimal for interacting with the operating system. The philosophyf]
is to let Fortran do what is best for, number crunching, and leave data
manipulation and file administration to external, powerful tools. Tools,
like awk, shell scripting, gnuplot, Perl and others, are quite powerful
and complement all the weaknesses of Fortran mentioned before. The
plotting program is chosen to be gnuplot, which provides very powerful
tools to manipulate the data and create massive and complicated plots. It
can also create publication quality plots and contribute to the “fun part”
of the learning experience by creating animations, interactive 3d plots
etc. All the tools used in the book are open source software and they are
accessible to everyone for free. They can be used in a Linux environment,
but they can also be installed and used in Microsoft Windows and Mac
0S X.

The other hard part in teaching computational physics to scientists
and engineers is to explain that the approach of solving a problem nu-
merically is quite different from solving it analytically. Usually, students
of this level are coming with a background in analysis and fundamental
physics. It is hard to put them into the mode of thinking about solving
a problem using only additions, multiplications and some logical opera-
tions. The hardest part is to explain the discretization of a model defined
analytically, which can be done in many ways, depending on the accu-
racy of the approximation. Then, one has to extrapolate the numerical
solution, in order to obtain a good approximation of the analytic one.
This is done step by step in the book, starting with problems in simple
motion and ending with discussing finite size scaling in statistical physics
models in the vicinity of a continuous phase transition.

The book comes together with additional material which can be found
at the web page of the book{]. The accompanying software contains all the
computer programs presented in the book, together with useful tools and
programs solving some of the exercises of each chapter. Each chapter has
problems complementing the material covered in the text. The student

Java and C++ have been popular choices in computational physics courses. But
object oriented programming is usually avoided in the high performance part of a com-
putation. So, one usually uses those languages in a procedural style of programming,
cheating herself that she is actually learning the advantages of object oriented program-
ming.

"www.physics.ntua.gr/ konstant/ComputationalPhysics/



xiv FOREWORD

needs to solve them in order to obtain hands on experience in scientific
computing. I hope that I have already stressed enough that, in order for
this book to be useful, it is not enough to be read in a café or in a living
room, but one needs to do what it says.

Hoping that this book will be useful to you as a student or as an
instructor, I would like to ask you to take some time to send me feedback
for improving and/or correcting it. I would also appreciate fan mail or,
if you are an expert, a review of the book. If you use the book in a
class, as a main textbook or as supplementary material, I would also be
thrilled to know about it. Send me email at konstantmail.ntua.gr and
let me know if I can publish, anonymously or not, (part of) what you say
on the web page (otherwise I will only use it privately for my personal
ego-boost). Well, nothing is given for free: As one of my friends says,
some people are payed in dollars and some others in ego-dollars!

Have fun computing scientifically!

Athens, 2014.



Chapter 1

The Computer

The aim of this chapter is to lay the grounds for the development of
the computational skills which are necessary in the following chapters.
It is not an in depth exposition but a practical training by example.
For a more systematic study of the topics discussed, we refer to the
bibliography. Many of the references are freely available in the web.

The are many choices that one has to make when designing a com-
puter project. These depend on the needs for numerical efficiency, on
available programming hours, on the needs for extensibility and upgrad-
ability and so on. In this book we will get the flavor of a project that is
mostly scientifically and number crunching oriented. One has to make
the best of the available computing resources and have powerful tools
available for a productive analysis of the data. Such an environment,
found in most of today’s supercomputers, that offers flexibility, depend-
ability, simplicity, powerful tools for data analysis and effective compilers
is provided by the family of the Unix operating systems. The GNU/Linux
operating system is a Unix variant that is freely available and most of its
utilities are open source software. The voluntary work of millions of
excellent programmers worldwide has built the most stable, fastest and
highest quality software available for scientific computing today. Thanks
to the idea of the open source software pioneered by Richard Stallman|
this giant collaboration has been made possible.

Another choice that we have to make is the programming language,
and this is going to be Fortran. Fortran has been built mainly for numer-

'www.stallman.org



2 CHAPTER 1. THE COMPUTER

ical applications and it has been used by many scientists and engineers
because of its efficiency in high performance computing. The language
is simple and compilers are able to optimize, parallelize and vectorize the
code very efficiently. There is a lot of scientific and engineering software
available in libraries written in Fortran, which has been used and tested
extensively for many years. This is a crucial factor for scientific software,
so that it can be trusted to be efficient and free of errors. Fortran is
not the best choice for interacting with the operating system or for text
processing. This shortcoming can be easily overcome by the use of ex-
ternal tools and Fortran can be left to do what she has been designed
for: number crunching. Its structure is simple and can be used both
for procedural and object oriented programming, in such a way that, it
will not make the life of an inexperienced programmer difficult, and at
the same time provide high level, abstract and powerful tools for high
performance, modular, object oriented, programming needed in a large
and complicated project.

Fortran, as well as other languages like C, C++ and Java, is a language
that needs to be compiled by a compiler. Other languages, like perl, awk,
shell scripting, Macsyma, Mathematica, Octave, Matlab, ..., are interpreted
line by line. These languages can be simple in their use, but they can be
prohibitively slow when it comes to a numerically demanding program.
A compiler is a tool that analyzes the whole program and optimizes the
computer instructions executed by the computer. But if programming
time is more valuable, then a simple, interpreted language can lead to
faster results.

Another choice that we make in this book, and we mention it because
it is not the default in most Linux distributions, is the choice of shell.
The shell is a program that “connects” the user to the operating system.
In this book, we will teach how to use a shellf to “send” commands to the
operating system, which is the most effective way to perform complicated
tasks. We will use the shell tcsh, although most of the commands can be
interpreted by most popular shells. Shell scripting is simpler in this shell,
although shells like bash provide more powerful tools, mostly needed
for complicated system administration tasks. That may cause a small
inconvenience to some readers, since tcsh is not preinstalled in Linux

It is more popular to be called “the command line”, or the “terminal”, or the
“console”, but in fact the user interaction is through a shell.
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distributions].

1.1 The Operating System

The Unix family of operating systems offer an environment where com-
plicated tasks can be accomplished by combining many different tools,
each of which performs a distinct task. This way, one can use the power
of each tool, so that trivial but complicated parts of a calculation don’t
have to be programmed. This makes the life of a researcher much easier
and much more productive, since research requires from us to try many
things before we understand how to compute what we are looking for.

In the Unix operating system everything is a file, and files are or-
ganized in a unique and unified filesystem. Documents, pictures, music,
movies, executable programs are files. But also directories or devices,
like hard disks, monitors, mice, sound cards etc, are, from the point of
view of the operating system, files. In order for a music file to be played
by your computer, the music data needs to be written to a device file,
connected by the operating system to the sound card. The characters
you type in a terminal are read from a file “the keyboard”, and written
to a file “the monitor” in order to be displayed. Therefore, the first thing
that we need to understand is the structure of the Unix filesystem.

1.1.1 Filesystem

There is at least one path in the filesystem associated with each file. There
are two types of paths, relative paths and absolute paths. These are two
examples:

bin/RungeKutta/rk.exe
/home/george /bin/RungeKutta/rk.exe

The paths shown above may refer to the same or a different file. This
depends on “where we are”. If “we are” in the directory /home/george,
then both paths refer to the same file. If on the other way “we are” in

’See www.tcsh.org. On Debian like systems, like Ubuntu, installation is very simple
through the software center or by the command sudo apt-get install tcsh.
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a directory /home/john or /home/george/CompPhys, then the paths referf
to two different files. In the last two cases, the paths refer to the files

/home/john/bin/RungeKutta/rk.exe
/home/george /CompPhys/bin/RungeKutta/rk.exe

respectively. How can we tell the difference? An absolute path always
begins with the / character, whereas a relative path does not. When we
say that “we are in a directory”, we refer to a position in the filesystem
called the current directory, or working directory. Every process in the
operating system has a unique current directory associated with it.

The filesystem is built on its root and looks like a tree positioned
upside down. The symbol of the root is the character / The root is
a directory. Every directory is a file that contains a list of files, and it
is connected to a unique directory, its parent directory . Its list of files
contains other directories, called its subdirectories, which all have it as
their parent directory. All these files are the contents of the directory.
Therefore, the filesystem is a tree of directories with the root directory
at its top which branch to its subdirectories, which in their turn branch
into other subdirectories and so on. There is practically no limit to how
large this tree can become, even for a quite demanding environmentf].

A path consists of a string of characters, with the characters / sep-
arating its components, and refers to a unique location in the filesystem.
Every component refers to a file. All, but the last one, must be directories
in a hierarchy, from parent directory to subdirectory. The only exception
is a possible / in the beginning, which refers to the root directory. Such
an example can be seen in figure [L.1.

In a Unix filesystem there is complete freedom in the choice of the loca-
tion of the files]. Fortunately, there are some universally accepted conven-

“Some times two or more paths refer to the same file, or as we say, a file has two or
more “links” in the same filesystem, but let’s keep it simple for the moment.

*0f course, the capacity of the filesystem is finite, issue the command “df -i .” in
order to see the number of inodes available in your filesystem. Every file corresponds
to one and only one inode of the filesystem. Every path is mapped to a unique inode,
but an inode maybe pointed to by more than one paths.

*This gives a great sense of freedom, but historically this was a important factor that
led the Unix operating systems, although superior in quality, not to win a fair share
of the market! The Linux family tries to keep things simple and universal to a large
extent, but one should be aware that because of this freedom files in different version
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Figure 1.1: The Unix filesystem. It looks like a tree, with the root directory / at the
top and branches that connect directories with their parents. Every directory contains
files, among them other directories called its subdirectories. Every directory has a unique
parent directory, noted by .. (double dots). The parent of the root directory is itself.

tions respected by almost everyone. One expects to find home directories
in the directory /home, configuration files in the directory /etc, appli-
cation executables in directories with names such as /bin, /usr/bin,
/usr/local/bin, software libraries in directories with names such as
/1ib, /usr/1lib etc.

There are some important conventions in the naming of the paths. A
single dot ““.” refers to the current directory and a double dot “..” to the
parent directory. Similarly, a tilde “~” refers to the home directory of the
user. Assume, e.g., that we are the user george running a process with

a current directory /home/george/Music/Rock (see figure [I.1). Then, the

of Linuxes or Unices can be in different places.
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following paths refer to the same file /home/george/Doc/lyrics.doc:

../../Doc/lyrics.doc
~/Doc/lyrics.doc
~george/Doc/lyrics.doc

./../../Doc/lyrics.doc

Notice that ~ and ~george refer to the home directory of the user george
(ourselves), whereas ~mary refer to the home directory of another user,
mary.

We are now going to introduce the basic commands for filesystem
navigation and manipulation]. The command cd (=change directory)
changes the current directory, whereas the command pwd (=print working
directory) prints the current directory:

> cd /usr/bin
> pwd

/usr/bin

> cd /usr/local/lib
> pwd
/usr/local/1lib
> cd

> pwd
/home/george

> cd —

> pwd
/usr/local/1lib
Sed .. /../

> pwd

/usr

The argument of the command cd is an absolute or a relative path. If
the path is correct and we have the necessary permissions, the command
changes the current directory to this path. If no path is given, then
the current directory changes to the home directory of the user. If the
character - is given instead of a path, then the command changes the
current directory to the previous current directory.

The command mkdir creates new directories, whereas the command

"Remember that lines that begin with the > character are commands. All other lines
refer to the output of the commands.
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rmdir removes empty directories. Try:

> mkdir new

> mkdir new/01

> mkdir new/01/02/03

mkdir: cannot create directory ‘new/01/02/03°: No such file or
directory

> mkdir —p new/01/02/03

> rmdir new

rmdir: ‘new’: Directory not empty

> rmdir new/01/02/03

> rmdir new/01/02

> rmdir new/01

> rmdir new

Note that the command mkdir cannot create directories more than one
level down the filesystem, whereas the command mkdir -p can. The
“switch” -p makes the behavior of the command different than the default
one.

In order to list the contents of a directory, we use the command 1s
(=lisv):

> s

BE.eps Byz.eps Programs srBE_xyz.eps srB_xyz.eps
B.eps Bzy.eps srBd_xyz.eps srB_xy.eps

> ls Programs

Backup rk3_Byz.f90 rk3.£f90

plot—commands rk3_Bz.£f90 rk3_g.£90

The first command is given without an argument and it lists the con-
tents of the current directory. The second one, lists the contents of the
subdirectory of the current directory Programs. If the argument is a list
of paths pointing to regular files, then the command prints the names of
the paths. Another way of giving the command is

total 252

-rw-r--r-- | george users 24284 May 1 12:08 BE.eps
-rw-r--r-- | george users 22024 May 1 11:53 B.eps
-rw-r--r-- 1 george users 29935 May 1 13:02 Byz.eps
-rw-r--r-- 1 george users 48708 May 1 12:41 Bzy.eps
druxr-xr-x 4 george users 4096 May 1 23:38 Programs
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-rw-r--r-- 1| george users 41224 May 1 22:56 srBd_xyz.eps
-rw-r--r-- 1 george users 23187 May 1 21:13 srBE_xyz.eps
-rw-r--r-- 1 george users 24610 May 1 20:29 srB_xy.eps

-rw-r--r-- 1 george users 23763 May 1 20:29 srB_xyz.eps

The switch -1 makes 1s to list the contents of the current directory to-
gether with useful information on the files in 9 columns. The first column
lists the permissions of the files (see below). The second one lists the num-
ber of links of the files. The third one lists the user who is the owner of
each file. The fourth one lists the group that is assigned to the files. The
fifth one lists the size of the file in bytes (=8 bits). The next three ones
list the modification time of the file and the last one the paths of the files.

File permissionsf] are separated in three classes: owner permissions,
group permissions and other permissions. Each class is given three spe-
cific permissions, r=read, w=write and x=execute. For regular files, read
permission effectively means access to the file for reading/copying, write
permission means permission to modify the contents of the file and ex-
ecute permission means permission to execute the file as a commandﬂ.
For directories, read permission means that one is able to read the names
of the files in the directory (but not make it as current directory with the
cd command), write permission means to be able to modify its contents
(i.e. create, delete, and rename files) and execute permission grants per-
mission to access/modify the contents of the files (but not list the names
of the files, this is granted by the read permission).

The command 1s -1 lists permissions in three groups. The owner
(positions 2-4), the group (positions 5-7) and the rest of the world (others
- positions 8-10). For example

“IW-Ir—-——Ir—-—

drwx--x--x

In the first case, the owner has read and write but not execute permissions

*For a directory it means the number of its subdirectories plus 2 (the parent directory
and itself). For a regular file, it shows how many paths in the filesystem point to this
file.

’See the “File system permissions” entry in en.wikipedia.org.

°0f course it is the user’s responsibility to make sure the file with execute permission
is actually a program that is possible to execute. An error results if this is not the case.
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and the group-+others have only read permissions. In the second case,
the user has read, write and execute permissions, the group has read
permissions and others have no permissions at all. In the last case, the
user has read, write and execute permissions, whereas the group and the
world have only execute permissions. The first character d indicates a
special file, which in this case is a directory. All special files have this
position set to a character, while regular files have it set to -.
File permissions can be modified by using the command chmod:

> chmod u+x file
> chmod og—w filel file2
> chmod a+r file

Using the first command, the owner (u= user) obtains (+) permission
to execute (x) the file named file. Using the second one, the rest of
the world (o= others) and the group (g=group) loose (-) the write (w)
permission to the files named filel and file2. Using the third one,
everyone (a=all) obtain read (r) permission on the file named file.

We will close this section by discussing some commands which are
used for administering files in the filesystem. The command cp (copy)
copies the contents of files into other files:

> cp filel.f90 file2.£90
> cp filel.f90 file2.f90 file3.£f90 Programs

If the file file2.£90 does not exist, the first command copies the contents
of file1.£90 to a new file file2.£90. If it already exists, it replaces its
contents by the contents of the file file2.£90. In order for the second
command to be executed, Programs needs to be a directory. Then, the
contents of the files filel.£f90, file2.£90, file3.f90 are copied to
indentical files in the directory Programs. Of course, we assume that
the user has the appropriate privileges for the command to be executed
successfully.
The command mv “moves”, or renames, files:

> mv filel.f90 file2.f90
> mv filel.f90 file2.£f90 file3.£f90 Programs
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The first command renames the file file1.£90 to file2.£90. The second
one moves files filel.f90, file2.f90, file3.f90 into the directory
Programs.

The command rm (remove) deletes filesf]. Beware, the command is
unforgiving: after deletion, a file cannot be restored into the filesystem/?.
Therefore, after executing successfully the following commands

> Is

filel.f90 file2.f90 file3.f90 file4d.csh
> rm filel.f90 file2.£f90 file3.f90

> s

file4.csh

the files filel.£f90, file2.f90, file3.£f90 do not exist in the filesystem
anymore. A more prudent use of the command demands the flag -i.
Then, before deletion we are asked for confirmation:

>rm —i *

rm: remove regular file ‘filel.f90°?7 y
rm: remove regular file ‘file2.£f90°7 y
rm: remove regular file ‘file3.f90°7 y
rm: remove regular file ‘filed4.csh’? n
> 1s

file4.csh

When we type y, the file is deleted, when we type n, the file is not deleted.

We cannot remove directories the same way. It is possible to use
the command rmdir in order to remove empty directories. In order to
delete directories together with their contents (including subdirectories
and their contents) use the commandﬁ rm -r. For example, assume that
the contents of the directories dirl and dir1/dir2 are the files:

| ./dirt

"Actually it removes “links” from files. A file may have more than one links in the
same partition of a filesystem. A file is deleted when its last link is removed.

“This does not mean that its contents have been deleted from the disk. Deletion
means marking for overwriting. Until the data is overwritten it can be recovered by the
use of special tools. Shredding sensitive data can be tricky business...

A small mistake, like rm -rf * and your data is ... history!
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./dirl1/file2.£f90
./dirl/filel.£f90
./dirl/dir2
./dirl/dir2/file3.£90

Then the results of the following commands are:

> rm diril

rm: cannot remove °‘dirl’: Is a directory

> rm dirl/dir2

rm: cannot remove ‘dirl/dir2’: Is a directory

> rmdir diri1

rmdir: dirl: Directory not empty

> rmdir dir1l/dir2

rmdir: dirl/dir2: Directory not empty
> rm —r dirl

The last command removes all files (assuming that we have write per-
missions for all directories and subdirectories). Alternatively, we can
empty the contents of all directories first, and then remove them with the
command rmdir:

cd dirl/dir2; rm file3.£f90
cd .. ; rmdir dir2

rm filel.f90 file2.£90

cd .. ; rmdir diri1

VvV V VvV

Note that by using a semicolon, we can execute two or more commands
on the same line.

1.1.2 Commands

Commands in a Unix operating system are files with execute permission.
When we write a sentence on the command line, like

> 1s —1 test.f90 test.dat

the shell reads its and interprets it. The shell is a program that creates a
interface between a user and the operating system. The first word (1s) of
the sentence is interpreted as a command. The rest of the words are the
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arguments of the command and the program can use them (or not) at the
discretion of its programmer. There is a special convention for arguments
that begin with a - (e.g. -1, --help, ——version, -03). They are called
options or switches, and they act as virtual switches that make the program
act in a particular way. We have already seen that the program 1s gives
a different output with the switch -1.

In order for a command to be executed, the shell looks for a file that
has the same name as the command (here a file named 1s). In order
to understand where the shell looks for such a file, we should digress
a little bit and explain the use of shell variables and environment variables.
These have a name, which is a string of permissible characters, and their
values are obtained by preceding their name with the $ character. For
example the variable PATH has value $PATH. The values of the environment
variables can be set with the command[] setenv and of the shell variables
with the command set:

> setenv MYVAR test—env
> set myvar = test—shell
> echo $MYVAR $myvar
test—env test—shell

Two special variables are the variables PATH and path:

>echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/X11/bin
>echo $path
/usr/local/bin /usr/bin /bin /usr/X11/bin

The first one is an environment variable and the second one is a shell
variable. Their values are set by the shell, and we don’t need to worry
about them, unless we want to change them. Their value is a string of
characters whose components should be valid paths to directories. In
the first case, the components are separated by a :, while in the second
case, by one or more spaces. In the example shown above, the shell
searches each component of the path or PATH variables (in this order)
until it finds a file 1s in their contents. If it succeeds and the file has

“The command setenv is special to the tcsh shell. For example the bash shell uses
the syntax MYVAR=test-env in order to set the value of an environment variable.
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execute permissions, then the program in this file is executed. If it fails,
then it prints an error message. Try the commands:

> which Is

/bin/1s

> 1s =1 /bin/ls

—rwxr—xr—x 1 root root 93560 Sep 28 2006 /bin/ls

We see that the program that the 1s command executes the program in
the file /bin/1s.

The arguments of a command are passed on to the program that the
command executes for possible interpretation. For example:

> ls —1 test.f90 test.dat

The argument -1 is the switch that results in a long listing of the files.
The arguments test.f90 and test.dat are interpreted by the program
1s as paths that it will look up for file information.

You can use the * (wildcard) character as a shorthand notation for a
group of files. For example, in the command shown below

> 1s =1 *.f90 *.dat

the shell will expand *.£90 and *.dat to a list of all files whose names
end with .f90 or .dat. Therefore, if the current directory contains the
files test.f90, testl.f90, myprog.f90, test.dat, hello.dat, the ar-
guments that will be passed on to the command 1s are

> ls —1 myprog.f90 testl.f90 test.f90 hello.dat test.dat

For each command there are three special files associated with it. The
first one is the standard input (stdin), the second one is the standard output
(stdout) and the third one the standard error (stderr). These are files
where the program can print or read data from. By default, these files
are the terminal that the user uses to execute the command. In this case,
when the program reads data from the stdin, then it reads the data
that we type to the terminal using the keyboard. When the program
writes data to the stdout or to the stderr, then the data is written to the
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terminal.

The advantage of using these special files in order to read/write data
is that the user can redirect the input/output to these files to any file she
wants. Using the character > at the end of a command redirects the
stdout to the file whose name is written after >. For example:

> s

filel.f90 file2.f90 file3.f90 file4.csh

> 1ls > results

> Is

filel.£f90 file2.f90 file3.f90 filed4.csh results

The first of the above commands, prints the contents of the current work-
ing directory to the terminal. The second command redirects data written
to the stdout to the file results. After executing the command, the file
results is created and its contents are the names of the files filel.£90
file2.f90 file3.f90 file4.csh. If the file results does not exist (as in
the above example), the file is created. If it already exists, it is truncated
and its contents replaced by the data written to the stdout of the com-
mand. If we want to append data without erasing the existing contents,
then we should use the string of characters >>. Therefore, if we give the
command

> ls >> results

after executing the previous commands, then the contents of the file
results will be

filel.£f90 file2.f90 file3.f90 filed.csh
filel.f90 file2.f90 file3.f90 filed.csh results

The redirection of the stdin is accomplished by the use of the char-
acter < while that of the stderr by the use of the string of charactersf]
>&. We will see more examples in section [L.9.

It is possible to redirect the stdout of a command to be the stdin
of another command. This is very useful for creating filters. A filter is

This syntax is particular to the tcsh shell. For other shells (bash, sh, ...) read
their documentation.
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a command that creates a flow of data between two or more programs.
This process is called piping. Pipes are creating by using the character |

> cmdl | cmd2 | cmd3 | ... | cmdN

Using the syntax shown above, the stdout of the command cmdl1 is redi-
rected to the stdin of the command cmd?2, the stdout of the command
cmd? is redirected to the stdin of the command cmd3 etc. More examples
will be presented in section [1.2.

1.1.3 Looking for Help

Unix got itself a reputation for not being user friendly. This is far from the
truth. Although there is a steep learning curve, detailed documentation
for almost everything is available online.

The key for a comfortable ride is to learn how to use the help system
available on your computer and on the internet. Most of the commands
are self documented. A simple test, like the one shown below, will help
you with the basic usage of most of the commands:

> cmd --help
> ecmd -h
> cmd -help
> emd -\?

For example, try the command 1s --help. For a window application,
start from the menu “Help”. You should not be afraid and/or lazy and
you should proceed with careful searching and reading.

For example, let’s assume that you have heard about a command that
sounds like printf, or something like that. The first level of online help
is the man (=manual) command that searches the “man pages”. Read the
output of the command

> man printf

The command info usually provides more detailed and user friendly
documentation. It has basic browsing capabilities like the browsers you
use to read pages from the internet. Try the command
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> info printf

Furthermore, the commands

> man —k printf
> whatis printf

will inform you that there are other, possibly related, commands with
names like fprintf, fwprintf, wprintf, sprintf...:

> whatis printf

printf (1) — format and print data

printf (1p) — write formatted output

printf (3) — formatted output conversion

printf (3p) — print formatted output

printf [builtins] (1) — bash built—in commands, see bash¢
(1)

The second column printed by the whatis command is the “section” of
the man pages. In order to gain access to the information in a particular
section, you have to give it as an argument to the man command:

man 1 printf
man 1p printf
man 3 printf
man 3p printf
> man bash

V VvV VvV

Section 1 of the man pages contains information of ordinary command
line commands, section 3 contains information on functions in libraries
of the C language. Section 2 contains information on commands used for
system administration. You may browse the directory /usr/share/man,
or read the man page of the man command (use the command man man
for that!).

By using the command

> printf --help

we obtain plenty of memory refreshing information. The command
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> locate printf

shows us many files related to the command printf. The commands

> which printf
> where printf

give information on the location of the executable(s) of the command
printf.

Another useful feature of the shell is the command or it filename com-
pletion.  This means that we can write only the first characters of the
name of a command or filename and then press simultaneously the keys
[Ctr1-d][q (i.e. press the key Ctrl and the key of the letter d at the same
time). Then the shell will complete the name of the command up to the
point that is is unique with the given string of charactersf]:

> pri[Ctrl—d]
printafm printf printenv printnodetest

Try to type an x on the command line and then type [Ctrl-d]. You will
learn all the commands that are available and whose name begins with
an x: xterm, xeyes, xclock, xcalc,

Finally, the internet contains a wealth of information. Google your
blues... and you will be rewarded!

1.2 Text Processing Tools — Filters

For doing data analysis, we will need powerful tools for manipulating
data in text files. These are files that consist solely of printable charac-
ters. Some tools that can be used in order to construct complicated and
powerful filters are the programs cat, less, head, tail, grep, sort
and awk.

**If you use the bash shell press [Tab] once or twice.
"Use the same procedure to auto-complete the names of files in the arguments of
commands.
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Suppose that we have data in a file named datal| which contains
information on the contents of a food warehouse and their prices:

bananas 100 pieces 1.45
apples 325 boxes 1.18

pears 34 kilos 2.46
bread 62 kilos 0.60
ham 85 kilos 3.56

The command

> cat data

prints the contents of the file data to the stdout. In general, this com-
mand prints the contents of all files given in its arguments or the stdin
if none is given. Since the stdin and the stdout can be redirected, the
command

> cat < data > datal

takes the contents of the file data from the stdin and prints them to the
stdout, which in this case is the file datal. This command has the same
result as the command:

> cp data datal

The command

> cat data datal > data2

prints the contents of the file data and then the contents of the file datal
to the stdout. Since the stdout is redirected to the file data2, data?2
contains the data of both files.

By giving the command

®The particular file, as well as most of the files in this section, can be found in the
accompanying software of the chapter. It is highly recommended that you try all the
commands in this section by using all the provided files.
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> less gfortran.txt

you can browse the data contained in the file gfortran.txt one page at
a time. Press [space] in order to “turn” a page, [b] to turn back a page.
Press the up and down arrows to move one line backwards/forward.
Press [g] in order to jump to the beginning of the file and press [G] in
order to jump to the end. Press [h] in order to get a help message and
press [q] in order to quit.

The commands

> head —n 1 data
bananas 100 pieces 1.45
> tail —n 2 data

bread 62 kilos 0.60
ham 85 kilos 3.56
> tail —mn 2 data | head —n 1
bread 62 kilos 0.60

print the first line, the last two lines and the second to the last line of
the file data to the stdout respectively. Note that, by piping the stdout
of the command tail to the stdin of the command head, we are able to
construct the filter “print the line before the last one”.

The command sort sorts the contents of a file by comparing each line
of its text with all others. The sorting is alphabetical, unless otherwise
set by using options. For example

> sort data
apples 325 boxes 1.18
bananas 100 pieces 1.45

bread 62 kilos 0.60
ham 85 kilos 3.56
pears 34 kilos 2.46

For reverse sorting, try sort -r data. We can also sort by comparing
specific fields of each line. By default, fields are words separated by one
or more spaces. For example, in order to sort w.r.t. the second column
of the file data, we can use the switch -k 2 (=second field). Furthermore,
we can use the switch -n for numerical sorting:
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> sort —k 2 —n data

pears 34 kilos 2.46
bread 62 kilos 0.60
ham 85 kilos 3.56

bananas 100 pieces 1.45
apples 325 boxes 1.18

If we omit the switch -n, the comparison of the lines is performed based
on character sorting of the second field and the result is

> sort —k 2 data

bananas 100 pieces 1.45
apples 325 boxes 1.18
pears 34 kilos 2.46
bread 62 kilos 0.60
ham 85 kilos 3.56

The last column contains floating point numbers (not integers). In order
to sort by the values of such numbers we should use the switch -g:

> sort —k 4 —g data

bread 62 kilos 0.60
apples 325 boxes 1.18
bananas 100 pieces 1.45
pears 34 kilos 2.46
ham 85 kilos 3.56

The command grep processes a text file line by line, searching for a
given string of characters. When this string is found anywhere in a line,
this line is printed to the stdout. The command

> grep kilos data

pears 34 kilos 2.46
bread 62 kilos 0.60
ham 85 kilos 3.56

prints each line containing the string “kilos”. If we want to search for all
line not containing the string “kilos”, then we add the switch -v:

> grep —v kilos data
bananas 100 pieces 1.45
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‘apples 325 boxes 1.18

|

We can use a regular expression for searching a whole family of strings
of characters. These monsters need a full book for discussing them in
detail! But it is not hard to learn how to use some simple forms of
regular expressions. Here are some examples:

> grep “b data
bananas 100 pieces 1.45

bread 62 kilos 0.60
> grep 0%’ data
bread 62 kilos 0.60

> grep ’'3[24]° data
apples 325 boxes 1.18
pears 34 kilos 2.46

The first one, prints each line whose first character is a b. The second
one, prints each line that ends with a 0. The third one, prints each line
contaning the strings 32 or 34.

By far, the strongest tool in our toolbox is the awk program. By
default, awk analyzes a text file line by line. Each word (or field in the
awk jargon) of these lines is stored in a set of variables with names
$1, $2, .... The variable $0 contains the full line currently processed,
whereas the variable NF counts the number of fields in the current line.
The variable NR counts the number of lines of the file processed so far by
awk.

An awk program can be written in the command line. A set of com-
mands within { ... } is executed for each line of input. The constructs
BEGIN{ ... } andEND{ ... } contain commands executed, only once,
before and after the processing of the file respectively. For example, the
command

> awk ’{print $1,”7total value= 7,$2*$4}’ data
bananas total value= 145

apples total value= 383.5

pears total value= 83.64

bread total value= 37.2

ham total value= 302.6

prints the name of the product (st column = $1) and the total value
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stored in the warehouse (2nd column = $2) x (4th column = $4). More
examples are given below:

> awk ’{value += $2*$4}END{print "Total= " ,value}’ data
Total= 951.94
> awk ’'{av += $4}END{print "Average Price= ”,av/NR}’ data

Average Price= 1.85
> awk ’{print $272 * sin($4) + exp($4)}’ data

The first one calculates the total value of all products: The processing
of each line results in the increment (+=) of the variable value by the
product of the second and fourth fields. In the end (END{ ... 3),
the string Total= is printed, together with the final value of the variable
value. This is an easy way for computing the sum of the values calculated
for each line. The second command, calculates and prints an average.
The sum is calculated in each line and stored in the variable av. In the
end, we print the quotient of the sum of all values by the number of
lines that have been processed (NR). The last command shows a (crazy)
mathematical expression based on numerical values found in each line
of the file data: It computes the square of the second field times the sine
of the fourth field plus the exponential of the fourth field.

There is much more potential in the commands presented above.
Reading the documentation and getting experience by using them will
provide you with very strong tools in order to accomplish complicated
tasks.

1.3 Programming with Emacs

For a programmer that spends many hours programming every day, the
environment and the tools available for editing the commands of a large
and complicated program determine, to a large extent, the quality of
her life! An editor edits the contents of a text file, that consists solely of
printable characters. Such editors, available in most Linux environments,
are the programs gedit, vim, pico, nano, zile... They provide basic
functionality such as adding, removing or changing text within a file as
well as more complicated functions, such as copying, pasting, searching
and replacing text etc. There are many functions that are particularly
useful to a programmer, such as detecting and formatting keywords of
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a particular programming language, pretty printing, closing scopes etc,
which can be very useful for comfortable programming and for spotting
errors. A very powerful and “knowledgeable” editor, offering many such
functions for several programming languages, is the GNU Emacs editorf].
Emacs is open source software, it is available for free and can be used
in most available operating systems. It is programmablef] and the user
can automate most of her everyday repeated tasks and configure it to her
liking. There is a full interaction with the operating system, in fact Emacs
has been built with the ambition of becoming an operating system. For
example, a programmer can edit a Fortran file, compile it, debug it and
run it, everything done with Emacs commands.

1.3.1 Calling Emacs

In the command line type

> emacs &

Note the character & at the end of the line. This makes the particular
command to run in the background. Without it, the shell waits until a
command exits in order to return the prompt.

In a desktop environment, Emacs starts in its own window. For a
quick and dirty editing session, or in the case that a windows environ-
ment is not availableE‘], we can run Emacs in a terminal mode. Then, we
omit the & at the end of the line and we run the command

> emacs —nw

The switch —-nw forces Emacs to run in terminal mode.

“http://www.gnu.org/software/emacs/ (main site),
http://www.emacswiki.org/ (expert tips), http://en.wikipedia.org/wiki/Emacs
(general info)

*Emacs is written in a dialect of the programming language Lisp, called Elisp. There
is no need of an in-depth knowledge of the language in order to program simple
functions, just see how others are doing it...

*Quite handy when we edit files in a remote computer.
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Figure 1.2: The Emacs window in a windows environment. The buttons of very
basic functions found on its toolbar are shown and explained.

1.3.2 Interacting with Emacs

We can interact with Emacs in various ways. Newbies will prefer buttons
and menus that offer a simple and intuitive interface. For advanced
usage, however, we recommend that you make an effort to learn the
keyboard shortcuts. There are also thousands of functions available to
be used interactively. They are called from a “command line”, called the
minibuffer in the Emacs jargon.

Keyboard shortcuts are usually combinations of keystrokes that con-
sist of the simultaneous pressing of the Ctrl or Alt keys together with
other keys. Our convention is that a key sequence starting with a C-
means that the characters that follow are keys simultaneously pressed
with the Ctrl key. A key sequance starting with a M- means that the
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Figure 1.3: Emacs in a non-window mode running on the console. In this figure,
we have typed the command save-buffers-kill-emacs in the minibuffer, a command
that exits Emacs after saving edited data from all buffers. The same command can be
given using the keyboard shortcut C-x C-c. We can see the mode line and the name of
the buffer toy.f written on it, the percentage of the buffer (6%) shown in the window,
the line and columns (33,0) where the point lies and the editing mode which is active
on the buffer (Fortran mode (Fortran), Abbreviation mode (Abbrev), Auto Fill mode

(FilD).

characters that follow are keys simultaneously pressed with the A1t keyﬁ.
Some commands have shortcuts consisting of two or more composite
keystrokes. For example by C-x C-c we mean that we have to press
simultaneously the Ctrl key together with x and then press simultane-
ously the Ctrl key together with c. This sequence is a shortcut to the
command that exits Emacs. Another example is C-x 2 which means to
press the Ctrl key together with x and then press only the key 2. This
is a shortcut to the command that splits a window horizontally to two

#Actually, M- is the so called Meta key, usually bound to the A1t key. It is also bound
to the Esc and C-[ keys. The latter can be our only choices available in dumb terminals.
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equal parts.

The most useful shortcuts are M-x (press the Alt key siumutaneously
with the x key) and C-g. The first command takes us to the minibuffer
where we can give a command by typing its name. For example, type
M-x and then type save-buffers-kill-emacs in the minibuffer (this will
terminate Emacs). The second one is an “SOS button” that interrupts
anything Emacs does and returns control to the working buffer. This
can be pretty handy when a command hangs or destroys our work and
we need to interrupt it.

- Fil) =
4
Visit New File... (c-x c-f)
Open File...
- HEelp; @
Open Directory.. (c-x d) 7
Insert File... (C-xi) Emacs Tutorial (c-ht)
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Figure 1.4: The basic menus found in Emacs when run in a desktop environment. We
can see the basic commands and the keyboard shortcut reminders in the parentheses.
E.g. the command File — Visit New File can be given by typing C-x C-f. Note
the commands File — Visit New File (open a file), File—Save (write contents of
a buffer to a file), File—»Exit Emacs, File — Split Window (split window in two),
File—New Frame (open a new Emacs desktop window) and of course the well known
commands Cut, Copy, Paste, Undo from the Edit menu. We can choose different
buffers from the menu Buffers, which contain the contents of other files that we have
opened for editing. We recommend trying the Emacs Tutorial and Read Emacs Manual
in the Help menu.

The conventions for the mouse events are as follows: With Mouse-1,
Mouse-2 and Mouse-3 we denote a simple click with the left, middle and



1.3. PROGRAMMING WITH EMACS 27

right buttons of the mouse respectively. With Drag-Mouse-1 we mean to
press the left button of the mouse and at the same time drag the mouse.

We summarize the possible ways of giving a command in Emacs with
the following examples that have the same effect: Open a file and put its
contents in a buffer for editing.

¢ By pressing the toolbar button that looks like a white sheet of paper
(see figure [1.2).

* By choosing the File—Visit New File menu entry.
* By typing the keyboard shortcut C-x C-f.
¢ By typing the name of the command in the minibuffer: M-x find-file

The number of available commands increases from the top to the bottom
of the above list.

1.3.3 Basic Editing

In order to edit a file, Emacs places the contents of a file in a buffer. Such
a buffer is a chunk of computer memory where the contents of the file
are copied and it is not the file itself. When we make changes to the
contents of a buffer, the file remains intact. For our changes to take effect
and be written to the file, we have to save the buffer. Then, the contents
of the buffer are written back to the file. It is important to understand
the following cycle of events:

¢ Read a file’s contents to a buffer.
e Edit buffer contents.
e Write (save) buffer’s contents back into the file.

Emacs may have more than one buffers open for editing simultaneously.
By default, the name of the buffer is the same as the name of the file
that is edited, although this is not necessaryf]. The name of a buffer is

*The user can change the name of the buffer without affecting the name of the file
it edits. Also, if we open more than one files with the same name, emacs gives each
buffer a unique name. E.g. if we edit more than one files named index.html then the
corresponding buffers are named index.html, index.html<2>, index.html<3>, ... .
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written in the modeline of the window of the buffer, as can be seen in
figure [1.3.

If Emacs crashes or exits before we save our edits, it is possible to
recover (part of) them. There is a command M-x recover-file that will
guide us through the necessary recovery steps, or we can look for a file
that has the same name as the buffer we were editing surrounded by two
#. For example, if we were editing the file file.f90, the automatically
saved changes can be found in the file #file.f90#. Auto saving is done
periodically by Emacs and its frequency can be controlled by the user.

The point where we insert text while editing is called “the point”.
This is right before the blinking cursorf]. Each buffer has another posi-
tion marked by “the mark”. A point and the mark define a “region”
in the buffer. This is a part of the text in the buffer where the func-
tions of Emacs can act (e.g. copy, cut, change case, spelling etc.). We
can set the region by setting a point and then press C-SPCf or give the
command M-x set-mark-command. This defines the current point to be
the mark. Then we can move the cursor to another point which will
define a region together with the mark that we set. Alternatively we can
use Drag-Mouse-1 (hold the left mouse button and drag the mouse) and
mark a region. The mark can be set with Mouse-3, i.e. with a simple
click of the right button of the mouse. Therefore by Mouse-1 at a point
and then Mouse-3 at a different point will set the region between the two
points.

We can open a file in a buffer with the command C-x C-f, and then
by typing its path. If the file already exists, its contents are copied to a
buffer, otherwise a new buffer is created. Then:

e We can browse the buffer’s contents with the Up/Down/Left/Right
arrows. Alternatively, by using the commands C-n, C-p, C-f and
C-b.

o If the buffer is large, we can browse its contents one page at a time
by using the Page Up/Page Dn keys. Alternatively, by using the
commands C-v, M-v.

“Strictly speaking, the point lies between two characters and not on top of a character.
The cursor lies on the character immediately to the right of the point. A point is assigned
to every window, therefore a buffer can have multiple points, one for each window that
displays its contents.

*Press the Ctrl and spacebar keys simultanesouly.
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¢ Enter text at the points simply by typing it.

* Delete characters before the point by using the Backspace key and
after the point by using the Delete key. The command C-d deletes
a forward character.

¢ Erase all the characters in a line that lie ahead of the point by using
the command C-k.

¢ Open a new line by using Enter or C-o.

* Go to the first character of a line by using Home and the last one
by using End. Alternatively, by using the commands C-a and C-e,
respectively.

* Go to the first character of the buffer with the key C-Home and the last
one with the key C-End. Alternatively, with M-x beginning-of-buffer
and M-x end-of-buffer.

¢ Jump to any line we want: Type M-x goto-line and then the line
number.

¢ Search for text after the point: Press C-s and then the text you
are looking for. This is an incremental search and the point jumps
immediately to the first string that matches the search. The same
search can be repeated by pressing C-s repeatedely.

When we finish editing (or frequently enough so that we don’t loose
our work due to an unfortunate event), we save the changes in the buffer,
either by pressing the save icon on the toolbar, or by pressing the keys
C-s, or by giving the command M-x save-buffer.

1.3.4 Cut and Paste

Use the instructions below for slightly more advanced editing;:

* Undo! Some of the changes described below can be catastrophic.
Emacs has a great Undo function that keeps in its memory many
of the changes inflicted by our editing commands. By repeatedely
pressing C-/, we undo the changes we made. Alternatively, we
can use C-x u or the menu entry Edit—Undo. Remember that C-g
interrupts any Emacs process currently running in the buffer.
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Cut text by using the mouse: Click with Mouse-1 at the point before
the beginning of the text and then Mouse-3 at the point after the
end. A second Mouse-3 and the region is ... gone (in fact it is
written in the “kill ring” and it is available for pasting)!

Cut text by using a keyboard shortcut: Set the mark by C-SPC at the
point before the beginning of the text that you want to cut. Then
move the cursor after the last character of the text that you want to
cut and type C-w.

Copy text by using the mouse: Drag the mouse Drag-Mouse-1 and
mark the region that you want to copy. Alternatively, Mouse-1 at
the point before the beginning of the text and then Mouse-3 at the
point after the end.

Copy text by using a keyboard shortcut: Set the mark at the begin-
ning of the text with C-SPC and then move the cursor after the last
character of the text. Then type M-w.

Pasting text with the mouse: We click the middle buttonﬁ Mouse-2
at the point that we want to insert the text from the kill ring (the
copied text).

Pasting text with a keyboard shortcut: We move the point to the
desired insertion point and type C-y.

Pasting text from previous copying: A fast choice is the menu entry
Edit—Paste from kill manu and then select from the copied texts.
The keyboard shortcut is to first type C-y and then M-y repeatedly,
until the text that we want is yanked.

Insert the contents of a file: Move the point to the desired place and
type C-x i and the path of the file. Alternatively, give the command
M-x insert-file.

Insert the contents of a buffer: We can insert the contents of a whole
buffer at a point by giving the command M-x insert-buffer.

If it is a two button mouse, try clicking the left and right buttons simultaneously.
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* Replace text: We can replace text interactively with the command
M-x query-replace, then type the string we want to replace, and
then the replacement string. Then, we will be asked whether we
want the change to be made and we can answer by typing y (yes),
n (no), q (quit the replacements). A , (comma) makes only one
replacement and quits (useful if we know that this is the last change
that we want to make). If we are confident, we can change all
string in a buffer, no questions asked, by giving the command M-x
replace-string.

¢ Change case: We can change the case in the words of a region with
the commands M-x upcase-region, M-x capitalize-region and
M-x downcase-region. Try it.

We note that cutting and pasting can be made between different windows
of the same or different buffers.

1.3.5 Windows

Sometimes it is very convenient to edit one or more different buffers in
two or more windows. The term “windows” in Emacs refers to regions
of the same Emacs desktop window. In fact, a desktop window running
an Emacs session is referred to as a frame in the Emacs jargon. Emacs
can split a frame in two or more windows, horizontally or/and vertically.
Study figure on page [4 for details. We can also open a new frame
and edit several buffers simultaneouslyf] We can manipulate windows
and frames as follows:

* Position the point at the center of the window and clear the screen
from garbage: C-1 (careful: 1 not 1).

¢ Split a window in two, horizontally: C-x 2.
¢ Split a window in two, vertically: C-x 3.

e Delete all other windows (remain only with the current one): C-x
1.

“Be careful not to start a new Emacs session each time that all you need is a new
frame. A new Emacs process takes time to start, binds computer resources and does
not communicate with a different Emacs process.
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Delete the current windows (the others remain): C-x 0.
Move the cursor to the other window: Mouse-1 or C-x o.

Change the size of window: Use Drag-Mouse-1 on the line sepa-
rating two windows (the mode line). Use C-~, C-} for making a
change of the horizontal/vertical size of a window respectively.

Create a new frame: C-x 5 2.
Delete a frame: C-x 5 0.

Move the cursor to a different frame: With Mouse-1 or with C-x 5
o.

You can have many windows in a dumb terminal. This is a blessing
when a dekstop environment is not available. Of course, in that case you
cannot have many frames.

1.3.6 Files and Buffers

Open a file: C-x C-f or M-x find-file.

Save a buffer: C-x C-s or M-x save buffer. With C-x C-c or
M-x save-buffers-kill-emacs we can also exit Emacs. From the
menu: File—Save. From the toolbar: click on the save icon.

Save buffer contents to a different file; C-x C-w or M-x write-file.
From the menu: File—Save As. From the toolbar: click on the
“save as” icon.

Save all buffers: C-x s or M-x save-some-buffers.
Connect a buffer to a different file;: M-x set-visited-filename.
Kill a buffer: C-x k.

Change the buffer of the current window: C-x b. Also, use the
menu Buffers, then choose the name of the buffer.
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e Show the list of all buffers: C-x C-b. From the menu: Buffers
— List All Buffers. By typing Enter next to the name of the
buffer, we make it appear in the window. There are several buffer
administration commands. Learn about them by typing C-h m when
the cursor is in the Bufer List window.

e Recover data from an edited buffer: If Emacs crashed, do not de-
spair. Start a new Emacs and type M-x recover-file and follow
the instructions. The command M-x recover-session recovers all
unsaved buffers.

¢ Backup files: When you save a buffer, the previous contents of the
file become a backup file. This is a file whose path is the same as
the original’s file with a ~ appended in the end. For example a
file test.£90 will have as a backup the file test.£f90”. Emacs has
version control, and you can configure it to keep as many versions
of your edits as you want.

* Directory browsing and directory administration commands: C-x
d or M-x dired. You can act on the files of a directory (open,
delete, rename, copy etc) by giving appropriate commands. When
the cursor is in the dired window, type C-h m to read the relevant
documentation.

1.3.7 Modes

Each buffer can be in different modes. Each mode may activate different
commands or editing environment. For example each mode can color
keywords relevant to the mode and/or bind keys to different commands.
There exist major modes, and a buffer can be in only one of them. There
are also minor modes, and a buffer can be in one or more of them. Emacs
activates major and minor modes by default for each file. This usually
depends on the filename but there are also other ways to control this. The
user can change both major and minor modes at will, using appropriate
commands.

Active modes are shown in a parenthesis on the mode line (see figures

and [L.5.
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* M-x £90-mode: This mode is of special interest in this book since we
will edit a lot of Fortran code. We need it activated in buffers that
contain a Fortran program and its most useful characteristics are
automatic code alignment by pressing the key TAB, the coloring of
Fortran commands, variables and other structural constructs (sub-
routines, if statements, do loops, variable declarations, statement
labels etc). Another interesting function is the one that comments
out a whole region of code, as well as the inverse function.

* M-x c-mode: For files containing programs written in the C lan-
guage. Related modes are the c++-mode, java-mode, perl-mode,
awk-mode, python-mode, makefile-mode, octave-mode, gnuplot-mode,
mathematica-mode and others.

* latex-mode: For files containing KTEX text formatting commands.
e text-mode: For editing simple text files (.txt).

e fundamental-mode: The basic mode, when one that fits better doesn’t
exist...

Some interesting minor modes are:

® M-x auto-fill-mode: When a line becomes too long, it is wrapped
automatically. A related command to do that for the whole region
is M\-x fill-region, and for a paragraph M-x fill-paragraph.

* M-x overwite-mode: Instead of inserting characters at the point,
overwrite the existing ones. By giving the command several times,
we toggle between activating and deactivating the mode.

* M-x read-only mode: When visiting a file with valuable data that
we don’t want to change by mistake, we can activate this mode so
that changes will not be allowed by Emacs. When we open a file
with the command C-x C-r or M-x find-file-read-only this mode
is activated. We can toggle this mode on and off with the command
C-x C-q (M-x toggle-read-only). See the mode line of the buffer
jack.c in figure which contains a string %J. By clicking on the
%% we can toggle the read-only mode on and off.

e flyspell-mode: Spell checking as we type.
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e font-lock-mode: Colors the structural elements of the buffer which
are defined by the major mode (e.g. the commands of a Fortran
program).

In a desktop environment, we can choose modes from the menu of
the mode line. By clicking with Mouse-3 on the name of a mode we are
offered options for (de)activating minor modes. With a Mouse-1 we can
(de)activate the read-only mode with a click on :%J or :-- respectively.

See figure [1.5.

1.3.8 Emacs Help

Emacs’ documentation is impressive. For newbies, we recommend to
follow the mini course offered by the Emacs tutorial. You can start the
tutorial by typing C-h t or select Help — Emacs Tutorial from the
menu. Enjoy... The Emacs man page (give the man emacs command in
the command line) will give you a summary of the basic options when
calling Emacs from the command line.

A quite detailed manual can be found in the Emacs info pagesﬁ.
Using info needs some training, but using the Emacs interface is quite
intuitive and similar to using a web browser. Type the command C-h r
(or choose Help—Emacs Tutorial from the menu) and you will open the
front page of the emacs manual in a new window. By using the keys SPC
and Backspace we can read the documentation page by page. When you
find a link (similar to web page hyperlinks), you can click on it in order
to open to read the topic it refers to. Using the navigation icons on the
toolbar, you can go to the previous or to the next pages, go up one level
etc. There are commands that can be given by typing single characters.
For example, type d in order to jump to the main info directory. There
you can find all the available manuals in the info system installed on
your computer. Type g (emacs) and go to the top page of the Emacs
manual. Type g (info) and read the info manual.

Emacs is structured in an intuitive and user friendly way. You will
learn a lot from the names of the commands: Almost all names of Emacs
commands consist of whole words, separated by a hyphen “-”, which
almost form a full sentence. These make them quite long sometimes,

If you prefer books in the form of PDF visit the page www.gnu.org/software/emacs
and click on Documentation. You will find a 600 page book that has almost everything!
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but by using auto completion of their names this does not pose a grave
problem.

auto completion: The names of the commands are auto completed
by typing a TAB one or more times. E.g., type M-x in order to go to
the minibuffer. Type capi[TAB] and the command autocompletes
to capitalize-. By typing [TAB] for a second time, a new window
opens and offers the options for completing to two possible com-
mands: capitalize-region and capitalize-word. Type an extra
r [TAB] and the command auto completes to the only possible choice
capitalize-region. You can see all the commands that start with
an s by typing M-x s[TAB] [TAB]. Sure, there are many... Click on
the *Completions* buffer and browse the possibilities. A lot will
become clear just by reading the names of the commands. By typ-
ing M-x [TAB] [TAB], all available commands will appear in your
buffer!

keyboard shortcuts: If you don’t remember what happens when
you type C-s, no problem: Type C-h k and then the ... forgotten key
sequence C-s. Conversely, have you forgotten what is the keyboard
shortcut of the command save-buffer? Type C-h w and then the
command.

functions: Are you looking for a command, e.g. save-something
-I-forgot? Type C-h f and then save-[TAB] in order to browse
over different choices. Use Mouse-2 in order to select the command
you are interested in, or type and complete the rest of its name (you
may use [TAB] again). Read about the function in the *Help* buffer
that opens.

variables: Do the same after typing C-h v in order to see a vari-
able’s value and documentation.

command apropos: Have you forgotten the exact name of a com-
mand? No problem... Type C-h a and a keyword. All commands
related to the keyword you typed will appear in a buffer. Use C-h
d for even more information.

modes: When in a buffer, type C-h m and read information about
the active modes of the buffer.
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e info: Type C-h i

¢ Have you forgotten everything mentioned above? Just type C-h ?

1.3.9 Emacs Customization

You can customize everything in Emacs. From key bindings to program-
ming your own functions in the Elisp language. The most common way
for a user to customize her Emacs sessions, is to put all her customization
commands in the file ~/.emacs in her home directory. Emacs reads and
executes all these commands just before starting a session. Such a .emacs
file is given below:

; Define F1 key to save the buffer

(global-set-key [f1] >save-buffer)

; Define Control—-c s to save the buffer

(global-set-key "\C—cs” ’save-some-buffers)

; Define Meta—s (Alt—s) to interactively search forward
(global-set-key "\M-s” ’isearch-forward)

; Define M—x is to interactively search forward
(defalias ’is ’isearch-forward)

; Define M—x fm to set fortran—mode for the buffer
(defun fm() (interactive) (£f90-mode))

; Define M—x sign to sign my name

(defun sign() (interactive) (imsert "K. N. Anagnostopoulos™))

Everything after a ; is a comment. Functions/commands are enclosed
in parentheses. The first three ones bind the keys F1, C-c s and M-s to
the commands save-buffer, save-some-buffers and isearch-forward
respectively. The next one defines an alias of a command. This means
that, when we give the command M-x is in the minibuffer, then the
command isearch-forward will be executed. The last two commands
are the definitions of the functions (fm) and (sign), which can be called
interactively from the minibuffer.

For more complicated examples google “emacs .emacs file” and you
will see other users’ .emacs files. You may also customize Emacs from the
menu commands Options—Customize Emacs. For learning the Elisp lan-
guage, you can read the manual “Emacs Lisp Reference Manual” found
at the address
www . gnu.org/software/emacs/manual/elisp.html
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1.4 The Fortran Programming Language

In this section, we give a very basic introduction to the Fortran program-
ming language. This is not a systematic exposition and you are expected
to learn what is needed in this book by example. So, please, if you have
not already done it, get in front of a computer and do what you read.
You can find many good tutorials and books introducing Fortran in a
more complete way in the bibliography.

1.4.1 The Foundation

The first program that one writes when learning a new programming
language is the “Hello World!” program. This is the program that prints
“Hello World!” on your screen:

program hello

!print a message to the world:
print *, ’Hello World!’ !this is a comment

end program hello

Commands, or statements, in Fortran are strings of characters separated by
blanks (“words”) that we are allowed to write from the 1st to the 132nd
column of a file. Each line starts a new commandf]. We can put more
than one command on each line by separating them with a semicolon (;).
Everything after an exclamation mark (!) is a comment. Proliferation of
comments is necessary for documenting our code. Good documentation
of our code is an integral part of programming. If the code is planned to
be read by others, or by us at a later time, make sure to explain in detail
what each line is supposed to do. You and your collaborators will save
a lot of time in the process of debugging, improving and extending your
code.

The main entry to the program is defined by the command program
name, where name can be any string of alphanumeric characters and an
underscore. When the program runs, it starts executing commands at

*It is possible to break long lines by putting a & at the end of each broken line and
continue the same command in the next one. More on that later.
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this point. The end of the program, as well as of any other program unit
(functions, subroutines, modules), is defined by the line end program
name.

The first (and only) command given in the above program is the print
command. It prints the string of characters “Hello World!” to the stdout.
The “x,” is part of the syntax and it is not printed, of course. Fortran does
not distinguish capital from small letters, so we could have written PRINT,
Print, prINt, ... A string of characters in Fortran is enclosed in single or
double quotes ('Hello World!' or "Hello World!" is equivalent).

In order to execute the commands in a program, it is necessary to com-
pile it. This is a job done by a program called the compiler that translates
the human language programming statements into binary commands that
can be loaded to the computer memory for execution. There are many
Fortran compilers available, and you should learn which compilers are
available for use in your computing environment. Typical names for
Fortran compilers are gfortran, £90, ifort, g95, .... You should
find out which compiler is best suited for your program and spend time
reading its documentation carefully. It is important to learn how to use a
new compiler so that you can finely tune it to optimize the performance
of your program.

We are going to use the open source and freely available compiler
gfortran, which can be installed on most popular operating systemsf|.
The compilation command is:

> gfortran hello.f90 —o hello

The switch -o defines the name of the executable file, which in our case
is hello. If the compilation is successful, the program runs with the
command:

> ./hello
Hello world!

Now, we will try a simple calculation. Given the radius of a circle we
will compute its length and area. The program can be found in the file
area_01.£90:

®http://gcc.gnu.org/fortran/
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program circle_area

PI = 3.141593

R = 4.0

print *,’Perimeter= ~,2.0*PI*R
print *,’Area= P PI*R**2

end program circle_area

The first two commands define the values of the variables PI and R. These
variables are of type REAL, which are floating point numbers. Fortran
has implicit rules that can be used to define the type of variables. By
default, variables whose name starts with i, j, k, 1, m and n are of
INTEGER type. These are exact whole numbers. All other variables are of
type REAL[|. We can override these implicit rules by explicitly declaring
the type of a variable or by changing the implicit rules with the use of
the implicit statement. The following two commands have two effects:
Computing the length 27 R and the area mR* of the circle and printing
the results. The expressions 2.0+PI*R and PI*R**2 are evaluated before
being printed by the print command. The multiplication and raising to
a power operators are * and *x, respectively. Note the explicit decimal
points at the constants 2.0 and 4.0. If we write 2 or 4 instead, then
these are going to be constants of the INTEGER type and by using them
the wrong way we may obtain surprising results[]. We compile and run
the program with the commands:

> gfortran area_01.f90 —o area

> ./area
Perimeter= 25.13274
Area= 50.26548

We will now try a process that repeats itself for many times. We will
calculate the length and area of 10 circles of different radii R; = 1.28 + 1,

*Don’t confuse REAL variables with the real numbers. REAL variables take values
that are finite approximations to real numbers and take values that are a subset of the
rational numbers. This approximation becomes better with increasing the amount of
memory allocated to REALs. In most computing environments, REALs are allocated 4 or
8 bytes of memory, in which case they approximate real numbers with, more or less, 7
or 17 significant digits, respectively.

*Try adding the command print *,2/4, 2.0/4.0 and check the results.
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t=1,2,...,10. We will store the values of the radii in an array R(10) of
the REAL type. The code can be found in the file area_02.£90:

program circle_area
dimension R(10)

PI = 3.141593

R(1) = 2.28
do i=2,10

R(i) = R(i—1) + 1.0
enddo
do i = 1,10

perimeter = 2*PI*R(i)

area = PI*R(i)**2

print *,i,’) R= *,R(i),’ perimeter= ’,perimeter
print *,i,’) R= ’,R(i),’ area = ’ ,area
enddo

end program circle_area

The command dimension R(10) defines an array of length 10. This way,
the elements of the array are referred by an index that takes value from
1 to 10. For example R(4) is the fourth element of the array.

Between the lines

do i = 2, 10

enddo

we can write commands that are repeatedly executed while the INTEGER
variable i takes values from 2 to 10 with increasing stepf] equal to 1.
The command:

R(i) = R(i—1) + 1.0

defines the i-th radius to have a value which is larger by the (i-1)-th
by 1. For the loop to work correctly, we must define the initial value

*The step can change by adding one more entry to the do line: do i=0,12,4 runs
the loop for i=0,4,8,12, whereas do i=10,6,-2 for i=10,8,6
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of R(1), otherwise the final result is undefinedf]. The second loop uses
the defined R-values in order to do the computation and printing of the
results.

Now, we will write an interactive version of the program. Instead of
hard coding the values of the radii, we will interact with the user asking
her to give her own values. The program will read the 10 values of the
radii from the standard input (stdin). The program can be found in the
file area_03.£90:

program circle_area

implicit none

integer ,parameter :: N=10

real ,parameter i1 PI=3.141593
real ,dimension(N) :: R

real :: area,perimeter
integer 3¢ 4

do i=1,N

)

print*, Enter radius of circle:
read *, R(i)

print*,’i= ’,i,’ R(i)= ’,R(1)
enddo

open (UNIT=13,FILE="AREA .DAT")

do i = 1,N
perimeter = 2*PI*R(i)
area = PI*R(i)**2
write(13,*¥)i,’) R= > ,R(i),  area= ’,area,&
’ perimeter= ’,perimeter
enddo
close (13)

end program circle_area

The first statement in the above program is implicit none! This state-
ment deactivates the implicit rules of Fortran, and the programmer is
obliged to declare all variables in a program unit. It is highly recom-

**That means that different compilers and/or runs can give different results.
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mendable that you always use this option... You might spend a little
more time typing the declarations, but this effort cannot be compared to
the pain looking for bugs due to typos in the names of variablesfil We
will follow this practice throughout the book.

The declarations of the variables follow this statement. The variables
N and i are declared to be of the INTEGER type, whereas the variables
PI, area, perimeter and R(N) are declared to be of the REAL type.
The variables PI and N are specified to be parameters. Parameters are
given specific values which cannot be changed during the execution of
the program.

The array elements R(i) are read using the command read:

read *, R(i)

The command read reads from the stdin. The user types the values
at the terminal and then presses [Enter]. We can read more than one
variables with one read command.

In order to print data to a file, we have to connect it to a unit. Each
unit is represented by any number between 0 and 99. Some numbers
are reserved for special unitsf}. The connection of a unit to a file is done
with the open command. When this is done, we can write to the file
with the commandﬂ write(n,*), where n is the unit number. When we
are done writing to a file we should use the command close(n). Then
the unit number is available to be used for a different file. The flow of
commands is like

open (UNIT=13,FILE="AREA.DAT’)
write (13 ,%)

close(13)

The name of the file is determined by the option FILE='AREA.DAT' of
the open statement. Uppercase or lowercase characters in the filename

¥Can you see the difference between the names pl1 and p11?

*E.g., b is the stdin, 6 is the stdout and O is the stderr.

“Try to see what happens when you write to a unit what has not been connected to
a file via an open command!
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make a difference. The option FILE='path' can use any valid path in
the filesystem, provided that we have the necessary permissions.
The line

write(13.,*)i,’) R= ° ,R(i),’ area= ’,area,&
’ perimeter= ’,perimeter

shows us how to continue a line containing a long statement to the next
one. We place a & at the end of the line and then continue writing the
statement to the next. This can happen up to 39 times.

The next step will be to learn how to define and use functions and
subroutines. The program below shows how to define a subroutine
area_of_circle, which computes the length and area of a circle of given
radius. The following program can be found in the file area_04.f90:

program circle_area

implicit none

integer , parameter 11 N=10

real ,parameter 11 P=3.141593
real ,dimension(N):: R

real :: area,perimeter
integer S

do i=1,N

)

print*, Enter radius of circle:
read *, R(i)

print*,’i= ’,i,’ R(i)= ’,R(i)
enddo

open (UNIT=13,FILE="AREA.DAT")

do i = 1,N

call area_of_circle(R(i) ,perimeter, area)

write (13,*)i, ) R= " ,R(i),’ area= ’,area,&
’ perimeter= ’,perimeter

enddo

close (13)

end program circle_area
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subroutine area_of_circle(R,L,A)
implicit none

real :: R,L,A

real ,parameter :: PI = 3.141593 , PI2 = 2.0*PI
L= PI2*R

A= PI*R*R

return

end subroutine area_of_circle

The calculation of the length and the area of the circle is performed by
the call to the subroutine:

call area_of_circle(R(i) ,perimeter,area)

The command call calls a subroutine and transfers the control of the
program within the subroutine. The above subroutine has the arguments
(R(1i) ,perimeter,area). The argument R(i) is an input variable. It
provides the necessary data to the subroutine in order to perform its
computation. The arguments perimeter and area are intended for out-
put. Upon return of the subroutine to the main program, they store the
result of the computation. The user of a subroutine must learn how to
use its arguments in order to be able to call it in her program. These
must be documented carefully by the programmer of the subroutine.
The actual program executed by the subroutine is between the lines:

subroutine area_of circle(R,L,A)

end subroutine area_of_circle

The arguments (R,L,A) must be declared in the subroutine and need not
have the same names as the ones that we use when we call it. A change
of their values within the subroutine will change the values of the cor-
responding variables in the calling programf]. Therefore, the statements
L=PI2*R and A=PI*R*R change the values of the variables perimeter and

**We say that variables in Fortran are passed to subroutines by reference and not by
value as in C.
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area to the desired values. The command return returns the control
to the calling program. The parameters PI and PI2 are “private” to the
subroutine. Their names and values are invisible outside the subroutine.
Similarly, the variables i, N, ..., defined in the main program, are
invisible within the subroutine.

We summarize all of the above in a program trionymo.f90, which
computes the roots of a second degree polynomial:

Program to compute roots of a 2nd order polynomial
Tasks: Input from user,logical statements,

use of functions ,stop

Accuracy in floating point arithmetic

e.g. IF(x.eq.0.0)

a,b,c= 1 -8 16 D= 0 x1= 4
a,b,ec=1 —1 -2 D= 9. x1= 2. x2= —1.
a,b,c= 2.3 —2.99 —16.422 xl1= 3.4 x2= —-2.1
But: 6.8(x—4.3)**2 = 6.8 x**2 —58.48%x+125.732
a,b,c= 6.8 —58.48 125.73199
D= 0.000204147349 x1= 4.30105066 x2= 4.29894924

!

!

!

!

!

!

!

! Tests: a,b,c=1 2 3 D= -8
!

!

!

!

!

!

! a,b,c= 6.8 —58.48 125.732, D= —0.000210891725 < 0O!!
!

program trionymo
implicit none

real :: a,b,c,D
real :: x1,x2
real :: Discriminant

)

print*, Enter a.b,c:
read *,a,b,c

! Test if we have a well defined polynomial of 2nd degree:
if( a .eq. 0.0) stop ’trionymo: a=0’

! Compute the discriminant (= diakrinousa)
D = Discriminant(a,b,c)
print *, ’Discriminant: D= ’,D

! Compute the roots in each case: D>0, D=0, DKO (no roots)
if(D .gt. 0.0 )then
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call roots(a,b,c,xl,x2)

print *,’Roots: xl= "’ ,x1,’ x2= ’  x2
else if (D .eq. 0.0) then

call roots(a,b,c,xl,x2)

print *,’Double Root: x1= ’, x1

else

print *,’No real roots’

endif

end program trionymo

!

! This is the function that computes the discriminant

! A function returns a value. This value is assigned with the

! statement:

! Discriminant = <value>

! i.e. we simply assign anywhere in the program a variable with
! the name of the function.

!

real function Discriminant(a,b,c)
implicit none
real :: a,b,c

Discriminant = b**2 — 4.0 * a * ¢

end function Discriminant
|

! The subroutine that computes the roots.
!

subroutine roots(a,b,c,x1,x2)
implicit none

real :: a,b,c
real :: =x1,x2
real :: D, Discriminant

if(a .eq. 0.0) stop ’'roots: a=0’

D = Discriminant(a,b,c)
if (D.ge.0.0)then
D = sqrt(D)
else
print *,’roots: Sorry, cannot compute roots, D<O=’,D
stop
endif

x1 = (=b + D)/(2.0*a)
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x2 = (b — D)/(2.0*a)

end subroutine roots

The program reads the coefficients of the polynomial az? + bx + c. After
a check whether a # 0, it computes the discriminant D = b? — 4dac by
calling the function Discriminant(a,b,c). The only difference between
a function and a subroutine is that the first one returns a value of a
given type. We don’t need to use the command call in order to run
the commands of a function, this is done by computing its value in an
expression. The type of the value returned must be declared both in the
program that uses the function (real :: Discriminant) and at the entry
point of its program unit (real function Discriminant(a,b,c)). The
value returned to the calling program is the one assigned to the variable
that has the same name as the function:

real function Discriminant(a.,b,c)

*

Discriminant = b**2 — 4.0 * a c

end function Discriminant

Notice the use of the comparison operators .gt. (strictly greater than)
and .eq. (equal to)ff:

if (D .gt. 0.0 )then
else if (D .eq. 0.0) then
else

endif

1.4.2 Details

You may skip this paragraph during a first reading of the book. It is
intended mainly to be a reference when reading the later chapters.

30ther operators are .1t., .ge. .le. (strictly less, greater or equal, less or equal),
.ne. (not equal) and .or., .and., .not. (logical or, and and negation).
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There are more types of variables built in Fortran. In the program
listed below, we show how to use CHARACTER variables, floating point
numbers of double precision REAL(8) and complex numbers of single

and double precision, COMPLEX and COMPLEX(8) respectively:

program f90_vars
implicit none

character(100) :: string

real (4) 38 x !single precision, same as real :: x
real (8) :: x8 lequivalent to: double precision x8
'real(16) :: x16 !may not be supported by all compilers
!Complex Numbers:

complex(4) :: z !single precision, same as complex :: z
complex(8) :: z8 !double precision

!A string: a character array:

string = ’Hello World!’ !string smaller size, leaves blanks
!TRIM: trim blanks
print *,’A string ::’, string, *:: ,TRIM(string),’ ::’
print *,’join them::’, string // string ,’::’
print *,’join them::’, TRIM(string) // TRIM(string),’ ::’

!Reals with increasing accuracy: Determine PI=3.14159...

x = 4.0 *atan(1.0 )
!Use D for double precision exponent
x8 = 4.0D0*atan(1.0D0)
!Use Q for quadriple precision exponent
'x16 = 4.0Q0*atan (1.0Q0)

print *, ’x4= ’ ,x,’ x8= ’,x8 !.,’ x16= ’.,x16

print *,’x4: ’,range(x ),precision(x ),EPSILON(x ).&
TINY(x ) ,HUGE(x )

print *,’x8: ’,range(x8),precision(x8) ,EPSILON(x8).&
TINY (x8) ,HUGE(x8)

!Complex numbers: single precision

z = (2.0,1.0)*cexp((3.0,-1.0))

print *,’z= ’,z,’ Re(z)= " ,REAL(z),’ Im(z)= ' ,IMAG(z).&
* lzl= 7 ,ABS(z),’ z*= ’,CONJG(z)

!Complex numbers: double precision

z8 = (2.0D0,1.0D0)*cdexp ((3.0D0,—1.0D0))

print *,’z= ’,z8,  Re(z)= ’ ,DBLE(z8),  Im(z)= ’,DIMAG(z8).&
* lzl= ’,CDABS(z8),’ z*= ’ ,DCONJG(z8)
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print *,’z4: ’ range(z ),precision(z )
print *,’z8: ’,range(z8),precision(z8)

end program f£90_vars

Some interesting points of the program above are:

¢ The number K in the declaration REAL(K) : : x refers to the number
of bytes allocated to the variable x. For K=4 we have single precision
(same as REAL), for K=8 double precision and for k=16 quadruple
precision. The latter is not always available. In the declarations
COMPLEX(K), K refers to the number of bytes allocated to the real
and imaginary parts of the complex number.

e We always use the exponent notation D in double precision con-
stants, even if the exponent 0. Otherwise the constants are of single
precision and we loose the desired accuracy.

* When we want to state the precision of the return value of an in-
trinsic function explicitly, we usually add a d at the beginning of its
name (e.g. exp—dexp, ABS—DABS. When we want to use the com-
plex version of a function, we usually add a c at the beginning of its
name (e.g. exp—cexp, ABS—CABS). Modify the program in order
to achieve higher accuracy in the calculation of 7 and z = (2+1i)e® ™,
by using double precision variables.

e The maximum number of characters in the CHARACTER variable
string is 100, and this is declared by the statement CHARACTER (100).

e When we print a CHARACTER variable, all its characters are printed,
including trailing blanks. This is very annoying and we can use
the function TRIM in order to remove them.

¢ The operator // joins two CHARACTER variables or constants. Notice
the effect of the function TRIM in the above program.

Another important point to discuss is how to be able to access the same
variables from different program units. So far, we simply mentioned that
variables have a scope within each function and subroutine. If we wish
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to have access to the same location of memoryf| from different program
units, then we use the COMMON statement which defines a common block.
See the following example:

!

program f90_common

implicit none

real :: k1=1.0,k2=1.0,k3=1.0
common /CONSTANTS/k1,k2

print *,’main: ki= ’,k1,’ k2= ’ k2,’ k3= ’,k3
call s1 !prints k1 and k2 but not k3

call s2 !changes the value of k2 but not k3
print *,’main: ki= ’ k1,’ k2= ’ k2, k3= ’ k3

end program f£90_common
!

subroutine s1()
implicit none
real k1,k2,k3
common /CONSTANTS/k1,k2

print *,’st1: ki= ’,k1,’ k2= ’,k2,’ k3= ’ k3
end subroutine si1
|

subroutine s2()
implicit none
real k1,k2,k3
common /CONSTANTS/k1,k2

k2 = 2.0
k3 = 2.0
end subroutine s2

The common block has the name CONSTANTS and we can refer to it from
any program unit. Each program unit that uses this common block must
use the same declaration, although the names of variables are allowed to
be different. The common block CONSTANTS points to the same location
in the computer memory, where we expect to find the values of two real

“Common blocks are supposed to be obsolescent in Fortran and programmers are
encouraged to avoid them and use modules instead. Due to their simplicity and pop-
ularity we will show their usage and also use them in this book.
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variables. These variables (k1 and k2) are used and have their values
changed in the subroutines s1 and s2. The variable k3, is a different
variable in each program unit. The program prints

main: kil= 1.000000 k2= 1.000000 k3= 1.000000
sl: ki= 1.000000 k2= 1.000000 k3= —2.8117745E—-05
main: kil= 1.000000 k2= 2.000000 k3= 1.000000

One of the weaknesses of Fortran is that it does not have a convenient
control for Input/Output (I/O). For complicated I/O and text manipulation
we will use other programs that can do a better job, like awk, perl,
shell scripting, or programs written in C/C++. It is important to know
some details about I/O commands in Fortran, mainly the specifications
that control the accuracy of printed floating point numbers. So far, 1/0
commands, like print, write, read, used a * in order to control the
printing of numbers. But we can replace the * with explicit format
directives as follows:

program f90_formatl
implicit none

integer g d
real i
real , dimension(10) :: a
real (8) i1 x8
i = 123456

x = 2.0 *atan2(1.0.,0.0)

print ’(A5,16 ,F12.7)°, ’x,i= ’,i,x

x8 = 2.0D0*atan2(1.0D0,0.0D0)

write (6, (F18.16 ,E24.17 ,G24.17 ,G24.17) ) x8,x8,&
1.0D15*x8,1.0D18*x8

write (6, (3F20.16) ") x8,x8/2.0,cos(x8)

write (6, °(200F12.6) ") (a(i), i=1,10)

end program f90_formatil

Note the parentheses within the single quotes: (A5,16,F12.7) is a format
directive for the print statement. The A is for printing a CHARACTER,
the I for printing an INTEGER and the F for printing a floating point
number. The numbers after the letter declare the number of spaces used
for printing each one. Beware! If the printing space is not enough,
Fortran will not print and you will find a series of * in place of the
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value of your result! Bummer... In order to estimate the number of
spaces needed for a floating point number, you have to include the space
taken by the decimal point, the sign, the exponent character, the sign of
the exponent and the digits needed for the exponent. Plus a space to
separate the numbers in between... So, be generous and give plenty of
printing space. In the example shown above, A5 denotes a character of 5
spaces, 16 and integer of 6 spaces and F12 a floating point number of 12
spaces. The decimal point in F12.7 means that we want a floating point
with the accuracy of 7 significant digits.

The format directive (F18.16,E24.17,G24.17,G24.17) shows how to
print double precision variables. These provide an accuracy of 16-17
significant digits and there is no need for keeping more digits. The
command E prints a number in scientific form with an exponent. The
command G prints the exponent when it is needed. The numbers before
the letters denote multiplicity. Therefore 3F20. 16 instructs the printing of
3 floating point numbers by reserving 20 spaces and using 16 significant
digits for each one of them.

The command write(6,' (200F12.6) ') (a(i), i=1,10) shows how to
print a large array using an implicit loop. We used many more spaces
than actually needed (200F12.16) which is OK. If the array gets larger
by increasing the range of i, then we will have enough room for printing
in the same line. The program prints (we have folded the long line in
order to make it visible):

x,i= 123456 3.1415927
3.1415926535897931 0.31415926535897931E+01 3141592653589793.0
0.31415926535897933E+19
3.1415926535897931 1.5707963267948966 —1.0000000000000000
0.000000 0.000000 0.000000

We can organize the format commands by using the FORMAT statement.
Then, we use labeled statements in order to refer to them. Labels are
numbers put in the beginning of a line which should be unique to a
program unit and are within the range 1-99999. We can transfer the
control of the program to such a line with a goto command or by using
the label in the I/O statements print, write and read as in the example
shown below:
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program £f90_format2
implicit none
integer i
real x, a(10)
real*8 x8

i = 123456
x = 2.0 *atan2(1.0,0.0)
print 100, ’x.i= ~,i,x

x8 = 2.0D0*atan2(1.0D0,0.0D0)

write (6,123) x8,x8.&
1.0D15*x8,1.0D18*x8

write(6,4444) x8,%x8/2.0,cos(x8)

write(6,9999)(a(i), i=1,10)

100 FORMAT(A5,16,F12.7)

123 FORMAT(F18.16 ,E24.17,G24.17 ,G24.17)

4444 FORMAT(3F20.16)

9999 FORMAT(200F12.6)

end program f£90_format2

The reader should also study the Fortran intrinsic functions shown

in table [1.9, page [76.

1.4.3 Arrays

You may skip this section during the first reading of this book. It will
be useful to come back here later.

Arrays are related data of the same type which can be accessed
by using one or more indices. For example, after a declaration real,
dimension(10) :: A, the expressions

ACL), A(2), ... , A(10)

refer to its 10 real values. The indices can be integer expressions, for
example

A(i), B(2*i+3), C(INT(x+y(j)))

where in the last case we used the integer value of the intrinsic function
INT(x), which returns the integer part of x. Note that, arrays and func-
tions enclose indices and arguments between parentheses (...) which
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are of the same style, and the compiler must look at their declarations in
order to tell the difference. Examples of array declarations are

real , dimension(10) a,b
real , dimension(20) :: c,d

which declare the arrays a, b, c, d, which are of the real kind, with
elements a(1) ... a(10),b(1) ... b(10), c(1) ... c(20) and 4(1)
d(20). An equivalent declaration is

real :: a(10), b(10), c(20), d(20)

or
integer , parameter :: n1 = 10, n2 = 20
real , dimension(nl) :: a, c(n2)
real :: b(n1), d(n2)

In the last form, we show how to use constant parameters for declaring
the size of arrays. For the declarations shown above, the lower bound of
all arrays is 1 and the upper bound for a and b is 10 and for c and d is
20. The upper and lower bound of arrays can be explicitly determined.
The declarations

integer , parameter :: n1 = 10, n2 = 20

real , dimension (0:n1) 29 @

real , dimension(—n1:n2) :: c
define the real array a with 11 values a(0) ... a(10) and the array c
with 31 values c(-10) c(-9) ... c(-1) c(0) c(1) ... c(20).

The arrays shown above have dimension 1 and they are like vectors.
We can declare arrays of more than one dimension. This means that we
need more than one indices in order to determine an array elementf].
Therefore, the declaration

integer , dimension(2,2) 1oa

“Fortran allows up to seven indices in an array.
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defines an integer array with valuesa(1,1), a(1,2), a(2,1) and a(2,2).
The following declarations define two three dimensional real arrays a and
b:

integer , parameter :: nl = 10, n2 = 20, n3 = 2*n1+n2
real , dimension(n1,n2,n3) 2 a
real , dimension(—n1:n1,0:n2,13:n3) :: b

Some important definitions used in the bibliography are:

e array: Variables of the same type to which we refer with one or
more indices. Variables with only one value are called scalar.

* An array’s dimension has an upper bound and a lower bound
which define the allowed range of index values. If the lower bound
is omitted in a declaration, then it takes the value 1.

¢ The rank of an array is the number of its dimensions, i.e. the
number of indices needed to determine its values.

¢ The extent of a dimension it the number of its elements. It is equal
to (upper bound)-(lower bound)+1.

* The size of an array is the total number of its elements. For a one
dimensional array, its size is equal to its extent, whereas for a multi
dimensional one, it is equal to the product of the extents of all of
its dimensions.

¢ The shape of an array is its rank and extents of all its dimensions.

The values of arrays can be set the same way as scalars:

integer :: i
real iroal4), v(2,2)

b(1,1) 2.
b(2,1) = 3.
do i=1.,4

a(i) = 1.0
enddo

0 ; b(1,2) =
4 ; b(2,2) =

|
-
w o

Alternatively we can use the name of the array as one object:
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a (/ 1.0, 2.0, 3.0, 4.0 /)
b = 0.0

The first line defines the values of an array by using an array constructor.
The second line defines all elements of the array b to be equal to 0. This
is an example of a very convenient feature of the Fortran language. If all
the arrays in an expression are conformable, then we can use the intrinsic
Fortran operations to act on whole arrays. Two arrays are conformable
if they have the same shape or if one of them is a scalar. Therefore the
program

integer :: i,j
real i x,y,a(10) ,b(10) ,c(4.4) ,d(4.4)

do i=1,10
a(i) = b(i)
enddo

do j=1,4
do i=1.,4
c(i,j) = x*d(4i,j)+y
enddo
enddo

is equivalent to

integer :: i,j

real :: ox,y,a2(10) ,b(10) ,c(4,4) ,d(4,4)
= b

c = x*d+y

Many Fortran intrinsic functions are elemental. This means that their
arguments can be arrays, in which case the function acts on each array
element separately. For example, the commands

integer :: i,j
real i x,y,a(10) ,b(10) ,c(4.4) ,d(4.4)

c = sin(d) + x*exp(—2.0*d)
call random number(a)
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set c(i,j) = sin(d(i,j))+xxexp(-2.0%d(i,j)) for all i and j, and the
elements of a(i) equal to a random number uniformly distributed in
the interval [0,1). We should stress that in order for two arrays to be
conformable, it is not necessary that they have the same lower and upper
bounds. For example, the command b=c*d in the following program has
the same effect as the do loop:

integer :: i

real :: b(0:19), c(10:29), d(—9:10)
b = c*d

do i=1,20

b(i—1) = c(i+9) * d(i—10)

enddo

In the following, we mention some useful functions that act on arrays.
Assume that

real :: a(—=10:10), b(—10:10), c(10,10), d4(10.,10), e(10.,10)

then

e LBOUND(a) and UBOUND(a) return the lower bound and the upper
bound of the array a. In the above example LBOUND(a) = -10 and
UBOUND (a) = 10.

°
(@]
I

TRANSPOSE(d) sets c(i,j)=d(j,1).

* ¢ = MATMUL(c,d) sets the array e equal to the matrix product c, d.
ILe. e(i,j)=2,1€0:1c(i,k) *d(k,j). Be careful, the command e=c*d
sets e(i,j)=c(i,j)*d(i,]).

* SUM(a) computes the sum of all the elements of a.
I.e. SUM(a) = 2327103(1)

e PRODUCT (a) computes the product of all the elements of a.

Le. PRODUCT (a) = [[;2_,,a(i)




1.4. THE FORTRAN PROGRAMMING LANGUAGE 59

* DOT_PRODUCT(a,b) computes the inner product of a, b.
I.e. DOT_PRODUCT (a,b) = >0 | a(i)*b(i)

e MAXVAL(a) and MINVAL(a) return the maximum and minimum val-
ues in the array a respectively.

You can find more functions and documentation in the bibliography
[11,10]. In the following, we provide some information related to the
Input/Output (I/0) of arrays. Input (“reading”) and output (“writing”)
of array values can be done by reading and writing their elements in any
order we want. In the example below, we read the array a and write the
array b in two different ways:

integer :: 1i,j
real ::oa(4), v(2,2)
do i=1.,4
read *,a(i)
enddo
read *, (a(i), i=1,4)
do j=1,2
do i=1,2
print *,b(i,j)
enddo
enddo

print *,( (b(i,j), i=1,2), j=1,2)

Inside the do loops, input and output is done one element per line from/to
standard input/output. The commands (a(i), i=1,4) and ( (b(i,j)
i=1,2), j=1,2) are implied do loops and read/write from/to the same
line. During input, if the number of values for a are exhausted, then the
program tries to read values from the following line(s). Similarly, if the
output of b exhausts the maximum number of characters per line, then
the output continues in the next linef]. Try it...

We can also preform I/O of arrays without explicit reference to their
elements. In this case, the arrays are read/written in a specified order.
For example, the program

“It we want to force a long output to be written in one line, then we must replace the
* by an explicit format directive, e.g. print '(100I6)"',( (c(i,j), i=1,10), j=1,10)
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real :: a(4), b(2,2)

read *, a
read *, b

print *, a,b

reads the values a(1) a(2) a(3) a(4) from the stdin. Then, it continues
reading b(1,1), b(2,1), b(1,2), b(2,2) from the next line (record).
Notice that the array b is read in a column major way. Printing a and b,
will print a(1) a(2) a(3) a(4) and b(1,1), b(2,1), b(1,2), b(2,2)
in two different records (also in column major mode).

Finally, we summarize some of the Fortran capabilities in array ma-
nipulation. More details can be found in the bibliography. Read the
comments in the program for a partial explanation of each command:

program arrays

implicit none

integer :: i,j,n,m

real i1 a(3), v(3,3), c(3,3)=-99.0, d(3.,3)=-99.0, s
integer :: semester(1000),grade(1000)

logical :: pass(1000)

!construct the matrix: use the RESHAPE function

1.1 —1.2 —1.3I

2.1 2.2 —2.3I

113.1 3.2 3.3l

b = RESHAPE((/ 1.1, 2.
—1.2, 2.
—-1.3, -2 /) .(/3.3/))

1
2
.3
!same matrix, now exchange rows and columns: ORDER=(/2,1/)
.2
2
2

£}

3.1, & !(notice rows<—>columns)
, 3.2, &
3.3

>

b RESHAPE((/ 1.2, —1.2, —1.3, &

2.1, 2.2, —-2.3, &
3.1, 3.2, 3.3 /).(/3.3/),0RDER=(/2.,1/))
= b(:,2) !a assigned the second column of b: a(i)=b(i,2)
= b(1,:) !a assigned the first row of b: a(i)=b(1,i)
2.0%b(:,3)+sin(b(2,:))!a(i)= 2*b(i,3)+sin(b(2,i))
1.0+2.0*exp(—a)+b(:,3) 'a(i)= 1+2*exp(—a(i))+b(i,3)
SUM(Db) !returns sum of all elements of b
= SUM(b,MASK=(b.gt.0))!returns sum of positive elements of b
= SUM(b,DIM=1) leach a(i) is the sum of the columns of b
= SUM(b ,DIM=2) leach a(i) is the sum of the rows of b
!repeat all the above using PRODUCT!

- PN
I nn
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!all instructions may be executed in parallel at any order!
FORALL(i=1:3) c(i,i) = a(i) !set the diagonal of c¢

!compute upper bounds of indices in b:

n=UBOUND(b , DIM=1) ; n=UBOUND(b , DIM=2)

!log needs positive argument, add a restriction (”mask”)
FORALL(i=1:n,j=1:m, b(i,j).gt.0.0 ) c(i,j) = log(b(i,j))
!upper triangular part of matrix:

!careful , j=i+1:m NOT permitted

FORALL(i=1:n,j=1:m, i Jdt. 5 ) c(iLj) = vli,j)

leach statement executed BEFORE the next one!
FORALL(i=2:n—1,j=2:n—1)

!all right hand side evaluated BEFORE the assignment
!i.e., the OLD values of b averaged and then assigned to b
b(i,j)=(b(i+1,j)+b(i—1,j)+b(i,j+D+b(i,j—1))/4.0
c(i,j)=1.0/p(i+1,j+1) !the NEW values of b are assigned
END FORALL

! assignment but only for elements b(i,j) which are not 0
WHERE (b .ne. 0.0) c = 1.0/p
IMATMUL(b ,c) is evaluated ., then d is assigned the result only
lat positions where b>0.

WHERE (b .gt. 0.0) d = MATMUL(b, c)
WHERE (grade .ge. 5 )

semester = semester + 1 !student’s semester increases by 1
pass = .true.

ELSEWHERE

pass = .false.

END WHERE

end program arrays

The code shown above can be found in the file £90_arrays.f90 of the
accompanying software.

1.5 Gnuplot

Plotting data is an indispensable tool for their qualitative, but also quanti-
tative, analysis. Gnuplot is a high quality, open source, plotting program
that can be used for generating publication quality plots, as well as for
heavy duty analysis of a large amount of scientific data. Its great ad-
vantage is the possibility to use it from the command line, as well as
from shell scripts and other programs. Gnuplot is programmable and it
is possible to call external programs in order manipulate data and cre-
ate complicated plots. There are many mathematical functions built in
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gnuplot and a fit command for non linear fitting of data. There exist
interactive terminals where the user can transform a plot by using the
mouse and keyboard commands.

This section is brief and only the features, necessary for the fol-
lowing chapters, are discussed. For more information visit the offi-
cial page of gnuplot http://gnuplot.info. Try the rich demo gallery
at http://gnuplot.info/screenshots/, where you can find the type of
graph that you want to create and obtain an easy to use recipe for it. The
book [[14] is an excellent place to look for many of gnuplot’s secretsf].

You can start a gnuplot session with the gnuplot command:

> gnuplot

GNUPLOT
Version X.XX

The gnuplot FAQ is available from www.gnuplot.info/faq/

[}

Terminal type set to ’wxt
gnuplot >

There is a welcome message and then a prompt gnuplot> is issued wait-
ing for your command. Type a command an press [Enter]. Type quit
in order to quit the program. In the following, when we show a prompt
gnuplot>, it is assumed that the command after the prompt is executed
from within gnuplot.

Plotting a function is extremely easy. Use the command plot and x
as the independent variable of the functionf{. The command

gnuplot> plot x

plots the function y = f(z) = = which is a straight line with slope 1. In
order to plot many functions simultaneously, you can write all of them
in one line:

“A the time of the writing of this book, there was a very nice site
www.gnuplotting.org which shows how to create many beautiful and complicated
plots.

“You can change the symbol of the independent variable. For example, the command
set dummy t sets the independent variable to be t.
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gnuplot> plot [—5:5][—2:4] x, x**2, sin(x),besjO(x)

The above command plots the functions z, 2%, sin z and Jy(z). Within the
square brackets [:], we set the limits of the z and y axes, respectively. The
bracket [-5:5] sets —5 < x < 5 and the bracket [-2:4] sets —2 <y < 4.
You may leave the job of setting such limits to gnuplot, by omitting some,
or all of them, from the respective positions in the brackets. For example,
typing [1:] [:5] changes the lower and upper limits of x and y and leaves
the upper and lower limits unchangedfj.

In order to plot data points (x;,y;), we can read their values from files.
Assume that a file data has the following numbers recorded in it:

# x vyl y2
0.5 1.0 0.779
1.0 2.0 0.607
1.5 3.0 0.472
2.0 4.0 0.368
2.5 5.0 0.287
3.0 6.0 0.223

The first line is taken by gnuplot as a comment line, since it begins with
a #. In fact, gnuplot ignores everything after a #. In order to plot the
second column as a function of the first, type the command:

gnuplot> plot “data” using 1:2 with points

The name of the file is within double quotes. After the keyword using,
we instruct gnuplot which columns to use as the z and y coordinates,
respectively. The keywords with points instructs gnuplot to add each
pair (z;,y;) to the plot with points.

The command

gnuplot> plot “data” using 1:3 with lines

“By default, the x and y ranges are determined automatically. In order to force them
to be automatic, you can insert a * in the brackets at the corresponding position(s). For
example plot [1:%] [*:5] sets the upper and lower limits of z and y to be determined
automatically.
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plots the third column as a function of the first, and the keywords with
lines instruct gnuplot to connect each pair (z;,y;) with a straight line
segment.

We can combine several plots together in one plot:

gnuplot> plot “data” using 1:3 with points, exp(—0.5%x)
gnuplot> replot “data” using 1:2
gnuplot> replot 2*x

The first line plots the 1st and 3rd columns in the file data together with
the function e /2. The second line adds the plot of the 1st and 2nd
columns in the file data and the third line adds the plot of the function
2.

There are many powerful ways to use the keyword using. Instead of
column numbers, we can put mathematical expressions enclosed inside
brackets, like using (...):(...). Gnuplot evaluates each expression
within the brackets and plots the result. In these expressions, the values
of each column in the file data are represented as in the awk language. $i
are variables that expand to the number read from columns i=1,2,3, .. ..
Here are some examples:

gnuplot> plot “data” using 1:($2*sin($1)*$3) with points
gnuplot> replot 2*x*sin(x)*exp(—x/2)

The first line plots the 1st column of the file data together with the
value y;sin(z;)z;, where y;, z; and z; are the numbers in the 2nd, 1st and
3rd columns respectively. The second line adds the plot of the function
21 sin(x)e /2,

gnuplot> plot “data” using (log($1)):(log($2**2))
gnuplot> replot 2*x+log(4)

The first line plots the logarithm of the 1st column together with the
logarithm of the square of the 2nd column.

We can plot the data written to the standard output of any command.
Assume that there is a program called area that prints the perimeter and
area of a circle to the stdout in the form shown below:
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> ./area

R= 3.280000 area= 33.79851
R= 6.280000 area= 123.8994
R= 5.280000 area= 87.58257
R= 4.280000 area= 57.54895

The interesting data is at the second and fourth columns. These can be
plotted directly with the gnuplot command:

gnuplot> plot "< ./area” using 2:4

All we have to do is to type the full command after the < within the
double quotes. We can create complicated filters using pipes as in the
following example:

gnuplot> plot \
" .Jarealsort —g —k 2lawk ’{print log($2),log($4)}’ " \
using 1:2

The filter produces data to the stdout, by combining the action of the
commands area, sort and awk. The data printed by the last program is
in two columns and we plot the results using 1:2.

In order to save plots in files, we have to change the terminal that gnu-
plot outputs the plots. Gnuplot can produce plots in several languages
(e.g. PDF, postscript, SVG, IXTEX, jpeg, png, gif, etc), which can be inter-
preted and rendered by external programs. By redirecting the output to
a file, we can save the plot to the hard disk. For example:

gnuplot> plot “data” using 1:3
gnuplot> set terminal jpeg
gnuplot> set output “data.jpg
gnuplot> replot

gnuplot> set output

gnuplot> set terminal wxt

i1

The first line makes the plot as usual. The second one sets the output
to be in the JPEG format and the third one sets the name of the file to
which the plot will be saved. The fourth lines repeats all the previous
plotting commands and the fifth one closes the file data. jpg. The last
line chooses the interactive terminal wxt to be the output of the next
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plot. High quality images are usually saved in the PDF, encapsulated
postcript or SVG format. Use set terminal pdf,postscript eps or svg,
respectively.

And now a few words for 3-dimensional (3d) plotting. The next
example uses the command splot in order to make a 3d plot of the
function f(x,y) = e v’ After you make the plot, you can use the
mouse in order to rotate it and view it from a different perspective:

gnuplot> set pm3d

gnuplot> set hidden3d

gnuplot> set size ratio 1

gnuplot> set isosamples 50

gnuplot> splot [—2:2][—2:2] exp(—x**2—y**2)

If you have data in the form (z;,y;, 2;) and you want to create a plot
of z; = f(z;,y;), write the data in a file, like in the following example:

-1 —1 2.000
-1 0 1.000
-1 1 2.000
0 —1 1.000
0 0 0.000
0 1 1.000
1 -1 2.000
1 0 1.000
1 1 2.000

Note the empty line that follows the change of the value of the first
column. If the name of the file is data3, then you can plot the data with
the commands:

gnuplot> set pm3d

gnuplot> set hidden3d

gnuplot> set size ratio 1
gnuplot> splot “data3” with lines

We close this section with a few words on parametric plots. A para-
metric plot on the plane (2-dimensions) is a curve (z(t),y(t)), where ¢
is a parameter. A parametric plot in space (3-dimensions) is a surface
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(x(u,v) ,y(u,v), z(u,v)), where (u,v) are parameters. The following com-
mands plot the circle (sint¢,cost) and the sphere (coswucosv, cosusinv,
sinu):

gnuplot> set parametric
gnuplot> plot sin(t),cos(t)
gnuplot> splot cos(u)*cos(v),cos(u)*sin(v),sin(u)

1.6 Shell Scripting

Complicated system administration tasks are not among the strengths of
the Fortran programming language. But in a typical GNU/Linux envi-
ronment, there exist many powerful tools that can be used very effectively
for this purpose. This way, one can use Fortran for the high performance
and scientific computing part of the project and leave the administration
and trivial data analysis tasks to other, external, programs.

One can avoid repeating the same sequence of commands by coding
them in a file. An example can be found in the file script01.csh:

#!/bin/tcsh —f

gfortran area_01.£f90 —o area
./ area

gfortran area_02.f90 —o area
./ area

gfortran area_03.f90 —o area
./ area

gfortran area_04.f90 —o area
./ area

This is a very simple shell script. The first line instructs the operating
system that the lines that follow are to be interpreted by the program
/bin/tcshf]. This can be any program in the system, which in our case
is the tcsh shell. The following lines are valid commands for the shell,
one in each line. They compile the Fortran programs found in the files
that we created in section with gfortran, and then they run the
executable ./area. In order to execute the commands in the file, we

“Use #!/bin/bash if you prefer the bash shell.
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have to make sure that the file has the appropriate execute permissions.
If not, we have to give the command:

> chmod u+x scriptO1l.csh

Then we simply type the path to the file script01.csh

> ./scriptOl.csh

and the above commands are run the one after the other. Some of the
versions of the programs that we wrote are asking for input from the
stdin, which, normally, you have to type on the terminal. Instead of
interacting directly with the program, we can write the input data to a
file Input, and run the command

./area < Input

A more convenient solution is to use the, so called, “Here Document”. A
“Here Document” is a section of the script that is treated as if it were a
separate file. As such, it can be used as input to programs by sending its
“contents” to the stdin of the command that runs the programf]. The
“Here Document” does not appear in the filesystem and we don’t need to
administer it as a regular file. An example of using a “Here Document”
can be found in the file script02.csh:

#!/bin/tcsh —f
gfortran area_04.f90 —o area
./ area <<EOF

© 0010 O WN —~
[eNeoleoNoNeNeNoNolo)

“Their great advantage is that we can use variable and command substitution in
them, therefore sending this information to the program that we want to run.
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10.0
EOQF

The stdin of the command ./area is redirected to the contents between
the lines

./area <<EOF

EOF

The string EOF marks the beginning and the end of the “Here Document”,
and can be any string you like. The last EOF has to be placed exactly in
the beginning of the line.

The power of shell scripting lies in its programming capabilities: Vari-
ables, arrays, loops and conditionals can be used in order to create a
complicated program. Shell variables can be used as discussed in section
The value of a variable name is $name and it can be set with the
command set name = value. An array is defined, for example, by the
command

set R = (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0)

and its data can be accessed using the syntax $R[1] ... $R[10].
Lets take a look at the following script:

#!/bin/tecsh —f

set files (area_01.f90 area_02.f90 area_03.f90 area_04.f90)
set R = (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0)

echo ”"Hello $USER Today is ” ‘date‘
foreach file ($files)

echo "# ———— Working on file $file
gfortran $file —o area

./ area <<EOF

$R[1]

$R[2]

$R[3]

$R[4]

$R[5]

$R[6]
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$R[7]
$R[8]
$R[9]
$R[10]
EOF

echo "# —————————— Done ”

if ( —f AREA.DAT ) cat AREA.DAT

end

The first two lines of the script define the values of the arrays files (4
values) and R (10 values). The command echo echoes its argument to
the stdin. $USER is the name of the user running the script. “date” is an
example of command substitution: When a command is enclosed between
backquotes and is part of a string, then the command is executed and its
stdout is pasted back to the string. In the example shown above, “date”
is replaced by the current date and time in the format produced by the
date command.
The foreach loop

foreach file ($files)

end

is executed once for each of the 4 values of the array files. Each time the

value of the variable file is set equal to one of the values area_01.£90,

area_02.f90, area_03.f90, area_04.f90. These values can be used by

the commands in the loop. Therefore, the command gfortran $file -o

area compiles a different file each time that it is executed by the loop.
The last line in the loop

if ( —f AREA.DAT ) cat AREA.DAT

is a conditional. It executes the command cat AREA.DAT if the condition
-f AREA.DAT is true. In this case, -f constructs a logical expression which
is true when the file AREA.DAT exists.

We close this section by presenting a more complicated and advanced
script. It only serves as a demonstration of the shell scripting capabilities.
For more information, the reader is referred to the bibliography [/16,/17,
18.19,20]. Read carefully the commands, as well as the comments which
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follow the # mark. Then, write the commands to a file script04.cshﬁ,
make it an executable file with the command chmod u+x scriptO4.csh
and give the command

> ./scriptO4.csh This is my first serious tcsh script

The script will run with the words “This is my first serious tesh script”
as its arguments. Notice how these arguments are manipulated by the
script. Then, the script asks for the values of the radii of ten or more
circles interactively, so that it will compute their perimeter and area. Type
them on the terminal and then observe the script’s output, so that you
understand the function of each command. You will not regret the time
investment!

#1/bin/tcsh —f
# Run this script as:
# ./scriptO4.csh Hello this is a tecsh script

H
# ‘command‘ is command substitution: it is replaced by stdout of command
set now = ‘date‘ ; set mypc = ‘uname —a°’

# Print information: variables are expanded within double quotes
echo ”I am user $user working on the computer $HOST” #HOST is predefined

echo "Today the date is . $now” #now is defined above
echo "My home directory is :  $home” #home is predefined
echo "My current directory is: $cwd” #cwd changes with cd
echo "My computer runs : $mypc” #mypc is defined above
echo "My process id is : $3 ” #$$ is predefined

# Manipulate the command line: ($#argv is number of elements in array argv)
echo "The command line has $#argv arguments”
echo ”"The name of the command I am running is: $07

echo ”"Arguments 3rd to last of the command : $argv[3—1” #third to last
echo ”"The last argument is : $argv[$#argv]” #last element
echo ”All arguments : $argv”

# Ask user for input: enter radii of circles

echo —n ”Enter radii of circles: ” # variable $< stores one line of input
set Rs = ($<) #Rs is now an array with all words entered by user

if ($#Rs < 10 )then #make a test, need at least 10 of them

echo ”Need more than 10 radii. Exiting....”

exit (1)

endif

echo ”You entered $#Rs radii, the first is $Rs[1] and the last $Rs[$#Rs]”
echo ”"Rs= $Rs”

# Now, compute the perimeter of each circle:

foreach R ($Rs)

# —v rad=$R set the awk variable rad equal to $R. pi=atan2(0,—1)=3.14...
set 1 = ‘awk —v rad=$R 'BEGIN{print 2*atan2(0,—1)*rad}’‘

“You will find it also in the accompanying software
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echo 7"Circle with R= $R has perimeter $1”

end

# alias defines a command to do what you want: use awk as a calculator
alias acalc ’awk "BEGIN{print \!* }”’ # \!* substitutes args of acalc
echo ”Using acalc to compute 2+3=" ‘acalc 2+3°

echo "Using acalc to compute cos(2*pi)=" ‘acalc cos(2*atan2(0,—1))°

# Now do the same loop over radii as above in a different way

# while( expression ) is executed as long as “expression” is true
while ($#Rs > 0) #executed as long as $Rs contains radii

set R = $Rs[1] #take first element of $Rs

shift Rs #now $Rs has one less element:old $Rs[1] has vanished
set a = ‘acalc atan2(0,—1)*${R}*${R}‘ # =pi*R*R calculated by acalc
# construct a filename to save the result from the value of R:

set file = area${R}.dat

echo ”Circle with R= $R has area $a” > $file #save result in a file
end #end while

# Now look for our files: save their names in an array files:

set files = (‘ls —1 area*.dat‘)
if( $#files == 0) echo ”Sorry, no area files found”
echo -

echo "files: $files”

Is —1 $files

echo ™ i
echo ”And the results for the area are:”

foreach f ($files)

echo —m 7file ${f}: ”

cat $f

end

# now play a little bit with file names:

echo ™ i

set £ = $files[1] # test permissions on first file

# —f, —r, —w, —x, —d test existence of file, rwxd permissions

# the ! negates the expression (true —> false, false —> true)
echo “testing permissions on files:”

if( —f $f ) echo ”$file exists”

if( —r $f ) echo ”$file is readable by me”

if( —w $f ) echo ”$file is writable by be”

if (! —w /bin/ls) echo ”/bin/ls is NOT writable by me”
if (1 —x $f ) echo ”$file is NOT an executable”
if( —x /bin/ls) echo ”/bin/ls is executable by me”
if (1 —d $f ) echo ”$file is NOT a directory”

if( —d /bin ) echo ”/bin is a directory”

echo ™~ a
# transform the name of a file

set £ = $cwd/$f # add the full path in $f

set filename = $f:r # removes extension .dat

set extension = $f:e # gets extension .dat

set fdir = $f:h # gets directory of $f

set base = ‘basename $f° # removes directory name
echo 7file is: $f”

echo ”filename is: $filename”

echo "extension is: $extension”

echo "directory is: $fdir”

echo "basename is: $base”

# now transform the name to one with different extension:
set newfile = ${filename}. jpg

echo ”jpeg name is: $newfile”
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echo "jpeg base is:” ‘basename $newfile®
if ($newfile:e == jpg)echo ‘basename $newfile‘ ~ is a picture”
echo ™ »

# Now save all data in a file using a “here document”

# A here document starts with <<EOF and ends with a line
# starting exactly with EOF (EOF can be any string as below)
# In a “"here document” we can use variables and command
# substitution :

cat <KAREAS >> areas.dat

# This file contains the areas of circle of given radii

# Computation done by ${user} on ${HOST}. Today is ‘date*
‘cat $files‘

AREAS

# now see what we got:

if ( —f areas.dat) cat areas.dat

# You can use a “here document” as standard input to any command:

# use gnuplot to save a plot: gnuplot does the job and exits...
gnuplot <<KGNU
set terminal jpeg

set output “areas.jpg”

plot “areas.dat” using 4:7 title “areas.dat”,\
pi*x*x title "pi*RA2”

set output

GNU

# check our results: display the jpeg file using eog
if ( —f areas.jpg) eog areas.jpg &
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** hacomel -- connected filel
,t_i N s Elifes f / =EE)
Fle Edit Options Buffers Tools Fortran Help
= - o
DEExEE BB RY XT
program ﬁlactri:flams
HMAZDAT 1000000 none
STRLEM 200 P Imax number of charges

char proz[STRLENT;
int JACK,maxdat;

void jackknife(int,int,double *,dauble *,double *,douRles)
void get_the_options(int ,char *%),usage(char **),1oceXr?)
int main{int arge,char *kargy){

int ndat=0;

double O,d0,chi,dchi;

double

stropy(prog, (char *Jhasename(argwl011);
maxdat=-1;JACK=10;
get_the_options(arge,argv);

if( maxdat <= 0 ] maxdat = MAXDAT;

use IPC::Open2;

3Pi = atan2(0,-1};
$therm = ;
faoreach $f (@ARGY){ c-mode
print
print We are at the 8% of the
# Determine header information: total size of the buffer
open (HEAD, 1
while(<HEADS 4]
chomp ;
@F = split (' '); SHF = S#0; HENF=0,..., (no. fields - 1)
# print join(":",@F)." —-— NF= $NF , SF[0], SF[11, ...
; {$TIGEN = 3]
-- analol.pl (Perl)

, BFLBNFIWN";

il

The point is at the
16th line and 6th
column

auto-fill-mode

Mean we are at the top
of the buffer

the - marks an
unchanged buffer

perl-mode

Mode lines for each window
The dark one is the active
(Elines.f). Using Drag-Mouse-1

on the mode lines we can
change the size of the windows

Figure 1.5: In this figure, the Emacs window has been split in three windows. The
splitting was done horizontally first (C-x 2), and then vertically (C-x 3). By dragging

the mouse (Drag-Mouse-1) on the horizontal

mode lines and vertical lines that separate

the windows, we can change window sizes. Notice the useful information diplayed on
the mode lines. Each window has one point and the cursor is on the active window (in
this case the window of the buffer named ELines.f). A buffer with no active changes
in its contents is marked by a --, an edited buffer is marked by ** and a buffer in read

only mode with (%%). With a mouse click on a

%%, we can change them to -- (so that we

can edit) and vice versa. With Mouse-3 on the name of a mode we can activate a choice
of minor modes. With Mouse-1 on the name of a mode we ca have access to commands
relevant to the mode. The numbers (17,31), (16,6) and (10,15) on the mode lines show

the (line,column) of the point location on the

respective windows.
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awk
cat
cd
chmod
cp
date
df
diff
du
echo
find
grep
gzip
head
kill
locate
less
1n
lpr
1s
man
mkdir
mv

ps
pwd
rm
rmdir
sort
tail
tar
top
weC
whatis
where
which
zip
unzip

search for and process patterns in a file,

display, or join, files

change working directory

change the access mode of a file

copy files

display current time and date

display the amount of available disk space

display the differences between two files

display information on disk usage

echo a text string to output

find files

search for a pattern in files

compress files in the gzip (.gz) format (gunzip to uncompress)
display the first few lines of a file

send a signal (like KILL) to a process

search for files stored on the system (faster than find)
display a file one screen at a time

create a link to a file

print files

list information about files

search information about command in man pages
create a directory

move and/or rename a file

report information on the processes run on the system
print the working directory

remove (delete) files

remove (delete) a directory

sort and/or merge files

display the last few lines of a file

store or retrieve files from an archive file

dynamic real-time view of processes

counts lines, words and characters in a file

list man page entries for a command

show where a command is located in the path (alternatively: whereis)
locate an executable program using “’path”

create compressed archive in the zip format (.zip)
get/list contents of zip archive

Table 1.1: Basic Unix commands.
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Table 1.2: Some intrinsic functions in Fortran.

Function Description
ABS modulus of a complex number, absolute
value of number
ACOS arccosine of a number
ADJUSTL moves non blank characters of a string to
the left
ADJUSTR moves non blank characters of a string to
the right
AIMAG imaginary part of a complex number
AINT truncates fractional part but preserves
data type
ANINT rounds to nearest whole number but pre-
serves data type
ASIN arcsine of a number
ATAN arctangent of a number
ATAN2 arctangent of arg!l divided by arg2 re-
solved into the correct quadrant
CMPLX converts to the COMPLEX data type argl
+ i arg2
CONJG complex conjugate of a complex number
cos cosine of an angle in radians
COSH hyperbolic cosine
DATE_AND TIME | returns current date and time
DBLE converts to the real(8) data type
DIM if argl > arg2, then returns argl - arg2;
otherwise 0
DPROD double precision product of two single
precision numbers
EXP exponential
EPSILON Returns a positive number that is negligi-
ble compared to 1.0
HUGE Returns the largest number of the same
kind as the argument
INT converts to the INTEGER data type by

truncation

Continued...

THE COMPUTER
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Table 1.2: Continued...

Function Description
KIND Returns the KIND value of argument
LEN Returns the length of a string
LEN_TRIM returns the length of a string without trail-

LGE,LGT,LLE,LLT
LOG
L0OG10
MAX
MAXEXPONENT

MIN
MINEXPONENT

MOD
NINT

RANDOM_NUMBER
RANDOM_SEED
PRECISION

REAL
REAL
SIGN
SIN
SINH
SQRT
TAN
TANH
TINY

TRIM

ing blanks
string comparison functions

natural logarithm

common logarithm

maximum value of arguments
returns the maximum exponent of the
same kind as the argument

minimum value of arguments
returns the minimum exponent of the
same kind as the argument

argl modulo arg?2

converts to the INTEGER data type by
rounding
returns pseudo-random numbers 0 < r <
1
starts random number generator or returns
generator parameters
returns the decimal precision of the same
kind as the argument

real part of a complex number

converts to the REAL data type

if arg2 < 0, then returns -argl; else +arg!
sine of an angle in radians

hyperbolic sine

square root

tangent of an angle in radians
hyperbolic tangent

returns the smallest positive number of
the same kind as the argument

returns string with trailing blanks re-
moved

Continued...
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Table 1.2: Continued...

Function | Description
Array functions
ALL true if all values are true
ALLOCATED array allocation status
ANY true if any values are true
COUNT number of elements in an array
DOT_PRODUCT dot product of two rank-one arrays
LBOUND lower dimension bounds of an array
MATMUL matrix multiplication
MAXLOC location of a maximum value in an array
MAXVAL maximum value in an array
MERGE merge arrays under mask
MINLOC location of a minimum value in an array
MINVAL minimum value in an array
PACK pack an array into an array of rank one
under a mask
PRODUCT product of array elements
RESHAPE reshape an array
SHAPE shape of an array or scalar
SIZE size of an array
SPREAD replicate an array by adding a dimension
SUM sum of array elements
TRANSPOSE transpose an array of rank two
UBOUND upper dimension bounds of an array
UNPACK unpack an array of rank one into an array

under a mask

THE COMPUTER
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Table 1.3: Basic Emacs commands.

Leaving Emacs

suspend Emacs (or iconify it under X) C-z

exit Emacs permanently C-x C-c

Files

read a file into Emacs C-x C-f
save a file back to disk C-x C-s

save all files C-x s

insert contents of another file into this buffer C-x i
toggle read-only status of buffer C-x C-q

Getting Help

The help system is simple. Type C-h (or F1) and follow the directions. If you
are a first-time user, type C-h t for a tutorial.

remove help window C-x 1

apropos: show commands matching a string C-h a

describe the function a key runs C-h k
describe a function C-h £
get mode-specific information C-h m

Error Recovery

abort partially typed or executing command C-g

recover files lost by a system crash M-x recover-session

undo an unwanted change C-x u, C-_ or C-/
restore a buffer to its original contents M-x revert-buffer
redraw garbaged screen c-1

Incremental Search

search forward C-s
search backward C-r
regular expression search C-M-s
abort current search C-g

Use C-s or C-r again to repeat the search in either direction. If Emacs is still
searching, C-g cancels only the part not matched.

Motion

entity to move over backward forward
character C-b C-f
word M-b M-f

line C-p C-n

Continued...
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Table 1.3: Continued...

go to line beginning (or end) C-a C-e
go to buffer beginning (or end) M-< M->
scroll to next screen C-v

scroll to previous screen M-v

scroll left C-x <

scroll right C-x >

scroll current line to center of screen C-u C-1

Killing and Deleting

entity to kill backward forward
character (delete, not kill) DEL c-d
word M-DEL M-d
line (to end of) M-0 C-k C-k
kill region C-w

copy region to kill ring M-w

yank back last thing killed C-y

replace last yank with previous kill M-y

Marking

set mark here C-@ or C-SPC

exchange point and mark C-x C-x

mark paragraph M-h

mark entire buffer C-x h

Query Replace

interactively replace a text string M-% or M-x query-replace
using regular expressions M-x query-replace-regexp
Buffers

select another buffer C-x b

list all buffers C-x C-b

kill a buffer C-x k

Multiple Windows

When two commands are shown, the second is a similar command for a frame
instead of a window.

delete all other windows C-x 1 C-x 51
split window, above and below C-x 2 C-x 5 2
delete this window C-x 0 C-x 50

Continued...
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Table 1.3: Continued...

split window, side by side C-x 3
switch cursor to another window C-x o
grow window taller C-x ~
shrink window narrower C-x {
grow window wider C-x }
Formatting

indent current line (indent code etc) TAB
insert newline after point C-o

fill paragraph M-q
Case Change

uppercase word M-u
lowercase word M-1
capitalize word M-c
uppercase region C-x C-u
lowercase region C-x C-1

The Minibuffer

The following keys are defined in the minibuffer.

complete as much as possible TAB
complete up to one word SPC
complete and execute RET
abort command C-g

Type C-x ESC ESC to edit and repeat the last command that used the minibuffer.
Type F10 to activate menu bar items on text terminals.

Spelling Check

check spelling of current word M-$

check spelling of all words in region M-x ispell-region
check spelling of entire buffer M-x ispell-buffer
On the fly spell checking M-x flyspell-mode
Info — Getting Help Within Emacs

enter the Info documentation reader C-h i

scroll forward SPC

scroll reverse DEL

next node n

Continued...



82

CHAPTER 1.

Table 1.3: Continued...
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previous node

move up

select menu item by name
return to last node you saw
return to directory node

go to top node of Info file
go to any node by name

quit Info

Qa += B

o5}




Chapter 2

Kinematics

In this chapter we show how to program simple kinematic equations of
motion of a particle and how to do basic analysis of numerical results.
We use simple methods for plotting and animating trajectories on the
two dimensional plane and three dimensional space. In section we
study numerical errors in the calculation of trajectories of freely moving
particles bouncing off hard walls and obstacles. This will be a prelude to
the study of the integration of the dynamical equations of motion that we
will introduce in the following chapters.

2.1 Motion on the Plane

When a particle moves on the plane, its position can be given in Cartesian
coordinates (z(t), y(t)). These, as a function of time, describe the particle’s
trajectory. The position vector is 7(t) = z(t)  + y(y) g, where & and y are
the unit vectors on the = and y axes respectively. The velocity vector is
U(t) = v,(t) & + v, (t) g where

i = T
valt) = d”;(tt) o(t) = dz—i’f), (2.1)

83
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The acceleration d(t) = a,(t) & + a,(t) y is given by
Lo du(t)y  dPr(t)
W= = @

_dug(t)  dPa(t)

_ dvy(t) . dzy(t) _

a(t) (2.2)

- 1) = —
dt 4t a(t) ==y WE

Figure 2.1: The trajectory of a particle moving in the plane. The figure shows its
position vector 7, velocity ¢ and acceleration @ and their Cartesian components in the
chosen coordinate system at a point of the trajectory.

In this section we study the kinematics of a particle trajectory, there-
fore we assume that the functions (z(¢),y(¢)) are known. By taking
their derivatives, we can compute the velocity and the acceleration of
the particle in motion. We will write simple programs that compute the
values of these functions in a time interval [to,?s], where ¢, is the initial
and t; is the final time. The continuous functions x(t),y(t),v,(t),v,(t)
are approximated by a discrete sequence of their values at the times
to, to + Ot, to + 20t, tg + 36t, ... such that tg + ndit < tf.

We will start the design of our program by forming a generic template
to be used in all of the problems of interest. Then we can study each
problem of particle motion by programming only the equations of mo-
tion without worrying about the less important tasks, like input/output,
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Declare variables

Define fixed parameters (PI....)

¥

User Interface:
Get input from user
x0,y0, t0, tf, d, ...

Print parametersto stdout
i
Initialize variables and other

parameters of the motion
Open datafile

t=t0

Y YES

Calculate
X, Y, VX, vy N

Print resultsin datafile

Y

t=t+dt

Figure 2.2: The flowchart of a typical program computing the trajectory of a particle
from its (kinematic) equations of motion.

user interface etc. Figure shows a flowchart of the basic steps in the
algorithm. The first part of the program declares variables and defines
the values of the fixed parameters (like 7 = 3.1459. .., g = 9.81, etc). The
program starts by interacting with the user (“user interface”) and asks
for the values of the variables x(, vo, to, ty, 0t.... The program prints
these values to the stdout so that the user can check them for correctness
and store them in her data.

The main calculation is performed in a loop executed while t < 4.
The values of the positions and the velocities x(t),y(t), v, (t),v,(t) are
calculated and printed in a file together with the time ¢. At this point we
fix the format of the program output, something that is very important
to do it in a consistent and convenient way for easing data analysis. We
choose to print the values t, x, y, vx, vy in five columns in each line of
the output file.

The specific problem that we are going to solve is the computation of
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the trajectory of the circular motion of a particle on a circle with center
(x0,y0) and radius R with constant angular velocity w. The position on
the circle can be defined by the angle 6, as can be seen in figure 2.3. We
define the initial position of the particle at time ¢, to be 6(¢y) = 0.

y

Figure 2.3: The trajectory of a particle moving on a circle with constant angular
velocity calculated by the program Circle.£90.

The equations giving the position of the particle at time ¢ are

xz(t) = xo+ Rcos(w(t—to))
y(t) = yo—+ Rsin(w(t —tp)) . (2.3)

Taking the derivative w.r.t. ¢ we obtain the velocity

ve(t) = —wRsin (w(t —to))
vy(t) = wRcos(w(t—ty)), (2.4)

a,(t) = —w?’Rcos(w(t—ty)) = —w?(x(t) — x0)
a,(t) = —w?Rsin(w(t —to)) = —w?(y(t) — wo) - (2.5)

We note that the above equations imply that R i=0(R=7—7, 7 LR,
# tangent to the trajectory) and @ = —w?R (R and @ anti-parallel, @ L 7).

The data structure is quite simple. The constant angular velocity w
is stored in the REAL variable omega. The center of the circle (zg, 1), the
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radius R of the circle and the angle ¢ are stored in the REAL variables x0,
yO, R, theta. The times at which we calculate the particle’s position
and velocity are defined by the parameters %, s, 0t and are stored in the
REAL variables t0, tf, dt. The current position (z(t),y(t)) is calculated
and stored in the REAL variables x, y and the velocity (v,(t),v,(t)) in the
REAL variables vx, vy. The declarations of the variables are put in the
beginning of the program:

real :: x0,y0,R,x,y,vx,vy,t,t0,tf,dt
real :: theta,omega
real , parameter :: PI=3.1415927

were we defined the valuef] of m = 3.1415927 by using the parameter
specification.

The user interface of the program is the interaction of the program
with the user and, in our case, it is the part of the program where the
user enters the parameters omega, x0, yO, R, t0, tf, dt. The program
issues a prompt with the names the variables expected to be read. This
is done using simple print statements. The variables are read from the
stdin by simple read statements and the values entered by the user are
printed to the stdout:

print *,’# Enter omega:’

read *,omega

print *,’# Enter center of circle (x0,y0) and radius R:’
read *,x0,y0,R

print *,’# Enter tO,tf dt:’

read *,t0,tf,dt

print *,’# omega= ’,omega
print *,’# x0= ’,x0,’ y0O= ’,y0,’ R= ' ,R
print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt

Next, the program initializes the state of the computation. This includes
checking the validity of the parameters entered by the user, so that the
computation will be possible. For example, the program computes the

'The reader is reminded that REAL variables are stored in 4 bytes and have an
accuracy of about 7 decimal digits.

"This is done so that the used can check for typos and see the actual value read by
the program. By redirecting the stdout of a file on the hard disk, the parameters can
be saved for future reference and used in data analysis.
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expression 2.0*PI/omega, where it is assumed that omega has a non zero
value. We will also demand that R > 0 and w > 0. An if statement
will make those checks and if the parameters have illegal values, the
stop statement will stop the program executionfl. The program opens
the file Circle.dat for writing the calculated values of the position and
the velocity of the particle.

if (R .le. 0.0) stop ’Illegal value of R’

if (omega .le. 0.0) stop ’Illegal value of omega’
print *,’# T= °,2.0*PI/omega
open(unit=11,file="Circle.dat’)

If R <0 orw <0 the corresponding stop statements are executed which
end the program execution. The optional error messages are included
after the stop statements which are printed to the stdout. The value of
the period T' = 27 /w is also calculated and printed for reference.

The open statement uses unit 11 for writing to the file Circle.dat.
The choice of the unit number is free for the programmer to choose. We
recommend using the units 10 to 99 for input/output to filesf.

The main calculation is performed within the loop

t = t0
do while(t .le. tf)

The first statement sets the initial value of the time. The statements be-
tween the do while(condition) and enddo are executed as long as condition
has a .TRUE. value. The statement t=t+dt increments the time and this
is necessary in order not to enter into an infinite loop. The commands
put in place of the dots ......... calculate the position and the velocity
and print them to the file Circle.dat:

*Note that there are more assumptions that need to be checked by the program. We
leave this as an exercise for the reader.

“‘Some numbers can be reserved for special files, like 5 for stdin, 6 for stdout and
0 for stderr. Using numbers larger than 99 can lead to portability problems.
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theta = omega * (t—t0)

x = x0+R*cos(theta)
y = yO0+R*sin(theta)
vx = —omega*R*sin(theta)
vy = omega*R*cos(theta)

write (11,*%)t,x,y,vx, vy

Notice the use of the intrinsic functions sin and cos that calculate the sine
and cosine of an angle expressed in radians. We use the intermediate
variable theta in order to store the phase 0(t) = w(t —t;). The command
write(11,*) writes the variables t,x,y,vx,vy to the unit 11, which has
been associated to the file Circle.dat with the open statement shown
above.

The program is stored in the file Circle.f90 and can be found in
the accompanied software. The extension .£90 is used by the compiler
in order to denote source code written in free format Fortran language.
Compilation and running can be done using the commands:

> gfortran Circle.f90 —o cl
> ./cl

The switch -o cl forces the compiler gfortran to write the binary com-
mands executed by the program to the filefl c1. The command . /c1 loads
the program instructions to the computer memory for execution. When
the programs starts execution, it first asks for the parameter data and
then performs the calculation. A typical session looks like:

> gfortran Circle.f90 —o cl
> ./cl

# Enter omega:

1.0

# Enter center of circle (x0,y0) and radius R:
1.0 1.0 0.5

# Enter tO,tf ., dt:

0.0 20.0 0.01

# omega= 1.

# x0= 1. y0= 1. R= 0.5

# t0= 0. tf= 20. dt=  0.00999999978
# T=  6.28318548

°If omitted, the executable file has the default name a.out.
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The lines shown above that start with a # character are printed by the
program and lines without # are the values of the parameters entered
interactively by the user. The user types in the parameters and then
presses the Enter key in order for the program to read them. Here we
have w = 1.0, £y = yo = 1.0, R = 0.5, t, = 0.0, t; = 20.0 and 6t = 0.01.

You can execute the above program many times for different values of
the parameter by writing the parameter values in a file using an editor.
For example, in the file Circle.in type the following data:

1.0 omega
1.0 1.0 0.5 (x0, yo) , R
0.0 20.0 0.01 tO tf dt

Each line has the parameters read by the program with a read statement
(a record). The rest of the line is ignored by the program and the user can
write anything she likes as a comment on how to use the parameters. The
program can read the above values of the parameters with the command:

> ./cl < Circle.in > Circle.out

The command ./cl runs the commands found in the executable file . /c1.
The < Circle.in redirects the contents of the file Circle.in to the stan-
dard input (stdin) of the command ./cl. This way the program reads
in the values of the parameters from the contents of the file Circle.in.
The > Circle.out redirects the standard output (stdout) of the com-
mand ./cl to the file Circle.out. Its contents can be inspected after the
execution of the program with the command cat:

> cat Circle.out

Enter omega:

Enter center of circle (x0,y0) and radius R:
Enter tO, tf ,dt:

omega= 1.

x0= 1. yO0= 1. R= 0.5

t0= 0. tf= 20. dt= 0.00999999978

T=  6.28318548

H o o oH H H H*

We list the full program in Circle.f90 below:
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!

!'File Circle.f90
!Constant angular velocity circular motion
!Set (x0,y0) center of circle, its radius R and omega.

'At t=t0, the particle is at theta=0
!

program Circle
implicit none

'
! Declaration of variables

real :: x0,y0,R,x,y,vx,vy,t,t0,tf, dt
real :: theta,omega

real , parameter :: PI=3.1415927
!

!Ask user for input:
print *,’# Enter omega:
read *,omega

print *,’# Enter center of circle (x0,y0) and radius R:’
read *,x0,y0,R

print *,’# Enter tO,tf, dt:’

read *,t0,tf,dt

)

print *,’# omega= ’,6omega
print *,’# x0= ’,x0,  y0= *,y0,’ R= ’ R
print *,’# tO= ’,t0,’ tf= ’,tf,’ dt= ’.,dt

!

!Initialize

if (R .le. 0.0) stop ’Illegal value of R’

if (omega .le. 0.0) stop ’'Illegal value of omega’
print *,’# T= °,2.0*PI/omega
open(unit=11,file="Circle.dat’)

!

!Compute:

t = 0

do while(t .le. tf)
theta = omega * (t—t0)

x = x0+R*cos(theta)

y = yO+R*sin(theta)

vx = —omega*R*sin(theta)
vy = omega*R*cos(theta)
write (11 .,%)t,x,y,vx,vy

t = t + dt
enddo

close (11)

end program Circle
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2.1.1 Plotting Data

We use gnuplot for plotting the data produced by our programs. The
file Circle.dat has the time t and the components x, y, vx, vy in five
columns. Therefore we can plot the functions z(¢) and y(¢) by using the
gnuplot commands:

gnuplot> plot  7Circle.dat” using 1:2 with lines title "x(t)”
gnuplot> replot "Circle.dat” using 1:3 with lines title 7y(t)”

15 - - . T T - T v 4 T T T T T T T T -
/ ) theta(t) ——
pi

05 L L L L L L L L 4 L L L L L L L L L
o 2 a 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Figure 2.4: The plots (z(t),y(t)) (left) and 6(¢) (right) from the data in Circle.dat
for w = 1.0, 2o = yo = 1.0, R = 0.5, to = 0.0, t; = 20.0 and 5t = 0.01.

The second line puts the second plot together with the first one. The
results can be seen in figure [2.4.

Let’s see now how we can make the plot of the function 6(¢). We can
do that using the raw data from the file Circle.dat within gnuplot, with-
out having to write a new program. Note that 0(¢) = tan™! ((y — vo)/(z — 0)).
The function atan2 is available in gnuplotﬁ as well as in Fortran. Use
the online help system in gnuplot in order to see its usage:

gnuplot> help atan2

The ‘atan2(y.x)‘ function returns the arc tangent (inverse
tangent) of the ratio of the real parts of its arguments.
‘atan2 ° returns its argument in radians or degrees, as
selected by ‘set angles‘, in the correct quadrant.

*The command help functions will show you all the available functions in gnuplot.
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Therefore, the right way to call the function is atan2(y-y0,x-x0). In
our case x0=y0=1 and x, y are in the 2nd and 3rd columns of the file
Circle.dat. We can construct an expression after the using command as
in page B4, where $2 is the value of the second and $3 the value of the
third column:

gnuplot> x0 = 1 ; yo =1
gnuplot> plot “Circle.dat” using 1:(atan2($3—-y0,$2—x0)) \
with lines title “theta(t)”,pi,—pi

The second command is broken in two lines by using the character \
so that it fits conveniently in the text]. Note how we defined the val-
ues of the variables x0, y0 and how we used them in the expression
atan2($3-x0,$2-y0). We also plot the lines which graph the constant
functions fi(t) = 7 and f,(t) = —7 which mark the limit values of 6(t).
The gnuplot variableﬁ pi is predefined and can be used in formed ex-
pressions. The result can be seen in the left plot of figure [2.4.

The velocity components (v,(t),v,(t)) as function of time as well as
the trajectory 7(¢) can be plotted with the commands:

gnuplot> plot ”Circle.dat” using 1:4 title 7v_x(t)” \
with lines

gnuplot> replot “Circle.dat” using 1:5 title ”V_y(t)” \
with lines

gnuplot> plot ”Circle .dat” using 2:3 title ”“x—y
with lines

We close this section by showing how to do a simple animation of the
particle trajectory using gnuplot. There is a file animate2D.gnu in the
accompanied software which you can copy in the directory where you
have the data file Circle.dat. We are not going to explain how it works]
but how to use it in order to make your own animations. The final result
is shown in figure 2.5. All that you need to do is to define the data filef],

"This can be done on the gnuplot command line as well.

8Use the command show variables in order to see the current/default values of
gnuplot variables.

*You are most welcome to study the commands in the script and guess how it works
of course!

It can be any file that has (¢, z,y) in the 1st, 2nd and 3rd columns respectively.
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t= 20.000000 (x,y)= (1.208431,1.454485)
16 ‘ ; ‘

12 B
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Figure 2.5: The particle trajectory plotted by the gnuplot program in the file
animate2D.gnu of the accompanied software. The position vector is shown at a given
time t, which is marked on the title of the plot together with the coordinates (x,y).
The data is produced by the program Circle.f90 described in the text.

the initial time tO0, the final time tf and the time step dt. These times
can be different from the ones we used to create the data in Circle.dat.
A full animation session can be launched using the commands:

gnuplot> file = "Circle.dat”

gnuplot> set xrange [0:1.6]; set yrange [0:1.6]
gnuplot> tO = 0; tf = 20 ; dt = 0.1

gnuplot> load “animate2D.gnu”

The first line defines the data file that animate2D.gnu reads data from.
The second line sets the range of the plots and the third line defines
the time parameters used in the animation. The final line launches the
animation. If you want to rerun the animation, you can repeat the last
two commands as many times as you want using the same or different
parameters. E.g. if you wish to run the animation at “half the speed”
you should simply redefine dt=0.05 and set the initial time to t0=0:

‘gnuplot> t0 = 0; dt = 0.05
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‘ gnuplot> load “animate2D.gnu”

2.1.2 More Examples

We are now going to apply the steps described in the previous section
to other examples of motion on the plane. The first problem that we are
going to discuss is that of the small oscillations of a simple pendulum.
Figure 2.6 shows the single oscillating degree of freedom 6(t), which
is the small angle that the pendulum forms with the vertical direction.
The motion is periodic with angular frequency w = ,/g/l and period

Figure 2.6: The simple pendulum whose motion for § < 1 is described by the
program SimplePendulum.f90.

T = 27 /w. The angular velocity is computed from 6 = df/dt which gives
O(t) = 6ycos(w(t—ty))
6(t) = —wbysin(w(t—ty)) (2.6)
We have chosen the initial conditions 6(t,) = 6, and 6(t,) = 0. In order to

write the equations of motion in the Cartesian coordinate system shown
in figure we use the relations

2(t) = Isin(0(t))

y(t) = —lcos(0(t))
v (t) = dz_it) = lé(t) cos (0(t))
vy (t) = dy_(t) = 10(t)sin (0(t)) . 2.7

dt
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These are similar to the equations (2.3) and (.4) that we used in the case
of the circular motion of the previous section. Therefore the structure of
the program is quite similar. Its final form, which can be found in the

file SimplePendulum.£90, is:

|

!File SimplePendulum.f90

!Set pendulum original position at thetaO with no initial speed

!

program SimplePendulum
implicit none
!

! Declaration of variables
real :: 1,x,y,vx,vy,t,t0,tf, dt
real :: theta,thetaO,dtheta_dt,h6 omega

real , parameter ::PI=3.1415927,g=9.81
!

!Ask user for input:
print *,’# Enter 1:
read *,1

print *,’# Enter thetaO:’

read *,thetaO

print *,’# Enter tO,tf  dt:’

read *.,t0,tf,dt

print *,°# 1= .1 ,’ thetaO= ’,theta0
print * ’# tO= ’,t0,’ tf= ’~,tf,’ dt= ’,dt

[l

!
!Initialize

omega = sqrt(g/1l)

print *,’# omega= ' ,omega, T= °,2.0*PI/omega
open(unit=11,file="SimplePendulum.dat’)

'
!Compute:
t = t0
do while(t .le. tf)
theta = theta0*cos(omega*(t—t0))
dtheta_dt = —omega*theta0*sin (omega*(t—t0))
x = 1*sin(theta)
y —1*cos(theta)
vx = 1*dtheta dt*cos(theta)
vy = 1*dtheta_dt*sin(theta)
write (11,100)t,x,y,vx,vy,theta,dtheta_dt
t = t + dt
enddo
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close (11)
100 FORMAT(7G15.7)
end program SimplePendulum
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We note that the acceleration of gravity ¢ is hard coded in the program
and that the user can only set the length [ of the pendulum. The data
file SimplePendulum.dat produced by the program, contains two extra
columns with the current values of (t) and the angular velocity 6(t). The
statement write(11,100) writes to the unit 11 according to the format
set by the FORMAT statement, found in the line labeled by the label 100.
This is done so that we can be sure that the data is printed in one line

for each value of ¢ (see the discussion on page p2).

A simple session for the study of the above problem is shown belowﬂ:

> gfortran SimplePendulum.f90 —o sp

> ./sp

# Enter 1:

1.0

# Enter thetaO:

0.314

# Enter tO,tf , dt:

0 20 0.01

# 1= 1. thetaO= 0.31400001

# t0= 0. tf= 20. dt= 0.00999999978

# omega=  3.132092 T= 2.0060668

> gnuplot

gnuplot> plot ”SimplePendulum.dat” u 1:2 w 1 t "x(t)”
gnuplot> plot  ”SimplePendulum.dat” u 1:3 w 1 t "y(t)”
gnuplot> plot  ”SimplePendulum.dat” u 1:4 w 1 t “v_x(t)”
gnuplot> replot ”SimplePendulum.dat” u 1:5 w 1 t “v_y(t)”
gnuplot> plot  ”SimplePendulum.dat” u 1:6 w 1 t “theta(t)”
gnuplot> replot ”SimplePendulum.dat” u 1:7 w 1 t “theta '(t)”

7
’SimplePendulum . dat” \
u 2:3 wlt "xvy”
gnuplot> file = ”SimplePendulum.dat”
gnuplot> t0=0;t£=20.0;dt=0.1
gnuplot> set xrange [—0.6:0.6];set yrange [—1.1:0.1]
gnuplot> load “animate2D .gnu”

gnuplot> plot [-0.6:0.6][—1.1:0.1]

"Notice that we replaced the command “using 1:2 with lines title” with “u
1:2 w lines t”. These abbreviations can be done with every gnuplot command if an

abbreviation uniquely determines a command.
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The next example is the study of the trajectory of a particle shot near
the earth’s surface[] when we consider the effect of air resistance to be
negligible. Then, the equations describing the trajectory of the particle
and its velocity are given by the parametric equations

x(t) = wvogt
1
y(t) = vout — 59152
v(t) = Vg
vy(t) = woy — gt, (2.8)

where t is the parameter. The initial conditions are z(0) = y(0) = 0,
v,(0) = vg, = vgcosf and v,(0) = vy, = vysin b, as shown in figure 2.7.

4+ i
—
Vo
2_ -
]
0 1 1 1 1 I
2 4 6 8 10

Figure 2.7: The trajectory of a particle moving under the influence of a constant
gravitational field. The initial conditions are set to 2(0) = y(0) = 0, v, (0) = v, = vo cosf
and Uy (0) = Voy = Vo sin 6.

The structure of the program is similar to the previous ones. The user
enters the magnitude of the particle’s initial velocity and the shooting
angle 0 in degrees. The initial time is taken to be ¢, = 0. The program
calculates vy, and v, and prints them to the stdout. The data is written
to the file Projectile.dat. The full program is listed below and it can
be found in the file Projectile.f90 in the accompanied software:

!
!File Projectile.f90

I.e. g = const. and the Coriolis force can be ignored.
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!Shooting a projectile near the earth surface.
!No air resistance.
!Starts at (0,0), set (vO,theta).

!

program Projectile
implicit none

!

!Declaration of variables
real :: x0,y0,R,x,y,vx,vy,t,tf,dt
real :: theta,vOx,vOy,vO

real , parameter :: PI=3.1415927,g=9.81
'

!Ask user for input:

print *,’# Enter vO,theta (in degrees):’

read *,v0,theta

print *,’# Enter tf dt:’

read *, tf,dt

print *,’# vO= ’,v0,’ theta= ’,theta,’ o (degrees)’
print *,°# tO= ’,0.0,° tf= ’,tf,’ dt= ’,dt

!

!Initialize
if ( vo .le. 0.0) stop ’'Illegal value of v0<=0’
if ( theta .le. 0.0 .or. theta .ge. 90.0) &

stop ’Illegal value of theta’

theta = (PI/180.0)*theta !convert to radians
vOx = v0*cos(theta)

vOy = vO*sin (theta)

print *,°# vOx = ’,v0x,’ vOy= ’,v0y

open(unit=11,file="Projectile .dat’)
!

!Compute:

t = 0.0

do while(t .le. tf)
x = v0x * t
y = v0y * t — 0.5*¥g*t*t
vx = vOx
vy = vOy — g*t
write (11,*%)t,x,y,vx,vy
t = t + dt

enddo

close (11)

end program Projectile

A typical session for the study of this problem is shown below:
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> gfortran Projectile.f90 —o pj

> ./pJ
# Enter vO,theta (in degrees):
10 45
# Enter tf , dt:
1.4416 0.001
# v0= 10.0000000  theta= 45.000000 o (degrees)
# t0= 0.0000000 ti= 1.4416000 dt= 1.00000005E—-03
# vOx = 7.0710678 vOy= 7.0710678
> gnuplot
gnuplot> plot ”Projectile .dat” using 1:2 w 1 t "x(t)”
gnuplot> replot "Projectile.dat” using 1:3 w 1 t "y(t)”
gnuplot> plot  ”Projectile.dat” using 1:4 w 1 t "v_x(t)”
gnuplot> replot ”"Projectile.dat” using 1:5 w 1 t "v_y(t)”
gnuplot> plot ”Projectile .dat” using 2:3 w 1 t "x—y”
gnuplot> file = ”Projectile.dat”
gnuplot> set xrange [0:10.3];set yrange [0:10.3]
gnuplot> t0=0;tf=1.4416;dt=0.05
gnuplot> load “animate2D.gnu”
Next, we will study the effect of air resistance of the form F' = —mkv.
The solutions to the equations of motion
4 _
%
\
oL -mkyv -
%
mg
0 1 1 1 1
2 4 6 8 10

Figure 2.8: The forces that act on the particle of figure .7 when we assume air

resistance of the form F = —mk#.
dv,,
a, = — =—kv
dv
a, = —2=—kv,—g (2.9

dt
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with initial conditions z(0) = y(0) = 0, v,(0) = v, = vocosf and v,(0) =

Voy = Vo Sin 6 areE

ve(t) = wvoe ™

o(t) = (vy+3)e™—2
w(t) = = (1-e )

k
1 g - g
y(t) = E ('on + E) (1 —e kt) — Et

(2.10)

Programming the above equations is as easy as before, the only dif-
ference being that the user needs to provide the value of the constant &.
The full program can be found in the file ProjectileAirResistance.f90

and it is listed below:

!

!File ProjectileAirResistance.f90
!Shooting a projectile near the earth surface
!with air resistance

!Starts at (0,0), set k, (vO,theta).
|

program ProjectileAirResistance
implicit none
!

! Declaration of variables
real :: x0,y0,R,x,y,vx,vy,t,tf,dt, k
real :: theta,v0x,vOy,vO0

real , parameter :: PI=3.1415927,g=9.81
1

!Ask user for input:
print *,’# Enter k, vO,theta (in degrees):’
read *,k, vO,theta

print *,’# Enter tf , dt:’

read *, tf,dt

print *,’# k = 7k

print *,’# vO= ’,v0,’ theta= ’,theta,’o (degrees)’
print *,°# tO= °,0.0," tf= ’,tf,’ dt= ’,dt

!

!Initialize
if ( vo .le. 0.0) stop ’Illegal value of v0<=0’

“The proof of equations (2.10) is left as an exercise for the reader.
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if( k .le. 0.0) stop ’Illegal value of k <=0’
if ( theta .le. 0.0 .or. theta .ge. 90.0) &
stop ’Illegal value of theta’

theta = (PI/180.0)*theta !convert to radians
vOx = v0*cos(theta)

vOy = vO0*sin (theta)

print *,’# vOx = ’,v0x,’ vOy= ’,vOy

open(unit=11,file="ProjectileAirResistance.dat’)

!
!Compute:
t = 0.0
do while(t .le. tf)
x = (va/k)*(1.0—eXp(—k*t))
y (1.0/%x)*(voy+(g/k))*(1.0 —exp(—k*t))—(g/k) *t
vx = vOx*exp(—k*t)
vy = (vOoy+(g/k))*exp(—k*t)—(g/k)
write (11,*%)t,x,y,vx, vy

t = t + dt
enddo
close (11)

end program ProjectileAirResistance

X
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Figure 2.9: The plots of z(t),y(t) (left) and v, (¢),v,(t) (right) from the data produced
by the program ProjectileAirResistance.f90 for k = 5.0, vg = 10.0, § = 7 /4, t; =
0.91 and 6t = 0.001. We also plot the asymptotes of these functions as ¢t — oo.

We also list the commands of a typical session of the study of the
problem:

‘> gfortran ProjectileAirResistance.f90 —o pja
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Figure 2.10: Trajectories of the particles shot with vo = 10.0, # = 7/4 in the absence
of air resistance and when the air resistance is present in the form F = —mk? with

k=5.0.

> ./pja

# Enter k, vO,theta (in degrees):

5.0 10.0 45

# Enter tf , dt:

0.91 0.001

# k = .

# vO=  10. theta=  45.0 (degrees)

# t0= 0. tf=  0.910000026 dt= 0.00100000005
# vOx = 7.07106781 vOy=  7.07106781

> gnuplot

gnuplot> vOx = 10*cos(pi/4) ; vOy = 10*sin(pi/4)
gnuplot> g = 9.81 ; k = 5

gnuplot> plot [:][:v0x/k+0.1] ”“ProjectileAirResistance.

using 1:2 with lines title "x(t)”,v0x/k
gnuplot> replot

using 1:3 with lines title “y(t)”,\

—(g/k)*x+(g/k**2)+v0y/k

gnuplot> plot [:][—g/k—0.6:] ”ProjectileAirResistance.

using 1:4 with lines title "v_x(t)”,0
gnuplot> replot
using 1:5 with lines title "v_y(t)”,—g/k
gnuplot> plot

”ProjectileAirResistance.

”ProjectileAirResistance.

"ProjectileAirResistance.

dat”

dat”

dat”

dat”

dat”
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using 2:3 with lines title ”"With air resistance k=5.0"

gnuplot> replot ”Projectile .dat” \
using 2:3 with lines title ”"No air resistance k=0.07
gnuplot> file = ”ProjectileAirResistance.dat”

gnuplot> set xrange [0:1.4];set yrange [0:1.4]
gnuplot> t0=0;t£=0.91;dt=0.01
gnuplot> load “animate2D.gnu”

Long commands have been continued to the next line as before. We
defined the gnuplot variables v0x, vOy, g and k to have the values that
we used when running the program. We can use them in order to
construct the asymptotes of the plotted functions of time. The results are
shown in figures é and [2.10.
The last example of this section will be that of the anisotropic har-
monic oscillator. The force on the particle is
F, = —mwiz F, = —muw3y (2.1
where the “spring constants” k; = mwi and ks = mw3 are different in the

directions of the axes = and y. The solutions of the dynamical equations
of motion for z(0) = A, y(0) =0, v,(0) = 0 and v, (0) = w, A are

x(t) = Acos(wit) y(t) = Asin(wst)
ve(t) = —wiAsin(wit) vy (t) = waA cos(wat) . (2.12)

If the angular frequencies w; and w, satisfy certain relations, the trajec-
tories of the particle are closed and self intersect at a given number of
points. The proof of these relations, as well as their numerical confirma-
tion, is left as an exercise for the reader. The program listed below is in
the file Lissajoux.£90:

!
!File Lissajous.f90
! Lissajous curves (special case)

'x(t)= cos(ol t), y(t)= sin(o2 t)
!

program Lissajous
implicit none
!

! Declaration of variables
real x0,y0,R,x,y,vx,vy,t,t0,tf, dt
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real o1,02,T1,T2

real , parameter :: PI=3.1415927
!

!Ask user for input:

print *,’# Enter omegal and omega2:’

read *,01,02

print *,’# Enter tf ., dt:’

read *,tf,dt

print *,’# ol= ’,ol, ’ 02= ’,02

print *,’# t0= °,0.0,° tf= ’,tf,’ dt= ’,dt
!

!Tnitialize

if (o1.1e.0.0 .or. o02.1le.0.0) stop ’omegal or omega2<=0’
T1 = 2.0*PI/o1

T2 = 2.0*PI/o2

print *,°# Ti= °,T1,  T2= ° T2

open(unit=11,file="Lissajous.dat’)
'

!Compute:

t = 0.0

do while(t .le. tf)
x = cos(ol*t)
y = sin(o2*t)
vx = —ol*sin(ol1*t)
vy = o02*cos(02*t)
write (11,%)t,x,y,vx,vy
t = t + dt

enddo

close (11)

end program Lissajous

We have set A =1 in the program above. The user must enter the two
angular frequencies w; and w; and the corresponding times. A typical
session for the study of the problem is shown below:

> gfortran Lissajous.f90 —o 1sj

> ./1sj

# Enter omegal and omega2:

35

# Enter tf 6 dt:

10.0 0.01

# ol= 3. 02= 5.

# t0= 0. tf= 10. dt=  0.00999999978
# T1=  2.09439516 T2= 1.2566371
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>gnuplot

gnuplot> plot ”Lissajous.dat” using 1:2 w 1 t "x(t)”
gnuplot> replot ”Lissajous.dat” using 1:3 w 1 t 7y(t)”
gnuplot> plot  ”Lissajous.dat” using 1:4 w 1 t "v_x(t)”
gnuplot> replot ”Lissajous.dat” using 1:5 w 1 t "v_y(t)”
gnuplot> plot ”Lissajous.dat” using 2:3 w 1 t "x—y for 3:57
gnuplot> file = ”Lissajous.dat”

gnuplot> set xrange [ —1.1:1.1];set yrange [—1.1:1.1]
gnuplot> t0=0;tf=10;dt=0.1
gnuplot> load “animate2D.gnu”

The results for w; = 3 and w, = 5 are shown in figure 2.11.

t= 6.400000 (x,y)= (0.949047,0.509265)

0.5

Figure 2.11: The trajectory of the anisotropic oscillator with w; = 3 and w, = 5.

2.2 Motion in Space

By slightly generalizing the methods described in the previous section,
we will study the motion of a particle in three dimensional space. All
we have to do is to add an extra equation for the coordinate z(¢) and the
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Figure 2.12: The conical pendulum of the program ConicalPendulum.£90.

component of the velocity v,(t). The structure of the programs will be
exactly the same as before.

The first example is the conical pendulum, which can be seen in figure
.12, The particle moves on the zy plane with constant angular velocity
w. The equations of motion are derived from the relations

T, =T cosf = mg T,, = Tsinf = mw’r, (2.13)

where r = [sin . Their solution[] is

x(t) = rcoswt
y(t) = rsinwt
z(t) = —lcosb, (2.14)

“One has to choose appropriate initial conditions. Exercise: find them!
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where we have to substitute the values

g
cosf = —
w2l
sinf = V1 —cos20
g sind
r o= =
w? cos b

For the velocity components we obtain

v, = —rwsinwt
vy = Twcoswt
v, = 0.
Therefore we must have
g
W Z Wmin = -

l Y

and when w — oo,  — 7/2.

KINEMATICS

(2.15)

(2.16)

(2.17)

In the program that we will write, the user must enter the parameters
[, w, the final time ¢; and the time step dt. We take ¢y = 0. The convention
that we follow for the output of the results is that they should be written
in a file where the first 7 columns are the values of ¢, z, v, 2, v,, v, and
v,. Each line in this file is long and, in order to prevent Fortran from
breaking it into two separate lines, we have to give an explicit format
specification. See the discussion on page . The full program is listed

below:

|

! File ConicalPendulum.f90

!Set pendulum angular velocity omega and display motion in 3D

!

program ConicalPendulum
implicit none
!

! Declaration of variables
real :: 1,r,x,y,z,vx,vy,vz,t,tf,dt
real :: theta,cos_theta,sin_theta, omega

real , parameter :: PI=3.1415927,g=9.81
!
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!Ask user for input:

print *,’# Enter 1,omega:
read *,1,omega

print *,’# Enter tf dt:’
read *,tf,dt

)

) )

print *,°# 1= 1 ,  omega= ,omega
print *,’# T= ’,2.0*PI/omega,’  omega min= ’,sqrt(g/1l)
print *,°# tO= ’,0.0,° tf= ’,tf,’ dt= ’,dt

!
!'Initialize

cos_theta = g/(omega*omega*1)

if ( cos_theta .ge. 1) stop ’‘cos(theta)>= 1’
sin_theta = sqrt(1.0—cos_theta*cos_theta)

z = —g/(omega*omega) !they remain constant throught
vz= 0.0 !the motion
r = g/(omega*omega)*sin_theta/cos_theta

open(unit=11, file="ConicalPendulum.dat’)
!

!Compute:
t = 0.0
do while(t .le. tf)

x = r*cos(omega*t)

y = r*sin(omega*t)

vx = —r*sin(omega*t)*omega

vy = r*cos(omega*t)*omega
write (11,100)t,x,y,2z,vX,vy,vz
t = t + dt
enddo

close (11)

100 FORMAT(206G15.7)
end program ConicalPendulum

In order to compile and run the program we can use the commands
shown below:

> gfortran ConicalPendulum.f90 —o cpd

> ./cpd

# Enter 1,omega:

1.0 6.28

# Enter tf ,h dt:

10.0 0.01

# 1= 1. omega= 6.28000021

# T= 1.00050724 omega_min=  3.132092

# t0= 0. tf= 10. dt= 0.00999999978
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The results are recorded in the file ConicalPendulum.dat. In order to
plot the functions x(¢), y(t), 2(t), v.(t), v,(t), v.(t) we give the following
gnuplot commands:

> gnuplot

gnuplot> plot ”ConicalPendulum .dat” u 1:2 w 1 t "x(t)”
gnuplot> replot ”ConicalPendulum.dat” u 1:3 w 1 t "y(t)”
gnuplot> replot ”ConicalPendulum.dat” u 1:4 w 1 t 7z(t)”
gnuplot> plot  ”ConicalPendulum.dat” u 1:5 w 1 t "v_x(t)”
gnuplot> replot “ConicalPendulum.dat” u 1:6 w 1 t "v_y(t)”
gnuplot> replot “ConicalPendulum.dat” u 1:7 w 1 t "v_z(t)”

The results are shown in figure 2.13. In order to make a three dimen-
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Figure 2.13: The plots of the functions z(t), y(t), z(t), v4(t), vy (t), v.(t) of the program
ConicalPendulum.f90 for w = 6.28, [ = 1.0.

sional plot of the trajectory, we should use the gnuplot command splot:

gnuplot> splot ”ConicalPendulum.dat” u 2:3:4 w 1 t "r(t)”

The result is shown in figure . We can click on the trajectory and
rotate it and view it from a different angle. We can change the plot limits
with the command:

gnuplot> splot [—1.1:1.1][—-1.1:1.1][-0.3:0.0] \
”ConicalPendulum.dat” using 2:3:4 w 1 t "r(t)”
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Figure 2.14:  The plot of the particle trajectory (t) of the program
ConicalPendulum.f90 for w = 6.28, [ = 1.0. We can click and drag with the mouse on
the window and rotate the curve and see it from a different angle. At the bottom left of
the window, we see the viewing direction, given by the angles § = 55.0 degrees (angle
with the z axis) and ¢ = 62 degrees (angle with the z axis).

We can animate the trajectory of the particle by using the file animate3D.gnu
from the accompanying software. The commands are similar to the ones
we had to give in the two dimensional case for the planar trajectories
when we used the file animate2D. gnu:

gnuplot> file = ”ConicalPendulum.dat”

gnuplot> set xrange [ —1.1:1.1];set yrange [—1.1:1.1]
gnuplot> set zrange [—0.3:0]

gnuplot> t0=0;t£f=10;dt=0.1

gnuplot> load “animate3D.gnu”

The result can be seen in figure 2.15. The program animate3D.gnu can
be used on the data file of any program that prints t x y z as the first
words on each of its lines. All we have to do is to change the value of
the file variable in gnuplot.

Next, we will study the trajectory of a charged particle in a homoge-
neous magnetic field B = B2. At time t,, the particle is at 7y = o2 and
its velocity is Uy = v,y + vo. 2, see figure . The magnetic force on the
particle is F = q(v x é) = ¢Bv,& — ¢Bv,y and the equations of motion
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t= 10.100000 (x,y,z)= (0.964311,-0.090732,-0.248742)

0.05 |
01 +
2015 -
02 -
-0.25 |
03 +

Figure 2.15: The particle trajectory () computed by the program
ConicalPendulum.f90 for w = 6.28, | = 1.0 and plotted by the gnuplot script
animate3D.gnu. The title of the plot shows the current time and the particles coor-
dinates.

are
dv, _qB
G = —= =Wy w=-—
dv,
@y = =Wl
a, = 0. (2.18)

By integrating the above equations with the given initial conditions we
obtain

v,(t) = wpysinwt
vy(t) = v, coswt
v,(t) = wo,. (2.19)

Integrating once more, we obtain the position of the particle as a function
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Figure 2.16: A particle at time ¢, = 0 is at the position 7y = zo& with velocity
U = Voy¥ + V0.2 in a homogeneous magnetic field 5 = B2Z.

of time
U V
z(t) = <on + &> — Y coswt = To COSwt
w w
v v
y(t) = Y sinwt = —rosinwt pe xy = _ 0y
w w
Z(t) - UOzt7 (220)
where we have chosen zy = —uvp,/w. This choice places the center of the

circle, which is the projection of the trajectory on the xy plane, to be at
the origin of the coordinate system. The trajectory is a helix with radius
R = —z and pitch vy, T = 2710y, /w.

We are now ready to write a program that calculates the trajectory
given by (). The user enters the parameters v, and 6, shown in
figure , as well as the angular frequency w (Larmor frequency). The
components of the initial velocity are vy, = vgcosf and vy, = vpsind.
The initial position is calculated from the equation zy = —wvy,/w. The
program can be found in the file ChargeInB.£90:

!

!File ChargelnB.f90

!A charged particle of mass m and charge q enters a magnetic
!field B in +z direction. It enters with velocity
1v0x=0,v0y=v0 cos(theta) ,v0z=v0 sin(theta), 0<=theta<pi/2
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!at the position x0=—vOy/omega, omega=q B/m
!
!Enter vO and theta and see trajectory from

1t0=0 to tf at step dt
!

program ChargelInB
implicit none
!

! Declaration of variables

real :: x,y,z,vx,vy,vz,t,tf, dt
real :: x0,y0,z0,v0x,v0y,v0z,vO0
real :: theta,omega

real , parameter :: PI=3.1415927
!

!Ask user for input:

print *,’# Enter omega:

read *,omega

print *,’# Enter vO, theta (degrees):’
read *,v0,theta

print *,’# Enter tf dt:’

read *,tf,dt

print *,’# omega= ' ,omega , T= ’,2.0*PI/omega
print *,’# v0= > ,v0, * theta= ’,theta, o (degrees)’
print *,'# tO= *,0.0, > otf= >otf,’ dt= ’,dt

!

!'Initialize
if (theta.1t.0.0 .or. theta.ge.90.0)stop 'Illegal 0<theta<90’
theta = (PI/180.0)*theta !convert to radians

vO0y = vO0*cos(theta)

v0z = vO*sin(theta)

print *,’# vOx= ’,0.0,° vOy= ’,vO0y,’ vO0z= ’,v0z

x0 = — vO0y/omega

print * °# x0= ~,x0, * y0O= ’7,0.0," z0= ’,0.0

print *,’# xy plane: Circle with center (0,0) and R= ’,ABS(x0)
print *,’# step of helix: s=v0z*T= ’,v0z*2.0*PI/omega

open(unit=11,file="ChargelnB.dat’)
!

!Compute:

t = 0.0

vz = vO0z

do while(t .le. tf)
x = x0*cos(omega*t)
y = —x0*sin(omega*t)
z = v0z*t

vx = vOy*sin(omega*t)
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vy = vOy*cos(omega*t)
write(11,100)t,x,y,2z,vx,vy, vz
t = t + dt

enddo

close (11)

100 FORMAT(20G15.7)

end program ChargeInB

A typical session in which we calculate the trajectories shown in figures
2.17 and R.18 is shown below:

Figure 2.17: The plots of the z(t),y(t), 2(t), v4(t),vy(t), v:(t) functions calculated by
the program in ChargeInB.f90 for w = 6.28, zo = 1.0, § =

20 degrees.
> gfortran ChargeInB.f90 —o chg
> ./chg
# Enter omega:
6.28
# Enter vO, theta (degrees):
1.0 20
# Enter tf 6 dt:
10 0.01
# omega= 6.28000021 T= 1.00050724
# v0= 1. theta=  20.0 (degrees)
# t0= 0. tf= 10. dt=  0.00999999978
# vOx= 0. vOy=  0.939692616 v0z=  0.342020124
# x0=  —0.149632573 y0= 0. z0= 0.
# xy plane: Circle with center (0,0) and R= 0.149632573
# step of helix: s=v0z*T=  0.342193604%

> gnuplot
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gnuplot> plot  ”ChargelnB.dat” u 1:2 w 1 title ”x(t)”
gnuplot> replot “ChargelnB.dat” u 1:3 w1l title 7y(t)”
gnuplot> replot ”"ChargeInB.dat” u 1:4 w 1 title 7z(t)”
gnuplot> plot ”ChargeInB.dat” u 1:5 w 1 title ”v_x(t)”
gnuplot> replot ”ChargelnB.dat” u 1:6 w 1 title "v_y(t)”
gnuplot> replot “ChargelnB.dat” u 1:7 w 1 title "v z(t)”
gnuplot> splot ”ChargelnB.dat” u 2:3:4 w 1 title "r(t)”

gnuplot> file = ”ChargelnB.dat”

gnuplot> set xrange [—0.65:0.65];set yrange [—-0.65:0.65]
gnuplot> set zrange [0:1.3]

gnuplot> t0=0;t£f=3.5;dt=0.1

gnuplot> load “animate3D.gnu”

t= 3.500000 (x,y,z)= (0.149623,0.001671,1.197069)

Figure 2.18: The trajectory 7(t) calculated by the program in ChargeInB.£90 for
w = 6.28, v9p = 1.0, # = 20 degrees as shown by the program animate3D.gnu. The
current time and the coordinates of the particle are printed on the title of the plot.
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2.3 Trapped in a Box

In this section we will study the motion of a particle that is free, except
when bouncing elastically on a wall or on certain obstacles. This motion
is calculated by approximate algorithms that introduce systematic errors.
These types of errors/] are also encountered in the study of more compli-
cated dynamics, but the simplicity of the problem will allow us to control
them in a systematic and easy to understand way.

2.3.1 The One Dimensional Box

The simplest example of such a motion is that of a particle in a “one
dimensional box”. The particle moves freely on the x axis for 0 < z < L,
as can be seen in figure . When it reaches the boundaries z = 0 and
x = L it bounces and its velocity instantly reversed. Its potential energy

1S
0 O<zxz< L

+o0o0 elsewhere ’ (2.21)

V(z) = {

which has the shape of an infinitely deep well. The force F' = —dV (z)/dz =
0 within the box and F' = o0 at the position of the walls.

Figure 2.19: A particle in a one dimensional box with its walls located at z = 0 and
x = L.

Initially we have to know the position of the particle 2, as well as
its velocity vy (the sign of vy depends on the direction of the particle’s

In the previous sections, our calculations had a small systematic error due to the
approximate nature of numerical floating point operations which approximate exact real
number calculations. But the algorithms used were not introducing systematic errors
like in the cases discussed in this section.
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motion) at time t,. As long as the particle moves within the box, its
motion is free and

fL‘(t) = X9+ Uo(t - to)
v(t) = . (2.22)

For a small enough change in time ¢¢, so that there is no bouncing on
the wall in the time interval (¢, + dt), we have that

x(t+dt) = x(t)+v(t)dt
v(t+6t) = v(t). (2.23)

Therefore we could use the above relations in our program and when
the particle bounces off a wall we could simple reverse its velocity v(t) —
—v(t). The devil is hiding in the word “when”. Since the time interval
0t is finite in our program, there is no way to know the instant of the
collision with accuracy better than ~ 6t. However, our algorithm will
change the direction of the velocity at time ¢ + 0¢, when the particle will
have already crossed the wall. This will introduce a systematic error,
which is expected to decrease with decreasing J¢. One way to implement
the above idea is by constructing the loop

do while(t .le. tf)
write (11 .,*)t,x,v

x = x + v*dt

t =t + dt

if(x .1t. 0.0 .or. x .gt. L) v = —v
enddo

where the last line gives the testing condition for the wall collision and
the subsequent change of the velocity.

The full program that realizes the proposed algorithm is listed below
and can be found in the file box1D_1.£90. The user can set the size of
the box L, the initial conditions x0 and v0 at time tO, the final time tf
and the time step dt:

|

!File box1D_1.f90
!Motion of a free particle in a box 0<x<L
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!Use integration with time step dt: x = x + v*dt
!

program box1D
implicit none
!

!Declaration of variables
real :: L,x0,v0,t0,tf.,dt.t,x,v
|

!Ask user for input:

print *,’# Enter L:’

read *,L

print *,’# L = L

if( L .le. 0.0) stop 'L must be positive.’

print *,’# Enter x0,v0:’

read *,x0,vO0

print *,°# x0= " ,x0,  vO0= " ,vO0

if(x0 .1t. 0.0 .or. x0 .gt. L) stop ’illegal value of x0.’
if(vo .eq. 0.0 ) stop ’illegal value of vO = 0.
print *,’# Enter tO,tf, dt:’

read *,t0,tf,dt

print *,’# t0= ’,t0,  tf= ",tf,’ dt= ’.,dt

)

!

!'ITnitialize

t = t0
x = x0
v = vO

open(unit=11,file="box1D_1.dat’)
]

!Compute:
do while(t .le. tf)
write (11,%)t,x,v
X = x + v¥dt
t =t + dt
if(x .1t. 0.0 .or. x .gt. L) v = —v
enddo
close (11)
end program box1D

The computed data is recorded in the file box1D_1.dat in three columns.
Compiling, running and plotting the trajectory using gnuplot can be done
as follows:

> gfortran box1D_1.£f90 —o boxl1
> ./box1
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# Enter L:
10
# L = 10.
# Enter x0,v0:
0 1.0
# x0= 0. vO= 1.
# Enter tO,tf , dt:
0 100 0.01
# t0= 0. tf= 100. dt= 0.00999999978
> gnuplot
gnuplot> plot ”"box1D_1.dat” using 1:2 w 1 title ”x(t)”,\
0 notitle,10 notitle
gnuplot> plot [:][—1.2:1.2] "box1D_1.dat” \
using 1:3 w 1 title "v(t)”
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Figure 2.20: The trajectory z(t) of a particle in a box with L = 10, o = 0.0, vy = 1.0,
to = 0, 6t = 0.01. The plot to the right magnifies a detail when ¢ ~ 90 which exposes
the systematic errors in determining the exact moment of the collision of the particle
with the wall at ¢;, = 90 and the corresponding maximum value of z(t), z,,, = L = 10.0.

The trajectory z(t) is shown in figure 2.20. The effects of the system-
atic errors can be easily seen by noting that the expected collisions occur
every T'/2 = L/v = 10 units of time. Therefore, on the plot to the right
of figure , the reversal of the particle’s motion should have occurred
att =90, x = L = 10.

The reader should have already realized that the above mentioned
error can be made to vanish by taking arbitrarily small 6t. Therefore,
we naively expect that as long as we have the necessary computer power




2.3. TRAPPED IN A BOX 121

to take 0t as small as possible and the corresponding time intervals as
many as possible, we can achieve any precision that we want. Well,
that is true only up to a point. The problem is that the next position is
determined by the addition operation x+v*dt and the next moment in
time by t+dt. Floating point numbers of the REAL type have a maximum
accuracy of approximately 7 significant decimal digits. Therefore, if the
operands x and v*dt are real numbers differing by more than 7 orders
of magnitude (vxdt< 1077 x), the effect of the addition x+v*dt=x, which
is null! The reason is that the floating point unit of the processor has
to convert both numbers x and v*dt into a representation having the
same exponent and in doing so, the corresponding significant digits of
the smaller number vxdt are lost. The result is less catastrophic when
v¥dt S 107 x with 0 < @ < 7, but some degree of accuracy is also lost at
each addition operation. And since we have accumulation of such errors
over many intervals t—t+dt, the error can become significant and destroy
our calculation for large enough times. A similar error accumulates in
the determination of the next instant of time t+dt, but we will discuss
below how to make this contribution to the total error negligible. The
above mentioned errors can become less detrimental by using floating
point numbers of greater accuracy than the REAL type. For example
REAL(8) numbers have approximately 16 significant decimal digits. But
again, the precision is finite and the same type of errors are there only
to be revealed by a more demanding and complicated calculation.

The remedy to such a problem can only be a change in the algorithm.
This is not always possible, but in the case at hand this is easy to do.
For example, consider the equation that gives the position of a particle
in free motion

z(t) = xo + vo(t — to) . (2.24)

Let’s use the above relation for the parts of the motion between two
collisions. Then, all we have to do is to reverse the direction of the
motion and reset the initial position and time to be the position and time
of the collision. This can be done by using the loop:

t = t0

do while(t .le. tf)

x = x0 + vO*(t—t0)
write (11 .,*)t,x,vO0

if( x .1t. 0.0 .or. x .gt. L)then



122 CHAPTER 2. KINEMATICS

x0 = x

t0 = t

vO = —vO0
endif

t = t + dt

In the above algorithm, the error in the time of the collision is not van-
ishing but we don’t have the “instability” problem of the dt— 0 limitf{.
Therefore we can isolate and study the effect of each type of error. The
full program that implements the above algorithm is given below and

can be found in the file box1D 2.£90:

|

!File box1D_2.f90
!Motion of a free particle in a box 0<x<L
!Use constant velocity equation: x = x0 + vO*(t—t0)

!Reverse velocity and redefine x0,t0 on boundaries
|

program box1D
implicit none

|
!Declaration of variables

real :: L,x0,v0,t0,tf,dt,t,x,v
!

!Ask user for input:

print *,’# Enter L:’

read *.,L

print *,'# L = °|L

if( L .le. 0.0) stop 'L must be positive.’

print *,’# Enter x0,v0:’

read *,x0,vO0

print *,’# x0= ’,x0,’ v0= ’,v0

if(x0 .1t. 0.0 .or. x0 .gt. L) stop ’illegal value of x0.’

if (vO .eq. 0.0 ) stop ’illegal value of vO = 0.

)

print *,’# Enter tO,tf . dt:
read *,t0,tf,dt

print *,’# tO= ’,t0,’ tf= ’,tf,’ dt= ’,dt
!

!'Initialize

t = t0

open(unit=11,file="box1D_2.dat’)

]

**We still have this problem in the t=t+dt operation. See discussion in the next

section.
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!

!Compute:

do while(t .le. tf)

x = x0 + vO*(t—t0)
write (11 .,*)t,x,vO0
if( x .1t. 0.0 .or. x .gt. L)then

x0 = x

t0 = t

v0O = —vO0
endif

t = t + dt
enddo
close (11)

end program box1D

Compiling and running the above program is done as before and the
results are stored in the file box1D_2.dat. The algorithm can be improved

in order to compute the exact solution. We leave that as an exercise for
the readerf].

2.3.2 Errors

In this section we will study the effect of the systematic errors that we
encountered in the previous section in more detail. We considered two
types of errors: First, the systematic error of determining the instant
of the collision of the particle with the wall. This error is reduced by
taking a smaller time step J¢. Then, the systematic error that accumulates
with each addition of two numbers with increasing difference in their
orders of magnitude. This error is increased with decreasing ¢t. The
competition of the two effects makes the optimal choice of §¢ the result of
a careful analysis. Such a situation is found in many interesting problems,
therefore it is quite instructive to study it in more detail.

When the exact solution of the problem is not known, the systematic
errors are controlled by studying the behavior of the solution as a function
of dt. If the solutions are converging in a region of values of dt, one gains
confidence that the true solution has been determined up to the accuracy
of the convergence.

In the previous sections, we studied two different algorithms, pro-
grammed in the files box1D_1.f90 and box1D_2.£f90. We will refer to

See the file box1D_3.dat.
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them as “method 1” and “method 2” respectively. We will study the
convergence of the results as 6t — 0 by fixing all the parameters except 6t
and then study the dependence of the results on 6t. We will take L = 10,
vo = 1.0, gy = 0.0, tp = 0.0, t; = 95.0, so that the particle will collide
with the wall every 10 units of time. We will measure the position of
the particle z(t ~ 95)[ as a function of §¢ and study its convergence to a
limit[] as 6t — 0.

The analysis requires a lot of repetitive work: Compiling, setting the
parameter values, running the program and calculating the value of z(t ~
95) for many values of §t. We write the values of the parameters read by
the program in a file box1D_anal.in:

10 L
0 1.0 x0 vO
0 95 0.05 tO0 tf dt

Then we compile the program

> gfortran box1D_1.£f90 —o box

and run it with the command:

> cat box1D_anal.in | ./box

By using the pipe |, we send the contents of box1D_anal.in to the stdin
of the command ./box by using the command cat. The result z(¢ ~ 95)
can be found in the last line of the file box1D_1.dat:

> tail —m 1 box1D_1.dat
94.9511948 5.45000267 —1.

The third number in the above line is the value of the velocity. In a
file box1D_anal.dat we write 6t and the first two numbers coming out
from the command tail. Then we decrease the value Jt — 0¢/2 in
the file box1D_anal.in and run again. We repeat for 12 more times

*Note the ~!
Of course we know the answer: z(95) = 5.
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until 6¢ reaches the valuef] 0.000012. We do the samef] using method 2
and we place the results for z(t ~ 95) in two new columns in the file
box1D_anal.dat. The result is

#

# dt
#

t1_95

x1(95)

x2(95)

0.050000
0.025000
0.012500
0.006250
0.003125
0.001563
0.000781
0.000391
0.000195
0.000098
0.000049
0.000024
0.000012

94.95119 5.450003 5.550126

94.97849
94.99519
94.99850
94.99734
94.99923
94.99939
94.99979
95.00000
94.99991
94.99998
94.99998
94.99999

5.275011
5.124993
4.987460
5.021894
5.034538
4.919035
4.695203
5.434725
5.528124
3.358000
2.724212
9.240705

5.174837
5.099736
5.063134
5.035365
5.017764
5.011735
5.005493
5.001935
5.000745
5.000330
5.000232
5.000158

Convergence is studied in figure 2.21. The 1st method maximizes its
accuracy for 6t ~ 0.01, whereas for 6t < 0.0001 the error becomes > 10%

and the method becomes useless.

behavior that the 1st one.

We observe that as dt decreases, the final value of ¢ approaches the
expected ¢ = 95. Why don’t we obtain ¢ = 95, especially when ¢/t is an
integer? How many steps does it really take to reach ¢ ~ 95, when the
expected number of those is ~ 95/6t? Each time you take a measurement,

issue the command

The 2nd method has much better

> wc —1 box1D_1.dat

which measures the number of lines in the file box1D_1.dat and compare
this number with the expected one. The result is interesting:

®Try the command sed 's/0.05/0.025/' box1D_anal.in |
0.025 with the desired value of dt.

./box by changing

“See the shell script box1D_anal.csh as a suggestion on how to automate this boring

process.

1
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dt N NO

FH FH FHF

0.050000 1900 1900
0.025000 3800 3800
0.012500 7601 7600
0.006250 15203 15200
0.003125 30394 30400
0.001563 60760 60780
0.000781 121751 121638
0.000391 243753 242966
0.000195 485144 487179
0.000098 962662 969387
0.000049 1972589 1938775
0.000024 4067548 3958333
0.000012 7540956 7916666

where the second column has the number of steps computed by the
program and the third one has the expected number of steps. We
observe that the accuracy decreases with decreasing /¢ and in the end
the difference is about 5%! Notice that the last line should have given
ty = 0.000012 x 7540956 ~ 90.5, an error comparable to the period of the
particle’s motion.

We conclude that one important source of accumulation of system-
atic errors is the calculation of time. This type of errors become more
significant with decreasing 6¢. We can improve the accuracy of the calcu-
lation significantly if we use the multiplication t=t0+i*dt instead of the
addition t=t+dt, where 1 is a step counter:

t + dt ! Not accurate , avoid
= t0 + i*dt ! Better accuracy, prefer

It

The main loop in the program box1D_1.£90 becomes:

t = t0
x = x0
v = vO0
i=20
do while(t .le. tf)

write (11 .,*)t.,x,v
i=i + 1
x = x + v*dt
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t = t0 + i*dt
if(x .1t. 0.0 .or. x .gt. L) v = —v
enddo

The full program can be found in the file box1D_4.£90 of the accompa-
nying software. We call this “method 3”. We perform the same change
in the file box1D_2.£90, which we store in the file box1D_5.£90. We call
this “method 4”. We repeat the same analysis using methods 3 and 4
and we find that the problem of calculating time accurately practically
vanishes. The result of the analysis can be found on the right plot of fig-
ure 2.21. Methods 2 and 4 have no significant difference in their results,
whereas methods 1 and 3 do have a dramatic difference, with method 3
decreasing the error more than tenfold. The problem of the increase of
systematic errors with decreasing ¢t does not vanish completely due to
the operation x=x+v*dt. This type of error is harder to deal with and one
has to invent more elaborate algorithms in order to reduce it significantly.
This will be discussed further in chapter 4.

100 n T T T 100
oy
10 + o L ¥ 0 . ¢ ¥
+ + +
+
1+ N 1 1 +
— + 4 — +
e 01} e 01} ¥
s 3 +
+
0.01 ¢ 1 0.01 -
0.001 1 0.001 +
method 1+ method 3+ +
method 2 method 4
0.0001 - - - 0.0001 - - -
1le-05 0.0001 0.001 0.01 0.1 le-05 0.0001 0.001 0.01 0.1
ot ot

Figure 2.21: The error éz = 2|z;(95) — 2(95)|/|x;(95) + 2(95)| x 100 where z;(95) is
the value calculated by method ¢ = 1,2, 3,4 and z(95) the exact value according to the
text.

2.3.3 The Two Dimensional Box

A particle is confined to move on the plane in the area 0 < z < L, and
0 <y < L,. When it reaches the boundaries of this two dimensional
box, it bounces elastically off its walls. The particle is found in an infinite
depth orthogonal potential well. The particle starts moving at time %,



128 CHAPTER 2. KINEMATICS

from (x¢,yo) and our program will calculate its trajectory until time ¢,
with time step d¢. Such a trajectory can be seen in figure @

If the particle’s position and velocity are known at time ¢, then at time
t + 6t they will be given by the relations

z(t+0t) = x(t) 4+ v (t)dt
y(t+9t) = y(t) 4+ vy(t)dt
v (t+9t) = v,(¢)
vy (t+0t) = wy(t). (2.25)

The collision of the particle off the walls is modeled by reflection of the
normal component of the velocity when the respective coordinate of the
particle crosses the wall. This is a source of the systematic errors that we
discussed in the previous section. The central loop of the program is:

i=1i +1

t = t0 + i *dt

X = x + vx*dt

y = + vy*dt

if(x .1t. 0.0 .or. x .gt. Lx) vx = —vx
if(y .1t. 0.0 .or. y .gt. Ly) vy = —vy

The full program can be found in the file box2D_1.£90. Notice that we
introduced two counters nx and ny of the particle’s collisions with the
walls:

!
! File box2D_1.f90
!Motion of a free particle in a box 0<x<Lx 0<y<Ly

!Use integration with time step dt: x = x + vx*dt y=y+vy*dt
!

program box2D
implicit none
!

! Declaration of variables
real(8) :: Lx,Ly,x0,y0,v0x,v0y,t0,tf,dt,t,x,y,vx,Vvy
integer :: i,nx,ny

|

!Ask user for input:
print *,’# Enter Lx,Ly:’
read *,Lx,Ly
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s

,Ly

"Lx must be positive.

)

[l

print *,’# Lx = ’,Lx,’ Ly=
if( Lx .le. 0.0) stop
if( Ly .le. 0.0)

print *,’#

Enter

stop 'Ly must be positive.
x0,y0,v0x,vOy:’

read

*.x0,y0,v0x, vOy

print *,’# x0= ’,x0,’ y0O= ’,y0,’ vOx=
. Lx) stop
. Ly) stop

if(x0 .1t. 0.0 .or. x0 .gt
if(yo .1t. 0.0 .or. yO .gt
if (vOx**2+v0y**2.eq. 0.0
print *,’# Enter tO,tf , dt:
read *,t0,tf,dt
print *,’# t0O= ’,t0,  tf=
1

) stop

)

,,tf,’

dt=

7, vO0x ,
“illegal
“illegal
“illegal

7 ,dt

)

vOy= ’,vO0y
value x0°
value y0’
value v0=0’

!Initialize

i =0

nx = 0 ; ny
t = tO0

x =x0 ; y = yo0
vx = vOx; vy = vOy

open(unit=11,file="box2D_1

0

!

.dat’)

!Compute:
do while(t .le. tf)
write (11.,%)t,x,y,vx,vy
i=1i +1
t = t0 + i *dt
X = x + vx*dt
y =y + vy*dt
if(x .1t. 0.0 .or. x .gt.
VX = —VX
nx = nx + 1
endif
if (y .lt.
vy = —Vy
ny = ny + 1
endif
enddo
close (11)
print *, C#
print *,’#
end program

0.0 .or. y .gt.

£l

ny=

nx= ’,nx,
box2D

Lx) then

Ly) then

Number of collisions:’

s

,ny

129

A typical session for the study of a particle’s trajectory could be:
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> gfortran box2D_1.£f90 —o box

> ./box

# Enter Lx,Ly:

10.0 5.0

# Lx = 10. Ly= 5.

# Enter x0,y0,vO0x,vOy:

5.0 0.0 1.27 1.33

# x0= 5. y0= 0. vOx= 1.27 vOy= 1.33
# Enter tO,tf , dt:

0 50 0.01

# t0= 0. tf= 50. dt= 0.01

# Number of collisions:

# nx= 6 ny= 13

> gnuplot

gnuplot> plot “box2D_1.dat” using 1:2 w 1 title ”x (t)”
gnuplot> replot ”box2D_1.dat” using 1:3 w 1 title 7y (t)”
gnuplot> plot “box2D_1.dat” using 1:4 w 1 title “vx(t)”
gnuplot> replot "box2D_1.dat” using 1:5 w 1 title ”vy(t)”
gnuplot> plot “box2D_1.dat” using 2:3 w 1 title "x—y”

Notice the last line of output from the program: The particle bounces off
the vertical walls 6 times (nx=6) and from the horizontal ones 13 (ny=13).
The gnuplot commands construct the diagrams displayed in figures

and P2.23.
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Figure 2.22: The results for the trajectory of a particle in a two dimensional box
given by the program box2D_1.£f90. The parameters are L, = 10, L, = 5, 9 = 5,
yo =0, vor = 1.27, voy = 1.33, to = 0, ty = 50, ¢t = 0.01.

In order to animate the particle’s trajectory, we can copy the file
box2D_animate.gnu of the accompanying software to the current direc-
tory and give the gnuplot commands:
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t= 48.000000 (x,y)= (5.901700,3.817100)

Figure 2.23: The trajectory of the particle of figure until ¢ = 48. The origin of
the arrow is at the initial position of the particle and its end is at its current position.
The bold lines mark the boundaries of the box.

gnuplot>
gnuplot>
gnuplot>
gnuplot>
gnuplot>

file = ”box2D_1.dat”

Lx =10 ; Ly = 5

t0 = 0 ; tf = 50; dt =1

load ”box2D_animate.gnu”

t0 = 0 ; dt = 0.5; load "box2D_animate.gnu”

The last line repeats the same animation at half speed. You can also
R.1.1

use the file animate2D.gnu discussed in section [2.

. We add new com-

mands in the file box2D_animate.gnu so that the plot limits are calculated
automatically and the box is drawn on the plot. The arrow drawn is not
the position vector with respect to the origin of the coordinate axes, but
the one connecting the initial with the current position of the particle.

The next step should be to test the accuracy of your results. This can
be done by generalizing the discussion of the previous section and is left
as an exercise for the reader.
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2.4 Applications

In this section we will study simple examples of motion in a box with
different types of obstacles. We will start with a game of ... mini golf.
The player shoots a (point) “ball” which moves in an orthogonal box of
linear dimensions L, and L, and which is open on the x = 0 side. In
the box there is a circular “hole” with center at (z.,y.) and radius R. If
the “ball” falls in the “hole”, the player wins. If the ball leaves out of the
box through its open side, the player loses. In order to check if the ball
is in the hole when it is at position (z,y), all we have to do is to check
whether (z — z.)? 4+ (y — v.)? < R%.

t= 45.300000 (X,y)= (7.854117,2.982556)

o = N w B~ (6)]
T

0 2 4 6 8 10

Figure 2.24: The trajectory of the particle calculated by the program MiniGolf.£90
using the parameters chosen in the text. The moment of ... success is shown. At time
t = 45.3 the particle enters the hole’s region which has its center at (8,2.5) and its
radius is 0.5.

Initially we place the ball at the position (0, L, /2) at time t, = 0. The
player hits the ball which leaves with initial velocity of magnitude v, at
an angle 6 degrees with the x axis. The program is found in the file
MiniGolf.£90 and is listed below:
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!

!File MiniGolf. f

!Motion of a free particle in a box 0<x<Lx 0<y<Ly

!The box is open at x=0 and has a hole at (xc,yc) of radius R
!Ball is shot at (0,Ly/2) with speed vO, angle theta (degrees)
!Use integration with time step dt: x = x + vx*dt y=y+vy*dt
!Ball stops in hole (success) or at x=0 (failure)

!

program MiniGolf
implicit none
!

!Declaration of variables

real (8) :: Lx,Ly,x0,y0,v0x,v0y,t0,tf,dt,.t,.x,y,vx,Vvy
real (8) :: v0,theta,xc,yc,R,R2

real(8), parameter :: PI=3.14159265358979324D0

integer it i,nx,ny

character (7) i result

!

!Ask user for input:

print *,’# Enter Lx,Ly:’

read *,Lx,Ly

print *,’# Lx = ’,Lx,’ Ly= ’,Ly

if ( Lx .le. 0.0) stop ’Lx must be positive.
if( Ly .le. 0.0) stop 'Ly must be positive.
print *,’# Enter hole position and radius: (xc,yc), R:’
read *,xc,yc,R

print *,’# (xc,yc)= ( ’,xc,” , ",yc,” ) R= ' ,R

print *,’# Enter v0O, theta(degrees):’

read *,v0,theta

print *,’# vO= ’,v0,’ theta= ’,theta,’ degrees’

if (vo .le. 0.0D0 ) stop ’illegal value of v0.’

if (ABS(theta).ge. 90.0D0) stop ’illegal value of theta.’
print *,’# Enter dt:’

read *, dt

print *, '# dt= ' ,dt

)

]

Initialize

t0 = 0.0DO

x0 = 0.00001D0 ! small but non—zero
yoO = Ly/2.0

R2 = R*R

theta = (PI/180.0D0)*theta
v0x = vO*cos(theta)
vO0y = vO*sin(theta)
print *,’# x0= ’,x0,’ y0=

s il

,y0,7 vOx= ’,v0x,’ vOy= ’,vOy
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i =0
nx =0 ; ny =0
t = t0
x =x0 ; y = yo0
vx = vOx; vy = vOy
open(unit=11,file="MiniGolf.dat’)
!
!Compute:
do while( .TRUE. ) !forever!
write (11,%)t,x,y,vx,vy
i=1i +1
t = t0 + i*dt
X = x + vx*dt
y =y + vy*dt
if (x .gt. Lx) then
VX = —VX
nx = nx + 1
endif
if(y .1t. 0.0 .or. y .gt. Ly) then
vy = —vy
ny = ny + 1
endif
if (x .le. 0.0D0)then
result = ’Failure’
exit !exit do loop
endif
if ( ((x—xc)*(x—xc)+(y—yc)*(y—yc)) .le. R2)then
result = "Success’
exit !exit do loop
endif
enddo
close (11)
print *,’# Number of collisions:’
print *,’# Result= ’,result,’ nx= ’,nx,’ ny= ’,ny

end program MiniGolf

In order to run it, we can use the commands:

> gfortran MiniGolf.f90 —o mg

> ./mg

# Enter Lx,Ly:

10 5

# Lx = 10. Ly= 5.

# Enter hole position and radius: (xc,yc), R:
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8 2.5 0.5

# (xc,yc)= ( 8. 2.5 ) R= 0.5
# Enter v0O, theta(degrees):

1 80

# v0= 1. theta= 80. degrees

# Enter dt:

0.01

# dt= 0.01

# x0= 1.E-05 yO0= 2.5 vOx= 0.173648178 vOy= 0.984807753
# Number of collisions:

# Result= Success nx= 0 ny= 9

You should construct the plots of the position and the velocity of the
particle. You can also use the animation program found in the file
MiniGolf_animate.gnu for fun. Copy it from the accompanying software
to the current directory and give the gnuplot commands:

gnuplot> file = "MiniGolf.dat”
gnuplot> Lx = 10;Ly =
gnuplot> xc = 8; yc =
gnuplot> t0 = 0; dt =
gnuplot> load ”MiniGolf_animate.gnu”

S N Ot

.5 ; R=0.5
A

The results are shown in figure [2.24.

The next example with be three dimensional. We will study the mo-
tion of a particle confined within a cylinder of radius R and height L.
The collisions of the particle with the cylinder are elastic. We take the
axis of the cylinder to be the z axis and the two bases of the cylinder to
be located at z = 0 and z = L. This is shown in figure [2.26.

The collisions of the particle with the bases of the cylinder are easy to
program: we follow the same steps as in the case of the simple box. For
the collision with the cylinder’s side, we consider the projection of the
motion on the x — y plane. The projection of the particle moves within
a circle of radius R and center at the intersection of the z axis with the
plane. This is shown in figure 2.25. At the collision, the 7 component
of the velocity is reflected v, — —v,, whereas vy remains the same. The
velocity of the particle before the collision is

T = v+,

= U7 + v (2.26)




136 CHAPTER 2. KINEMATICS

and after the collision is

<4

= I+ U;yj
= —u,F + vgh (2.27)

From the relations

7 = cosfz + sinfy
6 = —sinfz+ coshy, (2.28)
and v, =0 -7, vg =7 - é, we have that
v, = vzycosf+v,sinf
vg = —v,sinf+ v,cosb. (2.29)

The inverse relations are

vy = U,C080 — vgsind
vy, = v,sinf+ vycosh. (2.30)

With the transformation v, — —v,, the new velocity in Cartesian coordi-
nates will be

= —v,cosf —vysind
= —v,sinf + vycosh. (2.31)

()

<~ 8>

v

The transformation v, — v, v, — v?’J will be performed in the subroutine
reflectVonCircle(vx,vy,x,y,xc,yc,R). Upon entry to the subroutine,
we provide the initial velocity (vx,vy), the collision point (x,y), the
center of the circle (xc,yc) and the radius of the circleﬁ R. Upon exit
from the subroutine, (vx,vy) have been replaced with the new valuesf]
(], v,,)-

The program can be found in the file Cylinder3D.£90 and is listed
below:

20f course one expects R? = (z — z.)? + (y — y.)% but because of systematic errors,
we require I to be given.
*Note that upon exit, the particle is also placed exactly on the circle.



2.4. APPLICATIONS 137

Figure 2.25: The elastic collision of the particle moving within the circle of radius
R = |§| and center 7, = z.2 + y.y at the point ¥ = z& + yy. We have that R =
(z — 2)2 + (y — ye)j. The initial velocity is & = v,7 + v0 where # = R/R. After
reflecting v,, — —v,. the new velocity of the particle is ¥ = —v,# + veé.

!

!File Cylinder3D.f90
!Motion of a free particle in a cylinder with axis the z—axis,
'radius R and 0<z<L

!Use integration with time step dt: x

! _
i y
! z

X + vx*dt
y + vy*dt
=z + vz*dt

!Use subroutine reflectVonCircle for collisions at r=R
!

program Cylinder3D
implicit none
!

!Declaration of variables

real(8) :: x0,y0,z0,v0x,v0y,v0z,t0,tf,dt,t,x,y,z,vx,vy,vz
real(8) :: L,R,R2,vxy,rxy,r2xy,xc,yc
integer :: i,nr,nz

!

!Ask user for input:
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print *,’# Enter R, L:’
read *.,R,L
print *,'# R= "R, L= ’,L
if( R .le. 0.0) stop 'R must be positive.’
if( L .le. 0.0) stop 'L must be positive.’
print *,’# Enter x0,y0,z0,v0x,v0y,v0z:’
read *,x0,y0,z0,v0x,v0y,v0z
rxy = DSQRT(x0*x0+y0*y0)
print *,’# x0 = *,x0 ,’ yO = ’,y0 ,’ z0= ’,z0, ’ rxy= ’,rxy
print *,’# vOx= ’ ,v0x,’ vOy= ’,vO0y,’  vO0z= ’,v0z
if(rxy .gt. R )stop ‘illegal value of rxy > R’
if(zo .1t. 0.0DO )stop ’‘illegal value of z0 < 0°
if(z0 .gt. L )stop ’illegal value of z0 > L’
if (vOx**2+4v0y**2+v0z**2.eq.0.0)stop ’illegal value of vO = 0.’
print *,’# Enter tO,tf dt:’
read *,t0,tf,dt
print *,’# tO= °,t0,’ tf= ’,tf,’ dt= ’,dt
!
!Initialize
i =0
ntr =0 ; nz =0
t = t0
x =x0; y =y0; =z = z0
vx = vO0x; vy = vOy; vz = v0z
R2 = R*R
xc = 0.0D0 !center of circle which is the projection of the
yc = 0.0D0 !cylinder on the xy plane
0pen(un1t-11 file="Cylinder3D.dat"’)
!
!Compute:
do while(t .le. tf)
write (11,100)t.,x,y,2z,vx,vy, vz
i=1i + 1
t = t0 + i *dt
X = x + vx*dt
y =y + vy*dt
z =z + vz*dt
if(z .1t. 0.0 .or. z .gt. L) then
vz = —vz ! reflection on cylinder caps
nz = nz + 1
endif
r2xy = x*x+y*y
if ( r2xy .gt. R2)then
call reflectVonCircle(vx,vy,x,y,xc,yc,R)
nr = nr + 1
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endif
enddo
close (11)
print *,’# Number of collisions:’
print *,’# nr= ’ ,nr,’ nz= ’,nz

100 FORMAT(100G28.16)

end program Cylinder3D
!
!
!

subroutine reflectVonCircle(vx,vy,x,y,xc,yc,R)
implicit none

real(8) :: vx,vy.x,y.xc,yc,R

real(8) :: theta,cth,sth,vr,vth

theta = atan2(y—yc,x—xc)

cth = cos(theta)

sth = sin(theta)

vr = vx*cth + vy *sth

vth = —vx*sth + vy *cth

VX = —vr*cth — vth*sth !reflect vr —> —vr
vy = —vr*sth + vth*cth

X = XxcC + R*cth !put x,y on the circle
y = yc + R*sth

end subroutine reflectVonCircle

Notice that the function atan2 is used for computing the angle theta.
This function, when called with two arguments atan2(y,x), returns the
angle = tan~!(y/z) in radians. The correct quadrant of the circle where
(z,y) lies is chosen. The angle that we want to compute is given by
atan2(y-yc,x-xc). Then we apply equations (2.29) and (2.31) and in
the last two lines we enforce the particle to be at the point (z.+ R cos 0, y.+
Rsin 6), exactly on the circle.

A typical session is shown below:

> gfortran Cylinder3D.f90 —o cl
> ./cl

# Enter R, L:

10.0 10.0
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t= 500.000000 (x,y,z)= (2.227212,0.469828,7.088600)

T
N7
i 7

% \,.49%""‘,‘0'4’ %
g v

10

o N A~ O

Figure 2.26: The trajectory of a particle moving inside a cylinder with R = 10, L = 10,
computed by the program Cylinder3D.f90. We have chosen 7y = 1.0 + 2.2g + 3.12,
To = 0.932 — 0.899 + 0.742, to = 0, t; = 500.0, 6¢ = 0.01.

# R= 10. L= 10.

# Enter x0,y0,z0,v0x,v0y,v0z:

1.0 2.2 3.1 0.93 —0.89 0.74

# x0 = 1. y0O = 2.2 z0= 3.1 rxy= 2.41660919
# vOx= 0.93 vOy= —0.89 v0z= 0.74

# Enter tO,tf , dt:

0.0 500.0 0.01

# t0= 0. tf= 500. dt= 0.01

# Number of collisions:

# nr= 33 nz= 37

In order to plot the position and the velocity as a function of time, we
use the following gnuplot commands:

gnuplot> file="Cylinder3D .dat”

gnuplot> plot file using 1:2 with lines title 7 x(t)”,\
file using 1:3 with lines title 7 y(t)”\
file using 1:4 with lines title 7 z(t)”
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gnuplot> plot file using 1:5 with lines title "v_x(t)”,\
file using 1:6 with lines title “v_y(t)”,\
file using 1:7 with lines title "v_z(t)”

We can also compute the distance of the particle from the cylinder’s axis
r(t) = \/z(t)?> + y(t)? as a function of time using the command:

gnuplot> plot file using 1:(sqrt($2**2+$3**2)) w 1 t "r(t)”

In order to plot the trajectory, together with the cylinder, we give the
commands:

gnuplot> L = 10 ; R = 10

gnuplot> set urange [0:2.0%pi]

gnuplot> set vrange [0:L]

gnuplot> set parametric

gnuplot> splot file using 2:3:4 with lines notitle,\
R*cos(u) ,R*sin(u) ,v notitle

The command set parametric is necessary if one wants to make a para-
metric plot of a surface 7(u,v) = z(u,v)  +y(u,v) y+ z(u,v) 2. The cylin-
der (without the bases) is given by the parametric equations 7(u,v) =
Rcosu® + Rsinuy + vz with u € [0,27), v € [0, L].

We can also animate the trajectory with the help of the gnuplot script
file Cylinder3D_animate.gnu. Copy the file from the accompanying soft-
ware to the current directory and give the gnuplot commands:

gnuplot> R=10;L=10;t0=0;t£=500;dt=10
gnuplot> load ”Cylinder3D_animate.gnu’

il

The result is shown in figure .

The last example will be that of a simple model of a spacetime worm-
hole. This is a simple spacetime geometry which, in the framework of
the theory of general relativity, describes the connection of two distant
areas in space which are asymptotically flat. This means, that far enough
from the wormhole’s mouths, space is almost flat - free of gravity. Such
a geometry is depicted in figure 2.27. The distance traveled by someone
through the mouths could be much smaller than the distance traveled
outside the wormhole and, at least theoretically, traversable wormholes
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-10

Figure 2.27: A typical geometry of space near a wormhole. Two asymptotically
flat regions of space are connected through a “neck” which can be arranged to be of
small length compared to the distance of the wormhole mouths when traveled from the
outside space.

could be used for interstellar/intergalactic traveling and/or communica-
tions between otherwise distant areas in the universe. Of course we
should note that such macroscopic and stable wormholes are not known
to be possible to exist in the framework of general relativity. One needs
an exotic type of matter with negative energy density which has never
been observed. Such exotic geometries may realize microscopically as
quantum fluctuations of spacetime and make the small scale structure of
the geometryf] a “spacetime foam”.

We will study a very simple model of the above geometry on the plane
with a particle moving freely in itf}. We take the two dimensional plane
and cut two equal disks of radius R with centers at distance d like in
figure 2.28. We identify the points on the two circles such that the point

*See K.S. Thorne “Black Holes and Time Wraps: Einstein’s Outrageous Legacy”,
W.W. Norton, New York for a popular review of these concepts.

*This idea can be found as an exercise in the excellent introductory general relativ-
ity textbook J. B. Hartle, “Gravity: An Introduction to Einstein’s General Relativity”,
Addison Wesley 2003, Ch. 7, Ex. 25.
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Figure 2.28: A simple model of the spacetime geometry of figure .27. The particle
moves on the whole plane except withing the two disks that have been removed. The
neck of the wormhole is modeled by the two circles x(6) = +d/2+Rcos#, y(8) = Rsin,
—7m < 6 < 7 and has zero length since their points have been identified. There is a
given direction in this identification, so that points with the same 6 are the same (you
can imagine how this happens by folding the plane across the y axis and then glue the
two circles together). The entrance of the particle through one mouth and exit through
the other is done as shown for the velocity vector ¥ — ¥'.
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1 of the left circle is the same as the point 1 on the right circle, the point 2
on the left with the point 2 on the right etc. The two circles are given by
the parametric equations z(#) = d/2 + Rcosf, y(f) = Rsinf, —7r <0 <
for the right circle and z(0) = —d/2 — Rcosb, y(0) = Rsinf, -7 < <
for the left. Points on the two circles with the same 6 are identified.
A particle entering the wormhole from the left circle with velocity v is
immediately exiting from the right with velocity v" as shown in figure
2.28.
Then we will do the following;:

1. Write a program that computes the trajectory of a particle moving
in the geometry of figure 2.28. We set the limits of motion to be
—L/2 < x < L/2 and —L/2 < y < L/2. We will use periodic
boundary conditions in order to define what happens when the
particle attempts to move outside these limits. This means that
we identify the x = —L/2 line with the x = +L/2 line as well
as the y = —L/2 line with the y = +L/2 line. The user enters the
parameters R, d and L as well as the initial conditions (z, yo), (vo, ¢)
where @iy = vg(cos ¢z + sin ¢y). The user will also provide the time
parameters ¢; and dt for motion in the time interval ¢ € [ty = 0, t]
with step dt.

2. Plot the particle’s trajectory with (x¢,yo) = (0, —1), (vo, ¢) = (1,10°)
ue ty = 40, dt = 0.05 in the geometry with L =20,d =5, R = 1.

3. Find a closed trajectory which does not cross the boundaries |z| =
L/2, ly| = L/2 and determine whether it is stable under small per-
turbations of the initial conditions.

4. Find other closed trajectories that go through the mouths of the
wormhole and study their stability under small perturbations of
the initial conditions.

5. Add to the program the option to calculate the distance traveled by
the particle. If the particle starts from (—zy,0) and moves in the +z
direction to the (x¢,0), o > R + d/2 position, draw the trajectory
and calculate the distance traveled on paper. Then confirm your
calculation from the numerical result coming from your program.
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6. Change the boundary conditions, so that the particle bounces off
elastically at |z| = L/2, |y| = L/2 and replot all the trajectories
mentioned above.

Define the right circle c; by the parametric equations

x(G):g—i—RcosG, y(0) = Rsin @, —T<0<m, (2.32)

and the left circle ¢, by the parametric equations

d
x(@):—g—Rcosé’, y(0) = Rsinf , —r<f<mT. (2.33)

The particle’s position changes at time dt by

t, = idt
T, = Ti_q1 + vpdt
Yi = Yi—1 +vydt
(2.34)

for i = 1,2,... for given (zo,y0), to = 0 and as long as t; < t;. If the
point (z;,y;) is outside the boundaries |z| = L/2, |y| = L/2, we redefine
r; -+ x; £ L, y; = y; £ L in each case respectively. Points defined by
the same value of ¢ are identified, i.e. they represent the same points of
space. If the point (x;,y;) crosses either one of the circles ¢; or ¢,, then
we take the particle out from the other circle.

Crossing the circle ¢; is determined by the relation

d ? 2 2

The angle 6 is calculated from the equation

0 = tan ™! < Y d) , (2.36)

and the point (z;,y;) is mapped to the point (z},y.,) where

d
T = 5 Rcosf, Y=Y, (2.37)
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Figure 2.29:  The particle crossing the wormhole through the right circle ¢; with
velocity ¢. It emerges from c; with velocity ¢'. The unit vectors (é,,ép), (é,.,¢é,) are
computed from the parametric equations of the two circles ¢; and cs.

as can be seen in figure 2.29. For mapping @ — ', we first calculate the
vectors

é.= cosfz + sinfy .= —cosfz + sinfy
" . . o o " 2.
g = —sinfz + cosfy }%{ €y = sinfz + cosfy ’ (2.38)
so that the velocity
T=v.6+vgég — U =—v.E +uvyéy, (2.39)

where the radial components are v, = v- ¢, and vy = U - ég. Therefore,
the relations that give the “emerging” velocity ¢ are:

v =  vycosfl + wv,sind
vg = —Upsinf + wv,cosd

. ) 2.4
vl = wv.cosf + wysind (2.40)
v, = —u.sinf + wvgcos

Similarly we calculate the case of entering from ¢, and emerging from
¢;. The condition now is:

2
(xi + g) +y? < R%. (2.41)
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The angle 0 is given by

6= —tan"' ( v d) , (2.42)
Ti+ 3
and the point (z;,y;) is mapped to the point (z},y.;) where
x;:g+3cose, . (2.43)
For mapping v — ¢/, we calculate the vectors
ér = —cgs&az“ + sin@gz } { %;,: CQSG{U + sin@gg (2.44)
ég = sinfdz + cosfy €y = —sinfz + cosfy ’
so that the velocity
T=uv.6,+v96g — U =—v,€6.+vyéy. (2.45)
The emerging velocity ¢" is:
v = —vzcost + wv,sind
B2 et b weer o

vl =
v, = —uv.sinf + wycosd

Systematic errors are now coming from crossing the two mouths of the
wormbhole. There are no systematic errors from crossing the boundaries
|z| = L/2, ly| = L/2 (why?). Try to think of ways to control those errors
and study them.

The closed trajectories that we are looking for come from the initial
conditions

(l’o,yo,’vmqb) = (0,0,1,0) (247)

and they connect points 1 of figure 2.28. They are unstable, as can be
seen by taking ¢ — ¢ + €.

The closed trajectories that cross the wormhole and “wind” through
space can come from the initial conditions

(x07y071}07¢) - <_9707170>
($0,y0,vo,¢) = (25a _37 17900)
and cross the points 3 — 3 and 2 — 2 — 4 — 4 respectively. They are

also unstable, as can be easily verified by using the program that you will
write. The full program is listed below:
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!
program WormHole2D
implicit none

!
! Declaration of variables
real (8), parameter :: PI=3.14159265358979324D0

real(8) :: Lx,Ly,L,R,d

real(8) :: x0,y0,v0,theta
real(8) :: tO,tf,dt

real(8) :: t.x,y,vx,vy

real(8) :: =xcil,ycl,xc2,yc2,rl,r2
integer :: i

Ask user for input:

print *,’# Enter L.d,R:’

read *,L,d,R

print * °# L= 'L,  d= ’.d,’ R= ’,R

if( L .le. d+2.0D0*R) stop 'L <= d+2*R’

if( 4 .le. 2.0D0*R) stop 'd <= 2*R”’

print *,’# Enter (x0,y0), vO, theta(degrees):’
read *,x0,y0,v0,theta

print *,’# x0= ’,x0,’ y0O = ’,y0
print *,’# vO= ’,v0,’ theta= ’,theta,’ degrees’
if(vo .le. 0.0D0 ) stop ’illegal value of v0.’

s

print *,’# Enter tf, dt:
read *,tf,dt
print *,’# tf= ’,tf,’  dt= ’,dt

Initialize
theta = (PI/180.0D0)*theta

i = 0
t = 0.0D0
X = x0 S = yo

VX vO0*cos(theta); vy vO*sin (theta)
print *,’# x0= " ,x,’ yO= "y,  vOx= ’,vx,’ vOy= ’,vy

!Wormhole’s centers:

xcl = 0.5D0*d; yc1 = 0.0D0
xc2 = —0.5D0*d; yc2 = 0.0D0
!Box limits coordinates:

Lx = 0.5D0*L; Ly = 0.5D0*L
!Test if already inside cut region:
rl = sqrt((x—xc1)**2+(y—yc1)**2)
r2 = sqrt((x—xc2)**2+(y—yc2)**2)
if( r1 .le. R ) stop 'rl <= R’

if( r2 .le. R ) stop 'r2 <= R’
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!Test if outside box limits:
if (ABS(x) .ge. Lx) stop ’'Ix| >= Lx’
if (ABS(y) .ge. Ly) stop ’'lyl >= Ly’

open(unit=11, file="Wormhole. dat )
!

!Compute:
do while( t .1t. tf )
write (11.,%)t,x,y,vx,vy

i =i+

t = i*dt

x =x + vx*dt; y =y + vy*dt
! Toroidal boundary conditions:

if(x .gt. Lx) x =x— 1L

if( x .1t. -Lx) x =x + L

if(y .gt. Ly) y =y —1L
if(y .1t. -Ly) y =y + L
! Test if inside the cut disks
r1 = sqrt((x—xc1)**2+(y—yc1)**2)
r2 = sqrt((x—xc2)**2+(y—yc2)**2)
if ( r1 .1t. R)then
! Notice: we pass rl1 as radius of circle, not R
call crossCi(x,y,vx,vy,dt,rl,d)
else if( r2 .l1t. R)then
call crossC2(x,y,vx,vy,dt,r2.,d)
endif
! small chance here that still in C1 or C2, but OK since
! another dt—advance given at the beginning of do—loop
enddo !do while( t .1t. tf )

end program WormHole2D
!

subroutine crossCi(x,y,vx,vy,dt,R,d)
implicit none

real(8) :: x,y,vx,vy,dt,R,d

real(8) :: vr,v0 !v0O —> vtheta

real(8) :: theta,xc,yc

print *,’# Inside C1: (x,y,vx,vy,R)= ’,x,y,vx,vy,R
Xc = 0.5D0*d !center of Cil

yc = 0.0D0

theta = atan2(y—yc,x—xc)

x = —xc — R*cos(theta) !mew x—value, y invariant
!Velocity transformation:

vr = vx*cos(theta)+vy*sin(theta)

vO0 = —vx*sin (theta)+vy*cos(theta)

VX
vy

vr*cos(theta)+v0O*sin (theta)
—vr*sin (theta)+v0*cos(theta)
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ladvance x,y, hopefully outside C2:

X = x + vx*dt

y =y + vy*dt

print *,’# Exit C2: (x,y,vx,vy )= ’,x,y,vX,vy
end subroutine crossC1

!

subroutine crossC2(x,y,vx,vy,dt,R,d)
implicit none
real(8), parameter :: PI=3.14159265358979324D0

real(8) :: x,y,vx,vy,dt,R,d
real(8) :: vr,v0 !v0 —> vtheta
real(8) :: theta,xc,yc

print *,’# Inside C2: (x,y,vx,vy,R)= " ,x,y,vx,vy,R

xc = —0.5D0*d !center of C2

yc = 0.0D0

theta = PI-atan2(y—yc,x—xc)

x = —xc + R*cos(theta) !new x—value, y invariant
!Velocity transformation:

vr = —vx*cos(theta)+vy*sin(theta)
vO0 = vx*sin(theta)+vy*cos(theta)
VX = —vr*cos(theta)-v0*sin (theta)
vy = —vr*sin(theta)+v0*cos(theta)
ladvance x,y. hopefully outside C1:

X = x + vx*dt

v =y + vy*dt

print *,’# Exit Cl: (x,y,vx,vy )= ’,x,y,vx,vy
end subroutine crossC2

It is easy to compile and run the program. See also the files Wormhole.csh
and Wormhole_animate.gnu of the accompanying software and run the
gnuplot commands:

gnuplot> file = "Wormhole.dat”

gnuplot> R=1;d=5;L=20;

gnuplot> ! ./Wormhole.csh

gnuplot> t0=0;dt=0.2;load "Wormhole_animate.gnu”

You are now ready to answer the rest of the questions that we asked in
our list.
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2.5 Problems

2.1 Change the program Circle.f90 so that it prints the number of full
circles traversed by the particle.

2.2 Add all the necessary tests on the parameters entered by the user
in the program Circle.f90, so that the program is certain to run
without problems. Do the same for the rest of the programs given
in the same section.

2.3 A particle moves with constant angular velocity w on a circle that
has the origin of the coordinate system at its center. At time ¢, = 0,
the particle is at (zg,y9). Write the program CircularMotion.f90
that will calculate the particle’s trajectory. The user should enter the
parameters w, o, Yo, to, tf, 0t. The program should print the results
like the program Circle.f90 does.

2.4 Change the program SimplePendulum.f90 so that the user could
enter a non zero initial velocity.

2.5 Study the k£ — 0 limit in the projectile motion given by equations
(2.10). Expand e ** = 1 —kt+ 2 (kt)>+. .. and keep the non vanish-
ing terms as £ — 0. Then keep the next order leading terms which
have a smaller power of k. Program these relations in a file
ProjectileSmallAirResistance.f90. Consider the initial condi-
tions ) = £+ y and calculate the range of the trajectory numerically
by using the two programs
ProjectileSmallAirResistance.f90, ProjectileAirResistance.f90.
Determine the range of values of £ for which the two results agree
within 5% accuracy.

2.6 Write a program for a projectile which moves through a fluid with
fluid resistance proportional to the square of the velocity. Compare
the range of the trajectory with the one calculated by the program
ProjectileAirResistance.f90 for the parameters shown in figure

2.7 Change the program Lissajous.f90 so that the user can enter a
different amplitude and initial phase in each direction. Study the
case where the amplitudes are the same and the phase difference
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in the two directions are /4, 7/2, 7, —m. Repeat by taking the am-
plitude in the y direction to be twice as much the amplitude in the
x direction.

2.8 Change the program ProjectileAirResistance.f90, so that it can
calculate also the k£ = 0 case.

2.9 Change the program ProjectileAirResistance.f90 so that it can
calculate the trajectory of the particle in three dimensional space.
Plot the position coordinates and the velocity components as a func-
tion of time. Plot the three dimensional trajectory using splot
in gnuplot and animate the trajectory using the gnuplot script
animate3D.gnu.

2.10 Change the program ChargeInB.f90 so that it can calculate the
number of full revolutions that the projected particle’s position on
the x — y plane makes during its motion.

2.11 Change the program box1D_1.f90 so that it prints the number of
the particle’s collisions on the left wall, on the right wall and the
total number of collisions to the stdout.

2.12 Do the same for the program box1D_2.£90. Fill the table on page
the number of calculated collisions and comment on the results.

2.13 Run the program box1D_1.£90 and choose L= 10, v0=1. Decrease
the step dt up to the point that the particle stops to move. For
which value of dt this happens? Increase v0=10,100. Until which
value of dt the particle moves now? Why?

2.14 Change the REAL declarations to REAL(8) in the program box1D_1.£90.
Add explicit exponents DO to all constants (e.g. 0.0—0.0D0). Com-

pare your results to those obtained in section . Repeat problem
2.. What do you observe?

2.15 Change the program box1D_1.£90 so that you can study non elastic
collisions v' = —ev, 0 < e < 1 with the walls.

2.16 Change the program box2D_1.£90 so that you can study inelastic
collisions with the walls, such that v, = —ev,, v, = —ev,, 0 <e < 1.
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2.17

2.18

2.19

2.20

2.21

2.22

2.23
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Use the method of calculating time in the programs box1D_4.£90
and box1D_5.f90 in order to produce the results in figure 2.21.

Particle falls freely moving in the vertical direction. It starts with
zero velocity at height h. Upon reaching the ground, it bounces
inelastically such that v; = —ev, with 0 < e <1 a parameter. Write
the necessary program in order to study numerically the particle’s
motion and study the cases e = 0.1,0.5,0.9, 1.0.

Generalize the program of the previous problem so that you can
study the case 7y = vo, £. Animate the calculated trajectories.

Study the motion of a particle moving inside the box of figure [2.30.
Count the number of collisions of the particle with the walls before
it leaves the box.

Figure 2.30: Problem 2.20.

Study the motion of the point particle on the “billiard table” of
figure 2.31. Count the number of collisions with the walls before
the particle enters into a hole. The program should print from
which hole the particle left the table.

Write a program in order to study the motion of a particle in the
box of figure 2.32. At the center of the box there is a disk on
which the particle bounces off elastically (Hint: use the routine
reflectVonCircle of the program Cylinder3D.£90).

In the box of the previous problem, put four disks on which the
particle bounces of elastically like in figure 2.33.
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Figure 2.31: Problem 2.21.

Figure 2.32: Problem 2.232.

2.24 Consider the arrangement of figure 2.34. Each time the particle
bounces elastically off a circle, the circle disappears. The game is
over successfully if all the circles vanish. Each time the particle
bounces off on the wall to the left, you lose a point. Try to find
trajectories that minimize the number of lost points.
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Figure 2.33: Problem 2.23.
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Figure 2.34: Problem 2.24.
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Chapter 3
Logistic Map

Nonlinear differential equations model interesting dynamical systems in
physics, biology and other branches of science. In this chapter we per-
form a numerical study of the discrete logistic map as a “simple math-
ematical model with complex dynamical properties” [21] similar to the
ones encountered in more complicated and interesting dynamical sys-
tems. For certain values of the parameter of the map, one finds chaotic
behavior giving us an opportunity to touch on this very interesting topic
with important consequences in physical phenomena. Chaotic evolu-
tion restricts out ability for useful predictions in an otherwise fully deter-
ministic dynamical system: measurements using slightly different initial
conditions result in a distribution which is indistinguishable from the dis-
tribution coming from sampling a random process. This scientific field is
huge and active and we refer the reader to the bibliography for a more
complete introduction [21,22,23,24,25,26,27,38].

3.1 Introduction

The most celebrated application of the logistic map comes from the study
of population growth in biology. One considers populations which re-
produce at fixed time intervals and whose generations do not overlap.
The simplest (and most naive) model is the one that makes the rea-
sonable assumption that the rate of population growth dP(t)/dt of a

157
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population P(t) is proportional to the current population:

dP(t)
i kP(t). 3.1
The general solution of the above equation is P(t) = P(0)e* showing
an exponential population growth for £ > 0 an decline for £ < 0. It
is obvious that this model is reasonable as long as the population is
small enough so that the interaction with its environment (adequate food,
diseases, predators etc) can be neglected. The simplest model that takes
into account some of the factors of the interaction with the environment
(e.g. starvation) is obtained by the introduction of a simple non linear
term in the equation so that
%}Et) = kP(t)(1 —bP(1)). (3.2)
The parameter k gives the maximum growth rate of the population and
b controls the ability of the species to maintain a certain population level.
The equation (B.2) can be discretized in time by assuming that each gen-
eration reproduces every J¢ and that the n-th generation has population
P, = P(t,) where t,, = to+ (n—1)dt. Then P(t,+1) =~ P(t,)+dtP'(t,) and
equation (B.1) becomes
Pn+1 = T'Pn R (33)

where » = 1 + kdt. The solutions of the above equation are well ap-
proximated by P, ~ Pye*" x e""U" g0 that we have population growth
when r > 1 and decline when r < 1. Equation (B.2) can be discretized
as follows:

Poy1 = Py(r —bP,). (3.4)
Defining z,, = (b/r)P, we obtain the logistic map
T = rx,(1—x,). (3.5)
We define the functions
f(x) =rz(1 —x), F(x,r)=rz(1—x) (3.6)

(their only difference is that, in the first one, r is considered as a given
parameter), so that

Tt = f(@n) = [P (@0or) = ... = U (21) = F ) (x0), (3.7
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where we use the notation f(z) = f(x), f@(z) = f(f(z)), fO(z) =
f(f(f(x))), ... for function composition. In what follows, the derivative
of f will be useful:

_ OF(z,r)
- Oz

Since we interpret z,, to be the fraction of the population with respect
to its maximum value, we should have 0 < z, < 1 for each n. The
function f(z) has one global maximum for x = 1/2 which is equal to
f(1/2) = r/4. Therefore, if > 4, then f(1/2) > 1, which for an appro-
priate choice of z, will lead to x,4+1 = f(z,) > 1 for some value of n.
Therefore, the interval of values of r which is of interest for our model
is

f'(z) =r(l—2x). (3.8)

O0<r<4. (3.9

The logistic map (B.5) may be viewed as a finite difference equation
and it is a one step inductive relation. Given an initial value x(, a sequence
of values {zg, z1, ..., , ... } is produced. This will be referred] to as
the trajectory of z,. In the following sections we will study the properties
of these trajectories as a function of the parameter r.

The solutions of the logistic map are not known except in special
cases. For r = 2 we have

xTL =

(1—(1—m)™), (3.10)

DO | —

and forf] r = 4

. I, _
T, = sin’(2"n0), 0 =—sin"'\/zg. (3.11)
T
For r = 2, lim,,_,, z,, = 1/2 whereas for r = 4 we have periodic trajectories
resulting in rational § and non periodic resulting in irrational 6. For other
values of r we have to resort to a numerical computation of the trajectories
of the logistic map.

‘Note that if x,, > 1 then z,, 1 < 0, so that if we want x,, > 0 for each n, then we
should have z,, <1 for each n.

’In the bibliography, the term “splinter of z,” is frequently used.

*E. Schroder, “Uber iterierte Funktionen”, Math. Ann. 3 (1870) 296; E. Lorenz,
“The problem of deducing the climate from the governing equations”, Tellus 16 (1964)
1
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3.2 Fixed Points and 2" Cycles

It is obvious that if the point z* is a solution of the equation x = f(z), then
T, = 2" = .4 = a* for every k > 0. For the function f(z) = rz(1 — )
we have two solutions

x7=0 and zy;=1-1/r. (3.12)

We will see that for appropriate values of r, these solutions are attractors
of most of the trajectories. This means that for a range of values for the
initial point 0 < z < 1, the sequence {z,,} approaches asymptotically one
of these points as n — oo. Obviously the (measure zero) sets of initial
values {xo} = {z7} and {zo} = {z}} result in trajectories attracted by z}
and z3 respectively. In order to determine which one of the two values
is preferred, we need to study the stability of the fixed points z] and 3.
For this, assume that for some value of n, z,, is infinitesimally close to
the fixed point z* so that

r, = 2" +e€,
Tpi1l = T+ €pqq- (3.13)

Since
Tny1 = f($n) = f(f[* + en) ~ f(l'*) + an/($*) = $* + Enf/(x*) ) (314)

where we used the Taylor expansion of the analytic function f(z* + ¢,)
about z* and the relation z* = f(z*), we have that ¢, = ¢, f'(z*). Then

we obtain
6n+1

= [f(@")] . (3.15)

€n

Therefore, if |f/(z*)| < 1 we obtain lim,,_, €, = 0 and the fixed point z* is
stable: the sequence {x, 1} approaches z* asymptotically. If |f'(z*)| > 1
then the sequence {z,.;} deviates away from z* and the fixed point is
unstable. The limiting case |f'(z*)| = 1 should be studied separately and
it indicates a change in the stability properties of the fixed point. In the
following discussion, these points will be shown to be bifurcation points.

For the function f(z) = rz(1 — ) with f/'(x) = r(1 — 2z) we have that
f'(0) =r and f'(1 —1/r) = 2 —r. Therefore, if » < 1 the point 7 = 0
is an attractor, whereas the point 25 = 1 — 1/r < 0 is irrelevant. When
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r > 1, the point 2} = 0 results in |f'(z])| = r > 1, therefore z] is unstable.
Any initial value zy near z] deviates from it. Since for 1 < r < 3 we have
that 0 < |f’(23)| = |2 — r| < 1, the point z} is an attractor. Any initial

value z, € (0, 1) approaches z3 =1—1/r. When r = r = 1 we have the

limiting case ] = x5 = 0 and we say that at the critical value r) =1 the
fixed point x7 bifurcates to the two fixed points z7 and 3.

As r increases, the fixed points continue to bifurcate. Indeed, when
r =r® =3 we have that f'(x3) =2—r =—1and for r > r® the point
x5 becomes unstable. Consider the solution of the equation = = f®(z).
If 0 < 2* < 1 is one of its solutions and for some n we have that z,, = z*,
then x,.0 = Tpiyu = ... = Tpyop = ... = 2" and z,41 = Tpyg = ... =
Tpioks1 = ... = f(z*) (therefore f(z*) is also a solution). If 0 < z} <
x; < 1 are two such different solutions with z§ = f(z}), x; = f(z}), then
the trajectory is periodic with period 2. The points 3, =) are such that
they are real solutions of the equation

f(2)(x) _ 7’2:L’(1 _ :L’)(l _ T‘I(l _ 1‘)) =z, (316)

and at the same time they are not the solutions 7 = 0 25 = 1 —1/r of the
equationf z = f®(z), the polynomial above can be written in the form
(see [22] for more details)

r

x(m—(1—1)>(Ax2+Bx+C):O. (3.17)

By expanding the polynomials (8.16), (8.17) and comparing their coef-
ficients we conclude that A = —r%, B = r?(r + 1) and C = —r(r + 1).
The roots of the trinomial in (8.17) are determined by the discriminant
A =7r%(r +1)(r — 3). For the values of r of interest (1 < r < 4), the dis-
criminant becomes positive when r > r) = 3 and we have two different
solutions

o= (r+1)FvVr2—-2r—-3)/(2r) a=3,4. (3.18)

When r = r{”) we have one double root, therefore a unique fixed point.
The study of the stability of the solutions of z = f®(z) requires
the same steps that led to the equation (B.15) and we determine if the

“Because, if 2* = f(z*) = f®)(z*) = f(f(=*)) = f(z*) = 2* etc, the point z* is also
a solution of z* = f(™)(z*).
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absolute value of f'(z) is greater, less or equal to one. By noting
thatfl f®'(z3) = f@'(x4) = f(x3)f'(z4) = —1 + 2r + 4, we see that for
r=r® =3, f&(zx) = f@(23) =1 and for r = ¥ = 1+ V6 ~ 3.4495,
f@"(z3) =f@'(x4) = —1. For the intermediate values 3 < r < 1 + /6 the
derivatives |f(?(z*)| < 1 for a = 3,4. Therefore, these points are stable
solutions of z = f®(x) and the points 2%, } bifurcate to 7, a = 1,2,3,4
for r = v’ = 3. Almost all trajectories with initial points in the interval
[0, 1] are attracted by the periodic trajectory with period 2, the “2-cycle”
{3, 273}

Using similar arguments we find that the fixed points 2}, o = 1,2, 3,4
bifurcate to the eight fixed points z,, a = 1,...,8 when r = r& =1+ 6.
These are real solutions of the equation that gives the 4-cycle z = f*)(x).
For r¥ < r < r® ~ 3.5441, the points z}, a = 5,...,8 are a stable 4-
cycle which is an attractor of almost all trajectories of the logistic mapﬁ.
V< <1 the 16 fixed points of the equation z = f(®(x)
give a stable 8-cycle, for r® < r < 1 a stable 16-cycle etd]. This
is the phenomenon which is called period doubling which continues ad

infinitum. The points r are getting closer to each other as n increases

so that lim,,_, rcn) =r. ~ 3.56994567. As we will see, r. marks the onset
of the non-periodic, chaotic behavior of the trajectories of the logistic
map.

Computing the bifurcation points becomes quickly intractable and we
have to resort to a numerical computation of their values. Initially we will
write a program that computes trajectories of the logistic map for chosen
values of r and z,. The program can be found in the file logistic.£90
and is listed below:

*

Similarly, for 7"£4

!

!Discrete Logistic Map

*The chain rule dh(g(x))/dz = h'(g(x))g (z) gives that fP)(x3) = df(f(x3}))/dx =
FIOf) f(x5) = f/(x5) f'(«%) and similarly for f(2)'(x%). We can prove by induction

that for the n solutions z} , |, x5, ..., 23, that belong to the n-cycle of the equation z =
f™(x) we have that f™(2,1:) = f'(xny1) f(Tnia)... f'(x2,) for every i =1,...,n.
*The points z, « = 1,...,4 are unstable fixed points and 2-cycle.

"Generally, for P < < MY o & 356994567 we have 27 fixed points of

. n—1 i .
the equation x = f?" )(z) and stable 2"~!-cycles, which are attractors of almost all
trajectories.
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Figure 3.1: (Left) Some trajectories of the logistic map with zo = 0.1 and various

values of r. We can see the first bifurcation for rgl) =1froma}=0tox; =1—1/r.

(Right) Trajectories of the logistic map for r') < r = 3.5 < 7). The three curves start
from three different initial points. After a transient period, depending on the initial
point, one obtains a periodic trajectory which is a 2-cycle. The horizontal lines are the

expected values x5, = ((r + 1) F V72 — 2r — 3)/(2r) (see text).

!

program logistic_map
implicit none

integer :: NSTEPS,i
real(8) :: r,x0,x1
| ——— Input:

print *,’# Enter NSTEPS, r, x0:’
read *,NSTEPS,r,x0

print *,’# NSTEPS = ’ ,NSTEPS
print *, # r =’ .r
print *,'# x0 = ’.,x0

!V Initialize :
open(unit=33,file="log.dat’)
write (33,*) 0,x0
! ——— Calculate:
do i=1,NSTEPS
x1 =r * x0 * (1.0D0—x0)
write (33 .,*%)i,x1
x0 = x1
enddo
close(33)
end program logistic_map

The program is compiled and run using the commands:
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> gfortran logistic.f90 —o 1
> echo 7100 0.5 0.1” | ./1

The command echo prints to the stdout the values of the parameters
NSTEPS=100, r=0.5 and x0=0.1. Its stdout is redirected to the stdin
of the command ./1 by using a pipe via the symbol |, from which the
program reads their value and uses them in the calculation. The results
can be found in two columns in the file log.dat and can be plotted
using gnuplot. The plots are put in figure B.1 and we can see the first

two bifurcations when r goes past the values r) and r. Similarly, we

can study trajectories which are 2"-cycles when r crosses the values r& Y,

07 F — —— . o T
06 R i] . 07
05t 1 06 f
o4l 05 !
04 f
03 |
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' 02t
0.1r 1 01|
[ L L L i 0 i L L L i
0 02 04 06 08 1 0 02 04 06 08 1

Figure 3.2: Cobweb plots of the logistic map for r = 2.8 and 3.3. (Left) The left plot
is an example of a fixed point 2* = f(z*). The green line is y = f(z) and the blue line
is y = f)(z). The trajectory ends at the unique non zero intersection of the diagonal
and y = f(z) which is 23 = 1 — 1/r. The trajectory intersects the curve y = f(?)(z) at
the same point. y = f(?)(z) does not intersect the diagonal anywhere else. (Right) The
right plot shows an example of a 2-cycle. y = f(?)(z) intersects the diagonal at two
additional points determined by z% and xj. The trajectory ends up on the orthogonal

(23, 23), (21, 23), (1, =1), (23, 21).

Another way to depict the 2-cycles is by constructing the cobweb plots:
We start from the point (z(,0) and we calculate the point (zg, z1), where
x1 = f(xo). This point belongs on the curve y = f(x). The point (z¢, x1) is
then projected on the diagonal y = x and we obtain the point (z;,z;). We
repeat n times obtaining the points (z,, x,+1) and (11, Zn+1) ony = f(x)
and y = x respectively. The fixed points z* = f(z*) are at the intersections
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Figure 3.3: (Left) A 4-cycle for r = 3.5. The blue curve is y = f®(z) which
intersects the diagonal at four points determined by z,, a = 5,6,7,8. The four cycle
passes through these points. (Right) a non periodic orbit for » = 3.7 when the system
exhibits chaotic behavior.

of these curves and, if they are attractors, the trajectories will converge
on them. If we have a 2"-cycle, we will observe a periodic trajectory
going through points which are solutions to the equation x = f")(z).
This exercise can be done by using the following program, which can be
found in the file logisticl.£90:

!

! Discrete Logistic Map

! Map the trajectory in 2d space (plane)
!

program logistic_map
implicit none

integer :: NSTEPS,i
real(8) :: r,x0,x1
! —— Input:

print *,’# Enter NSTEPS, r, x0:°
read * ,NSTEPS,r,xO

print *,’# NSTEPS = ’ ,NSTEPS
print *, # r = ' r
print *,’# x0 = 7,x0

! ——— Initialize:
open(unit=33,file="trj.dat’)
! ——— Calculate:

write (33,*) 0, x0,0

do i=1,NSTEPS
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x1 =1 * x0 * (1.0D0—x0)
write (33,*) 2*i—3,x0,x1
write(33,*) 2*i—2 x1,x1
x0 = x1

enddo

close (33)

end program logistic_map

Compiling and running this program is done exactly as in the case of the
program in logistic.f£90. We can plot the results using gnuplot. The
plot in figure can be constructed using the commands:

gnuplot> set size square

gnuplot> f(x) = r*x*(1.0—x)

gnuplot> r = 3.3

gnuplot> plot "<echo 50 3.3 0.21./1;cat trj.dat” using 2:3 w 1
gnuplot> replot f(x) ,f(£f(x)).x

The plot command shown above, runs the program exactly as it is done
on the command line. This is accomplished by using the symbol <,
which reads the plot from the stdout of the command "echo 50 3.3
0.2]./1;cat trj.dat". Only the second command "echo trj.dat"
writes to the stdout, therefore the plot is constructed from the contents of
the file trj.dat. The following line adds the plots of the functions f(z),
f@(x) = f(f(r)) and of the diagonal y = z. Figures and show
examples of attractors which are fixed points, 2-cycles and 4-cycles. An
example of a non periodic trajectory is also shown, which exhibits chaotic
behavior which can happen when r > r. ~ 3.56994567.

3.3 Bifurcation Diagrams

The bifurcations of the fixed points of the logistic map discussed in the
previous section can be conveniently shown on the “bifurcation diagram”.
We remind to the reader that the first bifurcations happen at the critical
values of r

ri) < r® < r® < <M< <, (3.19)
2)

where ) = 1, 7 =3, ¥ =1 + /6 and 7. = lim,,_.. ™ ~ 3.56994567.

For " < r < "™ we have 2" fixed points z, a = 1,2,...,2" of z =
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f@")(x). By plotting these points x(r) as a function of r we construct the
bifurcation diagram. These can be calculated numerically by using the
program bifurcate.f90. In this program, the user selects the values of
r that she needs to study and for each one of them the program records
the point of the 2" '-cyclesf] z*(r), & = 21 41,21 +2,...,2". This
is easily done by computing the logistic map several times until we are
sure that the trajectories reach the stable state. The parameter NTRANS
in the program determines the number of points that we throw away,
which should contain all the transient behavior. After NTRANS steps, the
program records NSTEPS points, where NSTEPS should be large enough
to cover all the points of the 2" !-cycles or depict a dense enough set of
values of the non periodic orbits. The program is listed below:

!

! Bifurcation Diagram of the Logistic Map
!

program bifurcation_diagram
implicit none

real (8) ,parameter :: rmin = 2.5D0

real (8) ,parameter :: rmax = 4.0DO

integer ,parameter :: NTRANS = 500 !Number of discarded steps
integer ,parameter :: NSTEPS = 100 !Number of recorded steps
integer ,parameter :: RSTEPS = 2000 !Number of values of r
integer 5e 4

real (8) :: r,dr,x0,x1

! — Initialize :
open(unit=33,file="bif.dat")

dr = (rmax—rmin)/RSTEPS !Increment in r
! ——— Calculate:
r = rmin
do while ( r .le. rmax)
x0 = 0.5D0

! —— Transient steps: skip
do i=1,NTRANS
x1 =r * x0 * (1.0D0—x0)
x0 = x1
enddo
do i=1,NSTEPS

*If we want to be more precise, the bifurcation diagram contains also the unstable
points. What we really construct is the orbit diagram which contains only the stable
points.
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x1 =1 * x0 * (1.0D0—x0)
write(33,*) r,x1
x0 = x1
enddo
r =r + dr
enddo ! do while
close(33)
end program bifurcation_diagram
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Figure 3.4: (Left) The bifurcation diagram computed by the program bifurcate.f90
for 2.5 < r < 4. Notice the first bifurcation points followed by intervals of chaotic, non-
periodic orbits interrupted by intermissions of stable periodic trajectories. The chaotic
trajectories take values in subsets of the interval (0,1). For r = 4 they take values within
the whole (0,1). One can see that for r = 14 /8 ~ 3.8284 we obtain a 3-cycle which
subsequently bifurcates to 3-2"-cycles. (Right) The diagram on the left is magnified in
a range of r showing the self-similarity of the diagram at all scales.

The program can be compiled and run using the commands:

> gfortran bifurcate.f90 —o b
> ./b;

The left plot of figure B.4 can be constructed by the gnuplot commands:

gnuplot> plot “bif.dat” with dots

We observe the fixed points and the 2"-cycles for » < r.. When r goes
past r., the trajectories become non-periodic and exhibit chaotic behavior.
Chaotic behavior will be discussed more extensively in the next section.
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For the time being, we note that if we measure the distance between the
points Ar™ = r£"+1) - rén), we find that it decreases constantly with n so

that
) Ar(™
7}5130 AT § ~ 4.669201 609 , (3.20)
where § is the Feigenbaum constant. An additional constant «, defined
by the quotient of the separation of adjacent elements Aw, of period

doubled attractors from one double to the next Aw,, 1, is

Aw,
lim v

= a ~ 2.502907875 . (3.21)

It is also interesting to note the appearance of a 3-cycle right after r =
1+ /8 ~ 3.8284 > r,! By using the theorem of Sharkovskii, Li and
Yorkef] showed that any one dimensional system has 3-cycles, therefore
it will have cycles of any length and chaotic trajectories. The stability of
the 3-cycle can be studied from the solutions of z = f®)(z) in exactly the
same way that we did in equations (8.16) and (B.17) (see [22] for details).
Figure magnifies a branch of the 3-cycle. By magnifying different
regions in the bifurcation plot, as shown in the right plot of figure 8.4, we
find similar shapes to the branching of the 3-cycle. Figure ﬁshows that
between intervals of chaotic behavior we obtain “windows” of periodic
trajectories. These are infinite but countable. It is also quite interesting
to note that if we magnify a branch withing these windows, we obtain a
diagram that is similar to the whole diagram! We say that the bifurcation
diagram exhibits self similarity. There are more interesting properties of
the bifurcation diagram and we refer the reader to the bibliography for
a more complete exposition.

We close this section by mentioning that the qualitative properties
of the bifurcation diagram are the same for a whole class of functions.
Feigenbaum discovered that if one takes any function that is concave and
has a unique global maximum, its bifurcation diagram behaves qualita-
tively the same way as that of the logistic map. Examples of such func-
tions|] studied in the literature are g(z) = ze"~*), u(z) = rsin(rz) and

°T.Y. Li, J.A. Yorke, “Period Three Implies Chaos”, American Mathematical Monthly
82 (1975) 985.

' The function zexp(r(1—z)) has been used as a model for populations whose large
density is restricted by epidemics. The populations are always positive independently
of the (positive) initial conditions and the value of r.
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Figure 3.5: Magnification of one of the three branches of the 3-cycle for r > 1 + V8.
To the left, we observe the temporary halt of the chaotic behavior of the trajectory, which
comes back as shown in the plot to the right after an intermission of stable periodic
trajectories.

w(z) = b — 2% The constants § and o of equations (8.20) and (B.21)
are the same of all these mappings. The functions that result in chaotic
behavior are studied extensively in the literature and you can find a list
of those in [28].

3.4 The Newton-Raphson Method

In order to determine the bifurcation points, one has to solve the nonlin-
ear, polynomial, algebraic equations z = f((z) and f™'(z) = —1. For
this reason, one has to use an approximate numerical calculation of the
roots, and the simple Newton-Raphson method will prove to be a good
choice.

Newton-Raphson’s method uses an initial guess z, for the solution of
the equation ¢g(x) = 0 and computes a sequence of points 1, o, ..., Zp,
Tpt1, - .. that presumably converges to one of the roots of the equation.
The computation stops at a finite n, when we decide that the desired level
of accuracy has been achieved. In order to understand how it works, we
assume that g(z) is an analytic function for all the values of x used in
the computation. Then, by Taylor expanding around z,, we obtain

9(Tni1) = g(xn) + (Tpp1 — xn)gl(x) .o (3.22)
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If we wish to have g(z,.1) =~ 0, we choose

Tnan = 2y — A1) (3.23)
9'(zn)

The equation above gives the Newton-Raphson method for one equation
g(x) = 0 of one variable z. Different choices for =, will possibly lead to
different roots. When ¢'(z), ¢”(z) are non zero at the root and ¢"'(z) is
bounded, the convergence of the method is quadratic with the number
of iterations. This means that there is a neighborhood of the root a such
that the distance Ar,;1 = 7,41 — a is Az, < (Ax,)? If the root «
has multiplicity larger than 1, convergence is slower. The proofs of these
statements are simple and can be found in [29].

The Newton-Raphson method is simple to program and, most of the
times, sufficient for the solution of many problems. In the general case
it works well only close enough to a root. We should also keep in mind
that there are simple reasons for the method to fail. For example, when
g'(z,) = 0 for some n, the method stops. For functions that tend to
0 as * — =oo, it is easy to make a bad choice for z, that does not
lead to convergence to a root. Sometimes it is a good idea to combine the
Newton-Raphson method with the bisection method. When the derivative
¢'(z) diverges at the root we might get into trouble. For example, the
equation |z|* = 0 with 0 < v < 1/2, does not lead to a convergent
sequence. In some cases, we might enter into non-convergent cycles [8].
For some functions the basin of attraction of a root (the values of z, that
will converge to the root) can be tiny. See problem [L3.

As a test case of our program, consider the equation

ctane = /p? — €2 (3.24)

which results from the solution of Schrodinger’s equation for the en-
ergy spectrum of a quantum mechanical particle of mass m in a one
dimensional potential well of depth 1, and width L. The parameters
e = /mL?E/(2h) and p = \/mL?V,/(2h). Given p, we solve for ¢ which
gives the energy E. The function g(x) and its derivative ¢'(z) are

g(x) = ztanz —+/p? — a2

g(z) = i + Y itanz. (3.25)

1/p2—55‘2 cos?x
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The program of the Newton-Raphson method for solving the equation
g(x) = 0 can be found in the file nr.£90:

!

!Newton Raphson for a function of one variable
!

program NewtonRaphson
implicit none

real(8), parameter :: rho = 15.0D0

real(8), parameter :: eps = 1D—6

integer , parameter :: NMAX = 1000

real(8) :: x0, x1, err, g, gp

integer :: i

print *, ’Enter x0: °

read *, x0

err = 1.0D0

print *,’iter X error ’
print *,° ’

print *, 0,x0,err
do i=1,NMAX
!value of function g(x):
g = x0*tan(x0)—sqrt(rho*rho—x0*x0)
!value of the derivative g’(x):
gp x0/sqrt(rho*rho—x0*x0)+x0/(cos(x0)**2)+tan (x0)
x1 = x0 — g/gp
err = ABS(x1—x0)
print *,i,x1,err
ifCerr .lt. eps) exit
x0 = x1
enddo
end program NewtonRaphson

In the program listed above, the user is asked to set the initial point .
We fix p = rho = 15. It is instructive to make the plot of the left and right
hand sides of (8.24) and make a graphical determination of the roots
from their intersections. Then we can make appropriate choices of the
initial point zy. Using gnuplot, the plots are made with the commands:

gnuplot> gi(x) = x*tan(x)
gnuplot> g2(x) = sqrt(rho*rho—x*x)
gnuplot> plot [0:20][0:20] g1(x), g2(x)

The compilation and running of the program can be done as follows:
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Figure 3.6: Plots of the right and left hand sides of equation (B.24). The intersections
of the curves determine the solutions of the equation and their approximate graphical
estimation can serve as initial points xy for the Newton-Raphson method.

> gfortran nr.f90 —o n
> echo 71.471./n
Enter xO0:
iter x error
0 1.3999999999999999 1.0000000000000000
1 1.5254292024457967 0.12542920244579681
2 1.5009739120496131 2.4455290396183660E—002
3 1.4807207017202200 2.0253210329393090E—-002
4 1.4731630533073483 7.5576484128716537E—003
5 1.4724779331237687 6.8512018357957949E—004
6 1.4724731072313519 4.8258924167932093E—-006
7 1.4724731069952235 2.3612845012621619E—010

We conclude that one of the roots of the equation is € ~ 1.472473107.
The reader can compute more of these roots by following these steps by

herself.

The method discussed above can be easily generalized to the case
of two equations. Suppose that we need to solve simultaneously two
algebraic equations ¢;(x1,22) = 0 and ga(z1,22) = 0. In order to compute

a sequence (19, 220), (T11,Z21)s - - -» (T1ns T2n)s (T1(nt1)s T2(mt1))s - - - that may
converge to a root of the above system of equations, we Taylor expand
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the two functions around (z1,, Z2,)

og ($1n7 szn)

9 (T1(n41), Tant1)) = G1(T1ns Ton) + (Ti(ng1) — Tin) D,
o (Im, 1‘2n)
+  (Tamr1) — $2n)8—m’2 +
892@17“ xZn)
92<$1(n+1)7 1’2(n+1)) = g2($1n7 1’2n) + (xl(n+1) - $1n)T
092(Z1n, Ton
b (o) — ) 202 Tn) (3 96)
axz
Defining 0z1 = (1(n41) — 1n) and dzy = (Tom41) — T2,) and setting
91(T1(n+1), Ta(nr1)) = 0, g2(T1(nt1), Ta(nr1)) = 0, we obtain
g1 g1
) ) = —
T17— o, + 0xo— Ot a1
0 0
5 22 1§, 002~ g, (3.27)
0561 (%2
This is a linear 2 x 2 system of equations
A11(5$1+A12(51}2 = bl
A215$1 + AQQ(S.TQ = bg, (328)

where A;; = Jg¢;/0x; and b, = —g,;, with ¢,j = 1,2. Solving for 6z, we
obtain

Tinsl) = Tip + 013
Ton+1) = T2n + 5.1}'2 . (3-29)

The iterations stop when dx; become small enough.

As an example, consider the equations with ¢;(z) = 222 — 3zy +y — 2,
g2(x) =3x+xy+y—1. We have Ay =4x—3y, Ajpa=1—-3z, Ay =3+,
Ay =1+ x. The program can be found in the file nr2.£90:

!

!Newton Raphson of two functions of two variables
!

program NewtonRaphson2
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implicit none

real (8), parameter :: eps = 1D-6
integer , parameter :: NMAX = 1000
real(8) :: A(2,2).,p(2).,dx(2)
real(8) :: x,y, err
integer :: i

print *, ’Enter x0,y0:
read *, x,y

)

err = 1.0DO
print *,’iter X y error ’
print *,° ’
print *, 0,x,y,err
do i=1,NMAX
b(1) = —(2.0D0*x*x—3.0D0*x*y+y—2.0D0) ! —gl(x,y)
b(2) = —(3.0D0*x + x*y + y — 1.0D0) ' —g2(x,y)
! dgt/dx dgl/dy
A(1,1) = 4.0D0*x—3.0D0*y; A(1,2) = 1.0D0—3.0D0*x
! dg2/dx dg2/dy

A(2,1) = 3.0D0+y
call solve2x2(A,B,dx)
x = x + dx(1)
y =y + dx(2)
err = 0.5D0*SQRT(dx (1) **2+dx(2)**2)
print *,i,x,y,err
if (err .1t. eps) exit
enddo

end program NewtonRaphson2
!

A(2,2) = 1.0D0+x

..

subroutine solve2x2(A,b,dx)
implicit none
real(8) :: A(2,2).,b(2).,dx(2)
real(8) :: numl,num?2,det
numl = A(2,2)*b(1)—A(1,2)*b(2)
num?2 AC1,1)*p(2)—A(2.,1)*b(1)
det AC1,1)*A(2,2)—A(1,2)*A(2,1)
if (det .eq. 0.0D0) stop ’solve2x2: det=0’
dx(1)= numl/det
dx(2)= num2/det
end subroutine solve2x2

In order to guess the region where the real roots of the systems lie, we
make a 3-dimensional plot using gnuplot:

gnuplot> set isosamples 20
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gnuplot> set hidden3d
gnuplot> splot 2*x**2_-3*x*y+y—2,3*x+y*x+y—1.0

We plot the functions g;(z,y) together with the plane z = 0. The in-
tersection of the three surfaces determine the roots we are looking for.
Compiling and running the program can be done by using the com-
mands:

> gfortran nr2.£f90 —o n
> echo 2.2 1.5 |./n
Enter x0,yO0:

iter X y error
0 2.20000000 1.50000000 1.0000
1 0.76427104 0.26899383 0.9456
2 0.73939531 —0.68668275 0.4780
3 0.74744506 -0.71105605 1.2834E—-002
4 0.74735933 —0.71083147 1.2019E-004
5 0.74735932 —-0.71083145 1.2029E-008

> echo 01 |./n

5 —0.10899022 1.48928857 4.3461E—012
> echo -5 0l./n

6 —6.13836909 —3.77845711 3.2165E—-013

The computation above leads to the roots (0.74735932, —0.71083145),
(—0.10899022, 1.48928857), (—6.13836909, —3.77845711).

The Newton-Raphson method for many variables becomes hard quite
soon: One needs to calculate the functions as well as their derivatives,
which is prohibitively expensive for many problems. It is also hard to
determine the roots, since the method converges satisfactorily only very
close to the roots. We refer the reader to [8] for more information on
how one can deal with these problems.

3.5 Calculation of the Bifurcation Points

In order to determine the bifurcation points for » < r. we will solve
the algebraic equations » = f¥)(z) and f®’(z) = —1. At these points,
k-cycles become unstable and 2k-cycles appear and are stable. This hap-

pens when r = r”, where k = 2"~2. We will look for solutions (z,7{")
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fora=k+1,k+2,...,2k.

We define the functions F(z,r) = f(z) = ro(1 — z) and F®(z,r) =
f®)(x) as in equation (B.6). We will solve the algebraic equations:

gi(x,r) = x— F(k)(x,r) =0
aF(k)(x,r)

go(z,7) = —a 1=0. (3.30)

According to the discussion of the previous section, in order to calculate
the roots of these equations we have to solve the linear system (3.28),
where the coefficients are

by = —gi(x,r)=—az+ F®) (x,r)
OF®) (1)
by = —golx,r)= "
~ Ogi(w,r) OF® (2, 7)
A = or L ox
A = dgi(z,r) _8F(k’)(x,7’)
o or N or
A — 0go(x,7) B GQF(k)(m,r)
S or 0x?
_ Oga(m, ) O*F®) (2, 1)
Az or  dxzor (3.31)

The derivatives will be calculated approximately using finite differences

OF®) (z,7) N F®(z+er)— F®(x —er)
Ox - 2¢
OF®) (z,7) F® (2,7 +¢) — F®)(x,r — )

(3.32)

Q

or 2¢ ’
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and similarly for the second derivatives

OF®) (z+£ 1) . OF®) (z—< )

O*F®) (z,7)

~ oz oz
0x? 25
B 1 {F(k)(:c +e,r) — F(k)(:v,r) F(k)(x,r) — F(k)(CL' — e,r)}
€ € €

1
= —Q{F(k)(que,T)—2F(k)(x,r)—|—F(k)(x—e,r)}
€

PR (g,r) e OFT-cn

~ or or
o0xOr 2¢,
1 [FPater+e)— FO(x+e,r—e¢)
B Z{ 2€,
FRO(z —e,r+e)— FP(z—epr —¢)
B 2€, }
- {FP(@+epr+e)— FP (@ +epr —¢)
4e €,
—FP (@ —er+e)+ FP (2 —epr—¢)} (3.33)

We are now ready to write the program for the Newton-Raphson method
like in the previous section. The only difference is the approximate cal-
culation of the derivatives using the relations above and the calculation
of the function F*)(x,r) by a routine that will compose the function f(z)
k-times. The program can be found in the file bifurcationPoints.f90:

!

! bifurcationPoints . f

! Calculate bifurcation points of the discrete logistic map
! at period k by solving the condition

! g1(x,r) = x — F(k,x,r) =0

! g2(x,r) = dF(k,x,r)/dx+1 = 0

! determining when the Floquet multiplier becomes 1

! F(k,x,r) iterates F(x,r) = r*x*(x—1) k times

! The equations are solved by using a Newton—Raphson method
!

program bifurcationPoints
implicit none
real (8) ,parameter :: tol=1.0D—10
integer :: k,iter
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real(8) :: r0,x0
real (8) :: A(2.2),B(2).dx(2)

real(8) :: error
real(8) :: F,dFdx,dFdr,d2Fdx2,d2Fdrdx
! —— Input:

print *,’# Enter k,r0,x0:’
read *,k,r0,x0
print *,’# Period k= ’ .k

print *,°# rO= ’,r0,  x0= " ,x0

! —— Initialize

error = 1.0DO !initial large value of error>tol
iter =0

do while(error .gt. tol)
! —— Calculate jacobian matrix
A(C1,1) = 1.0D0—dFdx(k,x0,r0)

A(1,2) = —dFdr (k,x0,1r0)
A(2,1) = d2Fdx2 (k,x0,r0)
A(2,2) = d2Fdrdx (k,x0,r0)
B(1) = —x0 + F(k,x0,r0)
B(2) = —dFdx (k,x0,r0)—1.0D0

! —— Solve a 2x2 linear system:
call solve2x2(A,B,dX)

x0 = x0 + dx(1)

r0 = r0 + dx(2)

error = 0.5D0*sqrt(dX(1)**2+dX(2)**2)

iter = iter+1

print* iter, 'x0= " ,x0,° rO= ',r0,’ err=’,error

enddo !do while(error .gt. tol)

end program bifurcationPoints
!

! Function F(k,x,r) and its derivatives
real(8) function F(k,x,r)

implicit none

real(8) :: x,r,x0

integer k,i

x0 = x

do i=1,k

x0 = r*x0*(1.0D0—x0)
enddo

F = x0

end function F
|

real(8) function dFdx(k,x,r)
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implicit none
real(8) :: x.,r,eps

real(8) :: F

integer k

eps = 1.0D—6*x

dFdx = (F(k,x+teps,r)-F(k,x—eps.,r))/(2.0D0*eps)

end function dFdx
|

real (8) function dFdr(k,x,r)
implicit none

real(8) :: x,r,eps

real(8) :: F

integer k

eps = 1.0D—6*r

dFdr = (F(k,x,r+eps)-F(k,x,r—eps))/(2.0D0*eps)

end function dFdr
|

real (8) function d2Fdx2(k,x,r)
implicit none

real(8) :: x,r,eps

real(8) :: F

integer k

eps = 1.0D—-6*x

d2Fdx2 = (F(k,x+eps,r)—2.0D0*F(k,x,r)+F(k,x—eps,r))/(eps*eps)

end function d2Fdx2
!
real (8) function d2Fdrdx(k,x,r)
implicit none
real(8) :: x,r,epsx,epsr
real(8) :: F
integer k

epsx = 1.0D—-6*x

epsr = 1.0D—6*r

d2Fdrdx = (F(k,x+epsx,r+epsr)—F(k,x+epsx,r—epsr) &
—F(k,x—epsx,r+epsr )+F (k,x—epsx ,r—epsr)) &

/(4.0D0*epsx*epsr)
end function d2Fdrdx
!

subroutine solve2x2(A,b,dx)
implicit none
real(8) :: A(2,2),b(2),dx(2)
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real(8) :: numl,num?2,det

numl = A(2.,2)*b(1) — A(1.,2)*Db(2)

num2 = A(1,1)*b(2) — A(2.1)*b(1)

det AC1,1)*A(2,2)— A(1,2)*A(2.1)

if (det .eq. 0.0D0) stop ’solve2x2: det = 0’
dx(1) = numil/det

dx(2) = num?2/det
end subroutine solve2x2

Compiling and running the program can be done as follows:

> gfortran bifurcationPoints.f90 —o b

> echo 2 3.5 0.5 I./b

Enter k,r0,x0:

Period k= 2

rO= 3.5000000000000 x0= 0.50000000000

x0= 0.4455758353187 r0= 3.38523275827 err= 6.35088E—-002
x0= 0.4396562547624 r0= 3.45290970406 err= 3.39676E—002
x0= 0.4399593001407 r0= 3.44949859951 err= 1.71226E—003
x0= 0.4399601690333 r0= 3.44948974267 err= 4.44967E—006
x0= 0.4399601689937 r0= 3.44948974281 err= 7.22160E—-011
> echo 2 3.5 0.85 | ./b

QU W DN = 3= F F

4 x0= 0.8499377795512 r0= 3.44948974275 err= 1.85082E—-011
> echo 4 3.5 0.5 |./b

5 x0= 0.5235947861540 r0= 3.54409035953 err= 1.86318E—-011
> echo 4 3.5 0.35 | ./b

5 x0= 0.3632903374118 r0= 3.54409035955 err= 5.91653E-013

The above listing shows the points of the 2-cycle and some of the points

of the 4-cycle. It is also possible to compare the calculated value r® =

3.449490132 with the expected one ¥ = 14+/6 ~ 3.449489742. Improving
the accuracy of the calculation is left as an exercise for the reader who

has to control the systematic errors of the calculations and achieve better

accuracy in the computation of r,
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3.6 Liapunov Exponents

We have seen that when r > r. =~ 3.56994567, the trajectories of the lo-
gistic map become non periodic and exhibit chaotic behavior. Chaotic
behavior mostly means sensitivity of the evolution of a dynamical system
to the choice of initial conditions. More precisely, it means that two dif-
ferent trajectories constructed from infinitesimally close initial conditions,
diverge very fast from each other. This implies that there is a set of initial
conditions that densely cover subintervals of (0,1) whose trajectories do
not approach arbitrarily close to any cycle of finite length.

Assume that two trajectories have z(, T¢ as initial points and Az, =
xo — Zo. When the points z,, Z,, have a distance Az,, = z,, — z,, that for
small enough n increases exponentially with n (the “time”), i.e.

Az, ~ Azge™,  A>0, (3.34)

the system is most likely exhibiting chaotic behaviorf]. The exponent A
is called a Liapunov exponent. A useful equation for the calculation of A
is

n—1

M= lim =S In £ (a)] (3.35)

n—oo 1M
k=0

This relation can be easily proved by considering infinitesimal ¢ = |Ax)|

"Sensitivity to the initial condition alone does not necessarily imply chaos. It is
necessary to have topological mixing and dense periodic orbits. Topological mixing
means that every open set in phase space will evolve to a set that for large enough time
will have non zero intersection with any open set. Dense periodic orbits means that
every point in phase space lies infinitesimally close to a periodic orbit.
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so that A = lim lim 1 In|Ax,|/e. Then we obtain
n—o00 e—0 "

1 = f(@o) = f(zo+€) = f(xo) + €f'(20)
= 1z +ef (x) =
An oo

= ~ f'(o)

Ty = [f(@1) = f(z1+ef'(w0)) = fla1) + (ef (w0)) f(21)

= o+ ef(xo)f (1) =
Ary T

= ~ ['(xo) f'(x1)

€ €

Ty = [(Z2) = flwa+ef'(xo)f(21)) = flx2) + (ef (o) f'(x1)) f (2)
= I3+ ef (o) ['(21) f'(w2) =

Al‘g T3 — I3

= . ~ f/(l’o)f,(l’l)f/(.rg) . (336)

€

We can show by induction that |Ax,|/e ~ f'(zo)f (z1)f (x2) ... f'(xn-1)
and by taking the logarithm and the limits we can prove (8.35).

A first attempt to calculate the Liapunov exponents could be made
by using the definition (8.34). We modify the program logistic.f90 so
that it calculates two trajectories whose initial distance is ¢ = epsilon:

!

!Discrete Logistic Map:

!Two trajectories with close initial conditions.
!

program logistic_map
implicit none

integer :: NSTEPS,i
real(8) :: r,x0,x1,x0t,x1t,epsilon
| ——— Input:

print *,’# Enter NSTEPS, r, x0, epsilon:’
read * ,NSTEPS.r,x0,epsilon

print *,’# NSTEPS = ’ NSTEPS
print *, '# r = ', r
print *,’# x0 = ’.,x0

print *,’# epsilon " ,epsilon
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Figure 3.7: A plot of |Axz,|/e for the logistic map for r = 3.6, zp = 0.2. Note the
convergence of the curves as ¢ — 0 and the approximate exponential behavior in this
limit. The two lines are fits to the equation ( ) and give A = 0.213(4) and A = 0.217(6)
respectively.

x0t = xO+epsilon
! ———— Initialize:
open(unit=33,file="1lia.dat’)

write (33.,*%) 1,x0,x0t,ABS(x0t—x0)/epsilon
! ——— Calculate:

do i=2,NSTEPS

x1 =1 * x0 * (1.0D0—x0 )

xlt = r * x0t * (1.0D0—x0t)

write (33,%)i,x1,x1t,ABS(x1t—x1)/epsilon

x0 = x1; x0t = x1t
enddo
close(33)

end program logistic_map

After running the program, the quantity |Az,|/e is found at the fourth
column of the file 1ia.dat. The curves of figure .7 can be constructed
by using the commands:
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> gfortran liapunovl.f90 —o 1
> gnuplot
gnuplot> set logscale y
gnuplot> plot \
”lecho 200 3.6 0.2 1e—15 |./1;cat lia.dat” u 1:4 w 1

The last line plots the stdout of the command "echo 200 3.6 0.2 1e-15
|./1;cat lia.dat", i.e. the contents of the file 1ia.dat produced after
running our program using the parameters NSTEPS = 200, r = 3.6, x0
= 0.2 and epsilon = 107!5. The gnuplot command set logscale 7,
puts the y axis in a logarithmic scale. Therefore an exponential function
is shown as a straight line and this is what we see in figure B.7: The
points |Az,|/e tend to lie on a straight line as e decreases. The slopes of
these lines are equal to the Liapunov exponent A. Deviations from the
straight line behavior indicates corrections and systematic errors, as we
point out in figure 8.7. A different initial condition results in a slightly
different value of )\, and the true value can be estimated as the average
over several such choices. We estimate the error of our computation
from the standard error of the mean. The reader should perform such a
computation as an exercise.

One can perform a fit of the points |Ax,|/e to the exponential function
in the following way: Since |Az,|/e ~ Cexp(An) = In(|Az,|/€) = I +¢,
we can make a fit to a straight line instead. Using gnuplot, the relevant
commands are:

gnuplot> fit [5:53] a*x+b \
”<{echo 500 3.6 0.2 1e—15 |./1;cat lia.dat”\
using 1:(log($4)) via a,b

gnuplot> replot exp(a*x+b)

The command shown above fits the data to the function a*x+b by taking
the 1st column and the logarithm of the 4th column (using 1:(log($4)))
of the stdout of the command that we used for creating the previous plot.
We choose data for which 5 < n < 53 ([5:53]) and the fitting parameters
are a,b (via a,b). The second line, adds the fitted function to the plot.
Now we are going to use equation (3.35) for calculating X. This
equation is approximately correct when (a) we have already reached the
steady state and (b) in the large n limit. For this reason we should
study if we obtain a satisfactory convergence when we (a) “throw away”
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Figure 3.8: Plot of the sum (1/n)
map with r = 3.8, N = 2000 for different initial conditions =, = 0.20, 0.35, 0.50, 0.75, 0.90.
The different curves converge in the limit n — oo to A = 0.4325(10).

n

gjﬁ “n |f/(21)| as a function of n for the logistic

a number of NTRANS steps, (b) calculate the sum (B.35) for increasing
NSTEPS= n (c) calculate the sum (B.35)) for many values of the initial point
xo. This has to be carefully repeated for all values of r since each factor
will contribute differently to the quality of the convergence: In regions
that manifest chaotic behavior (large A\) convergence will be slower. The
program can be found in the file 1iapunov2.£90:

!

!Discrete Logistic Map:

! Liapunov exponent from sum_i Inlf’(x_i)|

! NTRANS: number of discarded
! transient behavior

iteration in order to discard

! NSTEPS: number of terms in the sum

!

program logistic_map
implicit none

integer :: NTRANS, 6 NSTEPS,i
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real(8) :: r,x0,xl,sum

r— Input:
print *,’# Enter NTRANS,NSTEPS, r, x0:°’
read * NTRANS ,6 NSTEPS,r, x0

print *,’# NTRANS = ’ NTRANS
print *,’# NSTEPS = ’ NSTEPS
print *, '# r = ’.r
print *,’# x0 = ’.,x0

do i=1,NTRANS

x1 =1 * x0 * (1.0D0—x0 )

x0 = x1
enddo
sum = log(ABS(r*(1.0D0—2.0D0*x0)))
!V Initialize:
open(unit=33,file="lia.dat’)
write(33,*) 1,x0,sum

[ — Calculate:
do i=2,NSTEPS
x1 =1 * x0 * (1.0D0—x0 )

sum = sum + log(ABS(r*(1.0D0—2.0D0*x1)))
write (33 ,*)i,x1,sum/i

x0 = x1
enddo
close(33)

end program logistic_map

After NTRANS steps, the program calculates NSTEPS times the sum of the
terms In|f'(z)| = In|r(1 — 2z;)|. At each step the sum divided by the
number of steps i is printed to the file 1ia.dat. Figure 3.6 shows the
results for » = 3.8. This is a point where the system exhibits strong
chaotic behavior and convergence is achieved after we compute a large
number of steps. Using NTRANS = 2000 and NSTEPS ~ 70 000 the achieved
accuracy is about 0.2% with A = 0.4325 £+ 0.0010 = 0.4325(10). The main
contribution to the error comes from the different paths followed by
each initial point chosen. The plot can be constructed with the gnuplot
commands:

> gfortran liapunov2.f90 —o 1
> gnuplot
gnuplot> plot \
”<{echo 2000 70000 3.8 0.20 |./1l;cat lia.dat” u 1:3 w 1,\
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”<echo 2000 70000 3.8 0.35 |./1l;cat lia.dat” u 1:3 w 1,\
”<Cecho 2000 70000 3.8 0.50 |./1l;cat lia.dat” u 1:3 w 1,\
”<echo 2000 70000 3.8 0.75 |./l;cat lia.dat” u 1:3 w 1,\
”<Cecho 2000 70000 3.8 0.90 |./1;cat lia.dat” u 1:3 w 1

The plot command runs the program using the parameters NTRANS =
2000, NSTEPS = 70000, r = 3.8 and x0 = 0.20,0.35,0.50,0.75,0.90 and
plots the results from the contents of the file 1ia.dat.

In order to determine the regions of chaotic behavior we have to study
the dependence of the Liapunov exponent A on the value of r. Using our
experience coming from the careful computation of A before, we will run
the program for several values of r using the parameters NTRANS = 2 000,
NSTEPS = 60000 from the initial point x0 = 0.2. This calculation gives
accuracy of the order of 1%. If we wish to measure A carefully and
estimate the error of the results, we have to follow the steps described in
figures 8.7 and B.8. The program can be found in the file 1iapunov3.£90
and it is a simple modification of the previous program so that it can
perform the calculation for many values of r.

|

!Discrete Logistic Map:

! Liapunov exponent from sum_i In|f’(x_i)|

!Calculation for r in [rmin,rmax] with RSTEPS steps

! RSTEPS: values or r studied: r=rmin+(rmax—rmin)/RSTEPS

! NTRANS: number of discarded iteration in order to discard
! transient behavior

! NSTEPS: number of terms in the sum

! xstart: value of initial x0 for every r
!

program logistic_map
implicit none

real (8) ,parameter :: rmin = 2.5DO0
real (8) ,parameter :: rmax = 4.0DO
real (8) ,parameter :: xstart = 0.2D0
integer ,parameter :: RSTEPS = 1000
integer ,parameter :: NSTEPS = 60000
integer ,parameter :: NTRANS = 2000
integer :: i,ir

real(8) :: r.x0,xl,sum,dr

open(unit=33,file="1lia .dat’)
dr = (rmax—rmin)/(RSTEPS—1)
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do ir=0,RSTEPS—1
r = rmin+ir*dr
x0= xstart

do i=1,NTRANS

x1 =1 * x0 * (1.0D0—x0 )
x0 = x1
enddo

sum = log (ABS(r*(1.0D0—2.0D0*x0)))
77777 Calculate:
do i=2,NSTEPS

x1 =1 * x0 * (1.0D0—x0 )

sum = sum + log(ABS(r*(1.0D0—2.0D0*x1)))
x0 = x1
enddo

write (33,%)r,sum/NSTEPS
enddo !do ir=0,RSTEPS—1
close(33)
end program logistic_map

The program can be compiled and run using the commands:

> gfortran liapunov3.£f90 —o 1
> /1 &

The character & makes the program ./1 to run in the background. This
is recommended for programs that run for a long time, so that the shell
returns the prompt to the user and the program continues to run even
after the shell is terminated.

The data are saved in the file 1ia.dat and we can make the plot
shown in figure B.7 using gnuplot:

gnuplot> plot “lia.dat” with lines notitle ,0 notitle

Now we can compare figure B.9 with the bifurcation diagram shown in
figure B.4. The intervals with A < 0 correspond to stable k-cycles. The
intervals where A > 0 correspond to manifestation of strong chaos. These
intervals are separated by points with A = 0 where the system exhibits
weak chaos. This means that neighboring trajectories diverge from each
other with a power law |Az,| ~ |Azy|n“ instead of an exponential, where
w = 1/(1 — q) is a positive exponent that needs to be determined. The
parameter ¢ is the one usually used in the literature. Strong chaos is
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Figure 3.9: The Liapunov exponent A of the logistic map calculated via equation
( ). Note the chaotic behavior that manifests for the values of » where A > 0 and
the windows of stable k-cycles where A < 0. Compare this plot with the bifurcation
diagram of figure B.4. At the points where A = 0 we have onset of chaos (or “edge of
chaos”) with manifestation of weak chaos (i.e. |Az,| ~ |Azg|n“). At these points we
have transitions from stable k-cycles to strong chaos. We observe the onset of chaos for
the first time when r = r, ~ 3.5699, at which point A = 0 (for smaller r the plot seems
to touch the A\ = 0 line, but in fact A takes negative values with |\| very small).

obtained in the ¢ — 1 limit. For larger r, switching between chaotic and
stable periodic trajectories is observed each time A\ changes sign. The
critical values of r can be computed with relatively high accuracy by
restricting the calculation to a small enough neighborhood of the critical
point. You can do this using the program listed above by setting the
parameters rmin and rmax.

We can also study the chaotic properties of the trajectories of the
logistic map by computing the distribution p(z) of the values of z in
the interval (0,1). After the transitional period, the distribution p(x)
for the %k cycles will have support only at the points of the k cycles,
whereas for the chaotic regimes it will have support on subintervals of
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Figure 3.10: The distribution functions p(z) of = of the logistic map for r = 3.59
(left) and 3.8 (right). The chaotic behavior appears to be weaker for » = 3.59, and this
is reflected on the value of the entropy. One sees that there exist intervals of 2 with
p(x) = 0 which become smaller and vanish as r gets close to 4. This distribution is very
hard to be distinguished from a truly random distribution.

(0,1). The distribution function p(z) is independent for most of the initial
points of the trajectories. If one obtains a large number of points from
many trajectories of the logistic map, it will be practically impossible to
understand that these are produced by a deterministic rule. For this
reason, chaotic systems can be used for the production of pseudorandom
numbers, as we will see in chapter [L]. By measuring the entropy, which is
a measure of disorder in a system, we can quantify the “randomness” of
the distribution. As we will see in chapter b, it is given by the equation

S=— Zpk lnpk s (337)
k

where p;, is the probability of observing the state k. In our case, we can
make an approximate calculation of S by dividing the interval (0,1) to
N subintervals of width Az. For given r we obtain a large number M
of values z,, of the logistic map and we compute the histogram #h; of
their distribution in the intervals (xj,z; + Az). The probability density
is obtained from the limit of p; = hy/(MAz) as M becomes large and Ax
small (large N). Indeed, S , pyAz = 1 converges to fol p(x)dx =1. We
will define S = — chv:l pe InprAx.

The program listed below calculates p; for chosen values of r, and
then the entropy S is calculated using (8.37). It is a simple modification
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Figure 3.11: The distribution p(z) of x for the logistic map for r = 4. We observe
strong chaotic behavior, p(x) has support over the whole interval (0,1) and the entropy
is large. The solid line is the analytic form of the distribution p(z) = 7'z~ /2(1—z)~1/2
which is known for » =4 []. This is the beta distribution for a =1/2, b =1/2.

of the program in liapunov3.f90 where we add the parameter NHIST
counting the number of intervals N for the histograms. The probability
density is calculated in the array p(NHIST). The program can be found
in the file entropy.£90:

|

!Discrete Logistic Map:

!Entropy calculation from S=—sum_ i p_i In p_i
!Calculation for r in [rmin,rmax]| with RSTEPS steps
! RSTEPS:

! NHIST

!

! xstart:
!

values

: number
! NSTEPS:
! NTRANS:

number
number

transient behavior
value of initial xO for every r

or r studied: r=rmin+(rmax—rmin)/RSTEPS
of histogram bins for calculation of p_i
of values of x in the histograms

of discarted iteration in order to discard

program logistic_map

implicit none

real (8) ,parameter :: rmin = 2.5D0
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real (8) ,parameter :: rmax = 4.0DO

real (8) ,parameter :: xstart = 0.2DO
integer ,parameter :: RSTEPS = 1000

integer ,parameter :: NHIST = 10000
integer ,parameter :: NTRANS = 2000

integer ,parameter :: NSTEPS = 5000000

real (8) ,parameter :: xmin=0.0D0,xmax=1.0D0
integer :: i,ir,isum,n

real(8) :: r,x0,xl1,sum,dr,dx

real(8) :: p(NHIST),S

open(unit=33,file="entropy.dat’)
p = 0.0Do
dr (rmax—rmin) /(RSTEPS —1)
dx = (xmax—xmin)/(NHIST —1)
do ir=0,RSTEPS—1
r = rmin+ir*dr
x0= xstart
do i=1,NTRANS

x1 =1 * x0 * (1.0D0—x0 )
x0 = x1
enddo

!make histogram:
n=INT(x0/dx) +1;p(n)=p(n)+1.0DO
do i=2,NSTEPS

x1 =1 * x0 * (1.0D0—x0 )
n = INT(x1/dx)+1
p(n)=p(n)+1.0DO

x0 = x1

enddo

'p(k) is now histogram of x—values.
!Normalize so that sum_k p(k)*dx=1
!to get probability distribution:

) = p/NSTEPS/dx
!sum all non zero terms: p(n)*log(p(n))*dx
S = —SUM(p*log(p) ,MASK=p.gt.0.0D0)*dx

write(33,*)r,S
enddo !do ir=0,RSTEPS—1
close(33)
!print the last probability distribution:
open(unit=34,file="entropy_hist.dat’)
do n=1,NHIST
x0 = xmin +(n—1)*dx + 0.5D0*dx
write (34,*%) r,x0,p(n)
enddo
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close (34)
end program logistic_map

w
T

_9 | | | | | 1 1
3.5 355 36 365 3.7 3.75 3.8 3.85 3.9 395 4

r

Figure 3.12: The entropy S = — ", px Inp; Az for the logistic map as a function
of r. The vertical line is r, ~ 3.56994567 which marks the beginning of chaos and the
horizontal is the corresponding entropy. The entropy is low for small values of r, where
we have the stable 2" cycles, and large in the chaotic regimes. S drops suddenly when
we pass to a (temporary) periodic behavior interval. We clearly observe the 3-cycle for
r =1++/8 ~ 3.8284 and the subsequent bifurcations that we observed in the bifurcation
diagram (figure B.4) and the Liapunov exponent diagram (figure B.9).

For the calculation of the distribution functions and the entropy we
have to choose the parameters which control the systematic error. The
parameter NTRANS should be large enough so that the transitional behav-
ior will not contaminate our results. Our measurements must be checked
for being independent of its value. The same should be done for the ini-
tial point xstart. The parameter NHIST controls the partitioning of the
interval (0,1) and the width Az, so it should be large enough. The pa-
rameter NSTEPS is the number of “measurements” for each value of r and
it should be large enough in order to reduce the “noise” in p;. It is obvi-
ous that NSTEPS should be larger when Az becomes smaller. Appropriate
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choices lead to the plots shown in figures and for r = 3.59, 3.58
and 4. We see that stronger chaotic behavior means a wider distribution
of the values of z.

The entropy is shown in figure 8.12. The stable periodic trajectories
lead to small entropy, whereas the chaotic ones lead to large entropy.
There is a sudden increase in the value of the entropy at the beginning
of chaos at r = r., which increases even further as the chaotic behavior
becomes stronger. During the intermissions of the chaotic behavior there
are sudden drops in the value of the entropy. It is quite instructive to
compare the entropy diagrams with the corresponding bifurcation dia-

rams (see figure B.4) and the Liapunov exponent diagrams (see figure

). The entropy is increasing until r reaches its maximum value 4, but
this is not done smoothly. By magnifying the corresponding areas in the
plot, we can see an infinite number of sudden drops in the entropy in
intervals of r that become more and more narrow.
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3.7 Problems

Several of the programs that you need to write for solving the problems of
this chapter can be found in the Problems directory of the accompanying
software of this chapter.

3.1 Confirm that the trajectories of the logistic map for r < 1 are falling
off exponentially for large enough n.

(a)

()

(o)

Choose r = 0.5 and plot the trajectories for zo = 0.1 — 0.9 with
step 0.1 for n = 1,...,1000. Put the y axis in a logarithmic
scale. From the resulting curves discuss whether you obtain
an exponential falloff.

Fit the points x,, for n > 20 to the function ce™* and deter-
mine the fitting parameters a and c. How do these parameters
depend on the initial point z;? You can use the following
gnuplot commands for your calculation:

gnuplot> !gfortran logistic.f90 —o 1
gnuplot> a=0.7;c=0.4;

gnuplot> fit [10:] c*exp(—a*x) \

”Cecho 1000 0.5 0.51./1;cat log.dat” via a,c
gnuplot> plot c*exp(—a*x),\

”’Cecho 1000 0.5 0.5!1./1;cat log.dat” w 1

As you can see, we set NSTEPS = 1000, r = 0.5, x0 = 0.5. By
setting the limits [10:] to the fit command, the fit includes
only the points z,, > 10, therefore avoiding the transitional
period and the deviation from the exponential falloff for small
n.

Repeat for r = 0.3 — 0.9 with step 0.1 and for r = 0.99,0.999.
As you will be approaching » = 1, you will need to discard
more points from near the origin. You might also need to
increase NSTEPS. You should always check graphically whether
the fitted exponential function is a good fit to the points z,, for
large n. Construct a table for the values of a as a function of
T.

The solutions of the equation (B.3) is e"~)*, How is this related to
the values that you computed in your table?
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Consider the logistic map for » = 2. Choose NSTEPS=100 and cal-
culate the corresponding trajectories for x0=0.2, 0.3, 0.5, 0.7,
0.9. Plot them on the same graph. Calculate the fixed point z;
and compare your result to the known value 1 — 1/r. Repeat for
x0=10"* for a = —1, -2, -5, —10, —20, —25. What do you conclude
about the point 2] = 07?

Consider the logistic map for r = 2.9,2.99,2.999. Calculate the stable
point =3 and compare your result to the known value 1 —1/r. How
large should NSTEPS be chosen each time? You may choose x0=0.3.

Consider the logistic map for r = 3.2. Take x0=0.3, 0.5, 0.9 and
NSTEPS=300 and plot the resulting trajectories. Calculate the fixed
points z; and z; by using the command tail log.dat. Increase
NSTEPS and repeat so that you make sure that the trajectory has
converged to the 2-cycle. Compare their values to the ones given
by equation (8.18). Make the following plots:

gnuplot> plot \
”<{echo 300 3.2 0.3I./1;awk ’'NR%2==0" log.dat” w 1
gnuplot> replot \
”<{echo 300 3.2 0.3l./1;awk °NR%2==1" log.dat” w 1

What do you observe?

Repeat the previous problem for r = 3.4494. How big should NSTEPS
be chosen so that you obtain z; and x; with an accuracy of 6 sig-
nificant digits?

Repeat the previous problem for » = 3.5 and 3.55. Choose NSTEPS =
1000, x0 = 0.5. Show that the trajectories approach a 4-cycle and
an 8-cycle respectively. Calculate the fixed points z;-z§ and x3-x7.

Plot the functions f(z), f®(x), f®(z), x for given r on the same
graph. Use the commands:

gnuplot> set samples 1000
gnuplot> f(x) = r*x*(1—x)
gnuplot> r=1;plot [0:1] x,£f(x) . £(f(x)) . f(£(£(£(x))))
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The command r=1 sets the value of r. Take r = 2.5, 3, 3.2, 1+/6, 3.5.
Determine the fixed points and the k-cycles from the intersections
of the plots with the diagonal y = z.

Construct the cobweb plots of figures and B.4 for r = 2.8,3.3
and 3.5. Repeat by dropping from the plot an increasing number
of initial points, so that in the end only the k-cycles will remain.
Do the same for r = 3.55.

Construct the bifurcation diagrams shown in figure 3.4.

Construct the bifurcation diagram of the logistic map for 3.840 < r <
3.851 and for 0.458 < z < 0.523. Compute the first four bifurcation
points with an accuracy of 5 significant digits by magnifying the
appropriate parts of the plots. Take NTRANS=15000.

Construct the bifurcation diagram of the logistic map for 2.9 < r <
3.57. Compute graphically the bifurcation points ri forn =23, 4,
5, 6, 7, 8. Make sure that your results are stable against variations
of the parameters NTRANS, NSTEPS as well as from the choice of
branching point. From the known values of ™ for n = 2,3, and
from the dependence of your results on the choices of NTRANS,
NSTEPS, estimate the accuracy achieved by this graphical method.
Compute the ratios (r™ — ™) /(I — ) and compare your
results to equation (3.20).

Choose the values of p in equation (B.24) so that you obtain only
one energy level. Compute the resulting value of the energy. When
do we have three energy levels?

Consider the polynomial g(z) = 2® — 222 — 11z + 12. Find the roots
obtained by the Newton-Raphson method when you choose z, =
2.35287527, 2.35284172, 2.35283735, 2.352836327, 2.352836323. What
do you conclude concerning the basins of attraction of each root of
the polynomial? Make a plot of the polynomial in a neighborhood
of its roots and try other initial points that will converge to each
one of the roots.

Use the Newton-Raphson method in order to compute the 4-cycle
xf, ..., x5 of the logistic map. Use appropriate areas of the bifur-
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n
3.0000000000 | 10 | 3.56994317604
3.4494897429 11 | 3.569945137342
3.544090360 12 | 3.5699455573912
3.564407266 13 | 3.569945647353
3.5687594195 | 14 | 3.5699456666199
3.5696916098 | 15 | 3.5699456707464
3.56989125938 | 16 | 3.56994567163008
3.56993401837 | 17 | 3.5699456718193
re = 3.56994567 . ..

Tgn) rén)

O 00O Oty W3

Table 3.1: The values of r™ for the logistic map calculated for problem [L7. r =p,
is taken from the bibliography.

cation diagram so that you can choose the initial points correctly.
Check that your result for ri¥ is the same for all z}. Tune the
parameters chosen in your calculation on order to improve the ac-

curacy of your measurements.

(5)

3.15 Repeat the previous problem for the 8-cycle zj, ..., 2], and r¢ .
3.16 Repeat the previous problem for the 16-cycle zj-, ..., 23, and r®,
3.17 Calculate the critical points r{ for n =3,...,17 of the logistic map

using the Newton-Raphson method. In order to achieve that, you
should determine the bifurcation points graphically in the bifurca-
tion diagram first and then choose the initial points in the Newton-
Raphson method appropriately. The program in bifurcationPoints.f90
should read the parameters eps, epsx, epsr from the stdin so that
they can be tuned for increasing n. If these parameters are too small
the convergence will be unstable and if they are too large you will
have large systematic errors. Using this method, try to reproduce

table [3.1]

3.18 Calculate the ratios Ar(™ /Ar("t1) of equation (B.20) using the re-
sults of table B.1. Calculate Feigenbaum’s constant and comment
on the accuracy achieved by your calculation.
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3.19 Estimate Feigenbaum’s constant 0 and the critical value 7. by as-

Figure 3.13: Test of the relation O

()

suming that for large enough n, ¢’ ~ r. — C9~". This behavior
is a result of equation (B.20). Fit the results of table 8.1 to this
function and calculate ¢ and r.. This hypothesis is confirmed in
figure where we can observe the exponential convergence of
r™ to r.. Construct the same plot using the parameters of your
calculation.

Hint: You can use the following gnuplot commands:

nmin=2;nmax=17
r(x)= rc—c*d**(—x)
fit [nmin:nmax] r(x)
plot "rerit”, r(x)
print rc,d

gnuplot>
gnuplot>
gnuplot>
gnuplot >
gnuplot>

“rerit” u 1:2 via rc,c,d

The file rcrit contains the values of table B.1. You should vary the
parameters nmin, nmax and repeat until you obtain a stable fit.

1 :
ca"

0.01 | 1

0.0001 | ,

1le-06 1

1le-08 | 1

le-10 1

1e-12 I I I I I I I

r. — C§~" discussed in problem [I]. The

parameters used in the plot are approximately r. = 3.5699457, § = 4.669196 and C =
12.292.
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3.20 Use the Newton-Raphson method to calculate the first three bifur-
cation points after the appearance of the 3-cycle for r = 1 + /8.
Choose one bifurcation point of the 3-cycle, one of the 6-cycle and
one of the 12-cycle and magnify the bifurcation diagram in their
neighborhood.

3.21 Consider the map describing the evolution of a population
Tnir = p(wn) = mpe’ 7). (3.38)

(a) Plot the functions =, p(z), p®(x), p¥(z) for r = 1.8,2, 2.6, 2.67,
2.689 for 0 < x < 8. For which values of r do you expect to
obtain stable k-cycles?

(b) For the same values of r plot the trajectories with initial points
xo = 0.2,0.5,0.7. For each r make a separate plot.

(¢) Use the Newton-Raphson method in order to determine the
points r for n = 3,4,5 as well as the first two bifurcation
points of the 3-cycle.

(d) Construct the bifurcation diagram for 1.8 < r < 4. Determine
the point marking the onset of chaos as well as the point where
the 3-cycle starts. Magnify the diagram around a branch that
you will choose.

(e) Estimate Feigenbaum’s constant 4 as in problem [17. Is your
result compatible with the expectation of universality for the
value of 67 Is the value of r. the same as that of the logistic
map?

3.22 Consider the sine map:
Tpt1 = S(x,) = rsin(rx,). (3.39)

(a) Plot the functions z, s(x), s (), s*(z), s®(z) for r = 0.65,
0.75, 0.84, 0.86, 0.88. Which values of r are expected to lead to
stable k-cycles?

(b) For the same values of r, plot the trajectories with initial points
xo = 0.2,0.5,0.7. Make one plot for each r.
(¢) Use the Newton-Raphson method in order to determine the

points ré") for n = 3,4,5 as well as the first two bifurcation
points of the 3-cycle.
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(d) Construct the bifurcation diagram for 0.6 < r < 1. Within
which limits do the values of x lie in? Repeat for 0.6 < r < 2.
What do you observe? Determine the point marking the onset
of chaos as well as the point where the 3-cycle starts. Magnify
the diagram around a branch that you will choose.

Consider the map:
Tpi1 =1 —ra? (3.40)

n-

(a) Construct the bifurcation diagram for 0 < r < 2. Within which
limits do the values of x lie in? Determine the point marking
the onset of chaos as well as the point where the 3-cycle starts.
Magnify the diagram around a branch that you will choose.

(b) Use the Newton-Raphson method in order to determine the

points ré") for n = 3,4,5 as well as the first two bifurcation
points of the 3-cycle.

3.24 Consider the tent map:

3.25

(3.41)

. T 0<zx
xn+1zrmln{xn,1—xn}:{ r(ln—a: ) l;mn
n) 3

IAIA
— N

Construct the bifurcation diagram for 0 < r < 2. Within which lim-
its do the values of z lie in? On the same graph, plot the functions
r/2, r—1r?/2.

Magnify the diagram in the area 1.407 < r < 1.416 and 0.580 <
x < 0.588. At which point do the two disconnected intervals within
which z,, take their values merge into one? Magnify the areas 1.0 <
r < 1.1, 04998 < x < 0.5004 and 1.00 < r < 1.03, 0.4999998 < = <
0.5000003 and determine the merging points of two disconnected
intervals within which z,, take their values.

Consider the Gauss map (or mouse map):
Tppr =€ " 4 q. (3.42)

Construct the bifurcation diagram for —1 < ¢ < 1 and r = 4.5, 4.9,
7.5. Make your program to take as the initial point of the new
trajectory to be the last one of the previous trajectory and choose



3.7.

3.26

3.27

3.28

3.29

3.30

3.31

PROBLEMS 203

xg = 0 for ¢ = —1. Repeat for o = 0.7,0.5,—-0.7. What do you
observe? Note that as ¢ is increased, we obtain bifurcations and
“anti-bifurcations”.

Consider the circle map:
Tpi1 = [Tn + 7 — gsin(27z,)] mod 1. (3.43)

(Make sure that your program keeps the values of z,, so that 0 <
z, < 1). Construct the bifurcation diagram for 0 < ¢ < 2 and
r=1/3.

Use the program in liapunov.f90 in order to compute the distance
between two trajectories of the logistic map for r = 3.6 that origi-
nally are at a distance Azy = 107*°. Choose zy = 0.1, 0.2,0.3, 0.4,
0.5,0.6, 0.7,0.8, 0.9, 0.99,0.999 and calculate the Liapunov exponent
by fitting to a straight line appropriately. Compute the mean value
and the standard error of the mean.

Calculate the Liapunov exponent for r = 3.58, 3.60, 3.65, 3.70, 3.80
for the logistic map. Use both ways mentioned in the text. Choose
at least 5 different initial points and calculate the mean and the
standard error of the mean of your results. Compare the values of
A that you obtain with each method and comment.

Compute the critical value r. numerically as the limit lim r™ for

n—oo

the logistic map with an accuracy of nine significant digits. Use the
calculation of the Liapunov exponent \ given by equation (3.35).

Compute the values of r of the logistic map numerically for which
we (a) enter a stable 3-cycle (b) reenter into the chaotic behavior.
Do the calculation by computing the Liapunov exponent A and
compare your results with the ones obtained from the bifurcation
diagram.

Calculate the Liapunov exponent using equation (8.35) for the fol-
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lowing maps:

Tpyl = z,e () 18<r<i4
Tpi1 = rsin(mzy,), 06<r<l1
Tpy1 = l—rxi, 0<r<?2
Tpi1l = e’mgw—q, r=75-1<q¢g<1
1
Tpp1 = |, + 3 gsin(2rx,)| mod 1, 0<q<2,(3.44)

and construct the diagrams similar to the ones in figure B.9. Com-
pare your plots with the respective bifurcation diagrams (you may
put both graphs on the same plot). Use two different initial points
zg = 0,0.2 for the Gauss map (z,,.1 = e ""» +¢) and observe the dif-
ferences. For the circle map (z,1 = [z, +1/3—¢sin(27z,)] mod 1)
study carefully the values 0 < ¢ < 0.15.

Reproduce the plots in figures [.10, and B.19. Compute the

function p(z) for r = 3.68, 3.80, 3.93 and 3.98. Determine the
points where you have stronger chaos by observing p(z) and the
corresponding values of the entropy. Compute the entropy for
r € (3.95,4.00) by taking RSTEPS=2000 and estimate the values of r
where we enter to and exit from chaos. Compare your results with
the computation of the Liapunov exponent.

Consider the Hénon map:

2
Tpt1 = Yn+1—ax;

(a) Construct the two bifurcation diagrams for x,, and y, for b =
0.3, 1.0 < a < 1.5. Check if the values a = 1.01, 1.4 that we will
use below correspond to stable periodic trajectories or chaotic
behavior.

(b) Write a program in a file attractor.£90 which will take NINIT
= NL X NL initial conditions (zo(7),y0(i)) ¢ = 1,... .NL on a
NLxNL lattice of the square z,, < 0 < Zp, Y < Yo < Yur-

Each of the points (z¢(7), yo(7)) will evolve according to equa-
tion (B.45) for n = NSTEPS steps. The program will print the
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points (x,(i),y,()) to the stdout. Choose z,, = y, = 0.6,
Ty = Yy = 08, NL= 200.

(¢) Choose a = 1.01, b = 0.3 and plot the points (z,(4),y,(i)) for
n =0, 1, 2, 3, 10, 20, 30, 40, 60, 1000 on the same diagram.

(d) Choose a = 1.4, b = 0.3 and plot the points (z,(i),y,(7)) for
n=0,...,7 on the same diagram.

(e) Choose a = 1.4, b = 0.3 and plot the points (z,(i), y,(7)) for
n = 999 on the same diagram. Observe the Hénon strange
attractor and its fractal properties. It is characterized by a
Hausdorfif] dimension dy = 1.261 & 0.003. Then magnify the

regions
{(z,y)] —1.290 <z < —1.270, 0.378 <y < 0.384},
{(z,y)] 1.150 <z < —1.130, 0.366 <y < 0.372},
{(z,y)] 0108 <z <0.114, 0.238 <y < 0.241},
{(z,y)] 0.300 <z <0.320, 0.204 <y <0.213},
{(z,y)] 1.076 <z < 1.084, 0.090 <y < 0.096},
{(z,y)| 1216 <x<1.226, 0.032 <y <0.034}.

3.34 Consider the Duffing map:

Tpnr1 = Un
Yny1 = —bx, +ay, — 1. (3.46)

(a) Construct the two bifurcation diagrams for x,, and y, for b =
0.3, 0 < a < 2.78. Choose four different initial conditions
(z0,40) = (£1/+/2,41/v/2). What do you observe?

(b) Use the program attractor.f90 from problem B3 in order to
study the attractor of the map for b = 0.3, a = 2.75.

3.35 Consider the Tinkerbell map:

Tpy1 = xi - y721 +ar, + byn
Yni1l = 2XpYn + cxy + dy, . (3.47)

“D.A. Russel, ].D. Hanson, and E. Ott, “Dimension of strange attractors”, Phys. Rev.
Lett. 45 (1980) 1175. See “Hausdorff dimension” in Wikipedia.
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(a) Choose a =0.9, b= —0.6013, ¢ = 2.0, d = 0.50. Plot a trajectory
on the plane by plotting the points (z,, y,,) for n =0,...,10000
with (z,0) = (—0.72, —0.64).

(b) Use the program attractor.f90 from problem B3 in order to
study the attractor of the map for the values of the parameters
a, b, ¢, d given above. Choose z,, = —0.68, ), = —0.76, y,,, =
—0.60, ypr = —0.68, n = 10000.

(c) Repeat the previous question by taking d = 0.27.



Chapter 4

Motion of a Particle

In this chapter we will study the numerical solution of classical equations
of motion of one dimensional mechanical systems, e.g. a point particle
moving on the line, the simple pendulum etc. We will make an introduc-
tion to the numerical integration of ordinary differential equations with
initial conditions and in particular to the Euler and Runge-Kutta meth-
ods. We study in detail the examples of the damped harmonic oscillator
and of the damped pendulum under the influence of an external peri-
odic force. The latter system is nonlinear and exhibits interesting chaotic
behavior.

4.1 Numerical Integration of Newton’s Equa-
tions
Consider the problem of the solution of the dynamical equations of mo-

tion of one particle under the influence of a dynamical field given by
Newton’s law. The equations can be written in the form

REH
_dtf = a(t, 7, 7), (4.1)
where o
F dr
a(t,z,v) = — U= —. 4.2
a(t, z,v) — U= (4.2)

From the numerical analysis point of view, the problems that we will dis-
cuss are initial value problems for ordinary differential equations where

207
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the initial conditions
f(to) = 11_3”0 ’(7(to) - _"07 (43)

determine a unique solution #(¢). The equations (6.1) are of second order
with respect to time and it is convenient to write them as a system of
twice as many first order equations:

azx dv

=7

Y a7, 7). 44
dt 5~ AbE) (4.4)

In particular, we will be interested in the study of the motion of a particle
moving on a line (1 dimension), therefore the above equations become

le—j = % = a(t,z,v) 1-dimension
.Z‘(t()) = T U(to) =7 . (45)

When the particle moves on the plane (2 dimensions) the equations of
motion become

dx dv, . .
it = a,(t,x, vy, y,v,) 2-dimensions
dy dv
gl d_ty = a,(t, x, vy, y,0y)
z(to) = o vz (to) = Vou
y(to) = o vy(to) = voy (4.6)

4.2 Prelude: Euler Methods

As a first attempt to tackle the problem, we will study a simple pendulum
of length [ in a homogeneous gravitational field g (figure .1). The
equations of motion are given by the differential equations

d*0 g .
ﬁ = —7511'19
-, %.7)

dt
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g

Figure 4.1: A simple pendulum of length [ in a homogeneous gravitational field g.

which can be rewritten as a first order system of differential equations

o
a -

dw g .

E = —751n9 s (48)

The equations above need to be written in a discrete form appropriate
for a numerical solution with the aid of a computer. We split the interval
of time of integration [t;,t;] to N — 1 equal intervals] of width At = h,
where h = (t; — t;)/(IN — 1). The derivatives are approximated by the
relations (z,41 — x,)/At = 2/, so that

Wil = Wp+ oAt
Opt1 = O+ w,AL. (4.9)
where o = —(g/l)sinf is the angular acceleration. This is the so-called

Euler method. The error at each step is estimated to be of order (At)?.
This is most easily seen by Taylor expanding around the point ¢,, and
neglecting all terms starting from the second derivative and beyond}.

'We have N discrete time points t; = t1,...,tn_1,tn = tf
*See appendix .7 for retails.
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Figure 4.2: Convergence of Euler’s method for a simple pendulum with period
T ~ 1.987(w? = 10.0) for several values of the time step At which is determined by the
number of integration steps Nt= 50—100, 000. The solution is given for 6y = 0.2, wy = 0.0
and we compare it with the known solution for small angles with a(t) ~ —(g/I) 6.

What we are mostly interested in is in the fotal error of the estimate of the
functions we integrate for at time ¢;! We expect that errors accumulate in
an additive way at each integration step, and since the number of steps is
N o 1/At the total error should be o (At)? x (1/At) = At. This is indeed
what happens, and we say that Euler’s method is a first order method.
Its range of applicability is limited and we only study it for academic
reasons. Euler’s method is asymmetric because it uses information only
from the beginning of the integration interval (¢,t + At). It can be put
in a more balanced form by using the velocity at the end of the interval
(t,t + At). This way we obtain the Euler-Cromer method with a slightly
improved behavior, but which is still of first order

Wil = Wp+ oAt
0n+1 = (9n + wn+1At . (4.10)

An improved algorithm is the Euler—Verlet method which is of second
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Figure 4.3: Convergence of the Euler-Cromer method, similarly to figure b9 We
observe a faster convergence compared to Euler’s method.

order and gives total errorf] ~ (At)2. This is given by the equations

0n+1 = QQn — en—l + an(At)2

9n+1 - enfl
" 2At
The price that we have to pay is that we have to use a two step
relation in order to advance the solution to the next step. This implies
that we have to carefully determine the initial conditions of the problem
which are given only at one given time ¢;. We make one Euler time step

backwards in order to define the value of ,. If the initial conditions are
6y = 0(t;), w1 = w(t;), then we define

1
90 = 91 — wlAt + 50(1(At)2 . (412)

It is important that at this step the error introduced is not larger than
O(At?), otherwise it will spoil and eventually dominate the O(At?) total
error of the method introduced by the intermediate steps. At the last

*See appendix .7 for details.
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Figure 4.4: Convergence of the Euler-Verlet method, similarly to figure b9 We
observe a faster convergence than Euler’s method, but the roundoff errors make the
results useless for Nt> 50,000 (note what happens when Nt= 100, 000. Why?).

step we also have to take

Wy = %. (4.13)

Even though the method has smaller total error than the Euler method,
it becomes unstable for small enough At due to roundoff errors. In
particular, the second equation in (4.11) gives the angular velocity as the
ratio of two small numbers. The problem is that the numerator is the
result of the subtraction of two almost equal numbers. For small enough
At, this difference has to be computed from the last digits of the finite
representation of the numbers 0,,; and 6,, in the computer memory. The
accuracy in the determination of (,.; — 6,) decreases until it eventually
becomes exactly zero. For the first equation of (4.11), the term o, At? is
smaller by a factor At compared to the term «, At in Euler’s method.
At some point, by decreasing At, we obtain a,At? < 260, — 0, and the
accuracy of the method vanishes due to the finite representation of real
number in the memory of the computer. When the numbers «,, At* and
20,,—0,_, differ from each other by more that approximately seven orders
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Figure 4.5: Convergence of Euler’s method for the simple pendulum like in figure
for 6y = 3.0, wg = 0.0. The behavior of the angular velocity is shown and we notice
unstable behavior for Nt< 1,000.

of magnitude, adding the first one to the second is equivalent to adding
zero and the contribution of the acceleration Vanishegﬂ.

Writing programs that implement the methods discussed so far is quite
simple. We will write a program that compares the results from all three
methods Euler, Euler-Cromer and Euler—Verlet. The main program is
mainly a user interface, and the computation is carried out by three
subroutines euler, euler cromer and euler _verlet. The user must
provide the function accel(x) which gives the angular acceleration as a
function of x. The variable x in our problem corresponds to the angle
theta. For starters we take accel(x)= -10.0 * sin(x), the acceleration
of the simple pendulum.

The data structure is very simple: Three real arrays REAL T(P), X(P)
and V(P) store the times ¢,,, the angles 0,, and the angular velocities w,, for

‘Numbers of type real have approximately seven significant digits. The accuracy of
the operations described above is determined by the number ¢, which is the smallest
positive number such that 1 4+ ¢ > 1. For a variable x of some type, this number is
given by a call to the Fortran intrinsic function epsilon(x). For variables of type real,
€~ 1.2 x 1077 and for variables of type real(8) e~ 2.2 x 10716,



214 CHAPTER 4. MOTION OF A PARTICLE

8 T

50 ——
100
1000 -

6 ™\ 10000 .
7\ 15000
7\ 18000
/ \ 20000 -~~~
4t 7 \ 100000
/ \
2 /J’ \ }
/ \\
\
// N
> 0k —~ .. —

Figure 4.6: Convergence of Euler-Cromer’s method, like in figure k.5. We observe a
faster convergence than for Euler’s method.

n = 1,...,Nt. The user determines the time interval for the integration
from ¢; = 0 to t; = Tfi and the number of discrete times Nt. The latter
should be less than P, the size of the arrays. She also provides the initial
conditions fy = Xin and wy = Vin. After this, we call the main integration
routines which take as input the initial conditions, the time interval of
the integration and the number of discrete times Xin,Vin,Tfi,Nt. The
output of the routines is the arrays T,X,V which store the results for the
time, position and velocity respectively. The results are printed to the
files euler.dat, euler_cromer.dat and euler verlet.dat.

After setting the initial conditions and computing the time step At =
h = Tfi/(Nt — 1), the integration in each of the subroutines is performed
in do loops which advance the solution for time At¢. The results are
stored at each step in the arrays T,X,V. For example, the central part of
the program for Euler’s method is:

T(1) = 0.0
X(1) = Xin
V(1) = Vin
h = Tfi/(Nt—1)
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Figure 4.7: Convergence of the Euler-Verlet method, similarly to figure k.5 We
observe a faster convergence compared to Euler’s method but that the roundoff errors

make the results unstable for Nt= 18, 000.

do i = 2,Nt
T(i—1)+h

T(i)
X(i)
V(i)
enddo

X(i—1)+v(i—1)*h
V(i—1)+accel(X(i—1))*n

Some care has to be taken in the case of the Euler—Verlet method where
one has to initialize the first two steps, as well as take special care for the
last step for the velocity:

T(1)
x(1)
V(1)
X0
T(2)
X(2)
do i

0.0
Xin
Vin

x(1)

= h

2.0*x(1)
3.Nt

enddo

— V(1) * h + accel(X(1))

X0

v(Nt)= (X(Nt)—X(Nt—1))/h

+ accel(X(1))

*h*nh/2.0

*h*h
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The full program can be found in the file euler.£90 and is listed below:

!

!Program to integrate equations of motion for accelerations
!which are functions of x with the method of Euler,

! Euler—Cromer and Euler—Verlet.

!The user sets initial conditions and the subroutines return
IX(t) and V(t)=dX(t)/dt in arrays T(1..Nt) ,X(1..Nt),V(1..Nt)
!The user provides number of times Nt and the final

!time Tfi. Initial time is assumed to be t_i=0 and the
lintegration step h = Tfi/(Nt—1)

!The user programs a real function accel(x) which gives the
lacceleration dV(t)/dt as function of X.

INOTE: T(1) = 0 T(Nt) = Tfi
!

program diff_eq_euler
implicit none
integer ,parameter :: P=110000 ! The size of the arrays

real ,dimension(P):: T.X,V ! time t,x(t),v(t)=dx/dt
real :: Xin,Vin,Tfi ! initial conditions
integer :: Nt,i

!The user provides initial conditions X 0,V_0 final time t_f
land Nt:
print *, Enter X 0,V_0,t_f Nt (t_i=0):"’
read (5,*)Xin,Vin, Tfi,Nt
!This check is necessary in order to avoid memory
laccess violations:
if (Nt .ge. P )then
print *,’Nt must be strictly less than P. Nt,P= ’ Nt,P
stop
endif
!Xin= X(1), Vin=V(1), T(1)=0 and the routine gives evolution in
IT(2..Nt), X(2..Nt), V(2..Nt) which we print in a file
call euler(Xin,Vin,Tfi,Nt,T,X,V)
open(unit=20,file="euler.dat”)
do i=1,Nt
!Each line in data file has time, position, velocity:
write (20,*) T(i) ,Xx(i),v(i)
enddo
close(20) !we close the unit to be reused below
!
!We repeat everything for each method
call euler cromer(Xin,Vin,Tfi,Nt,T,X,V)
open(unit=20,file="euler_cromer.dat”)
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do i=1,Nt

write (20,*) T(i) ,X(i),v(i)
enddo

close (20)
!
call euler verlet(Xin,Vin,Tfi,Nt,T,X,V)
open(unit=20,file="euler_verlet.dat”)
do i=1,Nt

write (20,*) T(i),X(i),v(i)

enddo

close (20)

!

end program diff_eq_euler

!
!Function which returns the value of acceleration at
!position x used in the integration subroutines

leuler, euler_cromer and euler_verlet
'

real function accel(x)
implicit none

real x

accel = —10.0*sin (x)

end function accel
'

!Driver routine for integrating equations of motion
!using the Euler method

!Input:

1Xin=X(1), Vin=V(1) — initial condition at t=0,
! Tfi the final time and Nt the number of times
!Output:

!The arrays T(1..Nt), X(1..Nt), V(1..Nt) which
lgives x(t_k)=X(k), dx/dt(t_k)=V(k), t_k=T(k) k=1..Nt
!where for k=1 we have the initial condition.
!

subroutine euler(Xin,Vin,Tfi,Nt,T,X,V)
implicit none

integer :: Nt

real ,dimension(Nt) :: T,X,V ltime t,x(t),v(t)=dx/dt
real :: Xin,Vin, Tfi

integer :: i

real :: h,accel ! **declare the function accel**
!Initial conditions set here:

T(1) = 0.0

X(1) = Xin

V(1) = Vin

217
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'h is the time step Dt

h = Tfi/(Nt—1)

do i = 2,Nt

T(i) = T(i—1)+h ! time advances by Dt=h
(i) = X(G—-1D+v(i—1)*n ! advancement of position
V(i) = V(i—1)+accel(X(i—1))*h !and velocity.
enddo

end subroutine euler
!
!Driver routine for integrating equations of motion
!using the Euler—Cromer method

!Input:

!Xin=X(1) , Vin=V(1) — initial condition at t=0,
!'Tfi the final time and Nt the number of times
!Output:

!The arrays T(1..Nt), X(1..Nt), V(1..Nt) which

lgives x(t_i)=X(i), dx/dt(t_i)=V(i), t_i=T(i) i=1..Nt
!where for i=1 we have the initial condition.

|
subroutine euler_cromer(Xin,Vin,Tfi ,Nt,T,X,V)
implicit none

integer :: Nt

real ,dimension(Nt):: T,X,V !time t,x(t),v(t)=dx/dt
real :: Xin,Vin, Tfi

integer :: i
real :: h,accel
T(1) = 0.0
X(1) = Xin
V(1) = Vin
h = Tfi/(Nt—1)
do i = 2,Nt
T(i) = T(i—1)+h
V(i) = V(i—1)+accel(X(i—1))*h

'here is the difference compared to Euler
X(i) = X(i—D+V(i)*h
enddo

end subroutine euler_cromer
!
! Driver routine for integrating equations of motion
!using the Euler — Verlet method

!Input:

1Xin=X(1), Vin=V(1) — initial condition at t=0,
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! Tfi the final time and Nt the number of times
!Output:

!The arrays T(1..Nt), X(1..Nt), V(1..Nt) which

lgives x(t_i)=X(i), dx/dt(t_i)=V(i), t_i=T(i) i=1..Nt
!where for i=1 we have the initial condition.

!

subroutine euler verlet(Xin,Vin,Tfi,Nt,T,X,V)
implicit none
integer :: Nt
real ,dimension(Nt):: T,X,V !time t,x(t),v(t)=dx/dt
real :: Xin,Vin,Tfi

integer :: i
real :: h,h2,X0,02h
real :: accel
!Initial conditions set here:
T(1) = 0.0
x(1) = Xin
V(1) = Vin
h = Tfi/(Nt—1) ! time step
h2 = h*h ! time step squared
02h = 0.5/h ! h/2
!We have to initialize one more step: X0 corresponds to ’X(0)’
X0 = X(1) — V(1) * h + accel(X(1)) *h2/2.0
T(2) = h
X(2) = 2.0*x(1) — X0 + accel(X(1)) *h2
!Now i starts from 3:
do i = 3,Nt
T(1) = T(i—1)+h
X(i) = 2.0%X(i—1) — X(i—2) + accel(X(i—1))*h2
V(i—1) = o2h * (X(i)—X(i-2))
enddo

! Notice that we have one more step for the velocity:
v(Nt)= (X(Nt)-X(Nt—1))/h
end subroutine euler_verlet

Compiling the running the program can be done with the commands:

> gfortran euler.f90 —o euler
> ./euler
Enter X_0,V_0,t_f,Nt (t_i=0):
0.2 0.0 6.0 1000
> Is euler*.dat
euler_cromer.dat euler.dat euler_verlet.dat
> head —n 5 euler.dat
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0.000000 0.2000000 0.000000
6.0060062E—-03 0.2000000 —1.1932093E-02
1.2012012E-02 0.1999283 —2.3864185E—-02
1.8018018E-02 0.1997850 —3.5792060E-02
2.4024025E-02 0.1995700 —4.7711499E-02

The last command shows the first 5 lines of the file euler.dat. We see
the data for the time, the position and the velocity stored in 3 columns.
We can graph the results using gnuplot:

gnuplot> plot “euler.dat” using 1:2 with lines
gnuplot> plot “euler.dat” using 1:3 with lines

These commands result in plotting the positions and the velocities as a
function of time respectively. We can add the results of all methods to
the last plot with the commands:

gnuplot> replot “euler_cromer.dat” using 1:3 with lines
gnuplot> replot “euler_verlet.dat” using 1:3 with lines

The results can be seen in figures 4.2-%4.7. Euler’s method is unsta-
ble unless we take a quite small time step. The Euler-Cromer method
behaves impressively better. The results converge and remain constant
for Nt~ 100,000. The Euler—Verlet method converges much faster, but
roundoff errors kick in soon. This is more obvious in figure [.7 where
the initial angular position is large. For small angles we can compare
with the solution one obtains for the harmonic pendulum (sin(f) = 6):

alt) = —50=-0%
O(t) = 0ycos(2t) + (wo/Q) sin(2t)
w(t) = wycos(Qt) — (6€) sin(Qt) . (4.14)

In figures [..2-%.4 we observe that the results agree with the above for-
mulas for the values of At where the methods converge. This way we
can check our program for bugs. The plot of the functions above can be
done with the following gnuplot commandsfj:

*The command set dummy t sets the independent variable for functions to be t
instead of x which is the default.
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gnuplot> set dummy t

gnuplot> omega2 = 10

gnuplot> XO = 0.2

gnuplot> VO = 0.0

gnuplot> omega = sqrt(omega2)

gnuplot> x(t) = X0 * cos(omega * t) +(VO/omega)*sin(omega*t)
gnuplot> v(t) = VO * cos(omega * t) —(omega*X0)*sin (omega*t)
gnuplot> plot x(t), v(t)

The results should not be compared only graphically since subtle differ-
ences can remain unnoticed. It is more desirable to plot the differences of
the theoretical values from the numerically computed ones which can be
done using the commands:

gnuplot> plot “euler.dat” using 1:($2—x($1)) with lines
gnuplot> plot “euler.dat” using 1:($3—v($1)) with lines

The command using 1:($2-x($1)) puts the values found in the first
column on the z axis and the value found in the second column minus
the value of the function x(t) for ¢ equal to the value found in the first
column on the y axis. This way, we can make the plots shown inf| figures

p14.14,

4.3 Runge-Kutta Methods

Euler’s method is a one step finite difference method of first order. First
order means that the total error introduced by the discretization of the
integration interval [t;, ;] by N discrete times is of order ~ O(h), where
h = At = (t;—t;)/N is the time step of the integration. In this section we
will discuss a generalization of this approach where the total error will
be of higher order in h. This is the class of Runge-Kutta methods which
are one step algorithms where the total discretization error is of order
~ O(hP). The local error introduced at each step is of order ~ O(h**!)
leading after N = (¢; —t;)/At steps to a maximum error of order

ty—t;

~ p+1 — p+1
O(h"*1) x N = O(h"*!) x =

~ O(hP*1) x % = O?).  (4.15)

°A small modification is necessary in order to plot the absolute value of the differences.
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In such a case we say that we have a Runge-Kutta method of p' order.
The price one has to pay for the increased accuracy is the evaluation of
the derivatives of the functions in more than one points in the interval
(t,t+ At).

Let’s consider for simplicity the problem with only one unknown
function z(¢) which evolves in time according to the differential equation:

dx
i f(t,z). (4.16)

Consider the first order method first. The most naive approach would

X 4

2)

tn+1 tn+2

Figure 4.8: The geometry of the step of the Runge-Kutta method of 1°¢ order given
by equation (&.17).
be to take the derivative to be given by the finite difference

dr  Tpi1 —xp

By Taylor expanding, we see that the error at each step is O(h?), therefore
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the error after integrating from ¢; — t; is O(h). Indeed,

dx

pr (20) +O(h?) = 2+ hf(tn, 2,)+O(h?) . (4.18)

Tpr1 = x(t,+h) =z,+h

The geometry of the step is shown in figure [s.§. We start from point 1 and
by linearly extrapolating in the direction of the derivative k; = f(t,,x,)
we determine the point z,,;.

th12 the1

h/2 h/2

Figure 4.9: The geometry of an integration step of the 2nd order Runge-Kutta method

given by equation (4.19).

We can improve the method above by introducing an intermediate
point 2. This process is depicted in figure k.9. We take the point 2
in the middle of the interval (t,,t,.1) by making a linear extrapolation
from z,, in the direction of the derivative k; = f(t,,z,). Then we use the
slope at point 2 as an estimator of the derivative within this interval, i.e.
ky = f(tny1/2, Tng1y2) = f(tn + h/2, 2, + (h/2)k1). We use k; to linearly
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extrapolate from z,, to z,,+;. Summarizing, we have that

kl = f(tna xn)
h h
ky = f(tn+§,$n+§k1)
Tpn+1 = Tp —+ hkg . (419)

For the procedure described above we have to evaluate f twice at each
step, thereby doubling the computational effort. The error at each step
(.19 becomes ~ O(h?), however, giving a total error of ~ O(h?) ~

O(1/N?). So for given computational time, (.19 is superior to (%.17).

om
ki i @ )

t n+1/2 tn+1

h/2 h/2

Figure 4.10: The geometry of an integration step of the Runge-Kutta method of 4th
order given by equation (.20).

We can further improve the accuracy gain by using the Runge—Kutta
method of 4th order. In this case we have 4 evaluations of the derivative
f per step, but the total error becomes now ~ O(h*) and the method is su-
perior to that of (.19[. The process followed is explained geometrically

'Not always though! Higher order does not necessarily mean higher accuracy, al-
though this is true in the simple cases considered here.
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in figure .10, We use 3 intermediate points for evolving the solution
from z,, to z,,;. Point 2 is determined by linearly extrapolating from z,
to the midpoint of the interval (¢,,t,.1 = t, + h) by using the direction
given by the derivative k; = f(t,,x,), i.e. ©3 =z, + (h/2)k,. We calculate
the derivative ky = f(t, + h/2,x, + (h/2)k,) at the point 2 and we use it
in order to determine point 3, also located at the midpoint of the interval
(tn,tnt1). Then we calculate the derivative ks = f(t, + h/2, z, + (h/2)ks)
at the point 3 and we use it to linearly extrapolate to the end of the in-
terval (¢,,%,11), thereby obtaining point 4, i.e. x4 = z,, + hks. Then we
calculate the derivative ky = f(t,, + h,z, + hk3) at the point 4, and we
use all four derivative kq, k9, k3 and k, as estimators of the derivative of
the function in the interval (¢,,t,.1). If each derivative contributes with
a particular weight in this estimate, the discretization error can become
~ O(h®). Such a choice is

kl = f(tnwrn
h h
ky = f(tn+§>$n+§k1)
h h
ks = f(tn+§,$n+§k2)
k'4 = f(tn + h, Ty + hk’g)
h

We note that the second term of the last equation takes an average of
the four derivatives with weights 1/6, 1/3, 1/3 and 1/6 respectively. A
generic small change in these values will increase the discretization error
to worse than h°.

We remind to the reader the fact that by decreasing h the discretization
errors decrease, but that roundoff errors will start showing up for small
enough h. Therefore, a careful determination of A that minimizes the
total error should be made by studying the dependence of the results as
a function of h.

4.3.1 A Program for the 4th Order Runge—Kutta

Consider the problem of the motion of a particle in one dimension. For
this, we have to integrate a system of two differential equations (%.5)) for
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two unknown functions of time z;(¢) = z(t) and z3(t) = v(t) so that

dl’l

E = f1(75,1’1,9172) T f2(tal’1,x2) (4.20)

In this case, equations (.20) generalize to:

kin = filtn, T1n, T2p)
ko = fo(tn, T1pn, Ton)
ki = fl(tn+g,$1,n+gk11,$2,n+ gkﬂ)
koo = f2(tn+g>$1,n+gkllax2,n+ gkm)
kis = filtn + g, Tipn + g k12, 2y + gkm)
ko = foltn + g’ Tin + g k12, 2y + gkm)

k14 = fl(tn + h,, T1in +h ]{?13, Ton + hk23)
kos = foltn + h, 21, + hkig, 21, + hkas)

h
Tiptl = Tin+ E(]fn + 2k1o + 2k13 + k14)

Tomt1l = Tint %(7@1 + 2kog + 2kos + koa) . (4.22)
Programming this algorithm is quite simple. The main program is an
interface between the user and the driver routine of the integration. The
user enters the initial and final times ¢; = Ti and ¢y = Tf and the number
of discrete time points Nt. The initial conditions are z;(¢;) = X10, z5(t;) =
X20. The main data structure consists of three real arrays T(P), X1(P),
X2(P) which store the times ¢; = t1,%, ...,y = t; and the corresponding
values of the functions z(t;) and z2(t), k = 1,...,Nt. The main program
calls the driver routine RK(T,X1,X2,Ti,Tf,X10,X20,Nt) which “drives”
the heart of the program, the subroutine RKSTEP (t,x1,x2,dt) which per-
forms one integration step using equations (4.22). RKSTEP evolves the
functions x1, x2 at time t by one step h = dt. The routine RK stores
the calculated values in the arrays T, X1 and X2 at each step. When RK
returns the control to the main program, all the results are stored in T,
X1 and X2, which are subsequently printed in the file rk.dat. The full
program is listed below and can be found in the file rk.£90:
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!

!Program to solve a 2 ODE system using Runge—Kutta Method
!User must supply derivatives

1dx1/dt=f1(t,x1,x2) dx2/dt=f2(t,x1,x2)

las real functions

!Output is written in file rk.dat
!

program rk_solve
implicit none

integer , parameter :: P=110000

real ,dimension(P) :: T,X1,X2

real :: Ti,Tf,X10,X20

integer :: Nt

integer :: i

!Input:

print *,’Runge—Kutta Method for 2-ODEs Integration’
print *,’Enter Nt,Ti,TF,X10,X20:°

read *, Nt,Ti,Tf,X10,X20

print *, Nt = Nt

print *,’Time: Initial Ti =’ ,Ti,’ Final Tf=",6Tf
print *.’ X1(Ti)=",%10, > X2(Ti)=",X20

if (Nt.gt.P) stop 'Nt>P’
!The Calculation:

call RK(T,X1,X2,Ti,Tf,X10,X20,Nt)
!Output:
open(unit=11,file="rk.dat’)

do i=1,Nt

write (11 ,*)T(i) ,X1(i) ,X2(i)
enddo

close (11)

end program rk_solve
!

!The functions f1,f2(t,x1,x2) provided by the user
1

real function f1(t,x1,x2)
implicit none

real :: t,x1,x2

f1=x2 ldx1/dt= v = x2
end function f1

!

real function f2(t,x1,x2)

implicit none

real :: t,x1,x2

£2=—10.0D0*x1 !harmonic oscillator
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end function f£2
!
'RK(T,X1,X2, Ti, Tf,X10,X20,Nt) is the driver

!for the Runge—Kutta integration routine RKSTEP
!Input: Initial and final times Ti,Tf

! Initial values at t=Ti X10,X20

! Number of steps of integration: Nt—1

! Size of arrays T,X1,X2

!Output: real arrays T(Nt) ,X1(Nt) ,X2(Nt) where

IT(1) = Ti X1(1) = X10 X2(1) = X20

! X1(k) = Xt(at t=T(k)) X2(k) = X2(at t=T(k))
!T(Nt)=TF

!
subroutine RK(T,X1,X2,Ti,Tf,X10,X20,Nt)
implicit none

integer :: Nt

real ,dimension(Nt):: T,X1,6X2
real :: Ti,Tf,X10,X20
real ;1 dt

real :: TS,X15,X2S8 !values of time and X1,X2 at given step
integer :: i

!Initialize variables:

dt = (Tf-Ti) /(Nt—1)

T (1) = Ti

X1(1) = X10

x2(1) = X20

TS = Ti

X1S = X10

X2S = X20

!Make RK steps: The arguments of RKSTEP
lare replaced with the new ones!

do i=2,Nt
call RKSTEP(TS,X1S,X2S,dt)
T (i) = TS
X1(i) = X18
X2(i) = X28
enddo

end subroutine RK
'

!Subroutine RKSTEP(t,x1,x2,dt)
!Runge—Kutta Integration routine of ODE
1dx1/dt=f1(t,x1,x2) dx2/dt=f2(t,x1,x2)
!User must supply derivative functions:
'real function f1(t,x1,x2)

!real function f2(t,x1,x2)
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!Given initial point (t,x1,x2) the routine advances it
!by time dt.

!Input : Inital time t and function values x1,x2
!Output: Final time t+dt and function values x1,x2
!Careful!: values of t,x1,x2 are overwritten...

!

subroutine RKSTEP(t,x1,x2,dt)
implicit none

real :: t,x1,x2,dt

real :: f1,f2

real :: ki11,k12,k13,k14,k21,k22,k23,k24
real :: h,h2,h6

h =dt 'h =dt, integration step

h2 =0.5D0*h !h2=h/2
h6 =h/6.0 'h6=h/6

k11=f1(t,x1,x2)

k21=f2(t,x1,x2)

k12=f1(t+h2,x1+h2*k11 , x2+h2*k21)
k22=f2(t+h2,x1+h2%*k11,x2+h2*k21)
k13=f1(t+h2,x1+h2*k12,x2+h2*k22)
k23=f2(t+h2,x1+h2*k12, x2+h2*k22)
k14=f1(t+h ,x1+h *k13,x2+h *k23)
k24=f2(t+h ,x14+h *k13,6x2+h *k23)

t =t+h
x1 =x1+h6*(k11+2.0D0*(k12+k13)+k14)
x2 =x2+h6*(k21+2.0D0*(k22+k23)+k24)

end subroutine RKSTEP

4.4 Comparison of the Methods

In this section we will check our programs for correctness and accuracy
w.r.t. discretization and roundoff errors. The simplest test is to check
the results against a known analytic solution of a simple model. This
will be done for the simple harmonic oscillator. Our programs will need
small changes which are summarized below. First, we will need to use
higher accuracy variables and we will change all variables of type REAL
to REAL(8). For this we need to change the corresponding declarations
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Figure 4.11: The discrepancy of the numerical results of the Euler method from the
analytic solution for the simple harmonic oscillator. The parameters chosen are w? = 10,
ti =0,t; =6, z(0) = 0.2, v(0) = 0 and the number of steps is N = 50, 500, 5, 000, 50, 000.
Observe that the error becomes approximately ten times smaller each time according to
the expectation of being of order ~ O(At).

in the beginning of each (sub)program. For each numerical constant in
the program we need to put an explicit exponent with the letter D instead
of an E. For example 0.5 — 0.5D0, 1.2E-3 — 1.2D-3 etc. Then we need
to alter the functions that compute the acceleration of the particle to give
a = —w?z. We will take w? = 10 (T' = 1.987). Therefore the relevant part
of the program in euler.f90 becomes

real(8) function accel(x)
implicit none

real(8) :: x

accel = —10.0D0*x

end function accel

and that of the program in rk.f£90 becomes

real (8) function f2(t,x1,x2)
implicit none
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Figure 4.12: Like in figure for the Euler-Cromer method. The error becomes
approximately ten times smaller each time according to the expectation of being of order
~ O(At).

real(8) :: t,xl1,x2
£f2=—10.0D0*x1
end function £2

The programs are run for a given time interval ¢; = 0 to ¢y = 6 with
the initial conditions zy = 0.2, v9 = 0. The time step At is varied by
varying the number of steps Nt-1. The computed numerical solution is
compared to the well known solution for the simple harmonic oscillator

alr) = —w’x
zp(t) = xgcos(wt) + (vo/w) sin(wt)
vp(t) = wvocos(wt) — (zow) sin(wt), (4.23)

We study the deviation dz(t) = |x(t) — x,(t)| and dv(t) = |v(t) —vs(t)| as a
function of the time step At. The results are shown in figures k. 11-.14|.
We note that for the Euler method and the Euler—-Cromer method, the
errors are of order O(At) as expected. However, the latter has smaller
errors compared to the first one. For the Euler—Verlet method, the error
turns out to be of order O(A#?) whereas for the 4th order Runge-Kutta
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Figure 4.13: Like in figure for the Euler-Verlet method. The error becomes
approximately 100 times smaller each time according to the expectation of being of
order ~ O(At?).

is of orderf] O(At?).

Another way for checking the numerical results is by looking at a
conserved quantity, like the energy, momentum or angular momentum,
and study its deviation from its original value. In our case we study the

mechanical energy

1 1
E = §mv2 + émwaQ (4.24)

which is computed at each step. The deviation §E = |E — Ej| is shown

in figures

4.5 The Forced Damped Oscillator

In this section we will study a simple harmonic oscillator subject to a
damping force proportional to its velocity and an external periodic driving

*The reader should confirm these claims, initially by looking at the figures . 11-%.14
and then by reproducing these results. A particular time ¢ can be chosen and the errors
can be plotted against At, At*> and At* respectively.
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Figure 4.14: Like in figure for the 4th order Runge—-Kutta method. The error
becomes approximately 10~* times smaller each time according to the expectation of
being of order ~ O(At?). The roundoff errors become apparent for 50,000 steps.

force, which for simplicity will be taken to have a sinusoidal dependence
in time,

d? d

d—; - fyd—f + wir = agsinwt , (4.25)
where F(t) = mapsinwt and w is the angular frequency of the driving
force.

Consider initially the system without the influence of the driving force,

i.e. with ay = 0. The real solutions of the differential equationf] which
are finite for { — +o0 are given by

2o(t) = cre” PV A2 4 o= (rmVP =42 02 g2 50 (4.26)

To(t) = cre™ 2 4 et 42— 4wl =0, (4.27)

—Qt

*These are easily obtained by substituting the ansatz z(t) = Ae and solving for

Q.
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Figure 4.15: Like in figure for the case of mechanical energy for the Euler
method.

zo(t) = e %cos (\ [ —~% + 4w} t/2>
+cye 72 sin (\/—72 + 4w t/2) ;7 — 4wl < 0(4.28)

In the last case, the solution oscillates with an amplitude decreasing ex-
ponentially with time.

In the ay > 0 case, the general solution is obtained from the sum
of a special solution z4(¢) and the solution of the homogeneous equation
zo(t). A special solution can be obtained from the ansatz x4(t) = A sin wt+
B coswt, which when substituted in (.25) and solved for A and B we
find that
ap [(wg — w?) coswt + yw sin wt]

4.29
(W — w?)? + w?y? ’ ( )

and
z(t) = zo(t) + 24(t) . (4.30)

The solution x(t) decreases exponentially with time and eventually only
zs(t) remains. The only case where this is not true, is when we have
resonance without damping for w = wy, v = 0. In that case the solution
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Figure 4.16: Like in figure for the case of mechanical energy for the Euler—
Cromer method.

is
x(t) = ¢1 coswt + o sinwt + % (coswt + 2(wt) sinwt) . (4.31)
w

The first two terms are the same as that of the simple harmonic oscillator.
The last one increases the amplitude linearly with time, which is a result
of the influx of energy from the external force to the oscillator.

Our program will be a simple modification of the program in rk.£90.
The main routines RK(T,X1,X2,T0,TF,X10,X20,Nt) and RKSTEP(t,x1,x2,dt)
remain as they are. We only change the user interface. The basic param-
eters wo, w, 7, ao are entered interactively by the user from the standard
input stdin. These parameters should be accessible also by the function
f2(t,x1,x2), and one way to be able to do this, is to store them in vari-
ables which are placed in a common block. Such variables are accessible to
all subprograms that declare a common block with the same name using
a COMMON declaration. Such a declaration is shown in the following lines

real (8) :: omega_0 ,omega,gamma,a_0,omega_02,omega?2
common /params/omega_O0,omega,gamma,a_0,omega_02,omega2
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Figure 4.17: Like in figure for the case of mechanical energy for the Euler—Verlet
method.

which when written in a (sub)program, the (sub)program gains ac-
cess to the “memory position” params where the values of the vari-
ables are stored. Another point that needs our attention is the function
f2(t,x1,x2) which now takes the velocity v — x2 in its arguments:

real (8) function f2(t,x1,x2)
implicit none
real (8) omega_0,omega,gamma,a_0,omega_02,omega?2
common /params/omega_0,omega,gamma,a_0,omega_02,omega2
real(8) t,x1.,x2,a
a = a_0*cos(omega*t)
f2=—omega_02*x1—gamma*x2+a
end function f£2

The main program found in the file d1o.£90 is listed below. The subrou-
tines RK, RKSTEP are the same as in rk.f90 and should also be included
in the same file.

!
!Program to solve Damped Linear Oscillator
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Figure 4.18: Like in figure for the case of mechanical energy for the 4th order
Runge-Kutta method. Roundoff errors appear for large enough number of steps.

!using 4th order Runge—Kutta Method

!Output is written in file dlo.dat
!

program dlo_solve
implicit none

integer , parameter :: P=110000

real (8) ,dimension(P) :: T,X1,X2

real(8) :: Ti,Tf,X10,X20

real(8) :: Energy

real(8) :: omega_0 ,omega,gamma,a_0,omega_02,omega?2
common /params/omega_O0,omega,gamma,a_0,omega_02,omega2
integer :: Nt, i

!Input:

print *,’Runge—Kutta Method for DLO Integration’
print *,’Enter omega 0, omega, gamma, a_0:’
read *, omega_O,omega,gamma,a_0

omega_02 = omega_O*omega_0O

omega?2 = omega *omega

print *, ‘omega O= ’,omega_0O, omega= ', omega
print *, ’gamma= ' ,gamma, ~ a_0O= ",a_0

print *,’Enter Nt,Ti,TF,X10,X20:°
read *, Nt,Ti,Tf,X10,X20
print *,’Nt = Nt
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print *,’Time: Initial Ti =’,Ti,’ Final Tf=’,Tf
print *.’ X1(Ti)=",%X10," X2(Ti)=",X20
if (Nt.gt.P) stop 'Nt>P’

!The Calculation:

call RK(T,X1,X2,Ti,Tf,X10,X20,Nt)

!Output:

open(unit=11,file="dlo.dat’)

write (11,*) '# Damped Linear Oscillator — dlo”’

write (11,%) '# omega 0= ’,omega_0,  omega= ', omega,&
’ gamma= ’ ,gamma,’ a_ 0= ",a_0
do i=1,Nt

Energy = 0.5D0*X2(i)*X2(i)+0.5D0*omega_02*X1(i)*X1(i)
write (11,%)T(i) ,X1(i) ,X2(i) ,Energy

enddo

close (11)

end program dlo_solve
!

1The functions f1,f2(t,x1,x2) provided by the user
!
real (8) function f1(t,x1,x2)
implicit none

real(8) t,x1,x2

f1=x2 ldx1/dt= v = x2
end function f1

!
real (8) function f£2(t,x1,x2)

implicit none

real (8) omega_0 ,omega,gamma,a_0,omega_02,omega2
common /params/omega_0,omega,gamma,a_0,omega_02,omega2
real(8) t,x1,x2,a

a = a_0*cos(omega*t)

f2=—omega_02*x1—gamma*x2+a
end function f2

The results are shown in figures @ Figure shows the

transition from a damped motion for v > 2w, to an oscillating motion
with damping amplitude for v < 2w,;. The exponential decrease of the
amplitude is shown in figure k.21, whereas the dependence of the period
T from the damping coefficient ~ is shown in figure [t.29. Motivated by
equation (.28, written in the form

Jost — (%”) _ (4.32)

we construct the plot in figure .22, The right hand side of the equation
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Figure 4.19: The position as a function of time for the damped oscillator for several
values of v and wy = 3.145.

is put on the horizontal axis, whereas the left hand side on the vertical.
Equation (4.39) predicts that both quantities are equal and all measure-
ments should lie on a particular line, the diagonal y = z. The period T’
can be estimated from the time between two consecutive extrema of x(t)
or two consecutive zeros of the velocity v(t) (see figure [4.19).

Finally it is important to study the trajectory of the system in phase
space. This can be seen[] in figure [£.20. A point in this space is a state of
the system and a trajectory describes the evolution of the system’s states
in time. We see that all such trajectories end up as t — +oo to the point
(0,0), independently of the initial conditions. Such a point is an example
of a system’s attractor.

Next, we add the external force and study the response of the system
to it. The system exhibits a transient behavior that depends on the initial
conditions. For large enough times it approaches a steady state that does
not depend on (almost all of) the initial conditions. This can be seen in
figure .23. This is easily understood for our system by looking at equa-
tions (4.26)—(4.28). We see that the steady state z,(t) becomes dominant

“To be precise, phase space is the space of positions-momenta, but in our case the
difference is trivial.
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Figure 4.20: The phase space trajectory for the damped oscillator for several values
of v and wy = 3.145. Note the attractor at (x,v) = (0,0) where all trajectories are
“attracted to” as t — +o0.

when the exponentials have damped away. z4(f) can be written in the
form

x(t) = xo(w)cos(wt + 0(w))
a wy
ro(w) = ¢(w§—w§)2+72w2’ tan §(w) = Foa (4.33)

These equations are verified in figure where we study the depen-
dence of the amplitude zy(w) on the angular frequency of the driving
force. Finally we study the trajectory of the system in phase space. As
we can see in figure @, this time the attractor is an ellipse, which is
a one dimensional curve instead of a zero dimensional point. For large
enough times, all trajectories approach their attractor asymptotically.
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Figure 4.21:  The amplitude of oscillation for the damped oscillator for several

values of v and wy = 3.145. Note the exponential damping of the amplitude with time.

4.6 The Forced Damped Pendulum

In this section we will study a non-linear dynamical system which ex-
hibits interesting chaotic behavior. This is a simple model which, despite
its deterministic nature, the prediction of its future behavior becomes in-
tractable after a short period of time. Consider a simple pendulum in a
constant gravitational field whose motion is damped by a force propor-
tional to its velocity and it is under the influence of a vertical, harmonic
external driving force:
d*0

=T 72—3 +wisinf = —2Acoswt sinf. (4.34)

In the equation above, ¢ is the angle of the pendulum with the vertical
axis, v is the damping coefficient, w2 = ¢g/L is the pendulum’s natural
angular frequency, w is the angular frequency of the driving force and
2A is the amplitude of the external angular acceleration caused by the
driving force.
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Figure 4.22: The period of oscillation of the damped oscillator for several values of
~ and wy = 3.145. The axes are chosen so that equation (.28) (27/7)? = 4w2 —~2 can
be easily verified. The points in the plot are our measurements whereas the straight
line is the theoretical prediction, the diagonal y = =

In the absence of the driving force, the damping coefficient drives the
system to the point (#,4) = (0,0), which is an attractor for the system.
This continues to happen for small enough A, but for A > A. the behavior
of the system becomes more complicated.

The program that integrates the equations of motion of the system can
be obtained by making trivial changes to the program in the file d1o.£90.
This changes are listed in detail below, but we note that X1 < 6, X2 9,
a_0 <+ A. The final program can be found in the file fdp.£90. It is listed
below, with the understanding that the commands in between the dots
are the same as in the programs found in the files dlo.£90, rk.f90.

!

!Program to solve Forced Damped Pendulum
lusing 4th order Runge—Kutta Method
!Output is written in file fdp.dat



4.6. THE FORCED DAMPED PENDULUM 243

T
Xg=1Vvg=0 ———
Xg=0 vo=1

()

0.8 1 1 1 1 1
0 10 20 30 40 50 60

t

Figure 4.23: The period of oscillation for the forced damped oscillator for different
initial conditions. We have chosen wy = 3.145, w = 2.0, v = 0.5 and a9 = 1.0. We
note that after the transient behavior the system oscillates harmonically according to
the relation z(t) = xo(w) cos(wt + §).

!

program dlo_solve
implicit none
integer , parameter :: P=1010000

end program dlo_solve
!
real (8) function f£2(t,x1,x2)
implicit none
real (8) omega_0 ,omega,gamma,a_0,omega_02,omega2
common /params/omega_ O ,omega,gamma,a_0,omega_02,omega2
real (8) t,x1,x2
f2=—(omega_02+2.0D0*a_0*cos(omega*t))*sin (x1)—gamma*x2

end function £2
|
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Figure 4.24:  The oscillation amplitude z¢(w) as a function of w for the forced
damped oscillator, where wy = 3.145, v = 0.5 and ap = 1.0. We observe a resonance
for w =~ wp. The points of the plot are our measurements and the line is the theoretical

prediction given by equation (4.33).

subroutine RKSTEP(t,x1,x2,dt)

implicit none

real (8) ,parameter :: pi =3.14159265358979324D0
real (8) ,parameter :: pi2=6.28318530717958648D0
x1 =x1+h6*(k11+2.0D0*(k12+k13)+k14)

x2 =x2+h6*(k214+2.0D0*(k22+k23)+k24)

if( x1 .gt. pi) x1 = x1 — pi2

if( x1 .1t. —pi) x1 = x1 + pi2

end subroutine RKSTEP

The final lines in the program are added so that the angle is kept
within the interval [—m, 7.

In order to study the system’s properties we will set wy = 1, w = 2,
and 7 = 0.2 unless we explicitly state otherwise. The natural period
of the pendulum is Ty = 27/wy = 27 ~ 6.28318530717958648 whereas
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Figure 4.25: A phase space trajectory of the forced damped oscillator with wy =
3.145, w = 2.0, v = 0.5 and ap = 1.0. The harmonic oscillation which is the steady state
of the system is an ellipse, which is an attractor of all the phase space trajectories that
correspond to different initial conditions.

that of the driving force is 7' = 27/w = 7 ~ 3.14159265358979324. For
A < A, with A, ~ 0.18, the point (#,0) = (0,0) is an attractor, which
means that the pendulum eventually stops at its stable equilibrium point.
For A. < A < 0.71 the attractor is a closed curve, which means that
the pendulum at its steady state oscillates indefinitely without circling
through its unstable equilibrium point at § = £7. The period of motion
is found to be twice that of the driving force. For 0.72 < A < 0.79
the attractor is an open curve, because at its steady state the pendulum
crosses the § = +m point. The period of the motion becomes equal to
that of the driving force. For 0.79 < A < 1.033 we have period doubling
for critical values of A, but the trajectory is still periodic. For even larger
values of A the system enters into a chaotic regime where the trajectories
are non periodic. For A ~ 3.1 we find the system in a periodic steady
state again, whereas for A ~ 3.8 — 4.448 we have period doubling. For
A ~ 4.4489 we enter into a chaotic regime again etc. These results can
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Figure 4.26: The trajectory shown in figure for ¢ > 100. The trajectory is
almost on top of an ellipse corresponding to the steady state motion of the system. This
ellipse is an attractor of the system.

be seen in figures —@ The reader should construct the bifurcation
diagram of the system by solving problem R0 of this chapter.

We can also use the so called Poincaré diagrams in order to study the
chaotic behavior of a system. These are obtained by placing a point in
phase space when the time is an integer multiple of the period of the
driving force. Then, if for example the period of the motion is equal
to that of the period of the driving force, the Poincaré diagram consists
of only one point. If the period of the motion is an n—multiple of the
period of the driving force then the Poincaré diagram consists of only
n points. Therefore, in the period doubling regime, the points of the
Poincaré diagram double at each period doubling point. In the chaotic
regime, the Poincaré diagram consists of an infinite number of points
which belong to sets that have interesting fractal structure. One way to
construct the Poincaré diagram numerically, is to process the data of the
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Figure 4.27: A phase space trajectory of the forced damped pendulum. The
parameters chosen are wy = 1.0, w = 2.0, v = 0.2 and A = 0.60,0.72,0.85,1.02. We
observe the phenomenon of period doubling.

output file fdp.dat using awkf]:

awk —v o=%omega —v nt=$Nt —v tf=$TF \
"BEGIN{T=6.283185307179/0;dt=tf/nt;} $1%I<dt{print $2,$3}’\
fdp.dat

where $omega, $Nt, $TF are the values of the angular frequency w, the
number of points of time and the final time ¢;. We calculate the period T
and the time step dt in the program. Then we print those lines of the file
where the time is an integer multiple of the period[]. This is accomplished
by the modulo operation $1 % T. The value of the expression $1 % T <
dt is true when the remainder of the division of the first column ($1) of

“The command can be written in one line without the final \ of the first and second
lines.

“The accuracy of this condition is limited by dt, which makes the points in the
Poincaré diagram slightly fuzzy.
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Figure 4.28: A phase space trajectory of the forced damped pendulum. The
parameters chosen are wy = 1.0, w = 2.0, v = 0.2 and A = 1.031,1.033,1.04,1.4. We
observe the chaotic behavior of the system.

the file fdp.dat with the period T is smaller than dt. The results in the
chaotic regime are displayed in figure .

We close this section by discussing another concept that helps us in
the analysis of the dynamical properties of the pendulum. This is the
concept of the basin of attraction which is the set of initial conditions in
phase space that lead the system to a specific attractor. Take for example
the case for A > 0.79 in the regime where the pendulum at its steady
state has a circular trajectory with a positive or negative direction. By
taking a large sample of initial conditions and recording the direction of
the resulting motion after the transient behavior, we obtain figure [t.31.
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Figure 4.29: A phase space trajectory of the forced damped pendulum. The
parameters chosen are wyp = 1.0, w = 2.0, v = 0.2 and A = 1.568,3.8,4.44,4.5. We
observe the system exiting and reentering regimes of chaotic behavior.

4.7 Appendix: On the Euler—Verlet Method

Equations (4.11) can be obtained from the Taylor expansion

O(t+At) = 0(t)+ (A)I'(t) + (A2—t!)20”(t) + (Ag—t!)ge’”(t) +O((At)Y)
Ot —At) = 0(t) — (A)0'(t) + %0”0&) - %9”’(1&) +O((At)Y).

By adding and subtracting the above equations we obtain

Ot + At) +0(t — At) = 20(t) + (A1)%0"(t) + O((AL)*)

O(t + At) — 0(t — At) = 2(AH(t) + O((At)?) (4.35)
which give equations (%.11)

O(t + At) = 20(t) — 0(t — At) + (At)*a(t) + O((At)Y)

O(t + At) — 0(t — At) +O((A1)?) (4.36)

w(t) 2(AY)
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Figure 4.30: A Poincaré diagram for the forced damped pendulum in its chaotic
regime. The parameters chosen are wy = 1.0, w = 2.0, v = 0.2 and A = 1.4,4.5.

Figure 4.31: Basin of attraction for the forced damped pendulum. The parameters
chosen are wy =1.0, w=2.0, y=0.2 and A =0.85,1.4.

From the first equation and equations (%.9) we obtain:
Ot + At) = 0(t) + w(t)(At) + O((At)?) (4.37)

When we perform a numerical integration, we are interested in the
total error accumulated after N — 1 integration steps. In this method,
these errors must be studied carefully:

e The error in the velocity w(t) does not accumulate because it is given
by the difference of the positions 6(t + At) — 0(t — At).

* The accumulation of the errors for the position is estimated as fol-
lows: Assume that d6(t) is the total accumulated error from the
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integration from time ¢, to ¢. Then according to the expansions
(6.36) the error for the first step is 06(ty + At) = O((At)*). Thenl]

O(to +2At) = 20(tg + At) — O(ty) + At?a(ty + At) + O((A)*) =
60(tg + 2At) = 200(ty + At) — 80(te) + O((At)")
= 20((A1)Y) — 0+ O((At)Y)
= 30((At)Y).

For the next steps we obtain

O(to + 3At) = 20(to + 2At) — O(tg + At) + AtPa(ty + 2At) + O((At)!) =
50(to +3At) = 250(ty + 2At) — 50(to + At) + O((AL)*)
= 60((At)Y) — O((At)*) + O((At)*)
= 60((At)Y),

O(to +4AL) = 20(to + 3At) — Oty + 2At) + At?a(ty + 3AL) + O((At)?) =
50(to + 4AL) 260(to + 3AL) — 60(to + 2At) + O((AL)Y)
= 120((At)") = 30((At)*) + O((At))
= 100((At)%).

Then, inductively, if 60(ty + (n — 1)At) = @O((At)‘l), we obtain

O(to +nAt) = 20(tg+ (n — 1)At) — Oty + (n — 2)At) + At?a(ty + (n — 1)At)
+0((At)") =
§0(to +nAt) = 260(ty + (n — 1)At) — 50(to + (n — 2)At) + O((At)*)

= 2 Doant - =20 = Do ant) + ofan
_ ”(”; Yoqan.
Finally
50t + nat) = Y oty ~ —Lo((an) ~ 0((at)?).

At2
(4.38)

“Remember that the acceleration «(t) is given, therefore da(t) = 0.
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Therefore the total error is O((At)?).

We also mention the Velocity Verlet method or the Leapfrog method.
In this case we use the velocity explicitly:

1
9n+1 = Qn + UJnAt + Ea/nAtz

wn_;_% = wp,t+ —OénAt

2
1
Wpt1 = wn—&-% + §Oén+1At . (439)

The last step uses the acceleration «,; which should depend only on
the position 6,,+; and not on the velocity.
The Verlet methods are popular in molecular dynamics simulations of

many body systems. One of their advantages is that the constraints of
the system of particles are easily encoded in the algorithm.

4.8 Appendix: 2nd order Runge—Kutta Method

In this appendix we will show how the choice of the intermediate point
2 in equation (%.17) reduces the error by a power of h. This choice is
special, since by choosing another point (e.g. ¢ = ¢, + 0.4h) the result
would have not been the same. Indeed, from the relation

dxz

tn+1
U fit,2) = 2p1 =2y +/ f(t,z)dx. (4.40)
tn

By Taylor expanding around the point (¢,1/2, Zn41/2) We obtain

f(t,x) = f(tns1/2, Tngry2) + (t — tn+1/2)fi—£(tn+1/2) +O(h?). (4.41)
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Therefore

/tn+1 f(t,x)dx
n p

= f(tns1/2, Tng1y2) (tnp1 — tn) + %(tn—&—l/Q)
+O(h?) (tng1 — tn)

tn+1

(t —tpt1y2)?
2

ln

df (tni1 — tn 2 (ty—t, 2
— f(tn+1/2, $n+1/2)h -+ E(tn+l/2) { +1 5 +1/2) B 2+1/2)
+O(h*)h
df W2 (—h)?
= f(tn+1/2, l’n+1/2)h + %(tn_i_l/z) {E _ ( : ) } + O(h3)
= f(tn_H/Q, $n+1/2)h + O(h3> . (442)

Note that for the vanishing of the O(h) term it is necessary to place the
intermediate point at time ¢, /2

This is not a unique choice. This can be most easily seen by a different
analysis of the Taylor expansion. Expanding around the point (¢,,z,)
we obtain

dr, 1 d’z,,
Tpt1 = Tp+ (tn—i-l - tn)% + §<tn+1 - tn)2 12
h2 df
- n h n —= h3
T, + hfn + 5 + O(h?)

h? (0f, Ofndx, 3
7((% i dt)+o(h)
h? (8fn Ofn

o v Yin “Jn 3
= ot hfot v n)+(9(h), (4.43)

+ O(h?)

= xp+hf,+

where we have set f, = f(t,,z,), % = %(z,) etc. We define

ki = f(tnaxn) = fn
k‘g f(tn + CLh, T, + bhl{?l)
Tnt1 — Tp + h(Clkl -+ Cgkg) . (444)

and we will determine the conditions so that the terms O(h?) of the last
equation in the error are identical with those of equation (.43). By
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expanding ky; we obtain

k’g = f(tn + ah, Ty + bhk’l)

= f(tn,z, + bhky) + hagf

of

(tn, 2n + bhk1) + O(h?)
of

Ox ot

= f +h{a% +bk1%f”} + O(h?)

Ofn
ot

= f(tn, 1) + hbki=—(tn, 1) + ha—=(t,, z,) + O(h?)

= fn+h{ +bfn O }+(’)(h2) (4.45)

Substituting in (4.44) we obtain
Tpt1 = Tn+h(crkn + coky)

— xn+h{01fn+02fn+02h( aa];” +bfnaf”) +(9(h2)}

2 ot
+O(h?) . (4.46)

= Iy + h(Cl + CQ)fn —+ h—2 <(202a) af (202b)fn f )

All we need is to choose

cp+c = 1
20 = 1

The choice ¢; = 0, ¢ = 1, a = b = 1/2 leads to equation (). Some
other choices in the bibliography are ¢; = 1/2 and ¢, = 3/4.
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4.9 Problems

4.1

4.2
4.3

4.4

4.5

4.6

Prove that the total error in the Euler—Cromer method is of order
At.

Reproduce the results in figures

Improve your programs so that there is no accumulation of roundoff
error in the calculation of time when h is very small for the methods
Euler, Euler-Cromer, Euler-Verlet and Runge-Kutta. Repeat the
analysis of the previous problem.

Make the appropriate changes in your programs of the Euler, Euler-
Cromer, Euler-Verlet and Runge-Kutta methods so that all floating
variables change from REAL—REAL(8). Repeat the analysis of the
previous problem.

Compare the results obtained from the Euler, Euler-Cromer, Euler-
Verlet, Runge-Kutta methods for the following systems where the
analytic solution is known:

(a) Particle falling in a constant gravitational field. Consider the
case v(0) =0, m =1, g = 10.

(b) Particle falling in a constant gravitational field moving in a fluid
from which exerts a force F' = —kv on the particle. Consider
the case v(0) =0, m =1, g =10 k = 0.1,1.0,2.0. Calculate the
limiting velocity of the particle numerically and compare the
value obtained to the theoretical expectation.

(¢) Repeat for the case of a force of resistance of magnitude |F| =
kv?.

Consider the damped harmonic oscillator

d’z  dv
Take wy = 3.145, v = 0.5 and calculate its mechanical energy as a
function of time. Is it monotonic? Why? (show that d(E/m)/dt =
—~yv?). Repeat for v = 4,5,6,7,8. When is the system oscillating
and when it’s not? Calculate numerically the critical value of v
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4.7
4.8

4.9

4.10

411

4.12

4.13

CHAPTER 4. MOTION OF A PARTICLE

for which the system passes from a non oscillating to an oscillating
regime. Compare your results with the theoretical expectations.

Reproduce the results of figures [k.19-.29.

Reproduce the results of figures [¢.23-%.26. Calculate the phase 6(w)
numerically and compare with equation (4.33).

Consider a simple model for a swing. Take the damped harmonic
oscillator and a driving force which periodically exerts a momen-
tary push with angular frequency w. Define “momentary” to be an
impulse given by the acceleration a, by an appropriately small time
interval At. The acceleration is 0 for all other times. Calculate the
amplitude zy(w) for wy = 3.145 and v = 0.5.

Consider a “half sine” driving force on a damped harmonic oscilla-

tor
{ agcoswt coswt > 0
a(t) =

0 coswt <0

Study the transient behavior of the system for several initial con-
ditions and calculate its steady state motion for wy = 3.145 and
v = 0.5. Calculate the amplitude zy(w).

Consider the driving force on a damped oscillator given by

t 1,1 2 2wt 2 4wt
a()—%+§cosw+3—ﬂcos wt — 7 cos dw
Study the transient behavior of the system for several initial con-
ditions and calculate its steady state motion for wy = 3.145 and
~v = 0.5. Calculate the amplitude z¢(w). Compare your results with
those of the previous problem and comment about.

Write a program that simulates /N identical, independent harmonic
oscillators. Take N = 20 and choose random initial conditions for
each one of them. Study their trajectories in phase space and check
whether they cross each other. Comment on your results.

Place the N = 20 harmonic oscillators of the previous problem in
a small square in phase space whose center is at the origin of the
axes. Consider the evolution of the system in time. Does the shape
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of the rectangle change in time? Does the area change in time?
Explain...

Repeat the previous problem when each oscillator is damped with
v = 0.5. Take wy = 3.145.

Consider the forced damped oscillator with w =2, wy = 1.0, v = 0.2.
Study the transient behavior of the system in the plots of 6(¢), 0(t)
for A = 0.1,0.5,0.79,0.85,1.03, 1.4.

Consider the forced damped pendulum with w = 2, wy = 1.0, v = 0.2
and study the phase space trajectories for A = 0.1, 0.19, 0.21, 0.25,
0.5, 0.71, 0.79, 0.85, 1.02, 1.031, 1.033, 1.05, 1.08, 1.1, 1.4, 1.8, 3.1,
3.5, 3.8, 4.2, 4.42, 4.44 4.445, 4.447, 4.4488. Consider both the

transient behavior and the steady state motion.
Reproduce the results in figures .
Reproduce the results in figures [¢.31.

Consider the forced damped oscillator with
wp=1, w=2, =02

After the transient behavior, the motion of the system for A = 0.60,
A = 0.75 and A = 0.85 is periodic. Measure the period of the
motion with an accuracy of three significant digits and compare it
with the natural period of the pendulum and with the period of
the driving force. Take as initial conditions the following pairs:
(6o, 6p) = (3.1,0.0), (2.5,0.0), (2.0,0.0), (1.0,0.0), (0.2,0.0), (0.0,1.0),
(0.0, 3.0), (0.0,6.0). Check if the period is independent of the initial
conditions.

Consider the forced damped pendulum with
wp=1, w=2, =02

Study the motion of the pendulum when the amplitude A takes
values in the interval [0.2,5.0]. Consider specific discrete values of
A by splitting the interval above in subintervals of width equal to
0A = 0.002. For each value of A, record in a file the value of A, the
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angular position and the angular velocity of the pendulum when
ty = km with k = k'tran& Ktrans + 17 Ktrans + 27 SRR -

A o) o)

The choice of k;..ns is made so that the transient behavior will be
discarded and study only the steady state of the pendulum. You
may take Kkp,qp = 500, Kipans = 400, t; = 0, ty = 5007, and split the
intervals [ty,; 4+ 7] to 50 subintervals. Choose 6y = 3.1, 6 = 0.

(a) Construct the bifurcation diagram by plotting the points (A, 6(tx)).
(b) Repeat by plotting the points (A, 6(t;)).

(¢) Check whether your results depend on the choice of 6,, 90.
Repeat your analysis for 6, = 0, 6, = 1.

(d) Study the onset of chaos: Take A € [1.0000,1.0400] with dA =
0.0001 and A € [4.4300,4.4500] with A = 0.0001 and compute
with the given accuracy the value A. where the system enters
into the chaotic behavior regime.

(e) The plot the points (A(y),6(t)) for A = 1.034, 1.040, 1.080,
1.400, 4.450, 4.600. Put 2000 points for each value of A and
commend on the strength of the chaotic behavior of the pen-
dulum.



Chapter 5

Planar Motion

In this chapter we will study the motion of a particle moving on the
plane under the influence of a dynamical field. Special emphasis will be
given to the study of the motion in a central field, like in the problem
of planetary motion and scattering. We also study the motion of two
or more interacting particles moving on the plane, which requires the
solution of a larger number of dynamical equations. These problems
can be solved numerically by using Runge—Kutta integration methods,
therefore this chapter extends and applies the numerical methods studied
in the previous chapter.

5.1 Runge—Kutta for Planar Motion

In two dimensions, the initial value problem that we are interested in, is
solving the system of equations (4.6)

& Lo — ot )

o = U i GRS A

dy dv

o = U d_ty = ay(t,z,0,,y,v,y) . (5.1)

The 4th order Runge-Kutta method can be programmed by making
small modifications of the program in the file rk.£90. In order to facil-
itate the study of many different dynamical fields, for each field we put
the code of the respective acceleration in a different file. The code which
is common for all the forces, namely the user interface and the imple-
mentation of the Runge-Kutta method, will be put in the file rk2.£90.

259



260 CHAPTER 5. PLANAR MOTION

The program that computes the acceleration will be put in a file named
rk_XXX.£90, where XXX is a string of characters that identifies the force.
For example, the file rk2_hoc.f90 contains the program computing the
acceleration of the simple harmonic oscillator, the file rk2_g.£90 the ac-
celeration of a constant gravitational field § = —g ¥ etc.

Different force fields will require the use of one or more coupling
constants which need to be accessible to the code in the main program
and some subroutines. For this reason, we will provide two variables
k1, k2 in a common block:

real(8) :: kil ,k2
common /couplings/k1l,k2

This common block will be accessed by the acceleration functions £3 and
f4, the function energy and the main program where the user will enter
the values of k1 and k2. The initial conditions are stored in the variables
X10 < 29, X20 <= 4o, V10 < v, V20 > vy, and the values of the functions
of time will be stored in the arrays X1(P) <« xz(t), X2(P) <« y(t), V1(P)
< v,(t), V2(P) > vy(t). The integration is performed by a call to the
subroutine

call RK(T,X1,X2,V1,V2,Ti,Tf,X10,X20,V10,V20,Nt)

The results are written to the file rk2.dat. Each line in this file contains
the time, position, velocity and the total mechanical energy, where the
energy is calculated by the function energy(t,x1,x2,v1,v2):

open(unit=11,file="rk2.dat’)
do i=1,Nt
write (11,*)T(i) ,X1(i) ,x2(i),v1(i),v2(i),&
energy (T(i) ,X1(4) ,Xx2(4i) ,v1(i),v2(i))
enddo

The code for the function energy, which is different for each force field, is
written in the same file with the acceleration. The code for the subroutine
RKSTEP(t,x1,x2,x3,x4,dt) should be extended in order to integrate four
instead of two functions. The full code is listed below:
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!

!Program to solve a 4 ODE system using Runge—Kutta Method
!User must supply derivatives

1dx1/dt=f1(t,x1,x2,x3,x4) dx2/dt=f2(t,x1,x2,x3,x4)
1dx3/dt=f3(t,x1,x2,x3,x4) dx4/dt=f4(t,x1,x2,x3,x4)

'as real(8) functions

!Output is written in file rk2.dat
!

program rk2_solve
implicit none

integer ,parameter :: P=1010000

real (8) ,dimension(P):: T,X1,X2,V1,V2

real(8) :: Ti,Tf,X10,X20,V10,V20

integer :: Nt, i

real(8) :: k1, k2

common /couplings/k1l,k2

real (8) :: energy,E0,EF,DE

!Input:

print *,’Runge—Kutta Method for 4—ODEs Integration’
print *,’Enter coupling constants:’

read *, ki1,k2

print *,’ki= * k1,’ k2= " k2

print *,’Enter Nt,Ti,Tf,X10,X20,V10,V20:°

read *, Nt ,Ti,TF,X10,X20,V10,V20

print *, Nt = Nt

print *,’Time: Initial Ti =’ ,Ti,’ Final Tf=",6Tf
print *,’ X1(Ti)=",%X10," X2(Ti)=",X20

print *,° V1(Ti)=",v10, > V2(Ti)=",V20
!The Calculation:

call RK(T,X1,X2,V1,V2,Ti,Tf,X10,X20,V10,V20,Nt)
!Output:

open(unit=11,file="rk2.dat’)

do i=1,Nt

write (11 ,*)T(i) ,X1(i) ,X2(i),v1(i),v2(i).&

energy (T(i) ,X1(4) ,X2(4i) ,v1(i),v2(i))

enddo

close (11)

!Rutherford scattering angles:

print *,’v—angle: ’,atan2(V2(Nt),V1(Nt))

print *,’b—angle: ’,2.0D0O*atan(k1/(V10*V10*X20))
EO = energy(Ti ,X10 ,X20 ,V10 ,V20 )

EF = energy(T(Nt) ,X1(Nt) ,X2(Nt),vi(Nt) ,v2(Nt))
DE = ABS(0.5D0*(EF—EO0) /(EF+E0))

print *,’EO.EF, DE/E= ’ ,E0,EF,DE
end program rk2_solve
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|

!The velocity functions f1,f2(t,x1,x2,vl,v2)
!
real (8) function f1(t,x1,x2,vl,v2)
implicit none

real(8) :: t,x1,x2,vl,v2

fi=v1 ldx1/dt= vi1

end function f1

!
real (8) function f2(t,x1,x2,vl,v2)
implicit none

real(8) :: t.,xl1,x2,vl,v2

£2=v2 1dx2/dt= v2

end function f2

!

IRK(T,X1,X2,V1,V2,Ti, Tf , X10,X20,V10,V20,Nt) is the driver
!for the Runge—Kutta integration routine RKSTEP

!Input: Initial and final times Ti,Tf

! Initial values at t=Ti X10,X20,V10,V20

! Number of steps of integration: Nt—1

! Size of arrays T,X1,X2,V1,V2

!Output: real arrays T(Nt) ,X1(Nt) ,X2(Nt),

! V1(Nt) ,V2(Nt) where

IT(1) = Ti X1(1) X10 X2(1) = X20 V1(1) = V10 V2(1) = V20
! X1(k) X1(at t=T(k)) X2(k) = X2(at t=T(k))

! Vi(k) = Vi(at t=T(k)) V2(k) = V2(at t=T(k))
IT(Nt)= Tf

!
subroutine RK(T,X1,X2,V1,V2,Ti,Tf,X10,X20,V10,V20,Nt)
implicit none

integer :: Nt

real (8) ,dimension(Nt) ::T,X1,X2,V1,V2

real(8) :: Ti ,Tf

real(8) :: X10,X20

real(8) :: V10,V20

real(8) :: dt

real (8) :: TS,X1S,X2S !values of time and X1,X2 at given step
real (8) :: V1S ,V2S

integer :: i

!Tnitialize wvariables:

dt = (Tf-Ti)/(Nt—1)

T (1) = Ti

X1 (1) = X10; X2(1) = X20
vi(1) = v10; v2(1) = V20

TS = Ti
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X18 = X10; X2S
V1S = V10; V2S

= X20
= V20

!Make RK steps: The arguments of RKSTEP are
!replaced with the new ones

do i=2,Nt
call RKSTEP(TS,X1S,X2S,V1S,V2S,dt)
T(i) = TS
X1(i) = X1S; X2(i) = X2S8
vi(i) = Vv1s; v2(i) = V2S
enddo
end subroutine RK
|
!Subroutine RKSTEP(t ,x1,x2,dt)

!Runge—Kutta Integration routine of ODE
Vdx1/dt=f1(t,x1,x2,x3,x4) dx2/dt=f2(t,x1,x2,x3,x4)
1dx3/dt=f3(t,x1,x2,x3,x4) dx4/dt=f4(t,x1,x2,x3,x4)
!User must supply derivative functions:

lreal function f1(t,x1,x2,x3,x4)

!real function f2(t,x1,x2,x3,x4)

!real function f3(t,x1,x2,x3,x4)

!real function f4(t,x1,x2,x3,x4)

!Given initial point
!by time dt.

!Input Inital time
!Output: Final time
!Careful!: values of

(t,x1,x2) the routine advances

t and function values x1,x2,x3,x4
t+dt and function values x1,x2,x3,x4

it

t,x1,x2,x3,x4 are overwritten ...

!

subroutine RKSTEP(t,x1,x2,x3,x4,dt)

implicit none

real (8)
real (8) f1,f2,£3
real (8)
real (8)
real (8) h,h2,h6
h =dt 'h =dt,

h2=0.5D0*h 'h2=h/2
h6=h/6.0D0 !'h6=h/6

t,x1,x2,x3,x4,dt

,f4

k11, k12 ,k13,k14 ,k21,k22 k23 ,k24
k31,k32,k33,k34 ,k41 ,k42,k43,k44

integration step

k11=f1(t,x1,x2,x3,x4)
k21=£f2(t,x1,x2,x3,x4)
k31=£f3(t,x1,x2,x3,x4)
k41=f4(t,x1,x2,x3,x4)

k12=f1(t+h2,x1+h2%k11,x2+h2%*k21 ,x3+h2%¥k31 , x4+h2*k41)

263
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k22=£f2(t+h2,x1+h2*k11 ,x2+h2*k21 ,x3+h2*k31 ,x4+h2*k41)
k32=f3(t+h2,x1+h2%*k11,x2+h2*k21 ,x3+h2*k31,x4+h2%*k41)
k42=f4(t+h2,x1+h2*k11,x2+h2*k21 ,x3+h2*k31 ,x4+h2*k41)

k13=f1(t+h2,x1+h2*k12 K x2+h2*k22 ,x3+h2*k32 ,x4+h2*k42)
k23=f2(t+h2,x1+h2*k12,x2+h2*k22 , x3+h2*k32 ,x4+h2*k42)
k33=f3(t+h2,x1+h2*k12,x2+h2%*k22 ,x3+h2*k32 , x4+h2*k42)
k43=f4(t+h2,x1+h2*k12,x2+h2%*k22 ,x3+h2*k32 , x4+h2*k42)

k14=f1(t+h ,x1+h
k24=f2(t+h ,x1+h
k34=f3(t+h ,x1+h
k44=f4(t+h ,x1+h
t =t+h

*k13,x2+h
*k13,x2+h
*k13 ,x2+h
*k13 ,x2+h

*k23,x3+h
*k23,x3+h
*k23,x3+h
*k23,x3+h

x1=x1+h6*(k11+2.0D0*(k12+k13)+k14)
x2=x2+h6*(k21+2.0D0*(k22+k23)+k24)
x3=x3+h6*(k31+2.0D0*(k32+k33)+k34)
x4=x4+h6*(k41+2.0D0*(k42+k43)+k44)

end

subroutine RKSTEP

*k33,x4+h
*k33,x4+h
*k33,x4+h
*k33,x4+h

*%43)
*%43)
*k43)
*k43)

5.2 Projectile Motion

Consider a particle in the constant gravitational field near the surface of

the earth which moves with constant acceleration § = —¢gy so that
z(t) =x0+voat , Y(t)
Uy (t) = Voz ) Uy<t)
az(t) =0 . ay(t)

The particle moves
conditions

= Yo + voyt — 391>

= Voy — gt
=g

(5.2)

on a parabolic trajectory that depends on the initial

Voz

w-w = (™)@

= tanf(x — xg) —

lg 2
R
tan? ¢ )
T

(5.3)

where tan = vy, /vo, is the direction of the initial velocity and A,y is
the maximum height of the trajectory.
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Figure 5.1: Plots of z(t), y(t), vy(t), vy(t) for a projectile fired in a constant gravita-
tional field § = —10.0 ¢ with initial velocity vp = % + 3.

The acceleration a,(t) = 0 a,(t) = —g (a, <> £3, a, <> £4) and the
mechanical energy is coded in the file rk2_g.£90:

!

!The acceleration functions f3,f4(t,x1,x2,v1,v2) provided

!by the user
!

!Free fall in constant gravitational filed with
lg = —k2

real (8) function £3(t,x1,x2,vl,v2)

implicit none

real(8) :: t,xl1,x2,vl,v2

real (8) :: k1,k2
common /couplings/k1l, k2
£3=0.0D0 1dx3/dt=dv1l/dt=al

end function £3
|

real (8) function f4(t,x1,x2,vl,v2)
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Figure 5.2: (Left) The parabolic trajectory of a projectile fired in a constant gravi-
tational field § = —10.0y with initial velocity 0y = & + §. (Right) The deviation of the
projectile’s energy from its initial value is due to numerical errors.

implicit none
real(8) :: t,xl1,x2,vl,v2
real(8) :: ki,k2
common /couplings/k1,k2
fa=ki1 ldx4/dt=dv2/dt=a2
end function f4
!

real (8) function energy(t,x1,x2,vl,v2)
implicit none

real(8) :: t,x1,x2,vl,v2

real(8) :: k1,k2

common /couplings/kl, k2

energy = 0.5D0*(vi*vi+v2*v2) + k1*x2
end function energy

In order to calculate a projectile’s trajectory you may use the following
commands:

> gfortran —02 rk2.£f90 rk2_g.f90 —o rk2

> ./rk2

Runge—Kutta Method for 4—0DEs Integration

Enter coupling constants:

10.0 0.0

k1= 10.000000 k2= 0.000000

Enter Nt,Ti,Tf,X10,X20,V10,V20:

20000 0.0 0.2 0.0 0.0 1.0 1.0

Nt= 20000

Time: Initial Ti =  0.000000 Final Tf=  0.200000
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X1(Ti)=  0.000000 X2(Ti)=  0.000000
V1(Ti)= 1.000000 v2(Ti)= 1.000000

The analysis of the results contained in the file rk2.dat can be done using
gnuplot:

gnuplot> set terminal x11 1

gnuplot> plot "rk2.dat” using 1:2 with lines title ”x(t)”
gnuplot> set terminal x11 2

gnuplot> plot "rk2.dat” using 1:3 with lines title "y(t)”
gnuplot> set terminal x11 3

gnuplot> plot “rk2.dat” using 1:4 with lines title "vx(t)”
gnuplot> set terminal x11 4

gnuplot> plot "rk2.dat” using 1:5 with lines title “vy(t)”
gnuplot> set terminal x11 5

gnuplot> plot “rk2.dat” using 1:($6—-1.0) w lines t "E(t)E—(0)”
gnuplot> set terminal x11 6

gnuplot> set size square

gnuplot> set title “Trajectory”

gnuplot> plot “rk2.dat” using 2:3 with lines notit

The results can be seen in figures 5.1 and p.2. We note a small increase
in the mechanical energy which is due to the accumulation of numerical
errors.

We can animate the trajectory by writing a script of gnuplot com-
mands in a file rk2_animate.gpl

icount = icount+skip
plot 7<cat —n rk2.dat” \
using 3:($1<= icount ? $4: 1/0) with lines notitle
# pause 1
if (icount < nlines ) reread

Before calling the script, the user must set the values of the variables
icount, skip and nlines. Each time gnuplot reads the script, it plots
icount number of lines from rk2.dat. Then the script is read again and
a new plot is made with skip lines more than the previous one, unless
icount < nlines. The plotted “file” "<cat -n rk2.dat" is the standard
output (stdout) of the command cat -n rk2.dat which prints to the
stdout the contents of the file rk2.dat line by line, together with the
line number. Therefore the plot command reads data which are the line
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number, the time, the coordinate x, the coordinate y etc. The keyword
using in

using 3:($1<= icount ? $4: 1/0)

instructs the plot command to use the 3rd column on the horizontal axis
and if the first column is less than icount ($1<= icount) put on the
vertical axis the value of the 4th column if the first column is less than
icount. Otherwise ($1 > icount) it prints an undefined number (1/0)
which makes gnuplot print nothing at all. You may also uncomment the
command pause if you want to make the animation slower. In order to
run the script from gnuplot, issue the commands

gnuplot> icount = 10

gnuplot> skip = 200

gnuplot> nlines = 20000
gnuplot> load “rk2_animate.gpl”

The scripts shown above can be found in the accompanying software.
More scripts can be found there that automate many of the boring pro-
cedures. The usage of two of these is explained below. The first one is
in the file rk2_animate.csh:

> ./rk2_animate.csh —h
Usage: rk2_animate.csh —t [sleep time] —d [skip points] <file>
Default file is rk2.dat
Other options:
—x: set lower value in xrange
—X: set lower value in xrange
—y: set lower value in yrange
—Y: set lower value in yrange
—r: automatic determination of x—y range
> ./rk2_animate.csh —r —d 500 rk2.dat

The last line is a command that animates a trajectory read from the
file rk2.dat. Each animation frame contains 500 more points than the
previous one. The option -r calculates the plot range automatically. The
option -h prints a short help message.

A more useful script is in the file rk2.csh.
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> ./rk2.csh —h

Usage: rk2.csh —f <force> k1l k2 x10 x20 v10 v20 STEPS tO tf
Other Options:

—n Do not animate trajectory

Available forces (value of <force>):

1: ax=—ki ay= —k2 y Harmonic oscillator
2: ax= 0 ay= —ki Free fall
3: ax= —k2 VX ay= —k2 vy — k1 Free fall + \

air resistance ~ v
4: ax= —k2 lvl vx ay= —k2 lvlvy — k1 Free fall + \

air resistance ~ vA2
5: ax= k1*x1/r”3 ay= k1*x2/rA3 Coulomb Force

The option -h prints operating instructions. A menu of forces is available,
and a choice can be made using the option -f. The rest of the command
line consists of the parameters read by the program in rk2.£90, i.e. the
coupling constants k1, k2, the initial conditions x10, x20, v10, v20
and the integration parameters STEPS, t0 and tf. For example, the
commands

> rk2.csh -f 2 -- 10.0 0.0 0.0 0.0 1.0 1.0 20000 0.0 0.2
> rk2.csh -f 1 -- 16.0 1.0 0.0 1.0 1.0 0.0 20000 0.0 6.29
> rk2.csh -f 5 -- 10.0 0.0 -10 0.2 10. 0.0 20000 0.0 3.00

compute the trajectory of a particle in the constant gravitational field
discussed above, the trajectory of an anisotropic harmonic oscillator (k1
= a, = —wiz, k2 = a, = —w3y) and the scattering of a particle in a
Coulomb field — try them! I hope that you will have enough curiosity to
look “under the hood” of the scripts and try to modify them or create
new ones. Some advise to the lazy guys: If you need to program your
own force field follow the recipe: Write the code of your acceleration field
in a file named e.g. rk2_myforce.f90 as we did with rk2_g.£90. Edit
the file rk2.csh and modify the line

set forcecode = (hoc g vg v2g cb)

to
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‘set forcecode = (hoc g vg v2g cb myforce)

(the variable $forcecode may have more entries than the ones shown
above). Count the order of the string myforce, which is 6 in our case. In
order to access this force field from the command line, use the option -f
6:

> rk2.csh —f 6 — .......

Now, we will study the effect of the air resistance on the motion of the
projectile. For small velocities this is a force proportional to the velocity
F. = —mkv, therefore

a, = —kv,
a, = —kvy,—g. (5.4)
By taking
z(t) = zo+ v% (1—e™)
_ 1 g —kt 9
o) = ot (o ) (1) =
ve(t) = wvoe ™
g\ - 9
Uy(t) = ('U()y =+ E) e kt _ E s (55)
we obtain the motion of a particle with terminal velocity v,(+o00) = —g/k

(z(+00) = const., y(+00) ~ ).
The acceleration caused by the air resistance is programmed in the
file (k1 < g, k2 <> k ) rk2_vg.£90:

!

!The acceleration functions f3,f4(t,x1,x2,vl,v2) provided

!by the user
!

!Free fall in constant gravitational filed with
lax = —k2 vx ay = —k2 vy — ki

real (8) function £3(t,x1,x2,v1l,v2)

implicit none

real(8) :: t,xl1,x2,vl,v2
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real (8) :: k1 ,k2
common /couplings/k1l, k2
£f3=—k2*v1 1dx3/dt=dvil/dt=al
end function £3

|
real(8) function f4(t,x1,x2,vl,v2)
implicit none

real(8) :: t,xl1,x2,vl,v2

real(8) :: k1,k2

common /couplings/k1,k2
f4=—k2*v2—kil ldx4 /dt=dv2/dt=a2
end function f4

The results are shown in figure 5.3 where we see the effect of an in-
creasing air resistance on the particle trajectory. The effect of a resistance

force of the form F,. = —mkv?) is shown in figure 5.4,
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Figure 5.3: The trajectory of a projectile moving in a constant gravitational field
g = —109 with air resistance causing acceleration @, = —kv for k = 0,0.2, 1, 5, 10, 20, 30.
The left plot has ¥(0) = & + ¢ and the right plot has ¥(0) = 5z + 5.

5.3 Planetary Motion

Consider the simple planetary model of a “sun” of mass M and a planet
“earth” at distance r from the sun and mass m such that m < M. Ac-
cording to Newton’s law of gravity, the earth’s acceleration is

GM._ GM. (5.6)

6:5:——T:—
7"2 T3
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Figure 5.4: The trajectory of a projectile moving in a constant gravitational field § =
—109 with air resistance causing acceleration @, = —kv?? for k = 0,0.2,1,5, 10, 20, 30.
The left plot has ¥(0) = Z + ¢ and the right plot has @(0) = 5& + 53.

where G = 6.67 x 10*111%?_—:%2, M = 1.99 x 10%%kgr, m = 5.99 x 102*kgr.

When the hypothesis m < M is not valid, the two body problem is
reduced to that of the one body problem with the mass replaced by the

reduced mass p
1 1 1

__.+,___
uw m M
The force of gravity is a central force. This implies conservation of the
angular momentum L = 7 x p with respect to the center of the force,
which in turn implies that the motion is confined on one plane. We
choose the z axis so that

~

L = L.k = m(zv, — yv, )k . (5.7)

The force of gravity is conservative and the mechanical energy

(5.8)

r

is conserved. If we choose the origin of the coordinate axes to be the
center of the force, the equations of motion (5.6) become

GM
Ay = — Xz
7‘3
GM
ay = —T—Sy, (5.9)
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where r? = 2% +y?. This is a system of two coupled differential equations
for the functions z(t), y(¢). The trajectories are conic sections which are
either an ellipse (bound states - “planet”), a parabola (e.g. escape to
infinity when the particle starts moving with speed equal to the escape
velocity) or a hyperbola (e.g. scattering).

Kepler’s third law of planetary motion states that the orbital period
T of a planet satisfies the equation

T? = —a?, (5.10)

where a is the semi-major axis of the elliptical trajectory. The eccentricity
is a measure of the deviation of the trajectory from being circular

b2

e=1/1— i (5.11)
where b is the semi-minor axis. The eccentricity is O for the circle and
tends to 1 as the ellipse becomes more and more elongated. The foci £}
and F, are located at a distance ea from the center of the ellipse. They
have the property that for every point on the ellipse

PF, + PF, = 2a. (5.12)

The acceleration given to the particle by Newton’s force of gravity is
programmed in the file rk2_cb.£90:

!

!The acceleration functions f3,f4(t,x1,x2,vl,v2) provided

!by the user
!

! Motion in Coulombic potential:
lax= kl1*x1/r”"3 ay= k1*x2/r"3
real(8) function £3(t,x1,x2,vl,v2)
implicit none

real(8) :: t,xl1,x2,vl,v2
real(8) :: kil ,k2
common /couplings/k1,k2
real(8) :: r2,r3

r2=x1*x1+x2*x2
r3=r2*sqrt(r2)
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if (r3.gt.0.0D0)then
£f3=k1*x1/r3 !dx3/dt=dv1l/dt=al
else
£3=0.0D0
endif
end function f3
!
real (8) function f4(t,x1,x2,vl,v2)
implicit none

real(8) :: t,xl1,x2,vl,v2
real (8) :: k1 ,k2
common /couplings/k1,k2
real(8) :: r2,r3

r2=x1*x1+x2%x2
r3=r2*sqrt(r2)

if (r3.gt.0.0D0)then

f4=k1*x2/r3 'dx4/dt=dv2/dt=a2
else

£4=0.0D0

endif

end function f4
!

real (8) function energy(t,x1,x2,vl,v2)
implicit none

real(8) :: t,x1,x2,vl,v2
real (8) :: k1,k2
common /couplings/kl, k2
real(8) :: r

r=sqrt(x1*x1+x2%x2)
ifC( r .gt. 0.0D0)then
energy = 0.5D0*(vi*vi+v2*v2) + ki/r
else
energy = 0.0DO
endif
end function energy

We set k1= —G M and take special care to avoid hitting the center of the
force, the singular point at (0,0). The same code can be used for the
electrostatic Coulomb field with ki= ¢Q/4megm.

At first we study trajectories which are bounded. We set GM = 10,
z(0) = 1.0, y(0) = 0, v, = 0 and vary vy,. We measure the period 7" and
the length of the semi axes of the resulting ellipse. The results can be
found in table p.1. Some of the trajectories are shown in figure 5.5. There
we can see the dependence of the size of the ellipse on the period. Figure
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Vox T/2 2a

3.2 | 1.030 | 2.049
3.4 | 1.281 | 2.370
3.6 |1.682 | 2.841
3.8 |2.396 | 3.597
4.0 |3.927 | 5.000
41 | 5514 |6.270
4.2 | 8.665 | 8.475
4.3 | 16.931 | 13.245
4.3 | 28.088 | 18.561
4.38 | 42.652 | 24.522
4.40 | 61.359 | 31.250
4.42 | 99.526 | 43.141

Table 5.1: The results for the period T and the length of the semi-major axis a of
the trajectory of planetary motion for GM = 10, 2(0) = 1.0, y(0) = 0, vo, = 0.

confirms Kepler’s third law of planetary motion given by equation
(6.10).

In order to confirm Kepler’s third law of planetary motion numeri-
cally, we take the logarithm of both sides of equation (5.10)

3 1 472
lanilna—i—gln (G—M> . (5.13)

Therefore, the points (Ina,InT) lie on a straight line. Using a linear least
squares fit we calculate the slope and the intercept which should be equal
to 3 and 1/21In (47%/GM) respectively. This is left as an exercise.

In the case where the initial velocity of the particle becomes larger
than the escape velocity v., the particle escapes from the influence of the
gravitational field to infinity. The escape velocity corresponds to zero
mechanical energy, which gives

v = 2GM ) (5.14)

€ r

When GM = 10, z(0) = 1.0, y(0) = 0, we obtain v, ~ 4.4721.... The
numerical calculation of v, is left as an exercise.
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Figure 5.5: Planetary trajectories for GM = 10, z(0) = 1.0, y(0) = 0, vp, = 0 and
vog = 3.6, 3.8, 4.0, 4.1, 4.3. The numbers are the corresponding half periods.

5.4 Scattering

In this section we consider scattering of particles from a central potentialf.
We assume particles that follow unbounded trajectories that start from
infinity and move almost free from the influence of the force field towards
its center. When they approach the region of interaction they get deflected
and get off to infinity in a new direction. We say that the particles have
been scattered and that the angle between their original and final direction
is the scattering angle ¢. Scattering problems are interesting because we
can infer to the properties of the scattering potential from the distribution
of the scattering angle. This approach is heavily used in today’s particle
accelerators for the study of fundamental interactions between elementary
particles.

First we will discuss scattering of small hard spheres of radius r; by

‘We refer the reader to [38], chapter 4.
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Figure 5.6: Kepler’s third law of planetary motion for GM = 10. The points are
the measurements taken from table p.1. The solid line is the known analytic solution

(6.10).

other hard spheres or radius R,. The interaction potentialf is given by

0 r>Ro+m

0 7‘<R2—|—T1 (515)

Vi ={
where r is the distance between the center of r; from the center of R,.
Assume that the particles in the beam do not interact with each other
and that there is only one collision per scattering. Let J be the intensity
of the beamfl and A its cross sectional area. Assume that the target has
n particles per unit area. The cross sectional area of the interaction is
o = m(ry + Ry)* where r; and R, are the radii of the scattered particles
and targets respectively (see figure (5.§)): All the spheres of the beam
which lie outside this area are not scattered by the particular target. The

"The so called hard core potential.
*The number of particles crossing a surface perpendicular to the beam per unit time
and unit area.
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Figure 5.7: The spiral orbit of a particle moving under the influence of a central
force F = —k/r3.

total interaction cross section is
Y = nAo, (5.16)

where nA is the total number of target spheres which lie within the beam.
On the average, the scattering rate is

N = JX = JnAc. (5.17)

The above equation is the definition of the total scattering cross section
o of the interaction. The differential cross section o(f) is defined by the
relation

dN = JnAc(0)dS, (5.18)

where dN is the number of particles per unit time scattered within the
solid angle df). The total cross section is

Otot = /90(9) dQ = /0(9) sin @ dfd¢ = 27r/0(9) sin 6 df . (5.19)
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Figure 5.8: Scattering of hard spheres. The scattering angle is 6. The cross sectional
area o is shown to the right.

In the last relation we used the cylindrical symmetry of the interaction
with respect to the axis of the collision. Therefore

1 dN
- nAJ2rsinfdo -’

o(6) (5.20)
This relation can be used in experiments for the measurement of the
differential cross section by measuring the rate of detection of particles
within the space contained in between two cones defined by the angles
¢ and 0 + df. This is the relation that we will use in the numerical
calculation of o(6).

Generally, in order to calculate the differential cross section we shoot
a particle at a target as shown in figure 5.9. The scattering angle 6
depends on the impact parameter b. The part of the beam crossing the
ring of radius b(f), thickness db and area 27bdb is scattered in angles
between ¢ and 6 + df. Since there is only one particle at the target we
have that nA = 1. The number of particles per unit time crossing the
ring is J27bdb, therefore

27b(0) db = —270(0) sin 0 dO (5.21)

(the — sign is because as b increases, ¢ decreases). From the potential we
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do —

Figure 5.9: Beam particles passing through the ring 2mbdb are scattered within the
solid angle dQ = 2msind df.

can calculate b(f) and from b(f) we can calculate o(#). Conversely, if we
measure o(f), we can calculate b(6).

5.4.1 Rutherford Scattering

The scattering of a charged particle with charge ¢ (“electron”) in a Coulomb
potential of a much heavier charge ) (“nucleus”) is called Rutherford
scattering. In this case, the interaction potential is given by

1 Q
Vir) = i 5.22
which accelerates the particle with acceleration
a= Q7 = a—g : (5.23)

dmegm r? r

The energy of the particle is E = $mv? and the magnitude of its angular
momentum is [ = mvb, where v = |U|. The dependence of the impact
parameter on the scattering angle is [38]

b(0) = %Cotg. (5.24)
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Using equation (5.21) we obtain

21 0
o(f) = S N

e 5 (5.25)

Consider the scattering trajectories. The results for same charges are

40 T T T T T T T

35 t ]
30 +
20 | ]
ol | _

-20  -15 -10 -5 0 5 10 15 20

Figure 5.10: Rutherford scattering trajectories. We set k1 = 99 _ — 1 (see code in

— 4mwegm

the file rk2_cb.£90) and b = 0.08, 0.015, 0.020, 0.035, 0.080, 0.120, 0.200, 0.240, 0.320,
0.450, 0.600, 1.500. The initial position of the particle is at 2(0) = —50 and its initial
velocity is v = 3 in the z direction. The number of integration steps is 1000, the initial
time is O and the final time is 30.

shown in figure . A similar figure is obtained in the case of opposite
charges. In the latter case we have to take special care for small impact
parameters b < 0.2 where the scattering angle is ~ 1. A large number
of integration steps is needed in order to obtain the desired accuracy. A
useful monitor of the accuracy of the calculation is the measurement of
the energy of the particle which should be conserved. The results are
shown in table . We will now describe a method for calculating the
cross section by using equation (5.20). Alternatively we could have used
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b 0, 0, AFE/E Nt

0.008 | 2.9975 | 2.9978 | 2.810~° | 5000
0.020 | 2.7846 | 2.7854 | 2.7107° | 5000
0.030 | 2.6131 | 2.6142 | 2.5107° | 5000
0.043 | 2.4016 | 2.4031 | 2.31072 | 5000
0.056 | 2.2061 | 2.2079 | 2.0107° | 5000
0.070 | 2.0152 | 2.0172 | 1.7107° | 5000
0.089 | 1.7887 | 1.7909 | 1.410=° | 5000
0.110 | 1.5786 | 1.5808 | 1.010~? | 5000
0.130 | 1.4122 | 1.4144 | 0.8107° | 5000
0.160 | 1.2119 | 1.2140 | 0.5107° | 5000
0.200 | 1.0123 | 1.0142 | 0.310~° | 5000
0.260 | 0.8061 | 0.8077 | 0.110=° | 5000
0.360 | 0.5975 | 0.5987 | 2.910~'* | 5000
0.560 | 0.3909 | 0.3917 | 0.310~ | 5000
1.160 | 0.1905 | 0.1910 | 5.310~** | 5000

Table 5.2: Scattering angles of Rutherford scattering. We set k1 = ;22 =1 (see file

4meq
rk2_cb.£90) and study the resulting trajectories for the values of b shown in column

1. 6, is the numerically calculated scattering angle and 6, is the one calculated from
equation (5.24). The ratio AE/E shows the change in the particle’s energy due to
numerical errors. The last column is the number of integration steps. The particle’s
initial position is at 2(0) = —50 and initial velocity ¥ = 3%.

equation () and perform a numerical calculation of the derivatives.
This is left as an exercise for the reader. Our calculation is more like
an experiment. We place a “detector” that “detects” particles scattered
within angles 6 and 6+4d6. For this reason we split the interval [0, 7] in N,
bins so that 660 = 7/N,. We perform “scattering experiments” by varying
b € [by, bys] with step 0b. Due to the symmetry of the problem we fix ¢ to
be a constant, therefore a given ¢ corresponds to a cone with an opening
angle 6 and an apex at the center of scattering. For given b we measure
the scattering angle ¢ and record the number of particles per unit time
ON o< bob. The latter is proportional to the area of the ring of radius
b. All we need now is the beam intensity J which is the total number
of particles per unit time J x ), bdb (note than in the ratio N /J the
proportionality constant and b cancel) and the solid angle 27 sin(6) 66.
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b 0, 0, AE/E STEPS
0.020 | 2.793 | 2.785 | 0.02 1000 000
0.030 | 2.620 | 2.614 | 821073 300000
0.043 | 2.405 | 2.403 | 7.2107* 150000
0.070 | 2.019 | 2.017 |3.2107" 150000
0.089 | 1.793 | 1.791 | 82107 " 60 000
0.110 | 1.583 | 1.581 1.210° 30000
0.130 | 1.417 | 1.414 [9.410°7 | 20000
0.160 | 1.216 | 1.214 |6.0107° 5000
0.200 | 1.016 | 1.014 | 4.110°6 5000
0.260 | 0.8093 | 0.8077 | 2.210°7 5000
0.360 | 0.6000 | 0.5987 | 7.610~° 5000
0.560 | 0.3926 | 0.3917 | 1.210710 5000
1.160 | 0.1913 | 0.1910 | 2.910°13 5000

Table 5.3: Rutherford scattering of opposite charges with 47f€cgm = —1. The table is

similar to table . We observe the numerical difficulty for small impact parameters.

Finally we can easily use equation () in order to calculate the total
cross section o;,,. The program that performs this calculation is in the file
scatter.f90 and it is a simple modification of the program in rk2.£90:

!

!Program that computes scattering cross—section of a central
!force on the plane. The user should first check that the
!parameters used, lead to a free state in the end.

! #% X920 is the impact parameter b **

!A 4 ODE system is solved using Runge—Kutta Method

!User must supply derivatives

1dx1/dt=Ff1(t,x1,x2,x3,.x4) dx2/dt=f2(t,x1,x2,x3,x4)
1dx3/dt=f3(t,x1,x2,x3,.x4) dx4/dt=f4(t, x1,x2,x3,x4)

las real(8) functions

!Output is written in file scatter.dat
!

program scatter_cross_section
implicit none
integer ,parameter :: P=1010000
real (8) ,dimension(P):: T,X1,X2,V1,V2
real(8) :: Ti,Tf,X10,X20,V10,V20
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Figure 5.11: Differential cross section of the Rutherford scattering. The solid line
is the function (5.25) for o = 1, v = 3. We set qum = 1. The particle’s initial position
is £(0) = —50 and its initial velocity is ¥ = 3Z. We used 5000 integration steps, initial
time equal to O and final time equal to 30. The impact parameter varies between 0.02
and 1 with step equal to 0.0002.

real(8) :: X20F,dX20 !max impact parameter and step
integer :: Nt

integer :: i

real (8) :: . k2

common /coupllngs/kl k2

integer , parameter :: Nbins=20

integer :: index

real(8) :: angle,bins(Nbins) , Npart

real (8) ,parameter :: PI =3.14159265358979324D0
real (8) ,parameter :: rad2deg=180.0D0/PI

real (8) ,parameter :: dangle =PI/Nbins

real(8) R,density,dOmega,sigma,sigmatot

!Input:

print *,’Runge—Kutta Method for 4—ODEs Integration’
print *,’Enter coupling constants:’
read *, ki1, 6k2
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Figure 5.12: Differential cross section of the Rutherford scattering like in figure p.11.
The solid line is the function 1/(4 x 3%)x from which we can deduce the functional form
of o(0).

print *,’kil= ’ k1, k2= ’ k2

print *,’Enter Nt,Ti,Tf,X10,X20,V10,V20:°

read *, Nt,Ti,TF,X10,X20,V10,V20

print *,’Enter final impact parameter X20F and step dX20:’
read *, X20F,dX20

print *, Nt = ° Nt

print *,’Time: Initial Ti =",Ti, > Final Tf=’,Tf

print *.’ X1(Ti)=",%X10, * X2(Ti)=",X20

print *.’ V1(Ti)=",v10, > V2(Ti)=",v20

print *,’Impact par X20F =’,X20F,  dX20 =’,dX20

open(unit=11,file="scatter .dat’)

bins = 0.04d0

!The Calculation:

Npart = 0.0DO

X20 = X20 + dX20/2.0D0 !starts in middle of first interval

do while (X20 .l1t. X20F )
call RK(T,X1,X2,V1,V2,Ti,Tf,X10,X20,V10,V20,Nt)
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! Take absolute value due to symmetry:
angle = DABS(atan2(V2(Nt),V1i(Nt)))
!Output: The final angle. Check if almost constant
write (11,*) '@ °, X20, angle,&
DABS (atan2 (V2 (Nt—50),V1(Nt—50))) &
k1/V10**2/tan(angle/2.0D0)
!Update histogram:
index = int(angle/dangle)+1
!Number of incoming particles per unit time
!is proportional to radius of ring
!of radius X20, the impact parameter:
!db is cancelled from density
bins(index) = bins(index) + X20

Npart = Npart + X20 !K— i.e. from here
X20 = X20 + dX20
enddo
!Print scattering cross section:
R = X20 !beam radius
density = Npart/(PI*R*R) !beam flux density ]
sigmatot = 0.0DO !total cross section
do i=1,Nbins
angle = (i—0.5D0) *dangle
dOmega = 2.0D0*PI*sin(angle)*dangle !d(Solid Angle)
sigma = bins(i)/(density*d0Omega)

if(sigma.gt.0.0D0) write(11,*) ’ds= ",&
angle ,angle*rad2deg,sigma

sigmatot = sigmatot + sigma*dOmega
enddo
write (11,*) ’sigmatot= ’,sigmatot
close (11)

end program scatter_cross_section

The results are recorded in the file scatter.dat. An example session

that reproduces figures and is

> gfortran scatter.f90 rk2 _cb.f90 —o scatter
> ./scatter
Runge—Kutta Method for 4—0DEs Integration
Enter coupling constants:
1.0 0.0
ki= 1.00000 k2= 0.00000
Enter Nt ,Ti,Tf,X10,X20,V10,V20:
5000 0 30 —50 0.02 3 O
Enter final impact parameter X20F and step dX20:
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1 0.0002

Nt= 5000

Time: Initial TO = 0.00000 Final TF= 30.00000
X1(To)= —50.00000 X2(To)= 2.00000E—002
vi(To)=  3.00000 v2(To)= 0.00000

Impact par X20F = 1.00000 dx20 = 2.00000E—-004

The results can be plotted with the gnuplot commands:

gnuplot> set log
gnuplot> plot [:1000] "<grep ds= scatter.dat” \

u ((sin($2/2))**(—4)):($4) notit,\

(1./(4.*3.**4) )*x notit

gnuplot> unset log
gnuplot> set log y
gnuplot> plot [:] "<grep ds= scatter.dat” u 2:4 notit, \
(1./C4.*%3.%*%4))*(sin(x/2))**(—4) notit

The results are in a very good agreement with the theoretical ones given
by (). The next step will be to study other central potentials whose
solution is not known analytically.

5.4.2 More Scattering Potentials

Consider scattering from a force field

F=jwyr,  jm={pF-@ =0 (5.26)
= f(r)r, =90 g .
This is a very simple classical model of the scattering of a positron e
by the hydrogen atom. The positron has positive charge +e and the
hydrogen atom consists of a positively charged proton with charge +e
in an electron cloud of opposite charge —e. We set the scales so that
me+ = 1 and e*/4mey = 1. We will perform a numerical calculation of
b(@), 0'(0) and Otot-
The potential energy is given by
v (r) 1 r? 3
= —— =—+—-—. 5.27
F(r) dr = V() r + 202  2a ( )
where V(r) = 0 for r > a. The program containing the calculation of the
acceleration caused by this force can be found in the file rk_hy.£90:
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!
!The acceleration functions f3,f4(t,x1,x2,vl,v2) provided

!by the user
!

!Motion in hydrogen atom + positron:
1f(r) = 1/r22—r/k1A3
lax= f(r)*x1/r ay= f(r)*x2/r
real (8) function £3(t,x1,x2,vl,v2)
implicit none

real(8) :: t,x1,x2,vl,v2

real(8) :: k1,k2

common /couplings/kl,k2

real(8) :: r2,r, fr

r2=x1*x1+x2%x2

r =sqrt(r2)

if(r .le.k1 .and. r2.gt.0.0D0)then

fr = 1/r2-—r/k1**3

else

fr = 0.0DO

endif

if (fr.gt.0.0D0 .and. r .gt.0.0D0)then
f3=fr*xil/r 1dx3/dt=dv1/dt=al
else
£3=0.0D0
endif
end function £f3
!
real (8) function f4(t,x1,x2,vl,v2)
implicit none

real(8) :: t,x1,x2,vl,v2
real(8) :: k1,k2
common /couplings/kl,k2
real(8) :: r2,r,fr
r2=x1*x1+x2*x2
r =sqrt(r2)
if(r .le.k1 .and. r2.gt.0.0D0)then
fr = 1/r2—r/k1**3
else
fr = 0.0DO
endif

if (fr.gt.0.0D0 .and. r .gt.0.0D0)then
f4=fr*x2/r !'dx3/dt=dv1l/dt=al
else
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£4=0.0D0
endif

end function f4
|

real (8) function energy(t,x1,x2,vl,v2)
implicit none

real(8) :: t,xl1,x2,vl,v2
real(8) :: kil ,k2
common /couplings/k1,k2
real(8) :: r,Vr

r=sqrt(x1*x1+x2*x2)
if( r .le.k1 .and. r .gt.0.0D0)then
Vr = 1/r + 0.5D0*r*r/k1**3 — 1.5D0 / ki

else
Vr = 0.0DO
endif
energy = 0.5D0*(vi*vi+v2*v2) + Vr

end function energy

The results are shown in figures 5.13-5.14. We find that ¢,,; = ma?
(see problem 5.[10)).

Another interesting dynamical field is given by the Yukawa potential.
This is a phenomenological model of nuclear interactions:

e—’/‘/a

Vir)=k (5.28)

r
This field can also be used as a model of the effective interaction of
electrons in metals (Thomas—Fermi) or as the Debye potential in a classic
plasma. The resulting force is

5 —r/a

Fr)=f()i. J0) =k (14 ) (5.29)
The program of the resulting acceleration can be found in the file rk2_yu.£90.
The results are shown in figures .
5.5 More Particles

In this section we will generalize the discussion of the previous para-
graphs in the case of a dynamical system with more degrees of freedom.
The number of dynamical equations that need to be solved depends on
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Figure 5.13: The impact parameter b(f) for the potential given by equation (5.27)
for different values of the initial velocity v. We set ¢ = 1, 2(0) = —5 and made 4000
integration steps from ¢; = 0 to ¢y = 40.

the number of degrees of freedom and we have to write a program that
implements the 4th order Runge—Kutta method for an arbitrary number
of equations NEQ. We will explain how to allocate memory dynamically, in
which case the necessary memory storage space, which depends on NEQ,
is allocated at the time of running the program and not at compilation
time.

Until now, memory has been allocated statically. This means that
arrays have sizes which are known at compile time. For example, in
the program rk2.f90 the integer parameter P had a given value which
determined the size of all arrays using the declarations:

integer , parameter :: P=1010000
real (8) ,dimension(P):: T,X1,X2,V1,V2

Changing P after compilation is impossible and if this becomes necessary
we have to edit the file, change the value of P and recompile. Dynamical




5.5. MORE PARTICLES 291

100 . . . . . .
2.0
15
10
I 05 ]
10 0.25
0.125
\
S 1F ]
e}
01} ]
0.01 t . . . T ]

0 0.5 1 15 2 2.5 3 3.5

Figure 5.14: The function o(f) for the potential given by equation (b.27) for different
values of the initial velocity v. We set a =1, 2(0) = —5 and the integration is performed
by making 4000 steps from ¢; = 0 to t; = 40.

memory allocation allows us to read in Nt and NEQ at execution time and
then ask from the operating system to allocate the necessary memory. All
we have to do is to declare the shape of the arrays (i.e. how many indices
they take) and give them the allocatable attribute. The needed memory
can be asked for at execution time by calling the function ALLOCATE. Here
is an example:

integer Nt,6NEQ

real(8) ,allocatable :: T (:) ! Rank—1 array
real(8) ,allocatable :: X (:,:) ! Rank—2 array
real (8) ,allocatable :: X0(:) ! Rank—1 array

read *,Nt

call finit(NEQ)
allocate (X0(NEQ))
allocate (T(Nt))
allocate (X(Nt,NEQ))
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Figure 5.15: The function b(¢) for the Yukawa scattering for several values of the
initial velocity v. We set a = 1, k = 1, 2(0) = —50 and the integration is performed with
5000 steps from t; = 0 to t; = 30. The lines marked as cb are equation (5.24) of the
Rutherford scattering.

(compute with X0,T.,X)

deallocate (X0)
deallocate (X )
deallocate (T )
(XO,T,X are not usable anymore)

subroutine finit(NEQ)
NEQ = 4
end subroutine finit

In this program the arrays have the allocatable attribute and for each :
they have an extra index. Therefore the arrays T,X0 are rank-1 arrays
and have only one index, whereas the array X is a rank-2 array and has
two indices. The user enters the value of Nt and the subroutine finit
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Figure 5.16: The function b(6) for the Yukawa scattering for several values of the
range a of the force. We set v = 4.0, k = 1, (0) = —50 and the integration is performed
with 5000 steps from ¢; = 0 to ¢ty = 30.

sets the value of NEQ. The calls to the function ALLOCATE allocate the nec-
essary memoryll. If memory allocation is successful, then the arrays can
be used in the same way as the statically allocated ones. When allocatable
arrays are not necessary anymore we should make a call to the function
DEALLOCATE which returns the unused memory back to the system. Oth-
erwise our program might suffer from “memory leaks” if e.g. the memory
is repeatedly asked in a loop that calls a function that allocates memory
without deallocating it in the end. Dynamical memory allocation is very
convenient but for high performance computing static allocation might
be preferable so that the compiler performs a more efficient optimization.

The main program will be written in the file rkA.£90, whereas the

‘We assume that Nt, NEQ are positive and small enough so that the requested
memory is available. It is better to use the call allocate(T(Nt) ,STAT=IERR). The non
zero value of IERR after the call indicates a successful allocation and the following test
stops the program otherwise: IF(IERR .eq. 0) STOP 'Memory allocation for T
failed'
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force-dependent part of the code will be written in files with names of
the form rkA_XXX.£90. In the latter, the user must program a subrou-
tine £(t,X,dXdt) which takes as input the time t and the values of the
functions X(NEQ) and outputs the values of their derivatives dXdt (NEQ)
at time t. The function finit(NEQ) sets the number of functions in f
and it is called once during the initialization phase of the program.

The program in the file rkA.£90f is listed below:

!

!Program to solve an ODE system using the

'4th order Runge—Kutta Method

INEQ: Number of equations

!User supplies two subroutines:

1£(t,x,xdot): with real(8) :: t,x(NEQ),xdot(NEQ) which
!given the time t and current values of functions x(NEQ)
!'it returns the values of derivatives: xdot = dx/dt
!The values of two coupling constants ki1.,k2 may be used
!in f which are read in the main program and stored in
!common /couplings/k1,k2

1finit (NEQ) : sets the value of NEQ

!
!User Interface:

'k1,k2: real(8) coupling constants

INt, Ti, Tf: Nt—1 integration steps, initial/final time
1X0: real(8),dimension(NEQ): initial conditions
!Output:

'rkA.dat with Nt lines consisting of: T(Nt) ,X(Nt,NEQ)
!

program rk2_solve
implicit none

real (8) ,allocatable
real(8),allocatable
real(8),allocatable
real(8) :: Ti,Tf
integer :: Nt, NEQ,i
real (8) :: k1,k2
common /couplings/k1l,6 k2
!We need explicit interface, since energy has

lassumed—shape arrays as arguments.
INTERFACE

<< oA
o

~ A~
~

°In the accompanying software you will find the files rkN.£90 and rkN_XXX.f90
which show you how to write the same program using static memory allocation.
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real(8) function energy(t_intrf,x_intrf)
implicit none
real(8) :: t_intrf,x_intrf (:)
end function energy
END INTERFACE
!Input:
print *,’Runge—Kutta Method for ODE Integration.’
!Get the number of equations:
call finit(NEQ);allocate (X0(NEQ))
print *,’NEQ= ’ ,NEQ
print *,’Enter coupling constants:’

read *, ki1,6k2

print *,'kil= ~ k1, k2= " k2

print *,’Enter Nt,Ti,Tf,X0:’

read *, Nt ,Ti,TF, X0

print *,’Nt = ' Nt

print *,’Time: Initial Ti =’,Ti,’ Final Tf=’,Tf
print ’(A,2000G28.16)",° X0 =’,X0

allocate (T(Nt));allocate (X(Nt,NEQ))
!The Calculation:
call RK(T,X,Ti,Tf,X0,Nt,NEQ)
!Output:
open(unit=11,file="rkA.dat’)
do i=1,Nt
write (11, °(2000G28.16) *)T(i) ,Xx(i,:) .&
energy(T(i) ,X(i,:))
enddo
close (11)

end program rk2_solve
!

!Driver of the RKSTEP routine
!
subroutine RK(T,X,Ti,Tf,X0,Nt,K NEQ)
implicit none

integer :: Nt,NEQ

real (8) ,dimension (Nt) c: T

real (8) ,dimension (Nt ,NEQ) :: X

real (8) ,dimension (NEQ) 11 X0

real(8) :: Ti ,Tf

real(8) :: dt

real(8) :: TS,XS(NEQ) !values of time and X at given step
integer :: i

!Tnitialize wvariables:
dt (Tf—Ti)/(Nt—1)
T (1) Ti
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X (1,:)= X0
TS = Ti
XS = XO

!Make RK steps: The arguments of RKSTEP are
!replaced with the new ones

do i=2,Nt

call RKSTEP(TS,XS,dt,NEQ)

T(i) = TS

X(i,:)= XS

enddo
end subroutine RK
!
!Subroutine RKSTEP(t,X, dt)
!Runge—Kutta Integration routine of ODE
!
subroutine RKSTEP(t,x,dt,NEQ)
implicit none

integer :: NEQ

real(8) ,dimension(NEQ) :: x

real(8) :: t,dt,tt

real (8) ,dimension(NEQ) :: ki1,k2,k3,k4,xx
real(8) :: h,h2,h6

!We need explicit interface, since f has assumed—shape
larrays as arguments.
INTERFACE
subroutine f(t_intrf,x_intrf, xdot_intrf)
implicit none
real(8) :: t_intrf
real (8) ,dimension (:) :: x_intrf,6 xdot_intrf
end subroutine f
END INTERFACE

h =dt 'h =dt, integration step
h2=0.5D0*h 'h2=h/2
h6=h/6.0D0 !'h6=h/6

call £(t ,x ,k1); xx
call f(tt,xx,k2); =xx
call f(tt,xx,k3); xx
call f(tt,xx,k4)

x + h2*k1l; tt =t+h2
X + h2*k2; tt =t+h2
x + h *k3; tt =t+h

t =t+h
x =x +h6*(k1+2.0D0*(k2+k3)+k4)
end subroutine RKSTEP
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Note the use of array sections:

write (11, °(2000G28.16) °*)T(i) ,X(i,:)
X(1,:)= X0
X(i,:)= XS

The expression X (1,:) refers to the first row of the array X. The ar-

rays X0 and X (1,:) are conformable and we can assign the entries in X

(1,:) equal to the entries in X0, i.e. X(1,1)=X0(1), X(1,2)=X0(2),

, X(1,NEQ)=XO0(NEQ) in only one statement X(1,:)= X0. Similarly the

statement write(...) X(i,:) prints the whole i-th row of the array X

whereas the statement X (i, :)= XS assigns X(i,1)=XS(1), X(i,2)=XS(2),
, X(i,NEQ)=XS(NEQ). Note the vector operations:

x + h2* ki
x + h6*(k1+2.0D0*(k2+k3)+k4)

XX

X

which are equivalent to the following do loops

do i=1,NEQ

xx(i) = x(i) + h2* k1(i)
enddo
do i=1,NEQ

x(i) = x(i) + h6*(k1(i)+2.0D0*(k2(i)+k3(i))+k4(i))
enddo

A few words in order to explain what is an INTERFACE block. Up to
now we declared only the type of the functions in the calling program.
When the arguments of the function are arrays for which we only know
their shape and not their size (assumed-shape arrays), the compiler needs
more information. We need to declare the arguments, their types and, in
case they are arrays, their shapes as well. Each program that calls these
functions should include an INTERFACE block which provides this infor-
mation. For the functions f and energy, the corresponding INTERFACE
block is

INTERFACE

!

subroutine f(t_intrf,x intrf, xdot_intrf)
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implicit none

real(8) :: t_intrf

real (8) ,dimension (:) :: x_intrf,6 xdot_intrf
end subroutine f

real(8) function energy(t_intrf,x_intrf)
implicit none
real(8) :: t_intrf,x_intrf (:)
end function energy
!

END INTERFACE

You may create files like e.g. interfaces.inc with groups of INTERFACE
blocks and include them in all subprograms that use them with the state-
ment include "interfaces.inc".

m
3

Figure 5.17: Three particles of equal mass interact via their mutual gravitational
attraction. The problem is solved numerically using the program in the files rkA.£90,
rkA_3pcb.£90. The same program can be used in order to study the motion of three
equal charges under the influence of their attractive or repulsive electrostatic force.

Consider three particles of equal mass exerting a force of gravitational
attraction on each otherf] like the ones shown in figure p.17. The forces

*The same program can be used for three equal charges exerting an electrostatic
force on each other, which can be either attractive or repulsive.
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exerting on each other are given by

= k
Fy="000 i,j=123, (5.30)
ry,
where k; = —Gm and the equations of motion become (i = 1,2, 3)

3

dz; dv; Ti— X

i Us i k % 7

dt w dt ! Z )

J=1,j#i K
3

dy; dviy _ Yi — Yj

= Uy - kl 3 )
dt dt PP

(5.31)

where 77, = (; — 2;)* + (y; — y;)*. The total energy of the system is

3

1
E/m = 5(1}% +v3) + Z

7"‘. .
ij=lj<i "

ko (5.32)

The relations shown above are programmed in the file rkA_3pcb.£90
listed below:

!

!Sets number of equations
!
subroutine finit(NEQ)
NEQ =

end subroutine finit
!

!Three particles of the same
!mass on the plane interacting
!via Coulombic force

!
subroutine f(t,X,dXdt)
implicit none

real(8) :: k1,k2
common /coupllngs/ki k2
real(8) :: t.X(:).dXdt(:)

|

real (8) :: x11,x12,x21,x22,x31,x32
real(8) :: vi1,v12,v21,v22,v31,v32
real(8) :: r12,r13,r23
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x11 = X(1);x21 = X(5);x31 = X(9)

x12 = X(2);x22 = X(6);x32 = X(10)
vil = X(3);v21 = X(7);v31 = X(11)
vi2 = X(4);v22 = X(8);v32 = X(12)

!

r12 = ((x11—x21)*(x11—x21)+(x12—x22) *(x12—x22) ) **(—1.5D0)
r13 = ((x11—x31)*(x11—x31)+(x12—x32) *(x12—x32))**(—1.5D0)

r23 = ((x21—x31)*(x21—x31)+(x22—x32) *(x22—x32) ) **(—1.5D0)
!

dxdt (1) = vi1

dxdt(2) = vi2

dXdt(3) = k1*(x11—x21)*r12+k1*(x11—x31)*r13 ! all=dvii/dt
dXdt(4) = k1*(x12-—x22)*r12+k1*(x12-x32)*r13 ! al2=dvi2/dt
!

dxdt(5) = v21

dxdt(6) = v22

dXdt(7) = k1*(x21—x11)*r12+k1*(x21—x31)*r23 ! a2i=dv21/dt
dXdt(8) = k1*(x22—x12)*r12+k1*(x22-x32)*r23 ! a22=dv22/dt
!

dxdt(9) = v31

dXdt(10) = v32

dXdt (11) = k1*(x31—x11)*r13+k1*(x31—x21)*r23 ! a31=dv31/dt
dxdt (12) k1*(x32—x12)*r13+k1*(x32—x22)*r23 | a32=dv32/dt

end subroutine f
!

real (8) function energy(t,X)
implicit none

real(8) :: ki,k2
common /couplings/k1l,k2

real(8) :: t,Xx(:)
y

real(8) :: x11,x12,x21,x22,x31,x32
real(8) :: vii,v12,v21,v22,v31,v32
real(8) :: ri12,r13,r23

|

x11 = X(1);x21 = X(5);x31 = X(9)
x12 = X(2);x22 = X(6);x32 = X(10)
vil = X(3);v21 = X(7);v31 = x(11)
vi2 = X(4);v22 = X(8);v32 = X(12)

!

r12 = ((x11—x21)*(x11—x21)+(x12—x22) *(x12—x22) ) **(—0.5D0)
rl3 ((x11—x31) *(x11—x31)+(x12—x32) *(x12—x32) ) **(—0.5D0)
r23 = ((x21—x31)*(x21—x31)+(x22—x32) *(x22—x32) ) **(—0.5D0)
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energy = 0.5D0*&
(vi1*v11+4v12*v124v21*v21+v22*v22+v31*v314+v32*v32)
energy = energy + k1*(r12+r13+r23)
end function energy

In order to run the program and see the results look at the commands
in the shell script in the file rkA_3pcb.csh. In order to run the script use
command

> rkA_3pcb.csh —0.5 4000 1.5 -1 0.1 1 0 1 -0.1 -1 0 0.05 1 0 —1

which will run the program setting k1 = —0.5, 1 (0) = —2+0.1y, 7, (0) = ,
t; =1.5.
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5.6 Problems

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Reproduce the results shown in figures and 5.4. Compare your
results to the known analytic solution.

Write a program for the force on a charged particle in a constant
magnetic field B = Bk and compute its trajectory for #(0) = vo,& +
voyy. Set x(0) = 1,y(0) = 0,v9, = 0 and calculate the resulting
radius of the trajectory. Plot the relation between the radius and
voz. Compare your results to the known analytic solution. (assume
non relativistic motion)

Consider the anisotropic harmonic oscillator a, = —w?z, a, = —w3y.
Construct the Lissajous curves by setting 2(0) = 0,y(0) = 1,v,(0) =
L,v,(0) =0, ty = 27, w3 =1, w? = 1,2,4,9,16,.... What happens
when w? # nw3?

Reproduce the results displayed in table b.1 and figures .5 and p.6.
Plot Ina vs InT" and calculate the slope of the resulting straight line
by using the linear least squares method. Is it what you expect?
Calculate the intercept and compare your result with the expected
one.

Calculate the angular momentum with respect to the center of the
force at each integration step of the planetary motion and check
whether it is conserved. Show analytically that conservation of
angular momentum implies that the position vector sweeps areas at
constant rate.

Calculate the escape velocity of a planet v, for GM = 10.0, y(0) = 0.0,
zo = 2(0) = 1 using the following steps: First show that v3 =
—GM(1/a)+v2. Then set v,(0) = 0, v,(0) = vo. Vary v,(0) = v and
measure the resulting semi-major axis a. Determine the intercept
of the resulting straight line in order to calculate v..

Repeat the previous problem for z, = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
4.0. From the v, = f(1/z,) plot confirm the relation (5.14).

Check that for the bound trajectory of a planet with GM = 10.0,
z(0) = 1, y(0) = 0.0, v,(0) = 0, v,(0) = 4 you obtain that F, P +
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5.9

5.10

5.11
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FyP = 2a for each point P of the trajectory. The point [ is the
center of the force. After determining the semi-major axis a nu-
merically, the point F, will be taken symmetric to F} with respect
to the center of the ellipse.

Consider the planetary motion studied in the previous problem.
Apply a momentary push in the tangential direction after the planet
has completed 1/4 of its elliptical orbit. How stable is the particle
trajectory (i.e. what is the dependence of the trajectory on the
magnitude and the duration of the push?)? Repeat the problem
when the push is in the vertical direction.

Consider the scattering potential of the positron-hydrogen system
given by equation ( ). Plot the functions f(r) and V(r) for
different values of a. Calculate the total cross section oy, numerically
and show that it is equal to ma?.

Consider the Morse potential of diatomic molecules:
V(r) = D (exp(—2ar) — 2exp(—ar)) (5.33)

where D, a > 0. Compute the solutions of the problem numerically
in one dimension and compare them to the known analytic solutions
when F < 0:

x(t)Zéln{D— D(D_‘E‘>’s;?(o‘tv2’E’/m+c) } (5.34)

where the integration constant as a function of the initial position
and energy is given by

D — |E|e

. (5.35)
D(D —|E])

C =sin~! [

We obtain a periodic motion with an energy dependent period =

(m/a)y/2m/|E|. For E > 0 we obtain
o(t) = lln{\/D(D—i—E)cosh(at\/2E/m+C)—D} (5.36)

a |E]
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5.13

5.14
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5.16

5.17

CHAPTER 5. PLANAR MOTION

whereas for £ =0
1 1 Da?
t)=—In{-+—@+C)*} . 5.37
o) = {5+ Pt + 0P} .37
In these equations, the integration constant C' is given by a different
relation and not by equation (5.35). Compute the motion in phase

space (z, ¢) and study the transition from open to closed trajectories.

Consider the effective potential term V,;(r) = 12/2mr? (I = |L]) in
the previous problem. Plot the function V. (r) = V(r) + Vess(r) for
D=20,a=1,m=1,1=1, and of course for r > (0. Determine the
equilibrium position and the ionization energy.

Calculate the solutions x(t), y(t), y(x), r(t) on the plane for £ > 0,
E =0, and £ < 0 numerically. In the £ < 0 case consider the
scattering problem and calculate the functions b(f), o(f) and the
total cross section ;.

Consider the potential of the molecular model given by the force
F(r) = f(r)# where f(r) = 24(2/r'® — 1/r7). Calculate the potential
V(r) and plot the function Vi (r) = V(r) + V.s¢(r). Determine the
equilibrium position and the ionization energy.

Consider the problem of scattering and calculate b(6), o(#) and oy
numerically. How much do your results depend on the minimum
scattering angle?

Compute the trajectories of a particle under the influence of a force
F = —k/r3f. Determine appropriate initial conditions that give a
spiral trajectory.

Compute the total cross section oy, for the Rutherford scattering
both analytically and numerically. What happens to your numerical
results as you vary the integration limits?

Write a program that computes the trajectory of a particle that
moves on the plane in the static electric field of N static point
charges.

Solve the three body problem described in the text in the case of
three different electric charges by making the appropriate changes
to the program in the file rkA_3cb.£90.
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Two charged particles of equal mass and charge are moving on the
xy plane in a constant magnetic field B = B&. Solve the equations of
motion using a 4th order Runge—Kutta Method. Plot the resulting
trajectories for the initial conditions that you will choose.

Three particles of equal mass m are connected by identical springs.
The springs’ spring constant is equal to k£ and their equilibrium
length is equal to [. The particles move without friction on a hori-
zontal plane. Solve the equations of motion of the system numeri-
cally by using a 4th order Runge—Kutta Method. Plot the resulting
trajectories for the initial conditions that you will choose. (Hint:
Look in the files rkA 3hoc.f90, rkA 3hoc.csh.)
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Figure 5.18: Two identical particles are attached to thin weightless rods of length
[ and they are connected by an ideal weightless spring with spring constant £ and
equilibrium length [. The rods are hinged to the ceiling at points whose distance is I.

(Problem [.20).

5.20

Two identical particles are attached to thin weightless rods of length
[ and they are connected by an ideal weightless spring with spring
constant k£ and equilibrium length /. The rods are hinged to the
ceiling at points whose distance is | (see figure 5.18). Compute
the Lagrangian of the system and the equations of motion for the
degrees of freedom ¢, and ¢,. Solve these equations numerically
by using a 4th order Runge-Kutta method. Plot the positions of
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the particles in a Cartesian coordinate system and the resulting tra-
jectory. Study the normal modes for small angles #; < 0.1 and
compute the deviation of the solutions from the small oscillation
approximation as the angles become larger. (Hint: Look in the files
rk_cpend.f90, rk_cpend.csh)

Repeat the previous problem when the hinges of the rods slide
without friction on the z axis.

Repeat problem B.20 by adding a third pendulum to the right at
distance .



Chapter 6

Motion in Space

In this chapter we will study the motion of a particle in space (three
dimensions). We will also discuss the case of the relativistic motion,
which is important if one wants to consider the motion of particles moving
with speeds comparable to the speed of light. This will be an opportunity
to use an adaptive stepsize Runge-Kutta method for the numerical solution
of the equations of motion. We will use the open source code rksuite]|
available at the Netlibf repository. Netlib is an open source, high quality
repository for numerical analysis software. The software it contains is
used by many researchers in their high performance computing programs
and it is a good investment of time to learn how to use it.

The technical skill that you will exercise in this chapter is looking for
solutions to your numerical problems provided by software written by
o