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Περίληψη

Η παρούσα διπλωµατική εργασία εκπονήθηκε στα πλαίσια της ολοκλήρωσης των µεταπτυχιακών µου σπουδών
και αποτελεί µια εισαγωγή της µελέτης των ανιχνευτών Micromegas.

Στο πρώτο κεφάλαιο γίνεται µια αναφορά στους ανιχνευτές αερίου και κυρίως στους ανιχνευτές MicroMegas.Ο
ανιχνευτής MicroMegas ανήκει στην κατηγορία των ανιχνευτών αερίου, έχει µικρό κόστος, παρουσιάζει αντοχή σε
περιβάλλον υψηλής ακτινοβολίας και παρέχει πολύ καλή χωρική και ενεργειακή διακριτική ικανότητα. ΄Εχει χρησι-
µοποιηθεί σε πολλά πειραµατα στο CERN έχει επιλεχθεί για την αναβάθµιση του New Small Wheel ϑαλάµου των
µιονίων του πειράµατος ATLAS.

Στο δεύτερο κεφάλαιο εργαζόµαστε πάνω στα στατικά και χρονοεξαρτηµένα ηλεκτρικά πεδία κάποιων ανιχνευτών µε
παράλληλα στρώµατα µε δοσµένη ορατότητα και αδύναµη αγωγιµότητα. ∆ουλεύουµε πάνω στο πεδίο ενός σηµειακού
ϕορτίου, καθώς και στα weighting fields για readout pads και readout strips αυτές τις γεωµετρίες. Μελετάµε πως
η διάδοση ενός ϕορτίου επηρεάζει τα στρώµατα µε αντίσταση. Επίσης προσπαθούµε να διερευνήσουµε την επίδραση
της ¨ογκώδους¨ αντίστασης στα ηλεκτρικά πεδία και τα σήµατα. Εφαρµόζουµε τα αποτελέσµατα για να εξάγουµε
πεδία και επαγόµενα σήµατα σε Resistive Plate Chambers, ανιχνευτές MicroMegas που περιλαµβάνουν στρώµατα
αντίστασης για διασπορά ϕορτίου και προστασία από την εκφόρτιση. Αναλύουµε επίσης λεπτοµερώς πως επηρεάζουν
τα Resistive layers τα σχήµατα των σηµάτων και αυξάνουν το crosstalk µεταξύ των readout electrodes.

Στο τρίτο κεφάλαιο πραγµατοποιείται η προσοµοίωση διαφόρων µοντέλων ανιχνευτών MicroMegas τη χρήση του
ANSYS Maxwell µε στόχο την παρατήρηση και τον υπολογισµό της χωρητικότητας µεταξύ των strips.

Στο τέταρτο κεφάλαιο πραγµατοποιείται η προσοµοίωση διάφορων µοντέλων ανιχνετών MicroMegas µέσω του LT-
spice και παρατηρήθηκε το σήµα εξόδου του κεντρικόυ strip και των γειτονικών του. Επίσης παρατηρήθηκε πως
αλλάζει το σήµα µε το να µεταβάλλουµε την χωρητικότητα µεταξύ των resistive strips, των readout strips και τη
χωρητικότητα µεταξύ readout-resistive strips.

vi



vii



Abstract

The present diploma thesis is an introduction of the study of MicroMegas.

In section 1 we give a report to Gaseous detectors and specially to MicroMegas detectors. MicroMegas is a
gaseous detector, with a low construction cost, a tolerance at high radiation environment and a very good spatial
and energy resolution. This technology has been used so far in many experiments at CERN and is chosen for the
New Small Wheel upgrade at the ATLAS experiment.

In section 2 we work on the static and time dependent electric fields in some detectors geometries with paral-
lel layers of a given perimittivity and weak conductivity. We work on the field of a point charge,as well as the
weighting fields for Readout pads and Readout strips in these geometries.We investigate how the spreading of the
charge effect the Resistive layers.We also try to investigate the effect of "bulk" Resistivity on electric fields and
signals.We apply the results to derive fields and induced signals in Resistive Plate Chambers,MicroMegas detec-
tors including Resistive layers for charge spreading and discharge protection. We also discuss in details how the
Resistive layers affect signal shapes and increase the crosstalk between readout electrodes.

In section 3 takes place the simulation of a variety of Modules of MicroMegas detectors with the help of AN-
SYS Maxwell,to observe and calculate the capacitance between the strips.

In section 4 takes place the simulation of a variety of Modules of Micromegas detector with LTspice. With spice
were taken the figures of the output signal for the central and the neighbor strips. It also observed how this
signal changes if we change the capacitance between the Resistive strips, the Readout strips and the capacitance
between Readout-Resistive strips.
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1 1. Gaseous Detectors

1 Gaseous Detectors

1.1 Avalanche

1.1.1 Gas Multiplication

One of the most important phenomenon that happens on the gaseous detectors is the Avalanche.

The primary electrons, so called the first ionisation products, drift to the electrodes of the anode through the
gas. When their energy exceeds a sufficient value due to the affection of the field, they can create further ioniza-
tions in the gas. Secondary electrons, if the energy is sufficient, will do the same and this process goes on. So we
have a production of ion-electron pairs and the formation of the avalanche. The electrons drifts faster and so the
avalanche has the shape of a drop (figure 1). In the front we have the side electrons are moving along and on the
back we have the slower electrons. At the end there is a large number of electrons in the cathode, that can easily
be detected by electronic devices

Figure 1: Avalanche in the shape of drop

Avalanche depends on electric field that is applied on gas chamber and the pressure of the gas, which affects
the free path of the electrons.

If we consider λ as the mean free path of the electrons between two collisions then the coefficient a = 1/λ is
the ionization probability per length. For a number of n electrons a path dx we will have further dn electrons :

dn = nadx (1.1)

So if we derive the number n of electrons, in the path x is :

n = n0e
ax (1.2)

with a the ionization probability :

a = PAe
BP
E (1.3)

with E the intensity of the electric field and A,B two constants depending on the gas in unit of cm−1Torr−1

and V cm−1Torr−1 respectively.
Back to the number of electrons we can define M such the multiplier factor :

M =
n

n0
= eax (1.4)

The M factor is help to find a good approximation for the number of electrons that reach the anode, where we read
the signal. The multiplier factor M has a limit of M = 108.
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In figure 2 are represent for a variety of gases the ionization probability depending on energy and the depen-
dence of the factor a/P due to E/P .

(a) Ionization Probability (b) Townsend Coefficient

Figure 2

1.1.2 The role of photons

During the multiplication process some electrons, that gained enough energy, instead of ionizing further the gas
molecules, may bring them in an excited state. These excited molecules do not contribute directly to the avalanche
but decay their ground state through the emission of a visible ultraviolet photon. Under some those photons can
create ionizations in the gas with the limit of M = 108. These poly-atomic gases called the quench gases.

1.1.3 Signal Formation

During the avalanche formation, a number of electron-ions pairs is created. The electrons and the positive ions,
separated by the electric field, drift towards different directions. Their motion within the gas volume induce charge
on electrons. Electrons drift fast and within a few nanoseconds reach the anode. Therefore, the current flowing
on the electrodes is on the order of the nanoseconds and usually ignored by the detector electronics. On the other
hand the positive ions drift with a velocity two to three orders of magnitude less than this of electrons. Hence they
induce charge on the electrodes with hundred nanoseconds of duration.
The method used to calculate the charge induced on an electrode is by using the Shockley-Ramo theorem and
the concept of the weighting field. In the case of a charge q moving with a drift velocity udrift the instantaneous
current induced at a given electrode will be :

i(t) = qudriftEw (1.5)

where Ew is the weighting field.

1.2 Gaseous Detectors

The gaseous detectors have been employed and operated in various applications and experiments with every
successful results over the last century.
The differences between various types of gas counters with respect to their operation voltage is illustrated in figure
3. The number of ions pairs, equivalent to the detected pulse amplitude, is plotted as a function of the electric
field for two different types of radiation.
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Figure 3: The different regions of gaseous detectors operation with respect to the applied voltage.

1. Recombination Region : in this region the electric fields are very low so the separation of the primary
electron-ions pairs is not reliable and a fraction of the charge-pairs recombine with result we dont get any
current.

2. Ion Chamber Region : in this region the voltage is enough to get electrons but cannot observe Avalanche
and so the multiplication of the electrons.

3. Proportional Counting Region : in this region we can get the multiplication of 103 − 104 proportional of
applied voltage.

4. Limited of proportionality : at higher amplification the amount of charged ion in the vicinity of the anode
increases and their space charge reduces the electric field by following electrons. We can see that the curve
goes up so it does don’t use by the detector.

5. Geiger Region : due to high voltage we have new Avalanches until the electric field to decreased so that to
stop the multiplication and so we observe a constant value of multiplication.

6. Discharge Region : in this region the voltage is so high so we can observe a transition in the electric field
with or without ionization and so it cannot be used by the detector.
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1.3 Micromegas

Micromegas or Micro Mesh Gaseous Structure is a very assymetric double structure two stage parallel plate
detector. Like the others gaseous detectors can detect charged and neutral particles. The difference with the others
detector is that its two distinguished regions are no longer separated by a plane of wires but by a micromesh.

Figure 4: Micromegas

A MM consists of the following components :

1. anode electrode. Anode strips of gold-coated copper of 150µm, with 200µm pitch, are printed on a 1 mm
substrate. The thickness of the copper strip was 5µm. Thinner strips were obtained by vacuum deposition.
These allow a substantial reduction of the inter strip capacitance. Both metal-deposition techniques can be
applied on a 50µm thick Kapton substrate, whenever a reduction of the material of the detector is required.
The strips were grounded through low-noise charge pre-amplifiers of high gain (4V/pC).

2. quartz fibres of 75µm, with 2 mm pitch, were stretched and glued on a G10 frame. The quartz frame was
then mounted on the strip surface, defining a precise(2%) gap. Thicker(140 and 230µm) quartz spacers were
also utilized during our tests.

3. the micromesh. In figure is a photograph of the micromesh obtained with a microscope. It is a metallic grid,
3µm thick, with 17µm openings every 25µm. It is made of nickel, using the electroforming technique, which
is flexible and exhibits as high degree of fidelity of the electroposited layer.

4. the conversion-drift electric field was defined by applying negative voltages on the micromsh (HV2) and a
slightly higher voltage on a second electrode (HV1), spaced by 3 mm in order to define a conversion-drift
space. It was made by a standard nickel mesh, 100µm thick, having 80% transparency, in order to allow
a efficient penetration of the various radioactive sources used for the test and fixed on the top of the gross
mesh. For the final detector, thin aluminized mylar can be used to define electrode HV1 and ensure at the
same time the required gas tightness of the chamber.

5. the gas volume. The various elements of the parallel-plate structure were placed in a tight stainless steel
vessel flushed by a standard gas mixture of Ar + 10% CH4 at atmospheric pressure. A metallic holder
was mounted on top of the parallel plate chamber to support the radioactive source and a stainless steel
collimator 1 mm thick with a 2 mm hole. The metallic source holder can move horizontally and allow a rough
scan of the active surface of the detector.

The Micromegas detector can be separated on two region by the electric field.

• drift region

• multiplication region

In the drift region we have the first ionization and due to not too strong electric field (1 − 5 kV/cm) the electrons
are heading to the multiplication region without a a strong Avalanche.
In the multiplication region the electric field is more stronger (20−100 kV/cm) and the result is a strong Avalanche
and there is a strong signal on anode.
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Figure 5: Two areas of electric field

1.3.1 Signal Formation

When charges are moving in front of a conductor, a proportional charge is induced on the conductor. The
Micromegas geometry, as shown in figure 4, contains the amplification gap, where the electric field is up to
50 kV/cm. This gives rise to an avalanche effect of ion-electron pairs being created due to ionizations.
To simplify for this geometry for a charge q, the induced current is :

Ia = −qEAu
Va

(1.6)

with EA the electric field at position of the charge, u the velocity of the charge and Va the potential of the strips.
Taking all the charges into account as a current density J(x,t) the induced current take the form :

Ia = − 1

Va

∫
J(x, t) · E(x, t)d3x (1.7)

To find the total signal formation, we need to find the evolution of charge over time. The charge multiplica-
tion charge depends on the (first) Townsend coefficient a which in general is a function of the electric field. For n
the number of one type of charged particles at a certain point,then their increase at a nearby point along the path
of the moving charge will be dn = andr, where dr is the distance between the two points.
To find the increase of charge we have to integrate the above formula. So :

I(t) = −q0
aβeaβuptup

Va

∫
Ez(z)e

aβzdz (1.8)

where q0 the initial charge (one e−), up/n the velocity of the ions/electrons, Ez the z-component of the electric
field. The derived current as a function of time is drawn in figure 6.
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Figure 6: Total auxiliary current as a function of time. The peak at the origin lasts for less than 2 ns is due
primarily to the electrons movement while after 2 ns the distribution id due to the ion drifting towards the mesh.

1.3.2 Resistive strips Micromegas

Despite the excellent characteristics of the Micromegas module and the promising industrial bulk fabrication pro-
cedure, the very thin amplification region along with the finely sculpted readout structure makes them particularly
vulnerable to discharges(sparks).Sparks occur when the electron avalanche population goes beyond ∼ 106.Sparks
may damage the detector and readout electronics and/or lead to large dead times as result of HV breakdown. To
find a solution for this problem we create bulk-micromegas chambers spark resistant while mainting their ability
to measure with excellent minimum-ionizing particles in high-rated environments.

(a) view along the strip direction (b) side view,orthogonal to the strip direction

Figure 7: Sketch of the detector principle(not the scale), illustrating the resistive protection theme

In the figures 7 we see two orthogonal side views of the chamber. It is a bulk-micromegas structure built on
top of a printed circuit board with 18µm thick Cu readout strips covered by a resistive protection layer.
The protection consists a thin layer of insulator on top of which strips of resistive paste (with a resistivity of a
few ΜΩare deposited. Geometrically, the resistive strips match the pattern of the readout strips. They both are
150µm wide and 80µm long, their strip pitch is 250µm. The resistive strips are 64µm thick; the 100µm wide gaps
between neighboring strips are filled with insulator. The resistive strips are connected at one end to the detector
ground through a 15− 50ΜΩ resistor, see below. We opted for resistive strips rather than a continuous resistive
layer for two reasons: i) to avoid charge spreading across several readout strips, and ii) to keep the area affected
by a discharge as small as possible.

The Micromegas structure is built on top of the resistive strips. It employs a woven stainless steel mesh with
400 lines/inch and a wire thickness of 18µm. The mesh is kept at a distance of 128µm from the resistive strips
by means of small pillars (400µm diameter) made of the same photoimageable coverlay material that is used for
the insulation layer. The pillars are arranged in a regular matrix with a distance between neighbouring pillars of
2.5 mm in x and y. The mesh covers an area of 100× 100 mm2.

Above the amplification mesh, at a distance of 4 or 5mm, another stainless steel mesh (350 textrmlines/inch,
wire diameter: 22µm served as drift electrode. Its lateral dimensions are the same as for the amplification mesh.
The chamber comprises 360 readout strips. The readout strips are left floating at one end. At the other end they
are connected in groups of 72 strips to five 80-pin connectors. The remaining eight pins of each connector serve
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as grounding points.

The detector housing consists of a 20 mm high aluminum frame, mounted on top of the readout board and
sealed by an O-ring, and a cover plate (again sealed by an O-ring) with some opening windows, made of 50µm
thick Kapton foil.
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2 Electric fields,weighting fields and signals in detectors including resis-
tive materials

In this section we discuss the electric fields and the signals in detectors that represent parallel plate geometries
with segmented readout like GEM’s,Micromegas,RPC’s. In these detectors, the charges generated inside the sensor
volume act as a source of the signal.

2.1 Potential of a point charge centered at the origin

Figure 8: A point charge Q on the boundary between two dielectric layers.

We first investigate the electric field of a point charge in a two layer geometry. We assume that the two layers
have thickness of b and g with constant dielectric permittivity of ε1and ε2, surrounded by grounded metal plates.
At r=0,z=0(the boundary between those two layers) we put a charge Q.
We will use cylindrical coordinates due to problem’s rotational symmetry. Because we don’t have charges on the
two layers we will use the Laplace equation. For r=0 the coefficients Y0(kr) are zero so the general solution for the
two areas will be :

ϕ1(r, z) =
1

2π

∫ ∞
0

J0(kr)[A1(k)ekz +B1(k)e−kz]dk − b < z < 0 (2.1)

ϕ2(r, z) =
1

2π

∫ ∞
0

J0(kr)[A2(k)ekz +B2(k)e−kz]dk 0 < z < g (2.2)

Boundary Conditions

Because we have ground at z=g, z=-b we have the conditions ϕ1(r,−b) = 0 ϕ2(r, g) = 0 :

A1e
−kb +B1e

kb = 0 (2.3)

A2e
kg +B2e

−kg = 0 (2.4)

At z=0, the barrier between the two layers, we assume a surface charge density q(r). From Gauss Law for a medium
inhomogeneous perimittivity we derive that passing through an infinitely thin sheet of charge with a surface charge
density q(r), the pontential is continuous so ϕ1(r, 0) = ϕ2(r, 0) which gives :

A1 +B1 = A2 +B2 (2.5)

and the εE component perpendicular to the sheet "jumps" by q(r) :

ε1
∂ϕ1(r, z)

∂z
|z=0 − ε2

∂ϕ2(r, z)

∂z
|z=0 = q(r)

with q(r) = qδ(r)
2π

1
r

1

2π

∫ ∞
0

J0(kr)[(kε1A1 − kε1B1)− (kε2A2 − kε2B2)]dk =
qδ(r)

2π

1

r
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by multiplying both sides with rJ0(k′r) and integrate from 0 to infinity :

1

2π

∫ ∞
0

rJ0(kr)J0(k′r)dr

∫ ∞
0

[(kε1A1 − kε1B1)− (kε2A2 − kε2B2)]dk =

∫ ∞
0

rJ0(k′r)
qδ(r)

2π

1

r
dr

1

2π

∫ ∞
0

δ(k − k′)[ε1 (A1 −B1)− ε2 (A2 −B2)]dk =
Q

2π

ε1 (A1 −B1)− ε2 (A2 −B2) = Q (2.6)

From (2.3),(2.4) :

B1 = −A1e
−2kb

B2 = −A2e
2kg

By using them on (2.5) :
A1

(
1− e−2kb

)
= A2

(
1− e2kg

)

A2 =
1− e−2kb

1− e2kg

And so the (2.6) :

2ε1A1e
−kb cosh (kb)− ε2A1

e−kb
(
ekb − e−kb

)
ekg(e−kg − ekg)

ekg
(
e−kg + ekg

)
= Q

A1 =
Qsinh (kg) ekb

2 (ε1 cosh (kb) sinh (kg) + ε2sinh (kb) cosh (kg))

we set
D (k) = 4 (ε1 cosh (kb) sinh (kg) + ε2sinh (kb) cosh (kg))

and so

A1 =
2Qsinh (kg) ekb

D (k)

B1 =
−2Qsinh (kg) e−kb

D (k)

A2 =
−2Qsinh (kb) e−kg

D (k)

B2 =
2Qsinh (kb) ekg

D (k)

And so the solution read as :

φ1(r, z) =
Q

2π

∫ ∞
0

J0 (kr)
4sinh (gk) sinh (k (b+ z))

D(k)
dk − b < z < 0 (2.7)

φ2(r, z) =
Q

2π

∫ ∞
0

J0(kr)
4 sinh(bk)sinh((k(g − z))

D(k)
dk 0 < z < g (2.8)
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Those integrals cannot be expressed in closed form, so we have to find some techniques to express the result as
an infinite series.
We will take the integral quantity for φ1 : 4 sinh(gk) sinh(k(b+z))

D(k) and add and remove the quantity ekz

ε1+ε2
:

ekz

ε1 + ε2
+

4 sinh(gk) sinh(k(b+ z))

D(k)
− ekz

ε1 + ε2
=

ekz

ε1 + ε2
+ f1(k, z)

We know that

1√
r2 + z2

=

∫ ∞
0

J0(kr)e−kzdk (2.9)

By doing that φ1 take the form :

φ1(r, z) =
Q

2π(ε1 + ε2)

1√
r2 + z2

+
Q

2π

∫ ∞
0

J0(kr)f1(k, z)dk (2.10)

Now the solution is the combination of the solution for the potential of a charge Q on the boundary of two infinite
half-spaces of permittivity ε1 and ε2 with a correction term. For the correction term, for large values of k the
quantity f1(k, z) take the form :

f1(k, z) =
e−k(2b+z)

ε1 + ε2
− −2ε2e

−k(2g−z)

ε1 + ε2
(2.11)

As result the potential for −b < z < 0 :

φ1(r, z) =
Q

2π(ε1 + ε2)

1√
r2 + z2

− Q

2π(ε1 + ε2)

Q√
r2 + (2b+ z)2

− 2Qε2
2π(ε1 + ε2)

1√
r2 + (2g − z)2

+
Q

2π

∫ ∞
0

J0(kr)f2(k, z)dk

(2.12)

The two new terms correspond to two "mirror" charges, one with value −Q at z = −2b that is reflected at the
grounded plate at z = −b and one with value −2ε2Q at z = 2g that is reflected at the grounded plate at z = g. If
we want to find the φ2 is the same process and result is reversed.

2.2 Dicharges on a resistive MICROMEGA

From the previous subsection we know that the solution for a two layer problem with a charge Q on the boundary
is :

φ1(r, z) =
Q

2π

∫ ∞
0

J0(kr)
4 sinh(gk) sinh(k(b+ z))

D(k)
dk − b < z < 0

φ2(r, z) =
Q

2π

∫ ∞
0

J0(kr)
4 sinh(bk) sinh(k(g − z))

D(k)
dk 0 < z < g

The electric field Ez at r = 0 and z = g is then

Ez =
Q

2π

∫ ∞
0

k sinh(bk)

D(k)
dk (2.13)

We consider the following parameter for the resistive MICROMEGA : The distance between the mesh and the
resistive strips(amplification gap) is 128µm. Insulator between the resistive strips and the readout strips is 64µm.
We assume the permittivity of the insulating layer to be εr = 5. The normal operation voltage is 500V . Applying
the 500 V between the resistive strips and the mesh gives a field of 500 V/128µm = 39kV/cm.
In case of a ’discharge’ there is a charge flowing from the mesh to the surface of the resistive layer over a short time.
During this time the charge does not diffuse on the resistive layer, so we simply have a point charge accumulating
at r = 0 and z = 0 . We assume now that the discharge stop when the electric field Ez(due to the point charge) at
the surface of the mesh equals the applied electric field.
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With those parameters if we calculate the integral with the help of the Mathematica is gives as :∫ ∞
0

ksinh(bk)

D(k)
dk = 0.000014631

so to find the charge Q:

Ez =
Q

2πε0

∫ ∞
0

k sinh(bk)

D(k)
dk

Q =
2πε0Ez

0.000014631
⇒ Q = 14.8 pC

This would be the approximate maximum charge in ’spark’.
There is no RC description of this situation. The charge has not yet started to diffuse and there is no equivalent
capacitance anywhere. There is simply charge sitting on the surface of the resistive layer, producing and electric
field that is counter-acting the applied field.
If we assume a MICROMEGA of A = 10 × 10 cm2 size without metallic readout electrode and an avalance gap g,
the total charge stored in the capacitor is

Q = ε0
A

g
500 ≈ 346 nC

which is 2.3× 104 larger compare to the resistive layer case and this amount of charge will enter the amplifier.
Now we will try to change the applied voltage(500− 600V ) to see how the charge Q will change.

Table 1: Charge on Mesh for different values of Voltage.

Applied Voltage(V) Electric Field Ez
(kV/cm)

Charge Q(pC)

500 39 14.8
520 41 15.6
540 42 16.0
560 44 16.7
580 45 17.1
600 47 17.9

With the results of the table we will create a figure with the Q and the applied voltage.

Figure 9: Charge Q for different values of voltage.

We see that there is a linear increase to the charge with the steadily increase of the voltage.
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Table 2: Charge on Mesh for different values of g.

g(µm) value of the integral Charge(pc)
100 0.000026 11.9
110 0.000021 13.6
120 0.000017 15.4
130 0.000014 17.3

Now we will create the figure to see the relation between the g and and Q. We see again a linear increase to the
charge with the steadily increase of the avalanche gap g.

Figure 10: Values of charge for different values of distance between mesh and the resistive strips for applied
voltage 570 V

2.3 Potential of a point charge in a geometry grounded on a rectangle

For this case the geometry is grounded at x = 0, a and y = 0, b and the charge is placed at position x0, y0.

Figure 11: A point charge Q in an empty condenser.

We have to solve the Laplace equation in Cartesian coordinates.
The general solution is :

Φ1(x, y, z) =

∞∑
n=1

∞∑
m=1

sin

(
lxπ

a

)
sin
(myπ

b

)
[E1(klm)eklmz + F1(klm)e−klmz] (2.14)
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Boundary Conditions

Φ1 = Φ2 ⇒ E1 + F1 = E2 + F2 z = 0 (2.15)

Φ1 = 0⇒ E1e
−kb + F1e

kb = 0 z = −b (2.16)

Φ2 = 0⇒ E2e
kg + F2e

−kg = 0 z = g (2.17)

ε1
∂Φ1(r, z)

∂z
|z=0 − ε2

∂Φ1(r, z)

∂z
|z=0 = Qδ(x− x0)δ(y − y0) (2.18)

(2.18)⇒ ε1[

∞∑
n=1

∞∑
m=1

sin

(
lxπ

a

)
sin
(myπ

b

)
(kE1−kF1)]−ε2[

∞∑
n=1

∞∑
m=1

sin

(
lxπ

a

)
sin
(myπ

b

)
(kE2−kF2)] = Qδ(x−x0)δ(y−y0)

(2.18)× sin

(
l′xπ

a

)
sin

(
m′yπ

b

)
and by integrate :∫ b

0

∫ a

0

sin

(
l′xπ

a

)
sin

(
m′yπ

b

)
sin

(
lxπ

a

)
sin
(myπ

b

)
[kE1 − kF1)− (kE2 − kF2)]dxdy =

∫ b

0

∫ a

0

Qδ(x− x0)δ(y − y0) sin

(
l′xπ

a

)
sin

(
m′yπ

b

)
dxdy

for l = l′ and m = m′ :

a
2
b
2 [(kE1 − kF1)− (kE2 − kF2)] = Qsin

(
lx0π
a

)
sin
(
my0π
b

)
[kE1 − kF1)− (kE2 − kF2)] = 4Q

Qsin
(
( lx0π

a

)
sin
(
my0π
b

)
kab

(2.16)⇒ F1 = −E1e
−2kb (2.17)⇒ F2 = −E2e

2kg

From (2.16) and (2.17) :

(2.15)⇒ E1 − E1e
−2kb = E2 − E2e

2kg

E1e
−kb(ekb − e−kb) = E2e

−kb(e−kg − e−kg)

E2 = −E1e
−kbe−kg

sinh(kb)

sinh(kg)

So F2 = E1e
−kbe−kg sinh(kb)sinh(kg)

(2.18)⇒ ε1(E1 + E1e
−2kb)− ε2(−E1e

−kbe−kg
sinh(kb)

sinh(kg)
− E1e

−kbekg)
sinh(kb)

sinh(kg)
) = 4

Q sin
(
lx0π
a

)
sin
(
my0π
b

)
kab

ε1e
−kbE1(ekb + e−kb) + ε2F1

sinh(kb)

sinh(kg)
(e−kg + ekg) = 4

Q sin
(
lx0π
a

)
sin
(
my0π
b

)
kab



2. Electric fields,weighting fields and signals in detectors including resistive materials 14

2ε1e
−kbE1 cosh(kb) + 2ε2E1e

−kb sinh(kb)

sinh(kg)
cosh(kg) = 4

Q sin
(
lx0π
a

)
sin
(
my0π
b

)
kab

E1 = 4
Qsin

(
lx0π
a

)
sin
(
my0π
b

)
kab

sinh(kg)ekb

2(ε1 cosh(kb) sinh(kg) + ε2 sinh(kb) cosh(kg))

From 2.1 :

E1 =
2Q sinh(kg)ekb

D(k)
× 4

sin( lx0π
a ) sin(my0πb )

kab
=

4A1 sin( lx0π
a ) sin(my0πb )

kab
(2.19)

F1 =
4A1sin

(
lx0π
a

)
sin
(
my0π
b

)
kab

e−2kb = −4
2Q sinh(kg)ekb

D(k)

4A1 sin
(
lx0π
a

)
sin
(
my0π
b

)
kab

e−2kb

F1 =
4B1 sin

(
lx0π
a

)
sin
(
my0π
b

)
kab

(2.20)

So :

Φ1(x, y, z) =

∞∑
n=1

∞∑
m=1

sin

(
lxπ

a

)
sin
(myπ

b

)
[
4A1 sin

(
lx0π
a

)
sin
(
my0π
b

)
kab

ekz +
4B1 sin

(
lx0π
a

)
sin
(
my0π
b

)
kab

e−kz]

Φ1(x, y, z) =

∞∑
n=1

∞∑
m=1

4 sin

(
lxπ

a

)
sin
(myπ

b

) sin ( lx0π
a

)
sin
(
my0π
b

)
kab

[A1e
kz +B1e

−kz]

kx =
lπ

a
⇒ dkx =

π

a
dl⇒ dl =

a

π
dkx, dm =

b

π
dky

Φ1(x, y, z) =
4

π2

∫ ∞
0

∫ ∞
0

[cos[kx(x−x0)]−cos[kx(x+x0)][cos[ky(y−y0)]−cos[ky(y+y0)]
1

k
[A1e

kz+B1e
−kz]dk (2.21)

2.4 Weighting Fields

In this part we want to calculate the weighting field of a rectangular pad centred at x = y = 0 with a width of wx
and wy for the geometry of figure, which is infinitely extended and where the permittivity of both layers is equal to
ε0. We will use the previous solution and shift the coordinate system such there is a grounded plate at z = 0 and
z = g and the point charge at x0,y0,z0.
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Figure 12: rectangular readout pad

We use the A1 and B1 from 3.1 and replace g = d− z0,b = z0.

D(k) = 4[ε1 cosh(bk) sinh(gk) + ε2 sinh(bk) cosh(gk)]

D(k) = 4[ε1
ebk + e−bk

2

egk − e−gk

2
+ ε2

ebk − e−bk

2

egk + e−gk

2
] ε1 = ε2 = ε0

ε0[(ebk + e−bk)(egk + e−gk) + (ebk − e−bk)(egk + e−gk)] = aε0[ek(b+g) − e−k(b+g)]

D(k) = 4ε0 sinh[k(b+ g)] = 4ε0 sinh[k(z0 + d− z0)] = 4ε0 sinh[kd] (2.22)

A1 =
2Q sinh(k(d− z0))

4ε0 sinh(kd)
ekz0 (2.23)

B1 =
−2Q sinh(k(d− z0))

4ε0 sinh(kd)
e−kz0 (2.24)

So to find the potential to area 1 :

Φ1(x, y, z) =
4

π2

∫ ∞
0

∫ ∞
0

[coskx(x−x0)−coskx(x+x0)][cosky(y−y0)−cosky(y+y0)]
1

k

2Q sinh(k(d− z0))

4ε0 sinh(kd)
[ekz0ekz+e−kz0e−kz]dkxdky

Φ1(x, y, z) =
Q

π2ε0

∫ ∞
0

∫ ∞
0

[coskx(x−x0)−coskx(x+x0)][cosky(y−y0)−cosky(y+y0)]
1

k

sinh[k(d− z0)]sinh[k(z + z0)]

sinh(kd)
dkxdky

Φ1(x, y, z) =
Q

π2ε0

∫ ∞
0

∫ ∞
0

[sin(kxx) sin(kxx0)sin(kyy) sin(kyy0)]
1

k

sinh[k(d− z0)] sinh[k(z + z0)]

sinh(kd)
dkxdky (2.25)

Φ2 is given if we exchange z with z0
In this rectangular pad an charge Qind is induced :

Qind(x0, y0, z0) =

∫ +wx
2

−wx
2

∫ +
wy
2

−wy
2

−ε0
∂ϕ1

∂z
|z=0dxdy (2.26)
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∂φ1
∂z

=
Q

π2ε0

∫ ∞
0

∫ ∞
0

[sin(kxx) sin(kxx0) sin(kyy) sin(kyy0)]
1

k

sinh[k(d− z0)](kekzekz0 + ke−kze−kz0)

2 sinh(kd)
dkxdky

∂φ1
∂z
|z=0 =

Q

π2ε0

∫ ∞
0

∫ ∞
0

[sin(kxx) sin(kxx0) sin(kyy) sin(kyy0)]
sinh[k(d− z0)] cosh(kz0)

sinh(kd)
dkxdky

From the reciprocity theorem we know that Qind = −Q/Vwϕw(x0, y0, z0) where ϕw is the potential at x0,y0,z0 in
case is removed and the pad is put to potential Vw. So :

φw(x0, y0, z0) =
−VwQind

Q

φw(x0, y0, z0) =
4Vw
π2

∫ ∞
0

∫ ∞
0

cos(kxx0) sin(kxwx2 ) cos(kyy0) sin(
kywy

2 ) cosh(kz0)sinh[z(d− z0)]

kxky sinh(kd)
dxdy

φw(x0, y0, z0) =
4Vw
π2

∫ ∞
0

∫ ∞
0

cos(kxx) sin(kxwx2 ) cos(kyy) sin(
kywy

2 ) cosh(kz) sinh[k(d− z)]
kxky sinh(kd)

dxdy (2.27)

2.5 N-Layer geometry

Figure 13: A geometry on N dielectric layers enclosed by grounded metallic plates. On the boundary between two
layers at r = 0 there are point charges Q.

We will approach the geometry in figure 13. We assume N dielectric layers ranging from zn − 1 < z < zn of
constant permittivity εn. On the boundaries at z = zn, there are charges Qn. At z = z0 and z = zN there are
grounded metal plates. We define a characteristic function fn(k, z) for each layer as

fn(k, z) = Ane
kz +Bne−kz n = 1...N (2.28)

With this characteristic function we can find the solution for different geometries :

For an infinitely extended geometry with the chargers at position x0,y0 in Cartesian coordinates is given by
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:

Φn(x, y, z) =
1

π2

∫ ∞
0

∫ ∞
0

sin(kxx) sin(kxx0) sin(kyy) sin(kyy0)
fn(k, z)

k
dkxdky (2.29)

with k =
√
k2x + k2y

For the case where the geometry is grounded on a rectangle at x = 0, a and y = 0, b the solution is :

Φn(x, y, z) =
4

ab

∞∑
l=1

∞∑
m=1

sin

(
lxπ

a

)
sin

(
lx0π

a

)
sin
(myπ

b

)
sin
(my0π

b

) fn(kml, z)

k
(2.30)

with k = π
√

l2

a2 + m2

b2

For the case where the geometry is grounded on a rectangle at x = 0, a and insulated at y = 0, b the solution is :

Φn(x, y, z) =
4

ab

∞∑
l=1

∞∑
m=0

sin

(
lxπ

a

)
sin

(
lx0π

a

)
cos
(myπ

b

)
cos
(my0π

b

)
(1− δ0m/2)

fn(kml, z)

k
(2.31)

The 2N coefficients An(k) and Bn(k) are defined by the two conditions at the grounded plated and at the 2(N-1)
conditions at the N-1 dielectric interfaces :

A1e
kz0 +B1e

−kz0 = 0

ANe
kzN +BNe

−kzN = 0

Ane
kzn +Bne

−kzn = An+1e
kzn +Bn+1e

−kzn

εn(Ane
kzn −Bne−kzn)− εn+1(An+1e

kzn +Bn+1e
−kzn) = Qn

From these equations we will approach a general solution for the different forms of RPCS we are going to discuss
in this section. We will start with a 3-layer geometry.

Figure 14: A geometry with 3 dielectric layers.

Boundary Conditions
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A1e
kz0 +B1e

−kz0 = 0 (2.32)
(2.33)

A1E
kz1 +B1e

−kz1 = A2e
kz1 +B2e

−kz1 (2.34)
(2.35)

ε1
∂f1
∂z
− ε2

∂f2
∂z

= Q1 (2.36)

(2.37)

ε1A1e
kz1 − ε1B1e

−kz1 − ε2A2e
kz1 + ε2B2e

−kz1 = Q1 (2.38)
(2.39)

A2E
kz2 +B2e

−kz2 = A3e
kz2 +B3e

−kz2 (2.40)
(2.41)

ε2
∂f2
∂z
− ε3

∂f3
∂z

= Q2 (2.42)

(2.43)

ε2A2e
kz2 − ε2B2e

−kz2 − ε3A3e
kz2 + ε3B3e

−kz2 = Q2 (2.44)
(2.45)

A3e
kz3 +B3e

−kz3 = 0 (2.46)

For these equation we create the M matrix for this 3-layer geometry. The equation to solve is then :

M−→a =
−→
b (2.47)

M =


ekz0 e−kz0 0 0 0 0
ekz1 e−kz1 −ekz1 −e−kz1 0 0
ε1e

kz1 −ε1ekz1 −ε2ekz1 ε2e
−kz1 0 0

0 0 ekz2 e−kz2 −ekz2 −e−kz2
0 0 ε2e

kz2 −ε2e−kz2 −ε3ekz2 ε3e
−kz2

0 0 0 1 ekz3 e−kz3

 (2.48)

−→a = (A1, B1, A2, B2, A3, B3)T
−→
b = (0, 0, Q1, 0, Q2, 0)T

Last we will approach a generalization of (2.12) from 2.1.
We will use a example for the infinitely extended geometry in cylindrical coordinates with the charges centred at
r0 = 0 and have n = 1, ....N .

φn(r, z) =
Qn−1

2π(εn−1 + εn)

1√
r2 + (z − zn−1)2

+
Qn

2π(εn + εn+1)

1√
r2 + (z − zn)2

1

2π

∫ ∞
0

J0(kr)[An(k)ekz+Bn(k)e−kz−

Qn−1
εn−1 + εn

e−k(z−zn−1) − Qn
εn + εn+1

e−k(zn−z)dk (2.49)

2.6 Single Layer RPC

We will now approach a geometry with 3 layers(figure 15), a single gap RPC with one resistive layer. We will start
by finding the coefficients.
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Figure 15: Geometry with three layers and one point charge representing a single gap RPC.

A1e
−kb +B1e

kb = 0 (2.50)

A1 +B1 = A2 +B2 (2.51)

ε1kA1 − ε1kB1 − ε2kA2 + ε2kB2 = 0 (2.52)

A2e
kz2 +B2e

−kz2 = A3e
kz2 +B3e

−kz2 (2.53)

ε2ke
kz2 − ε2kB2e

−kz2 − ε3kA3e
kz2 + ε3kB3e

−kz2 = Q (2.54)

A3e
kg +B3e

−kg = 0 (2.55)

From (2.51) :

B1 = −A1e
−2kb

By using (2.51) on (2.52):
A1 −A1e

−2kb = A2 +B2

We multiply (2.52) with ε2k and add with (2.53) and we have :

A1k(ε1 + ε2) + kB1(ε2 − ε1)− 2ε2kA2 = 0

2ε0kA2 = A1k(ε0 + ε0εr −A1ke
−2kb(ε0 − ε0εr))

A2 =
A1

2
[(1 + εr)− e−2kb(1− εr)]

with ε1 = ε0εr, ε2 = ε0, ε3 = ε0

By returning to (2.52) :

A1 −A1e
−2kb =

A1

2
[(1 + εr)− e−2kb(1− εr) +B2]

B2 = A1[1− e−2kb − 1

2
(1 + εr) +

e−2kb

2
− e−2kbεr

2
]
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B2 =
A1

2
[(1− εr)− e−2kb(1 + εr)]

From (2.55):
B3 = −A3e

2kg

Now we add them together the relations (2.53) and (2.54) :

A2e
kz2 −B2e

−kz2 −A3e
kz2 +B3e

−kz2 =
Q

ε0k

By using B3 from (2.55) and A2 from above :

A3 =
A1

2
[(1 + εr)− e−2kb(1− εr)]−Q

e−kz2

2kε0

and so

B3 = −A1

2
[(1 + εr)− e−2kb(1− εr)]e2kg +Q

e−kz2

2kε0
e2kg

Now its important to find A1. From (2.54):

ε0kA2e
kz2 − ε0kB2e

−kz2 − ε0kA3e
kz2 + ε0kB3e

−kz2 = Q

−A1

2
e−kz2 [1− εr) + (1 + εr)e

2kg − e−2kb(1 + εr)− e−2kbe2kg(1− εr) =
Q

2ε0k
− Q

2ε0
e−2kz2e2kg

The relation inside the bracket can become :

ekg(e−kg + ekg)− e−2kb(1 + e2kg) + εr(−1 + eekg) + εr(e
−2kbe2kg − e−2kb)

(ekg + e−kg)ekg(ekb − e−kb + εre
kge−kb(ekg − e−kg(ekb + e−kb))

4 cosh(kg) sinh(kb)ekge−kb + 4εr sinh(kg) cosh(kb)ekge−kb

4ekge−kbD(k) withD(k) = cosh(kg) sinh(kb)ekge−kb + εr sinh(kg) cosh(kb)

Now returning to the previous relation to find A1:

−A1

2
e−kz24ekge−kbD(k)

A1 =
Qekb

4ε0D(k)
(ek(g−z2) − e−k(g − z2)

A1 =
Qekb

2ε0D(k)
sinh(k(g − z2)) (2.56)
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And so to find the others variables :

A2 =
A1

2
[(1 + εr)− e−2kb(1− εr)]

A2 =
Q

4ε0D(k)
sinh(k(g − z2))[2sinh(kb) + 2εr cosh(kb)]

A2 =
Q

2ε0D(k)
sinh(k(g − z2))[sinh(kb) + εr cosh(kb)] (2.57)

B2 =
Q

2ε0D(k)
sinh(k(g − z2))[sinh(kb)− εr cosh(kb)] (2.58)

A3 =
Q sinh(k(g − z2))

2ε0D(k)
(sinh(kb) + εr cosh(kb))− Qe−kz2

2ε0k
(2.59)

B3 =
Qe−kz2e2g

2ε0k
− Q

2ε0kD(k)
sinh(k(g − z2))[sinh(kb) + εr cosh(kb)e2kg] (2.60)

As we told before the solution on different areas are on form of : fi = Aie
kz +Bie

−kz

We will show the potential on areas 2 and 3,that they have a charge Q between them.

f2 = A2e
kz +B2e

−kz

f2 =
Q

2ε0D(k)
sinh(k(g − z2))[sinh(kb)ekz + er cosh(kb)ekz + sinh(kb)e−kz − er cosh(kb)e−kz]

f2 =
Q

2ε0D(k)
sinh(k(g − z2))[sinh(kb)(ekz + e−kz) + er cosh(kb)(ekz − e−kz)]

f2 =
Q

ε0D(k)
sinh(k(g − z2))[sinh(kb) cosh(kz) + er cosh(kb) sinh(kz)] (2.61)

f3 = A3e
kz +B3e

−kz

f3 =
Q

2ε0D(k)
sinh(k(g − z2))[sinh(kb) + er cosh(kb)]ekz − Q

2ε0k
e−kz2ekz +

Q

2ε0k
e−kz2e2kge−kz]

f3 =
Q

ε0D(k)
sinh(k(g − z))[sinh(kb) cosh(kz2) + er cosh(kb) sinh(kz2) (2.62)

If we assume that the charge are on r0 = 0 the the voltages for these areas are in form of :

ϕ2(k, z) = 1
2π

∫∞
0
J0(kr)f2(k, z)dk ϕ3(k, z) = 1

2π

∫∞
0
J0(kr)f3(k, z)dk

From (2.49) :

φ2(r, z) =
Q

4π(ε0

1√
r2 + (z2 − z)2

1

2π

∫ ∞
0

J0(kr)[f2(k, z)− Q

2ε0
e−k(z2−z)]dk (2.63)
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φ3(r, z) =
Q

4π(ε0

1√
r2 + (z − z2)2

1

2π

∫ ∞
0

J0(kr)[f3(k, z)− Q

2ε0
e−k(z−z2)]dk (2.64)

The expressions represent a point charge Q in free space together with a term that accounts for the presence of
the dielectric layer and the grounded plate, which is more suited for numerical evaluation.

2.6.1 Weighting fields

To find the weighting potential for a readout pad,readout strip and the full electrode we use (2.29) :

Φ1(x, y, z) =
1

π2

∫ ∞
0

∫ ∞
0

sin(kxx) sin(kxx0) sin(kyy) sin(kyy0)
Q sinh[k(g − z2)] sinh[k(z + b)]

ε0kD(k)
dkxdky (2.65)

The Qind for a readout pad is :

Qind =

∫ +wx
2

−wx
2

∫ +
wy
2

−wy
2

∫ ∞
0

∫ ∞
0

−εr + ε0
∂ϕ1

∂z
|z=0dxdy

Qind =
−4Qεr
π2

∫ ∞
0

∫ ∞
0

sin
(
kx
wx
2

)
sin
(
ky
wy
2

)
sin(kxx0) sin(kyy0)

sinh[k(g − z2)]

kxkyD(k)
dkxdky

We know that :

Qind = −Qφw(x0, y0, z0)

Vw

and by the reciprocity theorem :

φw(x, y, z) =
4Vwεr
π2

∫ ∞
0

∫ ∞
0

sin
(
kx
wx
2

)
sin
(
ky
wy
2

)
sin(kxx0) sin(kyy0)

sinh[k(g − z)]
kxkyD(k)

dkxdky (2.66)

For a readout strip wy →∞

φw(x, z) =
4Vwεr
π2

∫ ∞
0

sin
(
kx
wx
2

)
sin(kxx0)

sinh[k(g − z)]
kxkyD(k)

∫ ∞
0

cos
(

2syy
wy

)
sin(sy)

2sy
wy

2

wy
dsydkx

φw(x, z) =
4Vwεr
π2

∫ ∞
0

sin
(
kx
wx
2

)
sin(kxx0)

sinh[k(g − z)]
kxkyD(k)

π

2
dkx

φw(x0, y0, z0) =
2Vwεr
π

∫ ∞
0

sin
(
kx
wx
2

)
sin(kxx0)

sinh[k(g − z)]
kD(k)

dkx (2.67)

with ky =
2sy
wy

For the full electrode wx →∞ wy →∞ k = 0:

sinh[k(g − z)]
kD(k)

=
k(g − z)
kb+ kgεr

because for small values of k sinh(x) ' x and cosh(x) ' 1

And so for the weighting potential :

φw(z) =
εrVw(g − z)
b+ gεr

(2.68)
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Figure 16: Weighting field Ez at position z = g/2 for b = 4g and wx = 20g. The three curves represent
εr = 1(bottom),εr = 8(middle),εr =∞(top).

In figure 17 we can see the a weighting field for a strip electrode of width wx and infinity extension

Figure 17: Weighting field for a strip electrode of width wx and infinity extension.

We first assume the geometry to represent a single layer RPC with a gas gap of g = 0.25 mm and a resistive
layer of dielectric permittivity εr and thickness b = 1 mm. We assume a very wide readout strips width wx = 5 mm
and we find for the z-component of the weighting field in the center of the gas gap(z = 0.125 mm). as shown in
figure 16. The three curves represent dielectric permittivities of εr = 1(bottom), 8(middile)∞(top). The strip
extends between −10 < x/g < 10 and the value at x/g = 10 is therefore half of the peak as required by symmetry
for a wide readout strip. The value in the center of the strip is close to the one from 2.68 for the ’infinitely wide’
strip and it is clear from this expression that a higher dielectric permittivity of the resistive plate will increase the
weighting field and therefore the induced signal. The value εr = 8 which is typical for glass and bakelite used in
RPC’s gives a shape that is already close to the one for an arbitrarily large permittivity.

2.6.2 Effect of Resistivity

Figure 18: A geometry with three layers and one point charge.
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Now we will calculate what happens when we put a point charge Q on the surface of the resistive plate at t = 0
as shown in figure 18 :

for ε1 = ε0εr + σ/s ε2 = ε+ 0 Q1 = Q/s

E1(r, z, s) = − Q

2sπ

∫ ∞
0

kJ0(kr)
sinh(gk) cosh(k(b+ z))

ε0[sinh(bk) cosh(gk) + (εr + σ/(ε0s) cosh(bk) sinh(gk)
dk (2.69)

E2(r, z, s) =
Q

2sπ

∫ ∞
0

kJ0(kr)
sinh(bk) cosh(k(g − z))

ε0[sinh(bk) cosh(gk) + (εr + σ/(ε0s) cosh(bk) sinh(gk)
dk (2.70)

We want to know the stationary situation so :

lim
s→0

sE(r, z, s) :

E1(r, z) = − I0
2σπ

∫ ∞
0

kJ0(kr)
cosh(k(b+ z))

cosh(bk)
dk (2.71)

E2(r, z) =
I0

2σπ

∫ ∞
0

kJ0(kr)
tanh(bk)cosh(k(g − z))

sinh(gk)
dk (2.72)

with Q = I0/S
2

We see that E1 does not depend on g but depends only on the thickness b of the resistive layer. This is evi-
dent from the fact that there is no DC current that can flow through the gas gap, so only the geometry of the
resistive layer is relevant.
The current density i0(r) flowing into the grounded plate at z = −b is related on the field on the surface of the
grounded plate by

i0(r) = −σE1(r, z = −b) =
I0
b2π

∫ ∞
0

1

2
J0

(yr
b

) y

cos(y)
dy (2.73)

with y = bk

For small values of r we can insert the series expansion for J0(x) and evaluate the integrals gives :∫ ∞
0

1

2
J0

(yr
b

) y

cos(y)
≈ 0.916− 1.483(

r

b
)2 + 1.873(

r

b
)4 − ... (2.74)

For large values of r : ∫ ∞
0

1

2
J0

(yr
b

) y

cos(y)
≈ π

2
√
r/b

e−
rπ
2b

r

b
� 1 (2.75)

Both those approximation of current are plotted in figure 19 and we see that for r/b > 2 the exponential approxi-
mation describes the situation already to very high accuracy.
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Figure 19: Current density i0(r) at z = −b. The blue curve represent the second order approximation of (2.74),
the green curve the fourth order approximation of (2.74) and the yellow curve the approximation of (2.75).

2.6.3 Surface resistivity

(a) Genetal 3 layer geometry with a point charge Q2. (b) A resistive plate with conductivity σ together with
an thin layer of surfave resistivity RΩ /square and im-
pressed current I0

Figure 20

The glass or Bakelite might develop a conductive surface once the electric field is applied. We employ the
formalism for 3 layer geometry like before with :

ε1 = ε0εr + σ/s ε2 = ε0 + 1
sz2R

ε3 = ε0 Q1 = 0 Q2 = I0
s2

with z0 = −b z1 = 0 z2 z3 = g

and we perform the z2 → z1 = 0 With the previous process and by using lims→0 sf(k, z, s) :

f1(k, z) =
I0

σ[cosh(kb) + k/(Rσ) sinh(bk)]
[sinh[k(b+ z)]] (2.76)

f3(k, z) =
1

σ

I0
sinh(kg)[cosh(kb) + k/(Rσ) sinh(bk)]

[sinh(kb) sinh[k(g − z)]] (2.77)

E1(r, z) = − I0
2σπ

∫ ∞
0

kJ0(kr)
cosh[k(b+ z)]

cosh(kb) + k/(Rσ) sinh(bk)
dk (2.78)

E3(r, z) =
I0

2σπ

∫ ∞
0

kJ0(kr)
sinh(kb) cosh[k(g − z)]

sinh(kb) + k/(Rσ) sinh(bk)
dk (2.79)
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And the current i0(r) :

i0(r) = −σE1(r, z = −b) =
I0
b2π

∫ ∞
0

1

2
J0

(yr
b

) y

cos(y) + y
β2 sinh(y)

dy (2.80)

with β2 = Rσb

In the limit of high resistivity R → ∞ we recuperate the expression from the previous section without any re-
sistive surface layer.

i0(r) =
I0
b2π

β2

2

√
π

2

e−
βr
b√
βr
b

(2.81)

Comparing this with relation (2.75) we see that the radial exponential decay of the current is not any more governed
ny the characteristic length 2b/π by b/β.

2.7 Single Thin Resistive Layer

Now we want to study the fields of a single layer of surface resistivity R at z = 0,where we place a charge Q at
r = 0 at t = 0. We write Q(t) = QΘ(t) with Θ(t) the Heavyside step function. If we use the Laplace domain in
take the form Q(s) = Q/s.

(a) A resistive layer with surface resistance R. (b) 3 layer geometry

In this case also we use a 3-layer geometry with variables :

ε1 = ε0 ε2 = ε0 + 1
sz2R

ε3 = ε0 Q1 = Q
s Q2 = 0

By taking the limits :

z0 −→ −∞ z1 = 0 z2 −→ 0 z3 −→ +∞
The solution for the 3 areas are :

f1 = A1e
kz +B1e

−kz ⇒ f1 = A1e
kz

f2 = A2e
kz +B2e

−kz

f3 = A3e
kz +B3e

−kz ⇒ f3 = B3e
−kz

B1 = 0 and A3 = 0 because at the infinities the quantities f1, f2 must be zero.

Boundary conditions
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f1 = f2 ⇒ A1 = A2 +B2 z = z1 = 0 (2.82)

ε0A1 −
(
ε0 +

1

sRz2

)
(A2 −B2) = Q⇒ ε0A1 − (ε0 +

1

sRz2
)A2 +

(
ε0 +

1

sRz2

)
B2 = Q z = z1 = 0 (2.83)

A2e
kz2 +B2e

−kz2 = B3e
−kz2 z = z2 (2.84)

(
ε0 +

1

sRz2

)
A2e

kz2 −
(
ε0 +

1

sRz2

)
B2e

−kz2 + ε0B3e
−kz3 = 0 z = z2 (2.85)

We multiply (2.82) with (ε0 + 1
sRz2

) and add it with (2.83) :(
2ε0 +

1

sRz2

)
A1 − 2

(
ε0 +

1

sRz2

)
A2 = Q

A2 = A1
2ε0sRz2 + 1−QsRz2

2(sRz2ε0 + 1)
(2.86)

B2 = A1 −A2 = A1 −A1
2ε0sRz2 + 1−QsRz2

2(sRz2ε0 + 1)

B2 =
A1 +QsRz2

2(sRz2ε0 + 1)
(2.87)

from (2.84) by using A2 and B2 from above :

B3 =
A1

2(sRz2ε0 + 1)
[2(sRz2ε0 + 1)e2kz2 + 1]− QsRz2

2(sRz2ε0 + 1)
(e2kz2−1) (2.88)

Now from all the above we have:

A1 = Q
sRz2ε0e

kz2 + cosh(kz2)

k(sRz2ε0 + 1)

sRz2(ε0sRz2 + 1)

2(ε0sRz2)2ekz2 + 2sRz2ε0ekz2 + sinh(kz2)

A1 = Q
sRz2ε0e

kz2 + cosh(kz2)sRz2
2ε0sRz2ekz2(ε0sRz2 + 1) + sinh(kz2)

A1 = Q
(sRz2)2ε0e

kz2 + ekz2+e−kz2

2 sRz2

2ε0sRz2ekz2(ε0sRz2 + 1) + ekz2−e−kz2
2

(2.89)

If we use z2 −→ 0 :

A1 =
QsR

k(2ε0sR+ k)

and if we use
Q = Q

s

A1 =
QR

2ε0sR+ k
(2.90)

From (2.86),(2.87) :

A2 =
QR

2(2ε0sR+ k)
= B2 (2.91)
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With the knowledge of the 3 of 4 coefficients we can go now to (2.88) and find the B3 :

B3 =
QR

2ε0sR+ k
(2.92)

If we return to the solutions f1,f2,f3 :

f1 = A1e
kz ⇒ f1 =

QR

2ε0sR+ k
ekz (2.93)

f2 = A2e
kz +B2e

−kz ⇒ f2 =
QR

2ε0sR+ k
cosh(kz) for z = 0 (2.94)

f3 = B3e
−kz ⇒ f3 =

QR

2ε0sR+ k
e−kz (2.95)

We will use the solution f1 and f3 for some cases of layers in the next parts. We prefer to use them in the
time domain :

f1 = Q
2ε0
e−k(vt−z) f3 = Q

2ε0
e−k(vt+z) for v = 1

2ε0R

2.7.1 Infinitely extended resistive layer

(a) A point charge placed at an infinitely extended resis-
tive layer at t = 0.

(b) The solution for the time dependent potential is equal
to a point charge moving with velocity v along the z-axis.

Figure 21

We will start from an infinitely extended layer. The charge Q will cause currents to flow inside the resistive
layer that are "destroying" it. The solution for the potential is :

φ1(k, z, t) =
Q

4πε0

∫ ∞
0

J0(kr)e−k(vt−z)dk (2.96)

φ3(k, z, t) =
Q

4πε0

∫ ∞
0

J0(kr)e−k(vt+z)dk (2.97)

and from (2.9) :

φ1(r, z, t) =
Q

4π(ε0

1√
r2 + (−z + vt)2

(2.98)

φ3(r, z, t) =
Q

4π(ε0

1√
r2 + (z + vt)2

(2.99)
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The potential to the point charge placed on the infinitely extended resistive layer at t = 0 is equal to the po-
tential of a charge Q that is moving with velocity v = 1

2ε0R
away from the layer along the z-axis.

We can calculate the charge density q(r,t) on the resistive layer through Gauss law :

q(r, t) = ε0
∂ϕ1

∂z
|z=0 − ε0

∂ϕ3

∂z
|z=0

q(r, t) =
Q

2π

vt√
r2 + (v2 + t2)3

(2.100)

Lastly we calculate the total current I(r) flowing radially through a circle of radius r :

I(r) =
2rπ

R
E(r) = −2rπ

R

∂ϕ1

∂r
|r=0 =

Qvr2

r2 + (v2t2)3/2
(2.101)

2.7.2 Resistive layer grounded on a rectangle

Figure 22: A point charge placed on a resistive layer that is grounded on a rectangle.

In this case the resistive layer a grounded boundary at x = 0 , x = a and y = 0 , y = b and place a charge Q
at position x0, y0 at t = 0. The potential is given by (2.30). We assume that the currents pointing outside of the
boundary, the currents flowing through 4 boundaries are :

I1x(t) = − 1
R

∫ b
0
−∂ϕ1

∂x |x=0dy I2x(t) = 1
R

∫ b
0
−∂ϕ1

∂x |x=ady

I1y(t) = − 1
R

∫ a
0
−∂ϕ1

∂y |y=0dy I2y(t) = 1
R

∫ a
0
−∂ϕ1

∂y |y=bdy

with 1
R = 2ε0v

φ1 =
4

ab

∞∑
l=1

∞∑
m=1

sin

(
lxπ

a

)
sin

(
lx0π

b

)
sin
(myπ

a

)
sin
(my0π

b

) f1
k

with f1 = Q
2ε0
e−k(vt−z)

We will start with the I1x(t)
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φ1 =
Q

2ε0

4

ab

∞∑
l=1

∞∑
m=1

sin

(
lxπ

a

)
sin

(
lx0π

b

)
sin
(myπ

a

)
sin
(my0π

b

) e−k(vt−z)
k

−∂φ1
∂x
|x=0 =

Q

2ε0

4

ab

∞∑
l=1

∞∑
m=1

lπ

a
sin

(
lx0π

b

)
sin
(myπ

a

)
sin
(my0π

b

) e−k(vt−z)
k

I1x(t) = − 1

R

∫ b

0

−∂φ1
∂x
|x=0dy =

2ε0v
Q

2ε0

4

ab

∞∑
l=1

∞∑
m=1

lπ

a
sin(

lx0π

b
) sin

(myπ
a

)
sin
(my0π

b

) e−k(vt−z)
k

dy

I1x(t) =
4Qv

a2

∞∑
l=1

∞∑
m=1

l

m
[1− (−1)m] sin

(
lx0π

b

)
sin
(my0π

b

) e−k(vt−z)
k

(2.102)

By doing the same we have for the other currents :

I2x(t) =
4Qv

a2

∞∑
l=1

∞∑
m=1

l

m
(−1)l[−1 + (−1)m] sin

(
lx0π

b

)
sin
(my0π

b

) e−k(vt−z)
k

(2.103)

I1y(t) =
4Qv

b2

∞∑
l=1

∞∑
m=1

m

l
[1− (−1)l] sin

(
lx0π

b

)
sin
(my0π

b

) e−k(vt−z)
k

(2.104)

I2y(t) =
4Qv

b2

∞∑
l=1

∞∑
m=1

m

l
(−1)m[−1 + (−1)l] sin

(
lx0π

b

)
sin
(my0π

b

) e−k(vt−z)
k

(2.105)

2.7.3 Resistive layer grounded at ±a and insulated at ±b

Figure 23: A point charge placed on a resistive layer that is grounded on at x = 0 and x = a but insulated on the
others border.

In this case the resistive layer is grounded at x = 0 , x = a and insulated at y = 0 , y = b. The currents are
only flowing into the grounded elements at x = 0 , x = a. By using (2.31) we can have :

I1x(t) = − 1

R

∫ ∞
0

−∂ϕ1

∂x
|x=0dy = − Q

Tπ

sin
(
x0π
a

)
cosh

(
t
T

)
− cos((fracx0πa)

(2.106)

I2x(t) = − 1

R

∫ ∞
0

−∂ϕ1

∂x
|x=ady = − Q

Tπ

sin
(
x0π
a

)
cosh( tT ) + cos

(
x0π
a

) (2.107)

For big large times both the expressions :

I1x(t) = I2x(t) ' −2Q

Tπ
sin
(x0π
a

)
e

−t
T (2.108)



31 2. Electric fields,weighting fields and signals in detectors including resistive materials

Both those two currents and the approach for large values can be observe on the next figure. We assume that we
have a charge deposit at position x0 = a/4

Figure 24: Currents I1x(t)(top) and I2x(t)(bottom) from the of figure 23 for x0 = a/4. The straight line in the
middle refers to the approximation from 2.108.

2.7.4 Resistive layer parallel to a grounded plane

(a) A resistive layer with surface resistance R in presence
of a ground layer at distance b

(b) 3-layer geometry by performing the indicated limits of
the expressions for z2,z3

Figure 25

In this part we want to study the fields and charges in a layer of surface resistivity R at z = 0 where we place
a charge Q. AT r = 0 at t = 0 in presence of a grounded plane at z = −b as shown in figure 25.
Like before we have ε1 = ε0 ε2 = ε0 + 1

sz2R
ε3 = ε0 Q1 = Q

s Q2 = 0
By taking the limits :

z0 = −b z1 = 0 z2 −→ 0 z3 −→ +∞
The solution for the 3 areas are :

f1 = A1e
kz +B1e

−kz ⇒ f1 = A1e
−bk +A2e

kb

f2 = A2e
kz +B2e

−kz

f3 = A3e
kz +B3e

−kz ⇒ f3 = B3e
−kz

A3 = 0 because at the infinity the quantity f2 must be zero.
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By using the previous process or with the help of some programs like Mathematica we find :

A1 =
QRekb

2D(k)
B1 =

−QRe−kb

2D(k)
A3 = 0 B3 =

−QR sinh(kb)

D(k)

with
D(k) = k sinh(kb) + ekbε0Rs

In the Laplace domain :

A1 =
QRekb

2D(k)
B1 =

−QRe−kb

2D(k)
A3 = 0 B3 =

−QR sinh(kb)

D(k)
(2.109)

2.8 Uniform currents on thin resistive layers

In this part we discuss the potentials that are created on thin resistive layers from uniform charge deposition. In
detectors like RPC’s and Resistive Micromegas such resistive layers are used for application of the high voltage and
for spark protection. The resistivity must be chosen small enough to ensure that potentials that are established
on these layers due to charge-up are not influencing the applied electric fields responsible for the proper detector
operation. If such detectors are in an environment of uniform particle irradiation the situation can be formulated
by placing a uniform "externally impressed" current per unit area i0 on the resistive layer.

Figure 26: Uniform current "impressed" on the resistive layer will result in a potential distribution that depends
strongly on the boundary conditions.

First we will investigate the geometry shown in figure 25. We have a charge dq at position x0 and y0 and after
a time t is given by :

dq(t) = i0r0dr0dφ0t and in Laplace domain dq(s) = i0r0dr0dφ0
1
s2

From 2.7 we replace Q/s by q(s) so :

f1(k, z) =
Ri0r0dr0dφ0

k
ekz f2(k, z) =

Ri0r0dr0dφ0
k

e−kz (2.110)

In this geometry we have a rectangular. We replace r0dr0dφ0 by dx0dy0 and perform integration
∫ a
0
dx0

∫ b
0
dy0 on

(2.30) and so :

φ1(x, y, z) = φ3(x, y,−z) = abRi0
4

π4

∞∑
l=1

∞∑
m=1

[1− (−1)l][1− (−1)m] sin( lxπa ) sin(myπb )

l3mb/a+m3la/b
eklmz (2.111)

This expression cannot be written in closed form. The peak can be found by setting dφ1/dx=0,dφ1/dy = 0. It can
be found at x = a/2 and y = a/2, which is also evident for symmetry on this geometry.
The maximum potential on the resistive layer is then :

φmax(a/2, b/2, z = 0)
1

8
a2b2Ri0

128

π4

∞∑
l=1

∞∑
m=1

(−1)l+m

b2(2l − 1)3(2m− 1) + a2(2m− 1)3(2l − 1)
(2.112)
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for square geometry (a = b) the sum evaluates to ≈ 0.59 so the peak voltage in the center is :

φmax ≈ 0.074Ri0a
2 = 0.074RItot (2.113)

2.9 Uniform Currents on a resistive plate covered with a thin resistive layer

(a) Geometry to define a single resistive layer of thickness
d covered by a resistive surface layer of resistance R Ω/
Square.

(b) Uniform currents of+i0,−i0 on the top and bottom of
the surface

Figure 27

In this part we want to investigate the potential drop across a rectangular resistive plate that is covered by a
thin resistive layer, that is grounded on two sides.
From before in this case we have :

f1(k, z) =
i0
σ

ekz sinh
(
kz
2

)
cosh

(
kd
2

)
+ k

Rσ sinh
(
kd
2

) (2.114)

f5(k, z) = − i0
σ

ek(d−z) sinh
(
kz
2

)
cosh

(
kd
2

)
+ k

Rσ sinh
(
kd
2

) (2.115)

We can see that f5(k, z) = f1(k, d− z), which is due to the symmetry of the problem. For uniform illumination
we proceed as before by talking the solution a grounded geometry at x = 0 and x = b and insulated at y = 0 and
y = b and we write i0dx0dy0 and integrate over x0 and y0, which gives :

φn(x, z) = 2a

∞∑
l=1

[1− (−1)l] sin
(
lxπ
a

)
l2π2

fn(lπ/a, z) (2.116)

The potential difference between the top and the bottom of the plate, is given by :

∆V (x) = φ1(x, z = 0)− φ5(x, z = d) =
4ai0
σ

∞∑
l=1

[1− (−1)l] sin
(
lxπ
a

)
l2π2

sinh
(
ldπ
2a

)
cosh

(
ldπ
2a

)
+ lπ

aRσ sinh
(
ldπ
2a

) (2.117)

The maximum potential found at x = a/2 and evaluates at :

∆V (a/2) = frac2ai0σ

∞∑
l=1

[1− (−1)l]2(−1)(l+1)/2

l2π2

sinh( ldπ2a )

cosh( ldπ2a ) + lπ
aRσ sinh( ldπ2a )

(2.118)

For a infinitely long layer we expand the expression for small values of d/a :

∆V (a/2) ≈ frac2ai0σ
∞∑
l=1

[1− (−1)l]2(−1)(l+1)/2

l2π2

ldπ

2a
=
i0
σ
d = ∆V0 (2.119)

which is the expected expression for the voltage drop across s resistive plate. The effective resistance of a small
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surface A id therefore given by :

∆V0 =
i0
σ
d =

i0A

σA
d = I0

d

σA
= I0R0 (2.120)

with R0 = d
σA

In case the plate resistivity is much larger than the surface resistivity we can neglect the first term in the de-
nominator and the expression evaluates to :

∆V (a/2) =
1

4
a2Ri0 := ∆V1 (2.121)

The effective resistance of a small surface A is :

∆V1 =
1

4
a2Ri0 =

1

4A
a2RAi0 =

1

4A
a2RI0 = R1I0 (2.122)

with R1 = 1
4Aa

2R
The transition between the two cases pf surface resistivity only and bulk resistivity only is therefore given when
R1 = R2

For
R0 = R1 → R =

4D

σa2
:= Reff (2.123)

The expression for the potential difference across the plate can be written :

∆V (x) =
4ai0
σ

∞∑
l=1

[1− (−1)l] sin
(
lxπ
a

)
l2π2

sinh
(
ldπ
2a

)
cosh

(
ldπ
2a

)
+

Reff
R

lπa
4d sinh

(
ldπ
2a

) (2.124)

and defining f = d/(2a), the maximum potential ∆V in the center of the resistive plate at x = a/2 :
The expression for the potential difference across the plate can be written :

∆V (x)−∆V0 =

∞∑
l=1

[1− (−1)l]2(−1)(l+1)/2

lπ

sinh
(
lfπ
lπf

)
cosh (lπf) +

Reff
R

lπ
8f sinh (lπf)

(2.125)

As an approximate model one can assume that the current that is placed on the resistive plate will divide to
the effective resistances R1 and R2, so the voltage drop should be given by

∆V ≈ R0R1

R0 +R1
I0 =

∆V0

1 +
Reff
R

(2.126)

This expression is very close to the first term of the sum in (2.125),(l = 1) in face of f � 1.
For practical RPC’s applications with glass RPC’s, the glass thickness is typically 0.4 mm and the length a is
about a = 0.7cm, so a typical value is f = 0.01. The figure 28 shows both those expressions and we see that the
expression works quite well.
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Figure 28: Voltage across the center of the resistive plate for a value of f = d/(2a) = 0.01. The dots refer to the
exact formula (2.125), the curved line corresponds to the approximation from (2.126).

2.10 Signals and charge spread in detectors with resistive elements

In this subsection we calculate the signals induced on a readout pad or a readout strip in presence of a resistive
layer, either as a bulk resistive layer touching the readout structure figure 29 or as a thin resistive layer that is
insulated from readout pads(figure ). Like we discussed before the time dependent weighting fields for a pad of

(a) Weighting field for a geometry with a resistive layer
having a bulk resistivity of ρ = 1

σ
.

(b) Weighting field for a geometry with a thin resistive
layer of value R.

dimension wx and wy centred at zero and a infinitely long strip of width wx and wy centred at zero, can be written
:

Ezw(x, y, z, t) =
Vw
g

4

π2

∫ ∞
0

∫ ∞
0

cos

(
kx
x

g

)
sin

(
kx
wx
2g

)
cos

(
ky
y

g

)
sin

(
ky
wy
2g

)
h(k, z, t)

kxky
dkxdky (2.127)

Ezw(x, y, z, t) =
Vw
g

2

π

∫ ∞
0

∫ ∞
0

cos

(
kx
x

g

)
sin

(
kx
wx
2g

)
h(k, z, t)

kxky
dkxdky (2.128)

for both geometries.

2.10.1 Layer with bulk resistivity

For a layer with bulk resistivity of ρ = 1/σ the expression of h(k,z) (for 0<z<g) is :

h(k, z, t) = kcosh

(
k

(
1− z

g

))(
εrδ(t)

D(k)
+

1

τ0
b1(k)e−

tf1(k)
τ0

)
(2.129)

D(k) = sinh

(
k
b

g

)
cosh(k) + εr cosh

(
k
b

g

)
sinh(k) (2.130)
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b1(k) =
sinh

(
k bg

)
cosh(k)

D(k)2
f1(k) =

sinh(k) cosh
(
k bg

)
D(k)

(2.131)

with τ0 = ε0/σ = ε0ρ

We investigate the geometry where the ground plate at z = −b is segmented into infinitely long strips of width wx.
We assume a pair of charges Q,-Q produced at t = 0 at z = 0, the charge Q does not move and the charge -Q
moves from z = 0 to z = g with uniform velocity z(t) = vt = gt/T , 0<t<T,T = g/v(figure ).
The current is :

I(t) = −−Q
Vw

∫ ∞
0

Ew(x, z(t′), t− t′)z′(t′)dt′ =
Q

Vw

∫ ∞
0

Ew(x, z(t′), t− t′)g/Tdt′ t < T (2.132)

I(t) = −−Q
Vw

∫ T

0

Ew(x, z(t′), t− t′)z′(t′)dt′ =
Q

Vw

∫ T

0

Ew(x, z(t′), t− t′)g/Tdt′ t > T (2.133)

And so :

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos

(
kx
x

g

)
sin

(
kx
wx
2g

)
× [

εr cosh (k − kt/T )

D(k)
+

+b1
e

−tf1
τ0 (f1 cosh(k) + τ0

T ksinh(k))− f1 cosh
(
k − k tT

)
−K τ0

T sinh
(
k − k tT

)
k2

τ2
0

T 2 − f21
dk (2.134)

I(t > T ) =
Q

T

∫ ∞
0

2

π
cos

(
kx
x

g

)
sin

(
kx
wx
2g

)
b1e
− t−Tτ0 f1 e

−Tf1
τ0 (f1 cosh(k) + k τ0T sinh(k))− f1

k2
τ2
0

T 2 − f21
dk (2.135)

For a very high resistivity limit τ0 →∞ the layer represents and insulator and :

lim
τ0→∞

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos

(
kx
x

g

)
sin

(
kx
wx
2g

)
εr cosh

(
k − k tT

)
D(k)

dk

lim
τ0→∞

I(t > T ) = 0 (2.136)

For the case where the layer represents a perfect conductor the expression becomes :

lim
τ0→0

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos

(
kx
x

g

)
sin

(
kx
wx
2g

)
cosh

(
k − k tT

)
sinh(k)cosh

(
k bg

)dk

lim
τ0→0

I(t > T ) = 0 (2.137)

This last expression is correct if the strips are truly grounded.

For any realistic setup where the strips are connected to readout electronics and therefore have a finite resis-
tance to ground, the signal will spread to all the strips together with the bulk behave as one single node. The
result is therefore correct only to levels of conductivity σ where the impedance between the strips is significantly
larger than the input resistance of the amplifier.
Figures 29,30,31 show the induced current signals given above on a central strips wx = 4g and the first neigh-
bouring strip centred at x = 4g for different values of conductivity, for a different time constants τ0. The figures
show in dashed lines also the limiting cases for a very large and very small values of τ0.
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(a) x = 0 (b) x = 4g

Figure 29: Uniform charge movement from for z = 0 to z = g, with εr = 1,wx = 4g,b = g,t0 = 10T .

(a) x = 0 (b) x = 4g

Figure 30: Uniform charge movement from for z = 0 to z = g, with εr = 1,wx = 4g,b = g,t0 = T .

(a) x = 0 (b) x = 4g

Figure 31: Uniform charge movement from for z = 0 to z = g, with εr = 1,wx = 4g,b = g,t0 = 0.1T .

First we observe that all the signals are unipolar, which is due to the fact that the charge that is flowing in
the resistive bulk layer in order to compensate the charge −Q sitting in the surface of the resistive plate. is
truly coming out of the readout strips. For τ0 = T the signal is significantly affected and develops a long tail for
t>T due to the flow of charge compensating the point charge on the surface. The smaller the conductivity, the
longer(smaller) is the tail of the signal, for τ0 = 10T . For short time constants of the resistive layer the signal on
the central strip is large and has short tail and the crosstalk to the neighbor strips increases(for τ0 = 0.1T ).
Next we will give the result for a pair of charges created at z = g and the charge -Q moving from z = g to z = 0
with z(t) = g − gt

T .
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I(t < T ) =
Q

T

∫ ∞
0

2

π
cos

(
kx
x

g

)
sin

(
kx
wx
2g

)(
εr cosh(kt/T

D(k))
+ b1f1

e
−tf1
τ0 − f1 cosh

(
k tT
)

+ k τ0T sinh
(
k tT
)

k2
τ2
0

T 2 − f21

)
dk

(2.138)

I(t > T ) =
Q

T

∫ ∞
0

2

π
cos(kx

x

g
) sin

(
kx
wx
2g

)
b1e−

t−T
τ0

f1f1
e

−Tf1
τ0 + k τ0T sinh(k)− f1 cosh(k)

k2
τ2
0

T 2 − f21
dk (2.139)

For a very high resistivity limit τ0 →∞ the layer represents and insulator and :

lim
τ0→∞

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos

(
kx
x

g

)
sin

(
kx
wx
2g

)
εr cosh

(
k tT
)

D(k)
dk

lim
τ0→∞

I(t > T ) = 0 (2.140)

For the case where the layer represents a perfect conductor the expression becomes :

lim
τ0→0

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos

(
kx
x

g

)
sin

(
kx
wx
2g

)
cosh

(
k tT
)

sinh(k)cosh
(
k bg

)dk

lim
τ0→0

I(t > T ) = 0 (2.141)

2.11 Layer with surface resistivity

Last we discuss the example for a thin layer of surface resistivity R on top of an insulating layer. The expression
of h(k,z) :

h(k, z, t) = k cosh

(
k(1− z

g
)

)(
εrδ(t)

D(k)
− 1

T0
b2(k)e−

tf2(k)
T0

)
(2.142)

D(k) = sinh(k

(
b

g

)
) cosh(k) + εr cosh

(
k
b

g

)
sinh(k) (2.143)

b2(k) = k
εr sinh

(
k bg

)
sinh(k)

D2(k)
f2(k) = k

sinh(k) sinh
(
k bg

)
D(k)

(2.144)

with T0 = ε0Rg is the ’time constant associated with the resistive layer’ in the given geometry.
For a pair of charges Q,-Q produced at t = 0 at z = 0, the charge Q does not move and the charge -Q moves from
z = 0 to z = g during a time T, we find :

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos

(
kx
x

g

)
sin

(
kx
wx
2g

)
× [

εr cosh (k − kt/T )

D(k)
+

−b2
e

−tf2
τ0 (f2 cosh(k) + τ0

T ksinh(k))− f2 cosh
(
k − k tT

)
−K τ0

T sinh
(
k − k tT

)
k2

τ2
0

T 2 − f22
dk (2.145)

I(t > T ) =
Q

T

∫ ∞
0

2

π
cos

(
kx
x

g

)
sin

(
kx
wx
2g

)
b2e
− t−Tτ0 f2 e

−Tf2
τ0 (f2 cosh(k) + k τ0T sinh(k))− f2

k2
τ2
0

T 2 − f22
dk (2.146)
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The limited case for high resistivity is equal to the previous subsection’s where there is only an insulating layer.
For the limited case for small resistance R, the I(t) becomes zero, since the resistive layer turns into a ’metal plate’
that shields the strips from the charges −Q and Q.
The signals for a central strip of width wx = 4g as well as the neighbouring strips at x = 4g and x = 8g as shown
in figures 32-36 for different values of R and different time constant T0.

(a) x = 0 (b) x = 4g (c) x = 8g

Figure 32: Uniform charge movement from for z = 0 to z = g, with εr = 1,wx = 4g,b = g,t0 = 10T .

(a) x = 0 (b) x = 4g (c) x = 8g

Figure 33: Uniform charge movement from for z = 0 to z = g, with εr = 1,wx = 4g,b = g,t0 = T .

(a) x = 0 (b) x = 4g (c) x = 8g

Figure 34: Uniform charge movement from for z = 0 to z = g, with εr = 1,wx = 4g,b = g,t0 = 0.1T .
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(a) x = 0 (b) x = 4g (c) x = 8g

Figure 35: Uniform charge movement from for z = 0 to z = g, with εr = 1,wx = 4g,b = g,t0 = 0.01T .

(a) x = 0 (b) x = 4g (c) x = 8g

Figure 36: Uniform charge movement from for z = 0 to z = g, with εr = 1,wx = 4g,b = g,t0 = 0.001T .

In case the time constant T0 is large, the effect of resistivity disappears and the case of T0 = 10T shows signal
shapes very close to the on from the previous section for large values of τ0. For decreasing resistivity and so T0, we
see that the signal on the central strip starts to be "differentiated" and develops an undershoot and the crosstalk
to the other strips increases.
The signal are strictly bipolar. This is due to the fact that the current compensating the point charge −Q is entirely
flowing inside the thin resistive layer and no net charge is taken from or is arriving at the strips.
Next we will give the result for a pair of charges created at z = g and the charge -Q moving from z = g to z = 0

I(t < T ) =
Q

T

∫ ∞
0

2

π
cos

(
kx
x

g

)
sin

(
kx
wx
2g

)
εr cosh(kt/T )

D(k)
−b2f2

e
−tf2
T0 − f2 cosh(k tT ) + k T0

T sinh(k tT )

k2
τ2
0

T 2 − f22
]dk (2.147)

I(t > T ) =
Q

T

∫ ∞
0

2

π
cos

(
kx
x

g

)
sin

(
kx
wx
2g

)
b2e−

t−T
T0

f2f2
e

−Tf2
T0 + k T0

T sinh(k)− f2 cosh(k)

k2
T 2
0

T 2 − f22
dk (2.148)
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3 Micromegas Simulation with Ansys Maxwell

In this Section and the next one we will try to analyze some structures of Micromegas Modules. Specifically in
this Section we will create some variety of MM, with the help of Ansys Maxwell 14.0. Our aim is to check how the
capacitance between the strips are changing for every one of those modules. Our analysis will focus mostly for the
values between the central strip and the two neighbor in all those cases.

Maxwell is a high-performance interactive software package that uses finite element analysis(FEA) to solve two-
dimensional and three-dimensional (3D) electric,magnetostatic, eddy current and transient problems. In this
section in order to create the modules we need, we solve two-dimensional problems.

3.1 Structure of the creating Modules by Maxwell

In the following figure that was taken by a microscope we can see a form of the Micromegas Module that we
examine in our work.

Figure 37: Micromegas Module by microscope

The Micromegas modules that we are creating in this section are consist of the following parts :

(A) the bottom is the element Fr4 with dielectric constant 4.4.

(B) the readout strips that they are important to read the signal and they are creating from copper.

(C) the area between the Resistive and the Readout strips consisting of insulating material PC1025 Dupont with
dielectric constant 3.5.

(D) the Resistive strips that they consisting of Resistive material with conductance 0.059 siemens/m and dielec-
tric constant 1.

(E) a support area of the Module(we will not focus on this).

In the next subsection we will give more details about those parts and their dimensions.

3.2 Micromegas Modules

In the following figure is shown the general structure of the Micromegas module that was built by the Ansys
Maxwell program. The following module has 3 Resistive strips and 3 read out strips.
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Figure 38: Micromegas Module with 3 Resistive and 3 readout strips.

As we discussed in the previous subsection all of our models are included by the fr4, the Dupont and a number
of Resistive and Readout Strips. We will also add a Mesh(line) from Iron on a distance 18µm from the Resistive
strips and also we put the Ground on the down part of the Fr4.

As for the size of its components Ansys Maxwell give us a great variety of options to change the dimensions
on the 3 axis and "play" with them. We will hold the 2-D option for our structure.

So to have a basis for all of the Modules we are going to discuss, we will give the the following dimensions to
the elements :

• The resistive strips have width 300µm and thickness 15µm

• The Read Out strips have width300µm and thickness 17µm

• The Fr4 has 500µm thickness.

• The kapton has 85µm thickness .

• The line has 27µm thickness.

• Between the kapton and the line we left a space of 128µm.

This section is concerned with 5 strips and 9 strips Modules. Our Modules were slipped on two categories the LM
Modules and the SM Modules. The different between those two Modules is the pitch. The LM Module has 450µm
pitch and the SM Module has 425µm pitch.

Figure 39: LM Module
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Figure 40: SM Module

For this section we built with Maxwell 7 Modules :

• two LM Modules with 5 and 9 strips each

• two SM Modules with 5 and 9 strips each

• one 5 strips Module with 100µm distance between the strips

• and finally two Modules with 5 strips each for those two categories, but this time we added as new material
glue.

By doing all these Modules we want to see how the capacitance between the strips change, by add more materials
on the Module or increase the distance of some of the components.

3.2.1 Micromegas 5 strips LM Module

The first module is discussed is a 5 strips(Resistive and Readout) LM Module. In the end of the analysis with
Maxwell, the program will give us a panel with the capacitance of all the strips.We focus on the central strips
that in this case is Readout Strip 3 and the Resistive strip 3(Res-Ro) and the capacitance between this strip and
Readout Strip 2(Ro-Ro), Resistive Strip 2 and the capacitance between Resistive strip 3 and 2(Res-Res). The values
we got from this module are :

• Res-Res : 2.6861

• Res-Ro : 163.3

• Ro-Ro : 30.39

Figure 41: 5 strips LM Module

In the following table Maxwell gathered all the capacitance between the strips. The abbreviations Res and Ro
are for Resistive and Readout strips. As for the the numbers of the strips were selected for the row that they were
placed on the Module.
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Figure 42: Table of capacitance for 5 strips LM Module.

3.2.2 Micromegas 5 strips SM Module

The process in this module is the same with the difference that in the SM Module the distance between the strips
is less than before.

• Res-Res : 4.4941

• Res-Ro : 158.27

• Ro-Ro : 36.27

Figure 43: 5 strips SM Module

Figure 44: Table of capacitance for 5 strips SM Module.

If we compare the 5 LM Module with this we can observe a different in the 3 values. The Res-Res and the Ro-Ro
values are higher in the SM Module, but the Res-Ro value are lower.

3.2.3 Micromegas 9 strips LM Module

In this case we increase the number of strips from 5 to 9 in the strips and their distances from each other are the
same with the 5 strips LM module.

• Res-Res : 4.4941

• Res-Ro : 158.27

• Ro-Ro : 36.27
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Figure 45: 9 strips LM Module

Figure 46: Table of capacitance for 9 strips LM Module.

3.2.4 Micromegas 9 strips SM Module

This module also is the same with the 5 strip SM Module but with 9 strips instead of 5.

• Res-Res : 2.6861

• Res-Ro : 163.3

• Ro-Ro : 30.39

Figure 47: 9 strips SM Module

Figure 48: Table of capacitance for 9 strips SM Module.

3.3 More cases of micromegas Modules

As the next step we examine some more cases of Micromegas Modules with different distances between the strips
and what happens if we put more elements in one of these Modules.

3.3.1 Micromegas 5 strips LM Module with 100µm

We will start with reducing the distance between the Resistive strips and the Readout Strips at 100µm. In the
next table we have the results for the central Strip.

• Res-Res : 6.92
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• Res-Ro : 153.3

• Ro-Ro : 45.92

Figure 49: 5 strips 100µm LM Module

Figure 50: Table of capacitance for 5 strips 100µm LM Module.

3.3.2 Micromegas 5 strips LM Module with Glue

In this last two cases we have the same 5 strips LM and SM modules but with an extra glue layer above the
Dupont. The layer is actually Glue from teflon with Relative Permittivity 2.08.

• Res-Res : 4.28

• Res-Ro : 136.38

• Ro-Ro : 28.42

Figure 51: 5 strips LM Module with glue

Figure 52: Table of capacitance for 5 strips SM Module with glue.
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3.3.3 Micromegas 5 strips SM Module with Glue

In this last case we have the same 5 strips LM module but with an extra glue layer(thickness of 35 µm above the
Dupont).

• Res-Res : 6.07

• Res-Ro : 133.09

• Ro-Ro : 34.14

Figure 53: 5 strips SM Module with glue

Figure 54: Table of capacitance for 5 strips SM Module with glue.

3.4 Coclusion

In the following table are included the values for the central strips for all the previous cases.

Table 3: Capacitances for different modules of Micromegas

5 LM 5 Sm 9 LM 9 SM 5 LM with Glue 5 SM with Glue 100µm
Res-
Res

2.6861 4.4941 2.6861 4.4941 4.2824 6.07 6.9205

Ro-Ro 30.39 36.27 30.39 36.27 28.42 34.14 45.92
Res-
Ro

163.3 158.4 163.3 158.4 136.4 133.09 153.3

From the table some conclusions have been drawn :

• For the 5 strips Modules(with Glue or without) the capacitance between the Resistive strips and the Readout
Strips of 100µm Module has higher values from the SM Module and this has higher values than LM Module
but the values between the Resistive strips and the Readout strips are upside down. We can say that as long
we reduce the distance between the Resistive and the Readout strips the values of the Capacitance increase
and also the values between the Resistive and the Readout strips reduce.

• For 9 strips Module we have the same results with the 5 strips Modules and the same values. It seems that
the most important thing is the central strips and so the results did not change.

• If we compare the 5 LM and SM Modules(with and without Glue) we can make a conclusion that we every
layer we add the value between the Resistive and between the Readout strips starting to reduce.
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4 Micromegas Simulation with LTspice

4.1 Introduction

In this Section we will continue the analysis with the help of LTspice. With LTspice we will create the circuits that
correspond to the Maxwell modules of the previous Section. We will also observe the signal from the central strips
and those around it and how it changes for different values of capacitance.
As a basis We use the circuit by Ludwig-Maximilians-Universitat Munchen - Lehrstuhl Schaile(figure 55).

Figure 55: Ludwig-Maximilians-Universitat Munchen - Lehrstuhl Schaile Module.

As it clear from the figure we applied a current pulse.

Table 4: variables of current I

Current Values(Amper)
I1 0 A
I2 100µΑ
Tdellay 100 nA
Trise 0.1 nA
Tfall 0.1 nA
Ton 18.4 nA
Tperiod 0.1 nA

The capacitors C9 and C3 correspond to the capacitances between the resistive strips. C11 and C4 correspond
to the capacitances between the readout strips. C10,C11,C1 are the capacitances between resistive and readout
strips.
The capacities C5,C7,C6,C8,C12,C13 correspond to the readout for our circuit and we use the values from our
prototype model(1 nf and 2, 4 pf).

4.2 Spice Simulation with LM and SM Modules

As in the previous section we working on 5 and 9 strips modules LM and SM. And for every one of them we draw
the figures for the output signal of the central and neighbor strips,output voltage and the output current. For
those figures we will obtain the percentage of diffusion from the central to the neighbor strips.
In all those figures the line with the bigger depth represents the central strip and the others two are for the neigh-
bor strips.

• 5 strips LM Module

First we start with the 5 strips LM Module(Figure 56).
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Figure 56: 5 strips LM Module with Spice

After we create the circuit for 5 strips with the help of spice we draw our two graphs(Figures 57-58)

The percentage of diffusion from the central to neighbor strips as we can observe from the two figures is 5%

Figure 57: output voltage for central and neighbor strips
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Figure 58: output current for central and neighbor strips

• 5 strips SM Module

Next we continue for the 5 strips SM Module. We follow the same steps as in the LM Module for 5 strips but
this time with the values of capacitance for the SM Module.
As we can clearly see for the figure no changes were made for the resistance, the current pulse or the capacities of
the output. The only thing that changed are the capacitance between the resistive-readout strips and each other.

Figure 59: 5 strips SM Module with Spice

In the next page are represented the figures for the output Voltage and Current for the central and neighbor
strips. The percentage of diffusion from the central to the neighbor strips as we can observe from the two figures
is 7.5%



51 4. Micromegas Simulation with LTspice

Figure 60: output voltage for central and neighbor strips

Figure 61: output current for central and neighbor strips

• 9 strips LM Module

For this case we extended our module circuit from 3 strips Module to 9. As in 5 strips Modules we did not
change the resistance, the current pulse or the capacities of the output, we just put 9 capacitors for the resistive
strips and 9 capacitors for the readout strips.
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Figure 62: 9 strips LM Module with Spice

By observing the circuit of LM Modules we can see that the values between the central and the neighbor strips
are almost the same, so we expected the percentage to be the same in this case.
Sure enough the percentage as we can observe from the two figures is also 5%

Figure 63: output voltage for central and neighbor strips
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Figure 64: output current for central and neighbor strips

• 9 strips SM Module
Lastly the same procedure was followed for the 9 strips SM Module.We still only change the values of the 3 kinds
of strips that we gathered from Maxwell, that in this case we have higher values between the resistive strips and
between the readout Strips and lower between resistive-readout strips unlike on LM Module.

Figure 65: 9 strips SM Module with Spice

As we expectedthe percentage of diffusion from the central to the neighbor strips is also 7.5% such as the 5
strips SM Module.
From those results we can confirm that the quotient of central and the neighbor strips is independent to the
number of strips but it depends to the distance between the strips. As we put the strips closer to each other we
observe that the percentage is growing and we expect that it will go even higher in other case for example for the
100 um Module we discussed in the previous Section.
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Figure 66: output voltage for central and neighbor strips

Figure 67: output current for central and neighbor strips

4.3 Spice with Mesh

In all those previous circuits we used Modules with just Resistive and Readout strips. In this subsection we will
add a mesh with a resistor to have a case more close to our Maxwell Modules.
In figure 68 is shown the circuit with the mesh that was created. We want to see how the resistance in the mesh
affect the previous graphs and the percentages.
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Figure 68: Circuit with a Mesh and a resistance

We will give to the resistance range of values from 0 Ohm to 10000 Ohm.

Table 5: Resistance on the Mesh and percentage of diffusion

Resistance(Ohm) percentage of diffusion
0 4.7
10 4.8
100 7
1000 8.5
10000 9

(a) Resistor 0 Ohm Central Strip (b) Resistor 0 Ohm Neighbor Strips
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(a) Resistor 10 Ohm Central Strip (b) Resistor 10 Ohm Neighbor Strips

(a) Resistor 100 Ohm Central Strip (b) Resistor 100 Ohm Neighbor Strips



57 4. Micromegas Simulation with LTspice

(a) Resistor 1000 Ohm Central Strip (b) Resistor 1000 Ohm Neighbor Strips

(a) Resistor 10000 Ohm Central Strip (b) Resistor 10000 Ohm Neighbor Strips



4. Micromegas Simulation with LTspice 58

We forgot to add that in this circuit we make some small changes to Current Source I.

Table 6: variables of current I

Current Values(Amper)
I1 0 A
I2 100µΑ
Tdellay 100 nA
Trise 0.1 nA
Tfall 5 nA
Ton 200 nA
Tperiod 0.1 nA

From the figures we can we conclude some results about the use of a mesh with a resistor :

• First of all by using a zero resistance the result is the same with the previous 5 strips LM Module we worked.

• With the increase of the value of the resistance the percentage between the central and the neighbor strips
starting to increase too but without great observable increase.

• After we put a resistance with value we observe a change in the voltage of the current, but due to the
complexity of the circuit is not easy to apprehend the reason for it.

4.4 Changes on Capacitances

The next step is to observe how the signal from the central strip and the neighbor strips change if we change the
capacities between the strips for the LM and SM modules. We will focus on 3 cases :

1. values of capacitance between resistive strips

2. values of capacitance between readout strips

3. values of capacitance between resistive and readout strips

4.4.1 Changes on capacitance between Resistive strips

For the first case we will give to the capacitance between the Resistive strips values from 10 pf to 350 pf. We we
will start with the LM module and after that we will do the same process with the SM module.

With the help of the table we create the figures of the above percentage with the values they respond.

Observation : By observing the graphs we can see that there is a non-linear increase of the percentage for
those two modules for increase values of capacitance. The values of the percentage are slightly more in the SM
module.

Table 7: Capacitance between Resistive strips and percentage of diffusion(%)

Capacitance(pf) LM SM
10 3.8 9.7
30 18.5 18.7
50 24.3 25
100 34.7 35.5
150 41.5 42.2
200 46.2 47.2
250 50 51.4
300 53 54.1
350 55.8 56.6
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Figure 69: Value of percentage due to capacitance between Resistive strips.

Figure 70: Value of percentage due to capacitance between Resistive strips.

4.4.2 Changes on capacitance between readout strips

We will continue like before but this time we will give to the capacitance between the readout strips values from
10 pf to 350 pf. We we will start with the LM module and after that we will do the same process with the SM
module.
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Table 8: Capacitance between readout strips and percentage of diffusion

Capacitance(pf) LM SM
30 5 7.5
50 6.8 8.5
100 10.5 12.3
150 13.5 15.5
200 16.3 18.3
250 19 21
300 21.3 23
350 23.2 25

Figure 71: Value of percentage due to capacitance between readout strips.

Figure 72: Value of percentage due to capacitance between readout strips.
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Observation : By observing the graphs we can see that there is a linear increase of the percentage for those
two modules for increase values of capacitance. The values of the percentage are slightly more in the SM module.

4.4.3 Changes on capacitance between Resistive-Readout strips

we continue with the capacities between Resistive-Readout strips with values from 10 pf to 350 pf.

Table 9: Capacitance between Resistive-Readout strips and percentage of diffusion

Capacitance(pf) LM SM
10 20.8 31.7
30 10.6 17.6
50 7.8 13.3
100 5.6 9.08
150 5 7.75
200 4.6 6.61
250 4.3 6.31
300 4.29 5.96
350 3.9 5.59

Figure 73: Value of percentage due to capacitance between Resistive-Readout strips.
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Figure 74: Value of percentage due to capacitance between Resistive-Readout strips.

Observation : By observing the graphs we can see that there is a drastic reduction of the percentage for those
two modules for increase values of capacitance. The values of the percentage are slightly more in the SM module.
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Appendix A
Changes to Capacitances between
Resistive Strips

LM Module

• 10 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.1: 10 pf between Resistive strips

• 30 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.2: 30 pf between Resistive strips
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• 50 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.3: 50 pf between Resistive strips

• 100 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.4: 100 pf between Resistive strips

• 150 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.5: 150 pf between Resistive strips



66

• 200 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.6: 200 pf between Resistive strips

• 250 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.7: 250 pf between Resistive strips

• 300 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.8: 300 pf between Resistive strips
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• 350 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.9: 350 pf between Resistive strips

SM Module

• 10 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.10: 10 pf between Resistive strips

• 30 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.11: 30 pf between Resistive strips
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• 50 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.12: 50 pf between Resistive strips

• 100 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.13: 100 pf between Resistive strips

• 150 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.14: 150 pf between Resistive strips
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• 200 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.15: 200 pf between Resistive strips

• 250 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.16: 250 pf between Resistive strips

• 300 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure A.17: 300 pf between Resistive strips
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• 350 pf

(a) output current for central and neighbor strips (b) Resistor 0 Ohm Neighbor Strips

Figure A.18: 350 pf between Resistive strips
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Changes to Capacitances between Readout
Strips

LM Module

• 30 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.1: 30 pf between Readout strips

• 50 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.2: 50 pf between Readout strips
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• 100 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.3: 100 pf between Readout strips

• 150 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.4: 150 pf between Readout strips

• 200 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.5: 200 pf between Readout strips
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• 250 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.6: 250 pf between Readout strips

• 300 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.7: 300 pf between Readout strips

• 350 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.8: 350 pf between Readout strips
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SM Module

• 30 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.9: 30 pf between Readout strips

• 50 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.10: 50 pf between Readout strips

• 100 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.11: 100 pf between Readout strips
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• 150 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.12: 150 pf between Readout strips

• 200 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.13: 200 pf between Readout strips

• 250 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.14: 250 pf between Readout strips
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• 300 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.15: 300 pf between Readout strips

• 350 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure B.16: 350 pf between Readout strips
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Changes to Capacitances between
Resistive-Readout strips

LM Module

• 10 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.1: 10 pf between Resistive and Readout strips

• 30 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.2: 30 pf between Resistive and Readout strips
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• 50 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.3: 50 pf between Resistive and Readout strips

• 100 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.4: 100 pf between Resistive and Readout strips

• 150 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.5: 150 pf between Resistive and Readout strips
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• 200 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.6: 200 pf between Resistive and Readout strips

• 250 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.7: 250 pf between Resistive and Readout strips

• 300 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.8: 300 pf between Resistive and Readout strips



80

• 350 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.9: 350 pf between Resistive and Readout strips

SM Module

• 10 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.10: 10 pf between Resistive and Readout strips

• 30 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.11: 30 pf between Resistive and Readout strips



81

• 50 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.12: 50 pf between Resistive and Readout strips

• 100 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.13: 100 pf between Resistive and Readout strips

• 150 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.14: 150 pf between Resistive and Readout strips
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• 200 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.15: 200 pf between Resistive and Readout strips

• 250 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.16: 250 pf between Resistive and Readout strips

• 300 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.17: 300 pf between Resistive and Readout strips
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• 350 pf

(a) output voltage for central and neighbor strips (b) output current for central and neighbor strips

Figure C.18: 350 pf between Resistive and Readout strips
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