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Evxaglotieg

[N v ekmovnon e mapovons dMAwHATIKNG eQyaoiag, Oa N0eAa va ekpoiow
TIG EVXAQLOTLEG LOV OTOVG TIAQAKATW:

¢ Tov emBAénovra kaOnynt pov k. @e0dwEo AAeEOMOVAO, TOOO Yot TNV arvdOeon
MG MAQOVOAG TTUXLAKIG €QYAolag 000 Kal Yl TNV OUVUTAQACTAOT] KAL TIS
TOAUTIHES OVHUPBOVAES TOL KAOOAT TN dLAQKELX TNG EKTIOVNOTG, YIA TIS YVWOELS
TIOV €XW ATIOKOUNOTEL DOVAEVOVTAC KOVTA TOV KAL YIX TIG EVKALQLEG TTOL MOV €XEL
dwoeL

¢ Toug yoveig pov, I'onyoon kat Xowotiva, Tov ade@dPo HOL LTAUATN YIX TIS OVMPBOVAES
KaL TNV Ka@odr|ynom Toug Kat yix to OTL Tay dimAa pov 0Aeg tic otrypés. Ae Oa
pmogovoa va elxa CNTrjoel KAAUTEQN OLKOYEVELAL.

¢ Toug ovpdortntés kat piAovg pov.

o [daitepa evxaQLOTW TNV KOTEAR OV, AYYEALKT), IOV TJTav dITMAQ Hov CLVEXELX.
Zta kKaAQ, aAA& meguoodtepo ota doxnua. I'ia tnv vtopovr) TG oL AKOUN Kat
OTIG (TLEQLOQLOUEVEG) DIAKOTIES HAG, £YW DOVAELA KAL TNV AVOXT] TTOL delyveL dtav
dev elpat Omwg Ba émpeme va elpat.
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IMegiAnym

Otovoyxetioeig Bose-Einstein amoteAoUv éva att' ta O XXQAKTNOLOTIKA ATIOTEAET A
TWV LOXVOWV AAANAeTdOQATEWY. LTV MAQOVOA TTUXLAKT] €0YATl peAeTovvTal
ovoxetioeig Bose-Einstein 0eUteong kat avwtene TA&ng pe dedopéva att' TOV AVIXVELTI)
ATLAS. AvaAvovtat ~ 109 p — p aAAnAemddoels evéQyelag 0o kévteo Halag /s = 7
TeV.

Ao v kBavropnxavikn yvweilovpe mws av evaAda&ovpe dvo ano N prolovia,
dev aAAACeL 1) KUHATOOLVAQTNOT] OV TEQLYQADEL TNV KATAOTAOT] TwV UTtoloviwy.
Avt) n wOTTa ¢ otatioTkr|s Bose-Einstein onuaivetl mwg 1 katdotaon ¥ éxet tnv
wTNTA

U(1,2,..,N)=T¥(2,1,..,N)

n omola 0d1Myel otV Yévvnorn opoiwv pmoloviwv.
H mBavotnta va magatnorjoovpe 000 cwpatida pe ooun) ky kat ky etva

PRy ko) = [ [oraPlo(r)Plp(ra) Fd’ridrs

OTIOV 1 2 = Y1 2(k1ka, T172) ] KUHATOOULVAQTNON TWV OVO CWHATIOWV.
I'ax d00 Tarvtoo U HTTOLOVIX 1) CUHHETOLKT] Y1 2 £XEL TN HOQDN
1/)‘192 = L {ei(kl-T1+k2-T‘2) + ei(kl-r2+k2-r1)}

V2

KATAANYOVTAG OTO
|@/’i2|2 =1+ cos[(k1 — k2)(r1 —r3)] = 1 + cos [Ak(r; — 7r2)] .

XQNOHOTIOLWVTAS Tt TAQATIAV@ 0QICOVLE TI) CLUVAQTNON TG CLOXETIONG OeVTEQNS

Ta&nc
Co(Ak) = 1+ |p(Ak)|*.

Lric mepuooodtepeg Bose-Einstein avaAvoeig xonowomnoteitat  avaAvwtn TaQ&HETQOg
Q, mov oplletar wg Q* = Q3 = —(¢n — @)* = MZ — 4m? émov m n pala TV
owpaTVIWV. ¢, ¢ kat M3 elval ta tetoadaviopata Kat 1 avaAvwtn pala oto
TETEAYWVO dVO Tavtoonuwyv pmoloviwv palag p. YmoOétovtag emiong OtL mnyn
umogel va meprypad el amo piot CUHHETOLKT] OPALQLKT] YKAOLOLAVY] CUVAQTIOM

p(r) = p(0)e "0/

7
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Figure 1: Aoyog opoonpwv/etepdonuwy Cevywv moviwv v dedopéva kat Monte
Carlo.

TOTE 1) OLVAQTNOT ovox£tiong Bose-Einstein malpvet ) poodr)
C(Q) =1+ e e,

' tn) pétonon tov parvouévou Bose-Einstein xonowpuomowmOnkav dedopéva att' tov
avixveuty ATLAS. AvaAvOnkav mepimov 10° yeyovdta ta omoia avtiotoryovv oe 107
Cevydoa opdonuwy moviov kat 107 Cevydoa etepdonpuwv moviov. Zntovpe dAa ta
owpatdWx va éxovv tovAaxtotov 2 Pixel kat 2 SCT hits pe pr > 200 MeV xat |n| <
2.5. Emtiong moémet va kabagiotel to sample amd devtegoyevr] mOVIX, OTIWS ALTA TIOL
TROEQXOVTAL ATIO CWHATOW dTtws tar K2 ko A.

Ouxatavopéc yivovtat fit pe do ovvagtioetg. Ty 14+-de @ kattn (1 + )\e_rQQ) /(14
6Q?).

H péronon avt) yivetar kat yix 6 multiplicity bins. XwotCovpe to sample oe 6
vno-samples avaAoya pe T multiplicity Tov event. Ta amoteAéopata patvovtat otov
TIXQAKATW TUVAKX

AmoteAéopata twv fits oe dedopéva evépyelag 7 TeV

Multiplicity A 7 (fm)
2-9 0.862 £ 0.022 0.570 +£0.014
10-14 0.566 £+ 0.019 0.605 +0.018
15-19 0.455 £+ 0.015 0.620 +0.019
20-29 0.382 + 0.009 0.640 +0.014
30-39 0.298 £ 0.008 0.657 = 0.011
40-79 0.247 + 0.004 0.728 +0.010




s 18 s 18
2 16l Data\s=7TeV 2 16 o ““Data\s=TTev
5 syl el Fit Function: (1+3.e"™)(1+3Q7) 5 os T e i Fi Funetion: (14367 )(1+8Q7)
2 14t 4=0.732+0.092 2 14 2=0.514+0.024
S 13 r=0.622+0.076 3 13 1: r=1.140+0.067
12 ‘..L,A 2N=40 12 1 dosN<go
14 |1 l; Ll b8 (RIS TR
T R A rae) FITIE T . fhe: [T it
PRI hﬁtﬂﬂiz;,f“%:E"H‘”ﬁ”*«‘ﬂﬂﬂkbk ++ 1 144 Yi.ﬂ,-,‘wm«u.*u!.:h.‘hnhﬂﬁihk“HHH,:E:
09 08 |
0.8 0.8
02 04 06 08 1 12 14 16 18 2 02 04 06 08 1 12 14 16 18 2
Q(GeV) Q(GeV)
s 18 e 18
s 6 e, e MG s=7TeV . 2 16 e e MC+/s=7TeV
§ 15 — T ), Fit Function: (1+ke @ )(1+8Q%) § 15 Fit Function: (1+he™ )(1+5Q°%)
§ 14 %=0.419+0.055 é 14 7.=0.261+0.059
8 13l r=0.466:0.092 8 13 r=0.886+0.097
12 % 2:N<40 1205 40=N<80
" ™ '&
T LRUSqpEYE 0
It . 4o bty | i ey -
1 R bt b b :":‘JHW'; 15 FrET— "'"4:**«;‘,;.‘4””‘,:*“_“;5
0.9 08 3
0.8 0.8
02 04 06 08 1 12 14 16 18 2 02 04 06 08 1 12 14 16 18 2
Q(GeV) Q(Gev)

Figure 2: XuvAaQTnomn ovox£Tiong ylia opoonua kot etepdonpa Cevyn moviwy yux dvo
drxdpogetika set avaAoywgs tng multiplicity tovg (2 < N < 40 and 40 < N < 80).

Larn ovvéxela €yve Kat HEAETT) TUXWV CLUOTNUATIKWV TTOL TTOOOTIOLOVTAV TO OT)UA.
EnavaAaBape v dx avaAvon oe dlo duadopetik samples ex twv omoiwv oto
éva (opdonua Cevyn amd 1o O Yeyovog mEog opoonpa Cevyn amo daxpoQeTud
veyovota) 1 kPavtopnxavikr meoPAémnet Bose-Einstein cvoxetioeis kat oe éva devtepo
(etepdonua Cevyn amod to O yeyovog mog etepdonua Cevyn amo diadogetied
Yeyovota) Yio To omtolo O MEOPAETTEL

EmBeBaiwoape 6tLdev EXOUUE CLOTNUATIKA OTIWS PalveTal 0To oXNUA.
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Figure 3: ¢'s Twvp wg ovvaptnon g pr

Yt ovvéxewx xonotpomoovvtat daomdoels tov pnoloviov Z° oe ptuT yix )
HEAETN NG ATTOOOOTS TOL PATUATOLETQOV ULOVIWV.

AoV kataokevaoovpe éva sample ano Z° ta omoia dxomovvTal 0€ pOVLIA,
HEAETOVLE TV OQUT] TTOU KATAYQAPETE OTO ETWTEQLKO AVLYVEVT KALTO OTIEKTQOHETQO
uoviwv. YnoAoyiCovue tnv moootn)ta

_ Pip — Pms
Pip

Kat ) XweiCovpe og 9 pr bins. X1 ovvéxela edpaguolovpe éva ykaovowavo fit otig
KATAVOMES AVTEG Kol TTALQVOVUE TO 0.

KataAnyovue oto resolution tov pIOVIKOU OTEKTEOUETOOV OTWS PatveTatl oTnv
TIAQAKATW EKOVAL.



X710 TeAeVTALO KOHUATLTNG QYOG TAQOVTLALOVTALOVO HEDODOL YL TNV AVAKATATKELT)
oTOXOoL pe T xonon twov avixvevt] MicroMeGas. Ta dedouéva mov avaAvOnkav
KaTayoapnkav katd ) dwxgkelx tov IovAlov tov 2011 oto Hé testbeam facility tov
CERN pe déopec moviwv.

XonowornomOnkav 3 aviyvevtés (R14, R19M kat R19G).

TEST BEAM SETUP July2011 (13.07.2011-25.07.2011)
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Figure 4: To setup twv avixvevtwv MicroMeGas R14, R19M and R19G.

MéeOodog A

Oewola

Xonotpomoovpe tig Oéoelg twv clusters twv towwv MicroMegas Y avaKATAoKEVAOOVLE
to onueto yeyovorog. I'akaOe CevydoLamno clusters (amattwvtag Toug clusters va etvat
oe dadopetikovg chambers), avaxkataotevalovpe o onpelo Toung g evbelag mov
evavel ta dvo clusters pe tn yoappr g déoung.

To onuelo avto, z,, divetar and Tov TOTO:

2,(m)z(n) — 2:(n)z(m)
z(n) — z(m) @)

Ty =

omov (z(n), z;(n)), (z;(m),z;(m)) elvar ot ovvtetaypéveg Tov cluster n, oto emimedo
i, Kat tov cluster m oto emimedo j, avriotorxa. AapBavoviag vTOPLY T dLAKQLTIKN



Chamber clusters
TjiZ; — XiZg
Ty = J J
Zi— Zj

Vil e (zi,xi‘;i\*xw\

/// (Zj,Xj+o-)

I 4 (Zj,Xj)

_— (z%0)

>
z

Figure 5: Avo clusters oe dvo chambers kot 0 0QLOHOS TwV 2, Kot (AB).

tkavotnta tov chamber resolution yia ta hits avta, éva smearing (AB) tov z, pmoget
va 0L0TEL WG:

zi(n) + z(m)
[2i(12) = 2;(m)]|
OTIOLE ElVaLT) DIAKQLTIKT] tkavoTnTa tov cluster. M Lorentzian L; ;(n, m) kataokevaletat
Ywx tae dvo avtd clusters

(AB) =20 (2)

1
(xr —x,)?+ (AB)?/4

Lij(n,m) = ©)
OToV 2, Ko (AB) opllovtal dnws maganavw. H duadkaoio avtr| emavalapBaveton
YwxkaOe Cevyog amo clusters ov Polokovtat oe duxdpopetikovg chambers. ABpoilovtag
OAEG AUTEG TIC OLVELODOQES , L; j(n, m), Yot GAovg Tovg Tbavovg clusters, 0giCovpe T
ovvagtnon G(z) 0mov megrypddet ) mabvotnta tov vertex point:

3 N; Nj

Gx) =22 > > Lij(n,m) (4)

ortov N; kat Nj etva ot aglOpot twv clusters otovg chambers (i = 1,...,3), (j = 1,...,3),
avtiototxa. To péyloto g ovvaptnong G(z) ogiCel To vertex Tov yevovotog event .
H ewcova ?? delyxvel TNV avakataokevr] Tov event vertex vl Yeyovota pe GOQTIoOpEVA
cwpatidw.

AoV BoeOel to x, XONOLHOTOoLOUE TNV Dt HéEO0dO Y va BQOVLLE TO 2.
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Figure 6: X-chamber onueia xonowomoovvtal yix TNV avakxtaokevr] Tov event
vertex evOg TUTILKOV YEYOVOTOG e TIOAAX POQTIOUEVA CWHATIOWX, XQTOIHOTIOLOVTAG
™ néBodo A.

AmoteAéopata
Monte Carlo

H avaxataokevn] tov vertex point, x4, peAet)Onie xonotponowvtag Monte Carlo
pneBodovc. X'avto to Monte Carlo, magayovpe opotdpooda Evav agldpo amd cwpatiowr
TIOL TIQOEQXETAL ATIO €va KOLVO vertex point, y.,. K&Oe ocwpatidio odnyeitar otovg
AVIXVEVLTEC YA va mEooopolwBovv ot clusters. To vertex, .. avaxkataokevalete amod
TOVG TIROOOMOLWHEVOUG clusters xonolHOTIOWVTAC TNV TtaRATd Ve HEB0dO. Palvetatl
OTL ™ HéB0dOG avty avakataokevLAlel To vertex point, z,,.

Edapuoyn oe dedopéva

x-a&ovag

Xonotpomotovpe v nébodo omu TeQLYQAdPnKe aQATIAVW o¢ 4 dxpogeTika set
dedopévwyv. Tola sets mov meQLAapBAvVOLY YeEYOVOTA HE TO OTOXO HETAED TOL OWAT)VX
e déoung Kat Twv avixvevtwv (oe anootaoels 1.43m, Im kat 0.5m) kot éva set
dedoUévwV TIOL TTEQLAAUPBAVOLV DEDOLLEVA TTOL KATAYQAPN KAV XWOLS 0TOXO.

Edaopolovtag tn pébodo ota yeyovota xwolg otoxo PAEmovpe To TQOPIA TG déoung
0TS PatveTal oty ekova ??.

Edapuolovtag tn nébodo avtr) o€ dDedOUEVA TTOL KATAYQADPN KAV UE OTOXO, TO TTEOPIA
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Figure 7: To mpodIA tng déounc.

™G dEoUNG YiveTat GadVUTEQO, TTEOAY A TIOL AVAEVOTAY KAOWS Tat cwpaTid okedalovtal
O0TO OTOXO.

2000 1600 5000

1800 1400 Target positioned 1m Target positioned 1.43m
1600 Target positioned 0.5m from the chamber from the chamber
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(a) O otdxog tomobetnuévog (b) O otdxog tomobetnuévog (c) O otdxog TomoOeTnuUévog
0.5m a7t' tovg chambers. 1.0m amt’ tovgchambers. 1.43m amt' tovg chambers.

Figure 8: To mpodiA tng déoung yix tola set yeyovotwy, pe to 0tdX0 TOmodeTnuévo
peta &V Twv chambers kat TG OEOUNG O€ TEELS OLXPOQETIKEC ATTOOTACELG.

z-AEovag

Xonowomowvtag v dx pédodo, éxovtag el to x, TEooTadov e va evToTiooLLE
10 %,. EPaguodlovtag t pnédodo avt ota dedopéva mov €xovv katayoadel xwolc

OTOXO TEQLUEVOULE VA DOVE UL ETTLTTEDN KATAVOUT, OTWS PALVETAL KAL OTNV EIKOVAX
??



-300 -200 -100 300
(mm)

Figure 9: Etimtedn katavoun tov z, eivat avapevopevn), kaBwg dev LTIAQXEL O OTOXOG

petalv g déoung kat twv chambers.

AvaAvovtag ta dedopéva pe To 0TtoX0 petalV e déouns kat twv chambers apatnoovpe
éva mMAedvaoua yeyovotwy, To omolo vmodetkviel TV VTAEEN ToL 0TOXoL. AUTO

datvetal oTic KATWOL EKOVEG.

260 Target positioned 0.5m Target positioned 0.5m 700

from the chamber from the chamber Target positioned 0.5m

from the chamber

100 200 300 400 100 200 300

(mm) (mm)

100 200 300 400

(@) O otoxoc Poloketar 0.5m (b) O otdxog Poioketar 1.0m (c) O otdxog Poioketor 1.43m

att' tovg chambers. art' tovg chambers. art' tovg chambers.

Figure 10: MmogoVue va maQATET)O0VLE £va TTAEOVAOUX YEYOVOTWV OTOV Z-&Eova,

évdelén e vmaEENg Tov oTOXOL HeTa &L NG déoung Kat Twv chambers.

MéOodoc B

Oecwoia

Xonowpomowwvtag i péBodo, magopowa pe v A, yx dvo Cevyn amd clusters
(amartwvtag ot clusters yia kaOe Cevyog va Poloketal oe dxdpopeTikovs chambers)
KATAHOKEVACOVHE ULt DLILAOTATI) YKAOLOIXV) OTO OTNHLELO OTTOL OL TEOXLEG aTt' TO KA O
Cevyog twv clusters onvavtovvtal 0to z — z emimedo. Xonotpomowwvtag T pébodo

QAUTH UTIOQOVLE Va BooVHE TN O€0N TV T, KAL Z,.
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Figure 11: Ta onpela X-chamber xonOLHOTOLOVVTAL Yt VO KATAOKEVAOOVLLE TO event
vertex £vOg TUTILKOV YEYOVOTOG e TN Xorjon s pebodov B

Anotedéopata
Monte Carlo

Kataokevaoape pa mpooopoilwon Monte Carlo, pe 1 (dleg ovuvOnkeg 0mwg Kat
oTnNV TEOT YOLEVT) éEOODO.

Amo ) dvdldoTtatn ykaovoav) TAlEVOLLE TIS TTEOPOAES OTOV 0QLLOVTIO KAL TOV
KatokoevPo déova. T ta set dedOUEVWVY XWOIC OTOXO TEQLUEVOVUE [ ETILTIEDN
KATAVOUT OTO 2 €VW OTO T TEQLUEVOULE Vo dOVLE TO TIEOPIA NG déoungc.

Edapuolovtag tn nébodo oe set dedopévwy e 10 0TOX0 TOmodeTnUéVo HeTaED TV
QAVIXVELTWV KALTNG DEoUNG TTEQVOLULE €va PadUTEQO TEOPIA déoUNG Kat éva TAeOVaoua
Yeyovotwv o€ éva onuelo otov z afova, vdelsn g LTTAEENGS TOL OTOXOV.

xX-a&ovag

Edaopolovtac tn nébodo oe éva set yeyovotwv xwic 0toX0, TalpvoupLe To mTEodIiA
g déoung, OTwe Patvetal otnv ewova ??2.



Figure 12: To mpodiA tng déoung.

40
Target positioned 0.5m Target positioned 1m
from the chamber

Target positioned 1.43m
from the chamber

from the chamber
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(a) Xtoxoc tomoOetnuévog (b) Xtdxoc tomoBetnuévog (c) XtoXoc TomoOetnpévog
0.5m amt' tovg chambers. 1.0m amt' tovg chambers. 1.43m amt' touvg chambers.

Figure 13: To mpodiA tng déoune vy tola set dedopévawv, éxovtag torobetrioeL To
OTOXO HETAED TG DETUNG KAL TWV AVIXVEVTWV O€ TOELS DAPOQETIKEG ATIOOTATELG.



z-AEoVag

-400 -300 -200 -100 O 100

Figure 14: Emtimedn katavoun ywx 1o z, elvat avapevopevr, kabwg dev vmapgxet o
OTOXOG HETALD TG DETUTC KAL TWV AXVIXVEVTOV.
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Abstract

Bose-Einstein correlations constitute one of the most important and characteristic
effects of strong interactions. In the present thesis we study two and three-pion Bose-
Einstein correlations with data collected with the ATLAS detector. We analyze ~ 10 p—p
interactions with at center of mass energy /s = 7 TeV.

The performance of the muon spectrometer it is also studied using the decay of Z° —
+ —
ptp

Finaly the reconstruction of a target using cluster positions on three MicroMeGas detec-
tors.
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Chapter 1

Theory

This chapter briefly reports the theoretical framework underlying the Bose-Einstein cor-
relations (BEC).

1.1 Hanbury-Brown and Twiss Effect

The main idea of the "second-order interference", or Bose-Einstein correlation was first
suggested in radioastronomy by R. Hanbury-Brown and R. Twiss in 1954 as a method
of measuring the radii of distant stars. The Bose-Einstein phenomenon is caused by the
ambiguity in the path of two identical boson particles (photons) considered:

e The direct amplitude due to the particle produced by source S;(S2) hitting detector
D1 (Ds), respectively and,

¢ The exchange amplitude due to the particle produced by source S;(.S2) hitting de-
tector Dy(Dy), respectively.

The above two amplitudes overlap, and the probability of detecting a coincidence be-
tween the signals in D; and D, contains an interference term which depends on the
dimensions of the source. This can be seen as follows:

Consider two points S; and S5 on a source as shown in figure 1.1, each of which emits
an infinitely long train of monochromatic photons with momenta |p;| = |p2| = k and
two detectors, D; and D, , measuring the intensity of the photons at distant points. The
total amplitude A of this experiment can be written as a sum of the two above described
amplitudes, (direct and exchange amplitude):

A ~ 6zka161kb1 + elk’CLQ elk’bQ’ (1.1)

where £ is the momentum of the monochromatic photons, and as, as, b, and b, are
the lengths of the four possible paths: a; = |r; — @1, ay = |ry — @1|, by = |re — @3] and
by = |r; — xa|. After some algebra the probability of observing the two photons is given
by:
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D,

Source

Detector

Figure 1.1: Two pions emitted from a pion source.

|A]? ~ 1 + cos(kRf), (1.2)

where R is the separation distance between the two source points r;, 72 and 0 is
the angular separation of the two detector points x; and 3. A measurement of this

probability or correlation function, |A|?, as a function of the angular separation, ¢, will be
maximum at:
kRO
—=0,1,2,...,n (1.3)
2m

Thus, by measuring the the angular separation, 6, of the two detector points x; and
x5 an estimation can be made of the separation distance between the two source points
71, and 73, as shown in Figure 1.1.

The extension of the above phenomenon to high energy physics was confirmed by Gold-
haber. This first experimental evidence for Bose-Einstein correlation in particle physics
goes back to 1960, when an enhancement at small angles in like-sign pion pairs was
observed in pp annihilation at 1.05 GeV/c in a hydrogen bubble chamber. No similar
effect was found in unlike-sign pairs. This enhancement was in contradiction with the
statistical model, which could not predict this correlation in the opening angle of a pion
pair. The reactions studied were of the form:

p+p— ntrt4+nTr + n07r0, (1.4)
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where nt, n~ and n° are the number of produced positive, negative and neutral pions,
respectively.

In order to explain the above observed result, Goldhaber had to symmetrize the wave
function that characterized the production of the n-pion state.

In the Fermi statistical model, the wave function of an n—pion state can be expressed

as: ‘
U, ~ ¢ Xi=1PiTi (1.5)

where p; is the momentum vector of the :—th particle. The probability of observing the
n—pion state created in an interaction region (2 is given by:

Pn~/|\11n|2dr1...drn (1.6)
Q

The only modification required by Goldhaber in order to explain the observed angle of
the like sign pion pair was the explicit symmetrization of the wave function:

U, ~ Y el i Po (1.7)

where (i) is the i-th element of the permutation ¢ on n objects.

Many people followed Goldhaber in studying the correlation of the opening angle pion
pairs.

An enhancement in the production of pairs of like charge and similar momentum
has been observed in a variety of experiments including hadronic reactions, heavy-ion
collisions, ¢*e™ interactions , and p-hadron collisions. As the energy of the interaction
increased, more complicated dynamics created limitations on the direct application of the
Goldhaber results. The difficulty was created by the inability to calculate the probability
P,. For the case of the two-pion state, Kopylov and Cocconi derived probability . They
used the fundamental work of R. Hanbury-Brown and R. Twiss as a guide in their work.
The derivation of the probability function is given in the next section.

1.2 Bose-Einstein Correlations

1.2.1 The Bose-Einstein Correlation of Two Hadrons

As it is well known in quantum mechanics the interchange of two out of N indistinguish-
able bosons does not change the wave function describing this multi-boson state. This
feature of the Bose-Einstein statistics means that the state ¥ has the property that

U(1,2,...,N) = ¥(2,1,.. N)

which leads to an interference term in |¥|? that enhances near in time-phase space the
production of indistinguishable bosons. Let us first consider a source of discrete emission
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points, p;, each characterized by a probability amplitude F;(r) in the 3-vector r; phsase
space
Fy(r) = pid*(r — ;)

Next we introduce the central assumption pertaining to the BEC effect namely, the
chaotic or the total incoherence limit, which corresponds to the situation where the phases
of the production amplitudes wildly fluctuate in every point of space. In this limit all the
phases can be set to zero. If 9y, is the wave function of the emitted particle, then the
total probability P(k) to observe the emission of one particle with a 3-momentum vector
k is given by summing up the contributions from all the ¢ points, that is

P(k) = Z it (r3) |

For simplicity we will further use plane wave functions v, ¢kT+%) where in the inco-
herent case we can set ¢ = (. Next we replace the sum by an integral so that

P%w=/mww&r

The probability to observe two particles with momenta k; and ks is

Pl k) = [ 1naPlotro)Plo(ra) Pdrdrs
where ¢ o = 1 2(k1, k2, 71, 72) is the two-particle wave function.

Taking incoherent plane waves, then for two identical bosons the symmetrised v o is
of the form

w‘ng = L [ei(k1-r1+k2-rg) + ei(kl'r2+k2'7‘1)}

V2
so that
]1#{72\2 =1+ cos[(k; — ko)(r1 —1r2)] = 1+ cos [Ak(ry — rs)] .

Using the above equations one can define a second order correlation function

_ Pleiks) o [cos[Ak(ri — o [p(r1)[?|p(re)|Pd*rid®ry
B = B kg PlJr) Pk e

where Ak = k; — k;. Assuming that the emitter extension pr is localised in space and
time then it follows that when Ak = 0 the last term of (1.8) can vary between the values
0 to 1. From (1.8) one obtains after the Fourier transformation

Co(Ak) = 1+ |p(AK)2 .

In many of the two-boson one dimensional BEC analyses one uses the Lorentz invariant

parameter Q, defined as Q* = Q% = —(q1 — @) = M} — 4m?, where m is the mass of
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the particles . Here ¢;, ¢» and MZare respectively the 4-momentum vectors and invariant
mass squared of the two identical bosons of mass .

Thus one obtains

C2(Q) =1+ |p(Q)I

Assuming further that the source is described by a spherical symmetric Gaussian density
distribution of emitting centres

p(r) = p(0)e /778

then the Bose-Einstein correlation function assumes the form
Co(Ak) =1+ ¢ T04%

In terms of the variable () and the dimension r¢, introduced by Goldhaber et al., the
correlation function in the completely chaotic limit is equal to

Co(Q) = 1 + 77 (1.9)

In the completely coherent case it can be shown that Cy(Q)) = 1. In order to accommo-
date those cases where the source is not completely chaotic one introduces a chaoticity
parameter A\, which can vary between the value 0, corresponding to a complete coherent
case, to the value 1 at the total chaotic limit. Thus (1.9) is transformed to the form

Q) =N (1 + Age*%Q?) (1.10)

where N is added as a normalisation factor. Since the strength of the BEC effect
depends also on the experimental data quality, like the purity of the identical boson
sample, )\, is often also referred to as the BEC strength parameter. In the following,
unless otherwise stated, we will deonote by r the dimension values obtained from BEC
analyses which used the GGLP (Goldhaber, Goldhaber, Lee and Pais) parametrisation,
that is r = r¢.

1.2.2 Higher Order Bose-Einstein Correlations

A Bose-Einstein correlation enhancement is also expected to be present in identical boson
systems of more than two particles when they emerge from the interaction within a small
time- space region. In the search for these so called, higher order BEC enhancements,
one has to differentiate between those produced from the lower BEC order(s) and those
who are genuine correlations. The normalised over-all inclusive correlations of n identical
bosons is given by

Rn: pn(pl:p27'“7pn) :O_n_l d o /(d_O'd_O’d_O') (111]
p1(p1)p1(p2)---p1(Pn) dp1dps...dp, dpidp,  dp,
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where o is the total boson production cross section, pi(p;) and do/dp; are the single-
boson density in momentum space and the inclusive cross section, respectively. Sim-
ilarly p,(p1,p2,...,pn) and do/(dpidps...dp,) are respectively the density of the n-boson
system and its inclusive cross section. The product of the independent one-particle den-
sities p1(p1)p1(p2)...p1(pyn) is referred to as the reference density distribution, or reference
sample, to which the measured correlations are compared to. Specifically the inclusive
two-boson density p,(p1, p2) can be written as

p2(p1,p2) = p1(p1)p1(p2) + Ka(p1, p2)

where p;(p1)p1(p2) represents the two independent boson momentum spectra and K»(py, ps)
desscribes the two-body correlations. In this simple case of two identical bosons the nor-

malised density function R, defined by (1.11), already measures the genuine two-body

correlations which here is referred to as the (5 correlation funciton. Thus one has

Co=Ry =1+ fNQ(plapz)

where [?Q(pl, p2) = Ka(p1,p2)/[p1(p1)p1(p2)] is the normalised two-body correlation term
which in the GGLP parametrisation is equal to )\Qe_Q%.

The inclusive correlation of three identical bosons, ps(pi, p2,ps), includes the three in-
dependent boson momentum spectra, the two-particle correlation K5 and the genuine
three-particle correlation K3, namely

p3(P1, P2, p3) = p1(p1)p1(p2)p1(ps) + Z p1(pi) K2(pj, pi) + K3(p1, p2, p3)
®3)

where the summation is taken over all the three possible permutations. The normalised
inclusive three-body density, is then given by

p3<p17p27p3)

Ry = =1+ Rip+ K3(p1,p2,p
’ P1(p1)P1(p2)p1(p3) 1,2 3< 12 3)
Here
2(3) p1(pi) K2(pj, pr)
Rio =
pl(pl)pl(pQ)Pl(p3)
and

K3(p1, P2, p3)
p1(p1)p1(p2)p1(ps3)
represent the mixed three-boson system in which only two of them are correlated and the
three- boson correlation. In analogy to C5, one defines a correlation function C3 which
measures the genuine three-boson correlation, by subtracting from FR3 the term which
contains the two-boson correlation contribution. Thus

f~(3(P1,P27P3) =

C3=R3—Rio=1+ ffs(]?l,p%p:a)
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which depends only on the genuine three-boson correlation. For the study of the three-
boson correlation one often uses the variable ()3 which, analogous to the varialbe Q% is

defined as
Q3= q7;=M; -9’
3)

where the summation is taken over all the three different i, j boson-pairs. Here M? is the
invariant mass squared of the three-boson system and u is the mass of the single boson.
From the definition of this three-boson variable it is clear that as ()3 approaches zero so do
all the three related ¢; ; values which eventually reach the region where the two-boson BEC
enhancements are observed. It has been shown that the genuine three-pion correlation
function C3(Q3) can be parametrised by the expression

Cg(Qg) =1 + 2)\3(3*@%7}3

where )3 is the chaoticity parameter which may assume a value between zero and one.
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1.3 Standard Model Physics

The Standard Model describes the behavior of matter and it’s interactions. This theoretical
framework managed to give a unified description of strong, electromagnetic and weak
interactions but the gravity, describing the matter as point-like spin-1/2 fermions and
the interactions as spin-1 gauge bosons.

The model is based on the gauge symmetry group

SUc(?)) X SUL(Q) X Uy(l) (1.12)

where the first factor describes the strong colour interactions, carried by 8 gluons, while
SUL(2) x Uy(1) is the symmetry group of unified electro-weak interactions, carried by the
photon and the Z° and W* bosons.

In gauge theories all the gauge bosons should be massless, but experimentally the weak
W* and Z° bosons, have mass. The Standard Model solves this problem introducing a
scalar particle, the Higgs boson, which couples to massive particles and gives them masses
through a spontaneous symmetry breaking mechanism. To our experimental knowledge
there are three families of fermions, each containing two quarks, a charged lepton and a
neutrino. Fermion masses are also obtained by the Higgs mechanism through Yukawa
couplings between the fermion and the Higgs.

The Standard Model has been extensively tested in the last decades at LEP and Teva-
tron and it turned out that it successfully explains most of the known phenomena in
elementary particle physics. Nevertheless a number of open questions are still left which
need for further studies to be done.

There is, for example, evidence that neutrinos have non-zero masses, which the SM
does not allow. The measurement of the ordinary matter density in our universe gives
a hint that physics even beyond the SM should exist. Astrophysics observations make
it clear for example that either our understanding of gravity based on Einstein’s theory
of General Relativity is wrong, or that particles forming dark matter, which have so far
escaped our detection, must exist, and the SM does not furnish any viable candidate.
Moreover the observed matter-antimatter asymmetry is not explained in the SM frame-
work.

There also are theoretical motivations for thinking that the SM needs to be extended.
One such example is the hierarchy problem concerning the quadratically divergent fermion
loop corrections to the Higgs boson mass. New physics is required to happen at the TeV
scale to constrain the Higgs mass in the area of a few hundred GeV and thus make the
SM consistent with recent W and top mass measurements. The unification of the gauge
couplings is something which is aimed but it does not happen in the SM. In addition the
unification of gravity with the other forces is still missing.

The Large Hadron Collider has been built, with its four experiments, ATLAS, CMS,
LHCb and ALICE, to answer this kind of questions. The composite nature of the proton-
proton collisions, despite of the difficult experimental environment which generates, opens
awide range of exploration possibilities, from the precise measurements of Standard Model
parameters to the search for new physics phenomena up to the TeV scale.
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Figure 1.2: Feynman graph for the Z° — " u~ process

Nevertheless, all these searches should be preceded by the measurement of the well
known Standard Model processes. These can be used as standard candles both for the
detectors understanding and performance assessment, and the theoretical predictions
tuning at a new unexplored energy. Particularly suitable to this extent is the study of the
production of the W* and Z° bosons, because the theoretical predictions have a small
uncertainty. They have also been measured at LEP and at Tevatron with big precision.

1.3.1 ¥ and Z° Boson Physics: the Drell-Yan Process

The Drell-Yan process is likely to be the standard candle which is both theoretically
calculable and experimentally measurable with highest accuracy at hadron colliders, in
particular at the LHC. It consists in the production of a neutral or charged lepton pair, [ [
or lv, in the collision of two initial hadrons H; and Hs:

Hi(p1) + Ha(po) — (k1) + I(ko) + X (q) (1.13)
Hy(p1) + Ha(p2) — U(k1) + D(ka2) + X(q) (1.14)

where p; are the momenta of the incoming partons, k; are the momenta of the outgoing
partons and X is the entire set of other hadronic objects produced in the event. In the
parton model, the generic differential cross-section for the process is

1 1
do(p1,p2) = Z/ dx, // defi(l)(ml)f;2)(x2)d6ij(xlp1:332p2)7 (1.15)
i T /21

where fi(H) (x) are the parton density functions of parton i in the initial hadron H, carrying
a momentum fraction z, and 7 = M?/s. d&;;(p1, ) is the parton-level cross-section,
which depends on the initial parton momenta p;, p» and on the parton species 7, j. The
sum extends to all quarks and gluons in the initial hadrons.
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Figure 1.3: p*p~ invariant mass using ATLAS data

At leading order in both electroweak and QCD the partonic process consists of a quark
and an antiquark annihilating into a virtual vector boson vy, Z° or W=, which subsequently
decays into the lepton pair. At this order all the available partonic center-of-mass energy
V3,

S = X198, s=(m +pQ)2 , (1.16)

goes into the lepton pair invariant mass M,
M? = (ky + ky)?. (1.17)

When QCD correction on the initial partons are considered, real emission of gluons
and quarks must be taken into account, in order to remove infrared divergences coming
from virtual corrections. These emissions can be soft (hence undetectable, making this
process indistinguishable from the process with no emission) or hard (producing jets). In
this case the available partonic center-of-mass energy is no longer equal to the final state
mass.

The current QCD theoretical accuracy for this process is NNLO, both for the integrated
cross-section and the rapidity-distributions.

A large number of events collected at the LHC, combined with a very precise theoretical
determination of the process, can be a very useful test of perturbative QCD. Moreover,
the high LHC energy will allow for detailed measurements at a previously unexplored
kinematic domain of low parton momentum fraction at a high energy scale, significantly
improving the precision on the determination of the PDFs.
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Chapter 2

LHC Accelerator and the ATLAS
Detector

This chapter will give an overview on the LHC and a description of the ATLAS detector.

2.1 The Accelerator

The LHC consists of two rings with counter-rotating beams. The LHC is constructed in the
26.7 km circular tunnel of the LEP at CERN in Geneva, Switzerland. In the LHC bunches
of protons are injected from the Super Proton Synchrotron (SPS) with an energy of 450
MeV and then accelerated using a system of eight superconducting cavities per beam. The
proton energy is determined by the given curvature of the LHC tunnel and the maximum
field of the dipole magnets responsible for bending the beam.

Bending, steering and focusing of the proton beam is controlled with over 9000 mag-
nets. The 1232 dipole magnets responsible for the bending are supported by multipole
corrector magnets (sextupoles, octupoles and decapoles) to stabilise the beam. The 392
main quadrupole magnets and the associated corrector magnets (dipoles, sextupoles and
octupoles) are responsible for the beam focus. The final focusing of the beams around the
four interaction points is caused by dedicated high aperture triplet quadrupoles.

Along with the beam energy the second parameter crucial for the LHC is the luminosity,
which in principle defines the number of collisions per time interval for a given cross
section. A high luminosity can be reached by colliding beams with a high number of
protons per beam on a small area with a high frequency. Luminosity can be expressed by
the following term:

NEn
[ — b b*frivF : (2.1)
dmoyoy
where N, is the number of protons per bunch, n; is the number of bunches per beam, f,.,
is the revolution frequency and o, , the RMS of the transverse beam size at the interaction

point in z— and y—direction. Often the beam size is written as a product of the two beam
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Figure 2.1: Schematic overview of the Large Hadron Collider.

parameters, the transverse beam emittance that corresponds to the phase space covered
by the beam ¢ and the betatron function 5*. Due to the crossing angle at the interaction
point O, the luminosity is decreased by the geometric luminosity reduction factor F’:

0.5:\"\
F:<1+< U)) (2.2)
20*
where o, is the RMS of the bunch length in beam direction and ¢* the RMS of the trans-
verse beam size.

N[

2.2 The ATLAS Detector

The ATLAS detector is a general purpose detector. The main motivation might be the
unraveling of the electroweak symmetry breaking and the discovery of the Higgs boson,
but the collaboration cover a broad range of searches within the standard model and
beyond (CP violation, supersymmetry, remnants of dark matter, etc.).

The detector layout consists of detector components arranged in layers concentrically
around the collision point. The layer closest to the interaction point is the Inner Detector,
dedicated to the measurement of charged particle tracks, allowing the reconstruction of
the particles charge, momentum and production vertex. The next two layers are designed
to measure the energy deposit of electrons and photons, the electromagnetic calorimeter,
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Figure 2.2: Schematic overview of the ATLAS Inner Detector.

and of hadrons in the hadronic calorimeter. The outermost layer is the muon spec-
trometer, which is responsible for the large size of of the ATLAS detector. In the muon
spectrometer the muons momentum can be measured at high precision.

Inner Detector

The Inner Detector of the ATLAS experiment has three main detector parts. The three parts
are separated in a barrel and two end-cap regions. In the barrel region, the innermost part
closest to the collision point is a silicon pixel detector, with a total number of three layers
of silicon pixel modules with radial distances between 50.5 mm and 122.5 mm. Following
the same physical principle, a silicon microstrip detector (Semiconductor Tracker SCT)
provides four additional layers at radii between 299 mm and 514 mm. The Transition
Radiation Tracker (TRT) is the outermost layer of the Inner Detector, starting at radius
554 mm up to 1082 mm. Its dimension defines the total diameter of the Inner Detector of
approximately 2.1 m.

In order to provide a good coverage in pseudo-rapidity, end-cap disks of the Pixel
detector and SCT are designed to cover particle tracks up to a pseudo-rapidity of |n| = 2.5.
The TRT end-cap can cover particles up to approximately || = 2.0. Including all of the
supporting structure, the cylindrical envelope holding the Inner Detector in total has a
length of 7.0 m.

The inner solenoidal magnet system surrounding the Inner Detector is creating an
axial symmetric magnetic field of 2 T bending charged particles into the R — ¢ plane due
to the Lorentz force. This allows the measurement of the particles transverse momenta
down to a minimum of pr = 0.5 GeV. Particles with a pr lower than 0.5 GeV are bended
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Figure 2.3: Schematic overview of the ATLAS calorimeter.

to very small radii, preventing the particles to leave the Inner Detector. Additional, at low
momentum the efficiency is reduced due to large material effects.

Calorimeter

In general, the energy of all stable particles but muons and neutrinos can be measured in
a calorimeter. A particle entering a calorimeter looses all its energy in a particle shower.
The total particle energy is reconstructed by measuring ionization, scintillation light or
Cherenkov radiation.

In the ATLAS detector the calorimetry system is divided into a number of sampling
detectors dedicated to the measurement of the particles energies. In principle particles
entering a calorimeter transfer their energy to the detector material, producing new parti-
cles by interactions with the detector material in the calorimeter. Typical interactions are
e.g. the production of new photons due to bremsstrahlung or the creation of an electron
positron pair due to the interaction of a photon with the coulomb eld of an atom. These
secondary new particles interact themselves with the calorimeter, creating new particles
until the particles energy is too low to create new particles. Due to this cascade one
particle entering the calorimeter leaves a shower of particles, each with low energy. By
measuring the total energy of all particles created in this shower, the initial particles
energy can be reconstructed.

One of the main requirements of the calorimeter is the hermeticity in order to measure
missing transverse energy Fr,,ss at a good resolution. The ATLAS calorimeter fulfills
this requirement with a coverage over the whole range of ¢ and up to a pseudo-rapidity of
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Figure 2.4: Schematic overview of the ATLAS muon spectrometer.

In| = 4.9. Surrounding the Inner Detector and solenoidal magnetic system, the calorimeter
itself is split into several parts, depending on the type of interactions particles undergo in
the detector material and the position within the detector.

The separation due to the interaction allows the differentiation into two groups of par-
ticles. In the electromagnetic calorimeters electrons (positrons) and photons are detected,
in the hadronic calorimeters particles interacting mainly via the strong force are mea-
sured. The electromagnetic calorimeter is required to provide a fine segmentation for a
precise measurement of electrons and photons. As the hadronic calorimeter mainly aims
at the reconstruction of jets and the measurement of missing energy, the granularity is
more coarse.

In the barrel region the innermost part of the calorimetry system is the LAr electro-
magnetic barrel surrounded by the hadronic Tile barrel. In the end-cap region, a LAr
electromagnetic end-cap (EMEC) is followed by a LAr hadronic end-cap (HEC). In addi-
tion, covering the region close to the beam pipe, the forward calorimeter FCal detects
electromagnetically interacting particles at large pseudo-rapidity.

Muon System

Over a large area of pseudo-rapidity up to || < 2.7, the muon track coordinates are
measured by monitored drift tubes (MDT). In the barrel region, the MDT chambers are
aligned in three layers: the innermost layer surrounding the tile calorimeter, one layer
between the barrel toroid BT and the outermost layer enclosing the BT.

In principle, the measurement of the muons momenta is a measurement of the parti-
cles trajectory at three spacepoints. While in the barrel region one layer of muon chambers
is placed within the toroidal magnet system, in the end-caps the toroid is placed between
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the first and the second layer. Hence, the measurement principle differs in these two
regions. In the case of the barrel region, the muons momentum is reconstructed from the
measurement of the trajectories deviation of a straight line, the so called sagitta s, and the
direct distance L between the two measurement points in the first and third layer. Taking
into account the magnetic field B, the transverse momentum is calculated as

L’B
8s

pr = (2.3)
In the case of the end-caps, the trajectory is bent between the first two layers of
muon chambers, but a straight line between the second and the third layer. Hence, the
reconstruction of the muons momentum depends on a point angle measurement.
The muon system is able to perform a stand-alone reconstruction of muons momentum
at aresolution of 10% for tracks with a momentum of 1 TeV. It is capable to measure muon
tracks with a momentum of a few GeV, also standalone.
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Chapter 3

ROOT and the Athena Framework

3.1 ROOT

Root is a powerful data analysis framework developed for CERN, the international physics
organization behind the Large Hadron Collider particle accelerator experiment in Switzer-
land that aims to find the theoretical Higgs Boson. Because of the massive amounts
of data the LHC will generate in searching for the Higgs boson and new physics, CERN
scientists required a new, more powerful framework to handle the analysis of the large
datasets from the particle collision experiments the LHC is expected to carry out in the
coming years.

Root is an object-oriented framework developed in C++, the language used by most of
the LHC experiments, including the CMS (Central Muon Solenoid) project, in which the
Purdue Physics Department is an active participant and contributor. An integral part of
Root is CINT, its dynamic C++ interpreter which drives its computations and powerful
programming capabilities. Because of its close relationship to C++ and its development
for CERN as a data analysis framework that must be easily and readily distributed to
thousands of scientists worldwide for physics analyses for the output of the LHC, Root
is run as a Unix program, which may be unconventional for statisticians who are more
familiar with applications like SAS and R. However, the advantage is that much of Roota™s
capabilities accessible in ways familiar with anyone with experience in C++ programming
or using other Unix-based applications.

Because Root is being developed for high energy physics (HEP), most of its capabilities
are strongly directed at analyzing the output of such experiments like the LHC, often at the
expense of many other basic statistical functionality that a statistician will have come to
expect as standard. Particle accelerator experiments generate data that made up of large
amounts of noise and small amounts of signal. The primary aim of Root is to identify that
signal data, which may indicate important and elusive particles. As such, the majority of
Root is devoted to univariate data.
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3.2 Athena Framework

Offline computing covers all processing from storing raw data up to the final analysis,
as well as Monte Carlo generation, detector simulation and event display. Athena is the
general framework for the ATLAS offline software, based upon the Gaudi architecture. The
Athena code is based on the C++ language and uses all of its object oriented features.

Athena can be seen as a skeleton which provides most of the common functionalities
and into which the developers can insert their own code. This way, the software devel-
oped in Athena can use many useful background classes (physical units manipulation,
geometry entities, etc.), using prepared services for things such as loop over events.

ATLAS software is organized into a hierarchical structure of projects and packages. All
packages are stored in an official CVS repository, which enables efficient sharing of source
code among the members of a distributed development team. Each package has a Tag
number which distinguishes between different versions. A project consists of a complete
collection of tagged packages and it is identified with a release number.

A Configuration Management Tool (CMT) is used to manage, build (compile and link)
and run ATLAS software. The information needed to build or run a package is grouped in a
single requirements file, from which CMT sets automatically the configuration parameters
required to operate the packages.

The Athena framework distinguishes between data objects and algorithm objects very
strictly. A quantity- like entities (hits, points, tracks, digits, raw channels, etc.) should be
implemented by deriving their class from the DataObject base class. On the other hand
anything like a procedure should be designed as a child class of the Algorithm base class.
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Chapter 4

Event Selection

4.1 Event Selection Criteria for Bose-Einstein Correla-
tions

The data used for this analysis consist of about 10° events recorded by ATLAS in March,
April and May 2010 with a minimun-bias trigger, using about 584 ub~! of 7TeV centre
of mass energy proton-proton collisions provided by the LHC. A MinBias MC sample was
also produced with Pythia, using the full detector simulation.

We require all tracks to have at least 2 Pixel and 2 SCT hits with pr > 200 MeV and
particle pseudorapidity to be || < 2.5. We exlude secondary particles coming from the
decay of long-lived hadrons (K?, A, etc.) and apply a cut of x*>/Ny,; < 5. Finally, we
excluded all pion pairs with relative angles less than 15° in order to reduce e"e™ pairs.

4.2 Armenteros-Podolanski Analysis

To ensure that our samples were free from pions coming from K? or A we used the
Armenteros-Podolanski plot (see appendix B). The Armenteros plot is used in the analysis
of the dynamics of two-body V decays.

For the three boson correlations we used the method of event mixing because we
needed a sample free from any correlations and resonances. We applied an extra cut and
accepted only events with a relative charge balance of |(n™ —n7)|/(nt +n~) < 0.25, where
n® and n~ are respectively the observed numbers of positevely and negatively charged
tracks.

4.3 Coulomb Corrections

The final state of a charged pion pair is affected by the Coulomb force. Two like-charged
pions experience Coulomb repulsion, producing fewer pairs in the region of small relative
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Figure 4.2: Curves for A, A and K from ATLAS data.
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momenta. Unlik-charged pions will produce extra pairs. The correction factor for this
effect follows the Gamow factor. The ratio of the corrected like to corrected unlike pairs
then repsresents R in the absence of the Coulomb interaction.

For like and unlike charged pairs the inclusive distribution in the presence of the
pair Coulomb interactions is given by P,(ki, k2) = Gy(n) P, (k1, ko) for like and P, (kq, ko) =
Gu(n)P,(k1, ko) for unlike pairs, where P,(k1, ko) is the pair inclusive distribution in the
absence of the Coulomb force, and

21
Gl(n) - 627”7 . 1 ) (41]
2mn
Gu(n) = T— =5 + (4.2)
_amg 4.3)
(TN '
Here, o = % and k; and k; are pion four-momenta in the pair center-of-mass frame,
son = O‘mQ_’; .
Since we use three kinds of charged particles the Gamow correction is given by
C1 = Gi(m2)Gi(n23)Gi(n31) - (4.4)
The unlike sample (+ 4 F) triplet is corrected using
Cy = Gi(12)Gu(123)Gulns1) - (4.5)

So we correct each like-charged triplet with 1/C} and each + + T triplet with 1/Cs.

4.4 Event Selection Criteria for 7 — ;71— Candidates

Collision events are selected by requiring at least one reconstructed primary vertex (PV)
with a position |zpy| < 100 mm and |dypy| < 50 mm relative to the nominal interaction
point and at least 3 inner detector tracks associated with the PV. Each of the 3 tracks
should have at least 1 hit in the pixel detector and at least 6 hits in the SCT.

To select collision events with muon final state we require combined muons with at
least 1 hit in the pixel detector, 6 hits in the SCT and 1hit in the TRT. Pseudorapidity
In| < 2.5.

The selection of the Z° — u* i~ decays is done by requiring two combined muons, with
opposite electric charge, each satisfying the criteria above. Finally each of the selected
muons should have a transverse momentum pr > 20 GeV and be isolated! and a direction
within the same 7) region.

1A muon is considered isolated if the sum of the transverse momenta of the (non-muon) tracks in a cone
of /An? + A¢? = 0.4 around the muon is less than 20% of the muon pr.
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4.5 Fit Models

4.5.1 Bose-Einstein

The resulting Bose-Einstein ratio is fitted with two functions, whose parameters r and A
describe the particle source. All data samples were fitted with the following functions:

1. 14 Xe"@,
2. (1 + )\e*’"QQ) /(146Q2)
All fits are binned maximum likelihood fits.

452 7' = utu

For the putp~ invariant mass spectrum a three gaussian distribution was used for the
signal, a polynomial for the background and a gaussian for the radiative tail on the left of
the peak.

The p distributions are fitted with simple gaussians.
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Chapter 5

Results

5.1 Bose-Einstein Correlations

5.1.1 Two Pion Model

We used another three procedures to create different reference samples. All three of them
were applied to same sign pion pairs from different events. The first reference sample
contains pion pairs, with the three momentum of one of particles inverted, (E , ) changed
to (E ,—p). The second contains pion pairs coming from events where the invariant mass
of all charged particles was similar to the events used for the signal sample. Last we used
pairs coming from events with similar charged track multiplicity.

Using the function energy difference, described above, and the the fit function C5 =
1+ \e~®%, where o = 72 /h*c?, we measured the lifetime 7. We examined the behaviour of
7 for different multiplicities.

Figure 5.1: Total momentum p, ¢; and ¢; vector definitions of a 77 pair.
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Figure 5.2: Ratio of like/unlike-sign pion pairs from both data and Monte Carlo.

Results of fits to 7TeV data

Multiplicity A 7 (fm)
2-9 0.862 +0.022 0.570 £0.014
10-14 0.566 £ 0.019 0.605 4+ 0.018
15-19 0.455 +0.015 0.620 4+ 0.019
20-29 0.382 +0.009 0.640 4+ 0.014
30-39 0.298 + 0.008 0.657 +0.011
40-79 0.247 +0.004 0.728 £0.010

5.1.2 Higher Order Model

Results of fits to 7TeV data

Fit Function Order of Correlation A r (fm) §(GeV )
Second 0.379 £ 0.003 1.443 4+ 0.008 -
I Third 1.077 £0.012 0.934 + 0.046 -
Fourth 1.866 & 0.025 0.605 4 0.031 -
Second 0.342 £0.003 1.267£0.016 —0.008 £ 0.000
II Third 1.038 £ 0.014 0.887 4+ 0.049 —0.010 4 0.000
Fourth 2.359+0.032 0.668 +=0.003 —0.002 + 0.000

5.1.3 Multiplicity Dependence

The multiplicity dependence of the obtained HBT radius was examined by studying events
with track multiplicity: (a) two to ten tracks, (b) ten to fifteen, (c) fifteen to twenty, (d)
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Number of Events

Figure 5.4: Relation of ¢y versus ¢

twenty to thirty, (e) thirty to fourty and (d) fourty to eighty.

Results of fits to 7TeV data

Fit Function Multiplicity < Nypqers > A r (fm) 5(GeV ™

2-9 5.3 1.192 £ 0.031 0.888 £ 0.017 -
10-14 11.9 0.860 £ 0.024 0.985 4 0.020 -
I 15-19 16.9 0.722 £0.020 1.054 £0.021 -
20-29 24.1 0.678 £0.014 1.279 £0.018 -
30-39 34.2 0.560 £ 0.013 1.451 £ 0.022 -
40-79 55.6 0.436 £ 0.007 1.582 £+ 0.016 -

2-9 5.3 1.171 +£0.031 0.787 £0.018 —0.050 4 0.002

10-14 11.9 0.847 £0.021 0.822 £0.017 —0.039 &+ 0.002

II 15-19 16.9 0.703 £0.018 0.889 +£0.018 —0.028 £+ 0.001

20-29 24.1 0.57240.012 0.958 +£0.036 —0.020 %+ 0.002

30-39 34.2 0.516 £0.010 1.162 £0.018 —0.017 & 0.000

40-79 55.6 0.414 £0.006 1.408 £0.017 0.006 £ 0.000

5.1.4 Systematic Checks

In order to check if the enhancements we have measured are not the result of a systematic
analysis error, we have applied our analysis to another data sample. The same procedures
and data cuts were used as described in 2.1.

We used pion pairs of unlike sign (7t77) in both the same event and different event
combinations. This study was performed to two different sets of samples; one with charged
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track multiplicty between two and fourty and one with track multiplicity between fourty
and eighty. None systematic enhancement was observed. We performed the same technic
of mixing events for like sign pion pairs (7"7+ + 7~ 7~) were we expected and observed
Bose Einstein correlations.
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Figure 5.16: p distributions for various pr ranges

5.2 Muon Spectrometer Performance Studies with 7' —
+ —
T
A way of measuring the muon momentum resolution is to use the redundancy in the

ATLAS tracking systems, by comparing the independent momentum measurements for
events with single muons. A relative difference in momentum is defined as

__ Pip — Pms
P
where pip denotes the momentum measurement in the ID and pyg the momentum
measured by the MS and extrapolated to the interaction point, taking energy loss into
account. As a result the expectation value for p is 0. Depending on the region of the pseu-
dorapidity and the range of pr, this quantity is dominated by the ID or MS contribution.
To extract the resolution as a function of the muons pr the p distribution is fitted with
a gaussian distribution. Having the advantage of large statistics (3.24 fb~!) we perform
the fitting procedure in nine pr bins: 20 — 25 GeV, 25 — 30 GeV, 30 — 35 GeV, 35 — 40
GeV, 40 — 45 GeV, 45 — 50 GeV, 50 — 60 GeV, 60 — 70 GeV and > 70 GeV. By fitting the
distributions of p we plot the o’s and the p’s of the fits as a function of pr.

5 (6.1)
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Chapter 6

Conclusions

The ATLAS experiment measured Bose-Einstein correlations in proton proton interactions.
The results emerging from our analysis show that the size of the pion source is about 1 fm
and depends on the charged track multiplicity, (it’s value rises as the event multiplicity
rises). Lifetime (7) also measured around an approximate value of about 0.6 fm and
behaves likewise with r. The strength of the chaoticity effect ()\) is almost the same when
is determined by fits either for r or 7 and decreases as the multiplicity increases.

A comparison of our results with those of other experiments shows a good agreement,
demonstrating that the features of the final state hadronization processes have little de-
pendence on the type or energy of the interacting particles.
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Chapter 7

Target Reconstruction with the
MicroMeGas Detector

In this chapter I apply two methods using clusters at three MicroMeGas chambers (R14,
R19M and R19G) for target reconstruction.

7.1 Event Selection

The data analyzed were gathered in CERN’s test beam facility (H6) during June 2011.
In this test beam three MicroMeGas chambers were used (R14, R19M and R19G) in the
setup as shown in fig 7.1. The trigger logic that was used to record the events from the
pion beam can be found in figure ??.

The characteristics of each chamber can be found in table 7.1. The gas that was used
was Ar : C0O,,93 : 7.

Name Width Length Height AmplificationDrift Strip Strip Strip
[mm] [mm] [mm] Gap [um] Gap Pitch Width Length

[mm]
R14 200 200 20 128 5 250 150 80
R19M 200 200 20 128 5 x:350 x:300 80
u:900 u:100
v:900 v:100
R19G 200 200 20 178 5 x:350 x:300 100
u:900 u:100
v:900 v:100
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Figure 7.1: Setup of the R14, R19M and R19G MicroMeGas chambers.

7.2 Method A

Theory

We use cluster positions in three MicroMegas Chambers to reconstruct the event vertex.
For any pair of clusters (requiring the clusters to be in different chambers), we reconstruct
the intercept of the line that connects these two chamber clusters with the beam line.
This intercept, z,, is given by:

zj(m)zi(n) — zi(n)z;(m)

T, = (7.1)

zi(n) = z;(m)
where (z;(n), z;(n)), (z;(m), z;(m)) are the coordinates of cluster n, in plane i, and cluster
m in plane j, respectively. Taking into account the chamber resolution for these two hits,
a smearing (AB) of the intercept z, can be defined

i) + 2(m)
[20) = 2 (m)]

(AB) =2 (7.2)

where ¢ is the chamber cluster resolution. A Lorentzian function L, j(n, m) is constructed
for these two chamber clusters

1
(x —z,)? + (AB)?/4

Lm(n, m) = (73]
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Figure 7.3: Two hits in the chamber and the definition of z, and (AB).

where z, and (AB) are defined as above. This procedure was repeated for each pair of
clusters which were in different chambers. By summing all contributions, L; j(n,m), for
all possible clusters, we define a global function G(x) which is the probability of the vertex
point:

G(z) = ZZEZL”(n,m) (7.4)

where N; and N, are the number of clusters in the chamber plane (: = 1,,3), (j = 1,, 3),
respectively. The maximum of the global function G(z) defines the vertex of an event
z4. Figure 7.10 show the reconstruction of the event vertex for charged track multiplicity
events.

After determining the determination of the x, we use the same method in order to find the
Zy.

7.2.1 Results
Monte Carlo

The determination of the vertex point, z,, was studied using Monte Carlo methods. In this
Monte Carlo simulation, a number of particles are generated uniformly and originating at
a common vertex point, z4.,. Each particle is followed through the chambers to simulate
chamber clusters. The vertex, x,.. is reconstructed from the simulated chamber clusters
(assigning ambiguity clusters too) using method above. Figure ?? shows the 2., — Ty
distribution for a radial cluster resolution of o = 0, 150, 300 and 500 ym. It seems this
method reconstructs the vertex point, x,. From this Monte Carlo study, one could con-
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Figure 7.4: X-chamber points used to reconstruct the event vertex of a typical high mul-
tiplicity event using method A

clude that the vertex z, or z,.. can be located to within +139.9 um relative to the generated
vertex point.
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Figure 7.5: Z4e, — Tye. distribution using Monte Carlo data for chamber resolution o =
0, 150, 300 and 500 pm.

Data
x-axis

We used the method described above on four different sets of data. Three data sets in-
cluding events with a target positioned between the beam pipe and the chambers (with
distances 1.43m, 1m and 0.5m) and one dataset including events taken without a target.
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Applying the method to the run without the target

picture 7.6.

we get the beam profile, as seen in

Applying the method to the runs with the target, the beam

Figure 7.6: Beam profile.

thing expected as the particles scatter from the target.

2000
1800,
1600
1400,
1200
1000,
800
600
400
200
[

Target positioned 0.5m
from the chamber

0 10 20 30 40 50 60 70 8 90 100

X (mm)

1600
Target positioned 1m
1400 from the chamber
1200
1000

800!

0 10 20 30 40 50 60 70 8 90 100

X (mm)

profile gets broader, some-

5000["
Target positioned 1.43m
from the chamber

4000

3000

2000

1000

nD 10 20 30 40 50 60 70 80 90 100

X (mm)

(a) Target positioned 0.5m from (b) Target positioned 1.0m from (c) Target positioned 1.43m from
the chambers.
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Figure 7.7: Beam profile for three runs, having a target positioned between the beam and
the chambers in three different distances.

z-axis

Using the same method, having found the z, we now try to point the z,. Applying this
method to the dataset without target we expect to see a flat distribution, as indeed is seen

in figure 7.14.

70



-400 -300 -200 -100 300

(mm)

Figure 7.8: Flat distribution on z, is expected, as there is no target between the beam and
the chambers.

Analyzing the datasets with the target between the beam and the chambers we see a
bump, indicating the existence of the target. This is show in the figures below.
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(a) Target positioned 0.5m from (b) Target positioned 1.0m from (c) Target positioned 1.43m from
the chambers. the chambers. the chambers.

Figure 7.9: A peak starts to form in the scan of the z-axis, indication of the target that
was positioned between the beam and the chambers.

7.3 Method B

7.3.1 Theory

Using a similar method as A, for two pairs of clusters (requiring the clusters for each pair
to be in different chambers) we now construct a 2d gaussian in the point where the tracks
from each pair intercept in the x — 2z plane. Using this method we can now define the z,
and z, position.
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Figure 7.10: X-chamber points used to reconstruct the event vertex of a typical high
multiplicity event using method B

7.3.2 Results

Monte Carlo

We created a Monte Carlo simulation, with the same conditions as in the previous method
(1.2). Figure 7.11 shows the 2., —2.. distribution for a radial cluster of o = 0, 150, 300, and 500 pm.
This method, as well as the first, reconstructs the vertex point, z,.
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Figure 7.11: Zgep, — Tre. distribution using Monte Carlo data for chamber resolution o =
0, 150, 300 and 500 pm.
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Data

From the 2D gaussian we take the projections on the horizontal and perpendicular axis.
For the runs without the target we expect a flat distribution for the z while for the z we
expect the beam profile.

Applying this method to the runs with the target positioned between the beam and the
chambers we get a wider beam profile and a bump in the z axis, indication of the target.
x-axis

Applying the method to the run without the target we get the beam profile, as seen in
picture 7.12.

Figure 7.12: Beam profile.
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Figure 7.13: Beam profile for three runs, having a target positioned between the beam
and the chambers in three different distances.
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Figure 7.14: Flat distribution on z, is expected, as there is no target between the beam
and the chambers.
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Figure 7.15: A peak starts to form in the scan of the z-axis, indication of the target that
was positioned between the beam and the chambers.
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Appendix A

Coordinate System and Nomenclature

The ATLAS experiment uses a right handed coordinate system, with the z—axis pointing
along the LHC beam pipe, and the plane perpendicular to the beam pipe defines the
r — y—plane. The positive r—axis is pointing from the interaction point towards the
centre of the LHC, the positive y—axis is going upwards. The positive side of the z—axis
is pointing towards the side A (direction Geneva) of the ATLAS detector, while negative
z—values are assigned to the side C (direction Jura).

Due to the cylindrical symmetry of the ATLAS detector, the use of cylindric coordinates
(gf), f and R) is useful. In this coordinate system the transverse distance to the z—axis
is defined as the radius R. The azimuthal angle ¢ is measured around the beam axis,
starting with ¢ = 0 on the x—axis and ¢ = 7/2 on the y—axis. Usually the azimuthal
angle is defined within ¢ € [—m, 7]. The polar angle 0 is defined within 6 € [0, 7], where
¢ = 0 is on the positive z—axis. In terms of the particles momentum components p,, p,
and p,, the two angles ¢ and 6 can be written as:

tan ¢ = P
Dy

VETE

tan g = YPe TPy
P

A more convenient way to express the polar angle ¢ is to use the pseudorapidity, which
either can be expressed in terms of the polar angle or in terms of the particles momentum:

1 _
n=-ln (tan Q) =—-In <|m—pz)
2 2 \Ipl+p-

While the pseudorapidity is invariant under a Lorentz transformation, in the high energy
limit of massless particles (£ >> mc?) the pseudorapidity becomes equal to the rapidity

11 E—p,
=—1In
Y73 E+p,
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which is Lorentz invariant under longitudinal boost. In addition, for the x — y—plane, 7 is
equal to zero, in beam direction 17 — 4-co which corresponds to §# = 0 and 6 = 7.

In hadron collisions the trajectory of a particle is defined by various kinematic vari-
ables. The projection of the initial particles momentum p on the x — y—plane is defined
as the transverse momentum pr and the projection on the z—axis corresponds to the
longitudinal momentum p;. In the same manner the energy £ can be split into the two
components Fp and Fp. The transverse distance of the trajectories closest approach to
the beam axis is defined as the transverse impact parameter d,. Accordingly, the distance
along the z— axis to the closest approach to the interaction point is defined as longitudinal
impact parameter zg.
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Appendix B

A Decay Properties

At leading order in electroweak perturbation theory, the partial width for the decay of the
7" boson into a fermion-antifermion pair

Z(q) = fo) (), (B.1)
is given in the Standard Model by

ig—W* n o ’
S con QWU(p)v (Vi = Apys)v(p)enlq). (B.2)

The invariant matrix element squared for this process summed (averaged) over final
(initial) polarizations is given by

— 8GrM,
DIMP = ST (Vi +1ALP) B3

The sum over the three polarizations of the Z° boson is performed using

7 1)%* qudv
262)@)65/) (@) = —gu + ]\‘2—% . (B.4)

The two-particle phase space is given by

1 2|py| d2
dq)Q(P)phpQ) = 8_7T ]\|411D|E )

where p; is the three-momentum of the decay products in the rest frame of the decaying
particle, which has mass Mp and df) is the element of solid angle.
The final result for the partial width is

(B.5)

- GpM;
D(Z° = ff) = CE=Z (Vi + |Af?) =332 C (|V;* + |As?) MeV (B.6)
627
where C' is a color normalization factor which is 1 for leptons and 3 for quarks.

Using the result for the partial width of Z° we can calculate the branching ratio for the
various fermion-antifermion decay modes shown in the table below.
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Process \ Relative coupling \ Branching Ratio ‘

Z = Vele, VU, Vr Uy 1/2 3 % 6.8%
Z —ete ,ptp, 77 | 1/4 + (1/2 — 2sin6,,)? 3 x 3.4%

There is also a large branching fraction of the Z° boson into neutrinos, which are not
detectable. The measurement of the width for decay of the Z" boson into invisible particles
counts the number of light neutrino species. The theoritical result for the ration of the
width into one species of neutrino, divided by the width into one species of lepton is

0(Z —wvp) 2

I(Z = 1) 14 (1 —4sin?6y)?

~1.99. B.7)
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Appendix C

The Armenteros-Podolanski Plot

The features of the Armenteros-Podolanski plot can be completely understood by consid-
ering the kinematics of the decay of a neutral V° candidate into two charged particles
(A — pr7). This system has to be considered in both the laboratory system (in which
measurements are made) and in the centre of mass system (in which V0 is at rest and
consequently the two charged particles must come off back-to-back so as to conserve
momentum) as shown in figure C.2.

It is clear from figure ??b that in the centre of mass system the transverse and longi-
tudinal momenta, realitve to the direction in which the V¥ was moving in the laboratory
system, are defined

qpr = p*sinf* (C.1)

q; = p*cosB* (C.2)

where all quantities in the centre of mass system are denoted by a *.
To express these quantities in the laboratory system requires the use of the Lorentz

transformations
(E) ( Y 76>(E*) (C.3)
qr 76 Y qr

where = v/c: v is the velocity of the particle and c is the speed of light. 7 is defined as

= 1/yT= .

When C.3 is expanded it will give a definition of ¢, in terms of ¢}
L =YBE" +qj, (C.4

Using the above
qr = VBE* + yp* cos 0" (C.5)

Transverse momentum is Lorentz invariant and so

qr = qp = p*sinf” (C.6)
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Figure C.1: The decay of a neutral VV? into two charged tracks in (a) the laboratory system

and (b) the centre of mass system. In the latter system the two decay particles must come
off back-to-back so as to conserve momentum.

Armenteros « is defined

+ _ —
=4 9 (C.7)
qr, + 4
Using the C.5 and given that cos(f + m) = — cos 6, the above becomes
_ YB(ET — E3) + 2yp* cos 0 C.8)

YB(ET + E3)

assuming particle 1 is the positively charged particle and particle 2 is the negatively
charged one.
Now energy, F*, is conserved and so in the centre of mass system,

E*=E; + E; (C.9)

where using the relativistic equation E? = p? + m?, E*, E} and E; are given by

E* =m,, E}=\/p2+mi E;=1/p?+m} (C.10)

where in the centre of mass system the momentum of the V| pi, is zero.
By substituting C.9 into C.10
Ef+E5 =m, (C.11)

The above can be used in C.8, along with the approximation that relativistically v ~ c and
so B =~ 1. The s cancel and so C.8 becomed
Ef — E5  2p*cosf*

o= + (C.12)
my my
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Figure C.2: Theoretical curves for A, A and K" .
From the above the variables & and a can be defined
E* — E5
q=_1 2 (C.13)
m’U
2 *
a= 2P (C.14)
my
and so
o=+ acosb* (C.15)
Using C.6

oa—Q 2 2
( ) " (q_) 1 c.19
a p

which is simply the equation of an ellipse.

81



This page intentionally left blank



Bibliography

[1] R. Hanbury-Brown and R.Q. Twiss, Philos. Mag. 45 (1954) 663.

[2] ATLAS Collaboration:"The ATLAS experiment at the CERN LHC", JINST 3 S08003
(2008).

[3] T. Alexopoulos, Ph.D. thesis, University of Wisconsin, Madison, 1991.
[4] G. Goldhaber et al., Phys. Rev. 120 (1960) 300.
[5] M.Pliimmer, L.V. Razumov and R.M. Weiner, Phys. Lett. B 286 (1992) 335.

[6] G. Baym, Lectures on Quantum Mechanics, The Benjamin/Cummings Publishing
Company, INC. 1981.

[7] R.C. Femow, Introduction to Experimental Particle Physics, Cambridge University
Press, 1986.

[8] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,
JINST 3 (2008) S08003.

[9] ATLAS Collaboration, Determination of the muon reconstruction efficiency in ATLAS
at the Z resonance in p — p collisions at \/E =7 TeV , ATLAS-CONF-2011-008 (2011).

[10] ATLAS Collaboration, A measurement of the total W* and Z /* cross sections in the
e and i decay channels and of their ratios in p — p collisions at /s = 7 TeV with the
ATLAS detector, ATLAS note: ATLAS-CONF-2011-041.

[11] F. Halzen and A. D. Martin, Quarks and Leptons: An Introductory Course in Modern
Particle Physics. Wiley, 1984.

[12] Particle Data Group, K. Nakamura et al., Review of particle physics, J. Phys. G37
(2010) 075021.

[13] R. Ellis, W. Stirling, and B. Webber, QCD and collider physics, vol. 8. 1996.
[14] ATLAS Run Queries, http://atlas-runquery.cern.ch/.

[15] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ LuminosityPublicResults.

83



[16] R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework,
Nucl. Instrum. Meth. A389 (1997) 81.

84



	Theory
	Hanbury-Brown and Twiss Effect
	Bose-Einstein Correlations
	The Bose-Einstein Correlation of Two Hadrons
	Higher Order Bose-Einstein Correlations

	Standard Model Physics
	W and Z0 Boson Physics: the Drell-Yan Process


	LHC Accelerator and the ATLAS Detector
	The Accelerator
	The ATLAS Detector

	ROOT and the Athena Framework
	ROOT
	Athena Framework

	Event Selection
	Event Selection Criteria for Bose-Einstein Correlations
	Armenteros-Podolanski Analysis
	Coulomb Corrections
	Event Selection Criteria for Z0+- Candidates
	Fit Models
	Bose-Einstein
	Z0+-


	Results
	Bose-Einstein Correlations
	Two Pion Model
	Higher Order Model
	Multiplicity Dependence
	Systematic Checks

	Muon Spectrometer Performance Studies with Z0+-

	Conclusions
	Target Reconstruction with the MicroMeGas Detector
	Event Selection
	Method A
	Results

	Method B
	Theory
	Results


	Coordinate System and Nomenclature
	Z0 Decay Properties
	The Armenteros-Podolanski Plot

