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MepiAnwn

2TNV TTapouoa METATTTUXIOKK MEAETN Ba aoxoAnBoupe pe 1o ABeAIavo-
Higgs povTtéAo kal ev ouvexeia Ba eTekTaBouue o€ pnN-ABREAIOVES
auBopunTa oTTaCUEVESG Bewpieg BaBUidog, Kal CUYKEKPIPEVA TO
KaBiepwpévo MpoTuTro, TTPOKEINEVOU VA ECETACOUNE TOV TPOTTO HE TOV
OTTOi0 ETTIOPOUV 01 KPAVTIKEC DIOPOWUOEIC OTIC PUOIKEC TTAPANETPOUG TWV
MOVTEAWYV, OTTWG gival ol oTaBePEC oUleueng Kal ol HACEC. ZUYKEKPIUEVAQ,
EVW UTTOPOUME VA DIOAEEOUUE MIa OUYKEKPIPEVN BaBuida yia va
UTTOAOYIOOUE TO €MEIC KAvoupe OAn TNV di1adikacia o€ OUO EEXWPIOTES
Babpideg. EIdIKOTEPQ, EEKIVAUE TOV UTTOAOYIONO WE TNV BaBuida Unitary,
OTTOU EKEI UTTAPXOUV POVO O QUOIKOi BaBuoi eAcuBepiag, Kal ev ouvexeia
XPNOIMOTTOIWVTAC TO UTTORaBpO TNG diatapakTikiS KRavTikAG @swpiag
Mediou, dONAadN pEow Twv diaypauuaTtwy Feynman, el0ayoupe
dlapduuaTa evOs BPOVXOU WS KBAVTIKES DIOPBWOEIC ATTOKOMICOVTAC TNV
evepyo Aaykpavrtdiavr) TNV OTTOIA ETTAVOKAVOVIKOTTOIOUME PE PUOIKO
TPOTTO. A0V OI ETTAVAKAVOVIKOTTOINKEVEG TTAPAUETPOI JETABAAANOVTAI
WG OUVAPTNON TNG EVEPYEIOKNG KAipakag. Ev ouvexeia,
TTPAYMATOTTOIOUME AKPIPWGS TOV idI0 UTTOAOYIOUO KOl O€ Jia Tuxaia RE
Babpida é1Tou Kal TTAAI aTTOKONICOUME TIC PUOIKEC TTOOOTNTEG. Twpa
OMWCG OEIXVOUUE JE TTOIOV TPOTTO OI TEAEUTAIES €ival aveCAPTNTES TNG
BaBuidag kai idieg pe autég TG Unitary Babuidac.

Twpa, To EVOIAPEPOV PJAG OTPEPETAI OTNV ETTAVAKAVOVIKOTTOINKEVN HAda
Tou Higgs ptrodoviou, KaBwg eKTOG aTTO AoYaPIOUIKES KBAVTIKES
O10pOBWOEIG DEXETAI KAI TETPAYWVIKEG, AVAANOYES TWV PAdWV TwV
cwpaTIdiwv Pe Ta otroia aAANAeTTIOPA 1O TTEdIO Higgs. AuTo TO
atroTéEAeca odnyei oTto TTPORANUA TNGS lepapxiag kal 0 Bacikds oTdx0G
TNG TTapoucag dIOAKTOPIKNAG dIATPIRAG €ival N HEAETN PIOG VEAG
TTPOCEYYIONG TOU TPOTTOU dlaxEipIong Tou TTPORAANATOS OAAG Kal PIag
mOavAG KaTeuBuvong €1TiAuong Tou. MNMpoKeINEVOU AUTO VA KATAOTEI
duvaTto, aKoAOUBOUE PIa CUYKEKPIMEVN HEBODOAOYIa CUNQWVA PE TNV
otToia utroAoyifoupe yia To ABeAlavo-Higgs povtélo kal To KaBiepwpuévo
MpdTuTro oTIg TEOOEPIG DIAOTATEIG, TIC POEC TG OAdAG
ETTAVOKAVOVIKOTTOINONG TTOU APOPOUV OUYKEKPIUEVES AVECAPTNTES
TTAPAUETPOUG. EV ouvexeia, xpnOIUOTTOIWVTAG TNV OXEON METAEU YUUVWV
KAl ETTAVOKOVOVIKOTTOINMEVWY TTAPAPETPWY QTIAXVOUME €vav V-OlA0TATO
XWPO PACEWV YIA TIC V AVEEAPTNTEC TTOPAUETPOUC. EKei oxedialovTal ol
Mpapuég Z1aBepnc PUOIKAC 01 OTTOIEC KATAYPAPOUV TNV PETABOAN TWV
AVECAPTNTWYV TTAPAPETPWYV WG TTPOC TNV EVEPYEIOKI KAIAKA ATTAITWVTOG
Ol QUOIKEG TTOOOTNTEG, OTTWG N pada Tou Higgs ptroloviou, va
TTapapévouv oTaBepEg. Me auTtdv Tov TPOTTO ATTOKAAUTITETAI TO



TTPORANPa TNG lepapxiag Kal BAETTOUHE TNV €CEAIEN TOU PEXPI TO TTOAO
Landau. To emréuevo Brpa cival va Bewprooupe 10 idI0 JOVTEAO
TTPOEPXOMEVO ATTO TIC TTEVTE DIACTACEIG, E OUVOPIOKEG OUVONRKES
orbifold, eicayovtag T1i¢ kataoTdoeig Kaluza-Klein. Autd pag odnyei TTaAI
OTIG TEOOEPIG DIAOTACEIS AAAG Twpa £xoupe Evav TTUpyo Kaluza-Klein
owaTIdiwV Yia KABE Eva aTTd Ta €idn UTTAPXOVTA CwHATIdIA.

2 xedlalovtag oAl TIC Mpapuég ZT1aBepnc PUOIKAC Ba dOUNE av Kal TTWG
Ta VEQ CWHATIOIO AKUPWVYOUV TOUG TETPAYWVIKOUG OpOoUG atrd TNV
ETTAVOKAVOVIKOTTOINUEVN MAla Tou Higgs ptToloviou divovTag pia d1€€000
oTo [MpoBAnua TNG lepapxiag. TEAoC yvwpilouue OTI TO TTPOBANUA AUTO
EyKeITal 0To BewpnTiKO TTACicIo TNG PUOIKOTNTAC, OTTOTE TTEPA ATTO TO
TTPORANPA TNG lepapxiag eCETACOUKE TO AV KAl TTWS CUVOEOVTAI JE THV
pMEBodOAoyia pag GAAa TTpoBAfuaTa auToU ToU TTAQICIiOU.






Eicaywyn

Adlau@ioBATNTO YEYoVvOG ival 0TI To KaBiepwuévo MpoTuTtro Twv
OTOIXEIWOWYV CWHATIOIWV £XEl HEAETNOEI DIECOBIKA Kal £XEI ETTIBERAIWOEI
at1ro OAQ Ta PEXPI TWPA TTEIPANATIKA dedouEva. H TeAeuTaia eEQIPETIKA
ONUAVTIKN TTIBERQIiWON TOU £pXETAl ATTO TNV TTPOCEATH TTEIPAMATIKN
avakaAuywn Tou cwpatidiou Higgs Tou avTioToXou unxaviopou, O OTToiog
atroTeAEl TOV akpoywviaio AiBo Tou KaBiepwpévou MNpotutrou. To TTpwTo
OTOIXEIO TO OTTOI0 avadelkvUEl TNV anuacia Tou Tediou Higgs €yKeITal oTo
YEYOVOG OTI HEOW TNG AAANAETTIOpAONG TOu PE Ta AAAa cwuaTidia, Ta
TEAEUTAIO ATTOKTOUV Al XWPiG OPWG va UTTAPXEI pNTA OTTACIUO TNG
OUPMETPIag BaBuidog otav trepIAaupavovtal cwuatidla Baduidog ue
Mada. AuTo etTiTuyxavetal otav 1o 1Tedio Higgs atToKTA PO AVAUEVOUEVN
TIUN OTO KEVO JEOW TOU QUBOPUNTOU OTTACIUMATOC TNG CUMMETPIOC
Babuidog, diatnpwvTag TNV cupueTpia Lorentz, kai To otroio £xel oav
ATTOTEAECHA Ta owWWATIOIa TTOU ouleuyovTal Hadi Tou va aTToKToUV Pada.
2TNV ouaia N cUupMETpia Babuidag Exel KPUPTED Kal EEaKOAoOUBE va
dlartnpeital KAt TTou KaBioTd To Kabigepwppévo MpdTutro pia
ETTAVOKAVOVIKOTTOINONUN Bswpia. MNépa atrdé Tov pnxavioud Higgs auto
TToU TTailel e¢ioou onUAvTIKO POAO OTNV KATAVONON TOU PUCIKOU KOOUOU
gival ol TTapApEeTPOI TToU €XEl TO OUVAUIKO Higgs, dnAadr n pada Tou Kai n
oTa0epd CeUENG ME TOV €AUTO TOU A. ZEKIVWVTOG PE TNV OUTEPN
TTAPAPETPO, KAl TTPAYUATOTTOIWVTAG MIA TTOIOTIKN avAAuon, yvwpilouue
OTI TO ETTAVAKAVOVIKOTTOINKEVO A HETABAAAETAI WG cUVAPTNON TNG
EVEPYEIOKNG KAIMOKAG ETTNPEACOUEVO KATA KOPWYV OTTO TNV TIKN TNG NAlag
Tou Higgs ocwpaTtidiou. MNa Tnv akpieia eav n TeAeuTaia gival TTOAU
MEYAAN TOTE, yIA YA OTABEPH AVAUEVONEVN TIUI TOU KEVOU, TO A €XEI
MEYAAN TINA ME ATTOTEAEOUA va odnynTal TTPo¢ 10 TTOAO Landau n
eTTavakavovikotroinuévn A. Apa peyaAuTepn pada tou Higgs cwpatidiou
OUVETTAYETAI JEYAAUTEPO A TTOU 0dnyei Tov TTOAO Landau o€ TTeipapaTika
ETTITPETTOUEVEG TTEPIOXEG. AUTO ONUAiVEl OTI OE EKEIVN TNV EVEPYEIQKN
KAijaka n Bswpia diatapaxwyv Ogv I0XUEI Kal Ba TTPETTEI va UTTAPXE! HIa
VEQ UnN dIOTAPAKTIK Bewpia IoXUpwWV AAANAETTIOPpACEWYV. To OpPIO AUTO
yia 1o A ovopddetal Tetpigpévo Opio. AvTIBETWG, €av n uadla Tou Higgs
owpaTidiou ival YiIkpn TOTE ep@aviCetal Eva AANO evOlaPEPoV OpIo OTTOU
TO ETTAVAKAVOVIKOTTOINUEVO A ETTNPEACETAI KUPIWG aTTO TA Bapéa
KOUAPKG, Kal €l aTTO TO top KOUAPK, ATTOKOUICOVTAG ApVNTIKEG TIMEG OTIG
UWPNAEC evEpyeleC. AUTO DNAWVEI PIa apVvNTIKA CUVEIOPOPA OTO QUVAMIKO
Higgs 1Tou €x&1 oav atroTéAeopa n Bewpia va yivetal acTaBAS Kal To
KaBiepwuévo MPATUTTO va YIVETAI U CUVETTEG TTAVW ATTO MIA EVEPYEITKN
KAipaka. To 6pio autd Aéyetal Oplo Aotadeiag. BéBaia n uadla Tou Higgs
OWMATIOIOU PMETPABNKE TTEIPAUATIKA KAl N TIMA TNG 0dnyei To A va eival
avaueoa oTa duo opia, dnAadry oto Opio MetaoTtabepoTnTag. H peAETN



TNG ETTAVOKAVOVIKOTTOINUEVNG MAlag Tou Higgs owpaTidiou gival e¢ioou
ONUAVTIKR KAl aTTOTEAEI TO BACIKO BEPa TNS TTapoucag dIOAKTOPIKAG
OIaTPIPRNG. ZUYKEKPIMEVA, N TEAEUTAIO £XEI IO TTOAU evOla®Eépouca
1I010TNTA CUMPWVA JE TNV OTToIa METABAAAETAI PE TNV EVEPYEIOKN KAIMOKa
AoyapIOUIKG aAAG KAl TETPAYWVIKA WG TTPOG TIG HACES TWV CWHATIOIWY
TToU aAANAETTIOPOUV e TO TTEdio Higgs. ApXIKG yvwpilouue OTI N QUOIKN
Madla Tou trediou Higgs cival HETPAOIUN TTEIPAPATIKA Kal gival ion e 125
GeV. O1éT1e TTapatneATal Yo JEYAAN dlagopd PHETAEU TWV TETPAYWVWVY
TNG QUOIKAG KAl TG ETTAVOKAVOVIKOTTOINUEVNG MAlag Tou Higgs, n oTToia
givalr avaloyn Twv TETPAYWVWY TwV JaldwVv TwV CWHATIdIWV TToU
aAAnAemmdpouv ue 1o TTedio Higgs kabwg kail Tou idlou. Apa atrd Tnv
OTIYUN TToU Ta Bap€a cwpartidia dev atroouleuyovTal, n Jala Tou TTediou
Higgs €ival euaiocOnTtn oTIC UPNAEC evépyeleg. YTTOBETOVTAC OTI TO
KaBigpwpévo MpdTutro gival To OpIo OTIG XAPNAES EVEPYEIEC UIAG TTIO
OAOKANPWHEVNGS Bewpiag TTOU gP@aviCeTal TTAVW ATTO MIA EVEPYEIOKN
KAipaka A, T0T€ n yupvn pala tou Higgs cwparidiou icouTal Pe TO
aBpoliopa TNG QuUOIKN NAlag Kal Tou TETpaywvou Tou A. Q¢ ouvETTEIa
auToU, Kal agou n Quaoikn pada cival ion pe 125 GeV, €dv 10 A avikel
oTnVv KAipaka Planck, 6a utrdpyel éva TEpAOTIO EVEPYEIAKO KEVO HETALU
Twv OU0. To yeyovog Ot n @uoiki pada tou Higgs cwuaTidiou gival T000
MIKpOTEPN aTTO TO A 00nyei oTo MNMpdRAnua NG lepapyxiag. H
oTTOUdAIOTNTA TOU TTPORARMATOC AUTOU EYKEITAI OTO YEYOVOGS OTI
QATTAITWVTAG N QUOIKA pada Tou TTediou Higgs va TTapauével ion Pe TNV
TTEIPAMATIKA TNG TIUA, Ba TTPETTEI VA UTTAPXEI AKUPWON OAWV TwV
€UAIoONTWY OTIC UWPNAEC EVEPYEIEC TETPAYWVIKWY OPpWV HE TEPAOTIO
aKpifela, To OTToi0 eV TTPOKUTITEI WG PUOIKNR dladikaaoia TS Bewpiag. To
TTapdv TPORANUa Eykertal oto BewpnTiKG TTACicIo TNG PuUOIKOTNTAC,
OUMQWVA PE TO OTTOIO OAEC OI TTAPANETPOI MIAG OTOIXEIWDOOUG Bewpiag
TTPETTEI VA €ival TNG TAENG TNG MovAdag.
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1 Abelian Higgs Model in the Unitary Gauge

In the present work we demonstrate how to perform the on-shell renormalization of the
Abelian Higgs Model so as to obtain the physical quantities. In order to do so we start

from the classical Lagrangian of the model that we study in a general gauge which reads

Lo 1

Lan = =1Fh = 5:OuA) + DAL +m?|H = AH[" + const. (1)

The next step is to consider the spontaneous symmetry breaking of the Z5 global
symmetry of the theory which through the Higgs mechanism will give mass to the gauge
boson and will produce several interacting terms. In order to see the Higgs mechanism
we should give to the scalar field a vacuum expectation value(vev) and this is done by

minimizing the potential that we have here, thus the minimization condition gives

dv (H) , ,
= —2m’H +4\H
T m°H + 4 \H° &
dv (H) ) N
= 2H (—m? + 2\H?) =0 (2)

which shows us that there is a local maximum at (H) = 0 and, in this specific geometry
space, two local minima at (H) = + 75 Therefore the vev that our scalar takes has the
_m
form vy = U5
Now, we can use two different ways in order to insert the vev inside the Lagrangian,
namely using the Cartesian or the Polar basis expansion of the scalar field. Here we
choose to use the second case which gives
X
oe v
H=—7 3
v g

and including the vacuum expectation value we obtain the following form

(¢ (x) +v) €0 ™
V2

where now ¢ (z) is the Higgs field and y (x) is the massless Goldstone boson. Thus if

H(z) = (4)

we insert (4) in the Lagrangian (1) then we get two sets of multiplying terms which give

the following



1 . i X . X
|D#H|2 = 3 (0p +1igA,) (¢ +vg) e ™ (0" —igA”) (p+vg)e ™ <
1 . . . .
|D#H]2 =5 0,0 + igA,d +igA, v [0" —igAt Y — igAMuo)

(9ux)? duX

+ (P +) T g o+ o) A,
v Vo

thus doing the calculation we get

1 1 1
D H|* = ié’ugba“(b - ZégauqﬁA“qb - iigvo(?“(b/l“
1 1 1
+ i§93M¢Au¢ + inguAu(/bQ + 592AM’UUAM¢
1 1 1
+ i§98“¢AuU0 + 59214“@014“925 + 5921’314”14#
(0ux)?

0
+ (+v0) g (p+00) A, &
UO UO

1 1 1
IDLHP = S0,00"0+ S g A" A" + g Ao At + Sg"0j A" A,

2
+ (@54‘“0)2(62)2()"'9(@54‘“0)2/4#?(-

0

(6)

It is very important to mention that from the forth and the sixth term of equation (6)

we obtain that our Lagrangian would be proportional to

2.2 2
g°vg 19,x

L~d 0 (g, 4 -2
5 <“+gv0

(7)

which gives a mass term for the physical gauge boson and a cross term between this

field and the non-physical Goldstone boson.

Next we consider the m?H? term which reads

m
m2|H|2 = 7(¢+Uo>2@
m? m3 m?
m2|]—[|2 — 7¢2+ A¢+2)\2 (8)



where we have used the explicit form vy = Z%&. Finally we have the term A[H |* which

after the spontaneous symmetry breaking gives

A
NH[' = 7 (0§ + 4080 + 6u5¢” + dugd® + ¢4)
m4 3 2

L (9)

NHID = e+ 5

where again we have used that vy = 7%. Now, we should put the equations (6), (8)
and (9) back in the Lagrangian (1). According to what we noticed in (7), doing this will
give us non-physical fluctuating degrees of freedom concerning the Goldstone bosons, in
addition of the extra non-physical fields corresponding to ghosts. Therefore, in order not
to have such states we should work in a physical gauge and thus we choose the unitary
gauge. In order to work in this gauge we should demanded that £ — oo and we should

perform a gauge transformation of the form

A(x) — Aﬂ(x)#—;aua(a:)

x(x) = x(@) —az)v
(10)

so as to set y(z) = 0 which gives only a massive physical gauge boson. Thus combining

every thing that we have mentioned before our Lagrangian becomes

1

Lag=—1F;, + (%%H "do) + 5

1

’ (11)
Iz AOAO_E 2 2_)\ 3_74
+ 9" gomzPA, A, 2mH0¢o 0V P; 1 by + const.

where we have defined that the subscript 0 denotes the bare parameters and fields of
the model.
Moreover, here we set that g2 = e3z%, where zp is a parameter that will be defined later,

2 _ 2,22 _ 2.9 _ - :
mz, = egupzy = Jovp is our gauge field square-mass, mpy, = v2m is the Higgs mass, Ao

is the quartic Higgs coupling and e, is the gauge boson coupling. Finally, vy = 32% is
the classical vacuum expectation value of the Higgs field.

Here we will have Feynman rules concerning the gauge and Higgs field propagators and
the vertexes that can be made from their combination, as we can see in Appendix A.
Fortunately, our Lagrangian does not have fluctuating non-physical degrees of freedom
and the only term coming from ghosts is non-dynamical, therefore there would not be

neither propagators concerning the ghosts fields ¢ and ¢ nor propagators concerning the

6



Goldstone boson y. Finally we can express all the parameters of the model as function of

the independent ones, using the following notation

w = M,

myg,
mHO

\/2_

Ao
Aoty = \/
2
mz,
Hy

@

Vg —

2
golo =
m

(12)

and according to this the only independent parameters left in this model are the Higgs
quartic A\, the Higgs mpy, and Z-boson mass mz,.
Thus the final form of (11) reads

- 1 m2 AO A0k ,uu>\0m2Z0 2 40 40
‘CAH = 4FMV 5 (au¢0)( ¢0) 2 Z()A A +9g 2 ¢OAMAV
m,
\/2/\m Ao
- Z°¢A°A°—§ o % — \| 5 i ® — °¢é+const. (13)
mm,

2 One-loop Corrections of the Abelian Higgs Model

XXX

2.1 One-point functions

The first quantum corrections at one-loop order come from the one-point functions,
namely the one-leg Tadpoles. Such diagrams come from the ¢® and ¢A,A, vertices.

Here the first case reads



and it has the form

A d*k i
7l _peQl [0
iTy = —6iSy 5 mHO/ 2n) (k2 - m%{) & (15)

A d*k ?
1 _ _pcl |20

which in d-dimensions could be written as

A —
Ti = 6Sp \/:(()ZL”HOM‘ I / d'k 1

7_‘,)d/Q Jrd/2 (]{32 _ m%io) .

where we have defined that the term Sk corresponds to a symmetry factor which
contains the number that multiplies the corresponding vertex. Generally, in every case
of Feynman diagrams that we face throughout this work we should consider symmetry
factors like the previous one. Therefore, before we move on, we should first declare the
way that we evaluate them in order to include them properly in our calculation. Now,
the procedure that we follow so as to consider the correct symmetry factors in each case
is the following:
Firstly we should consider the number of possibilities to connect outer lines with lines of
the vertices, thus we define np as the coefficient of this possibility.
Next we define the number of possibilities to connect all the inner lines of the given
vertices, and we define this number as n;.
Now we should consider all the possible lines that are equivalent in a vertex ¢ and this is
given by the factor ¢;.
Finally, as a last step we define the number of all the equal vertices of type j by v;.
Thus, having all these definitions in mind we can construct a general form that would

give us the symmetry factors of any Feynman diagram and which will read

nony
St =p—F - 17
t J
where a, b are indices which indicate the diagram that we study each time. So, for
this first case that we consider here, namely T}, we have that it comes from a ¢® vertex

which means that it has the following relations



no = 3
ny = 1
6, = 3
vy = 1 (18)

therefore, the symmetry factor here reads St = %

In addition this integral corresponds to the first case of the equation (454) so it gives

(4m) Ty = 3\/§mHOu4 Ao (m,)- (19)

The second one-leg Tadpole takes the form

““““““ (20)
which reads
/DN 2 ap. 1 (—g + k“k”>

nv m2
iTh = 2iShg / o 0L e (21)

m, (2m) (k;2 - m2Z )

V2 om> d*k —1 d+ £ S22

T2 =2(d+¢)S? ZO/ +2 T / 22
H ( ) T M, ( ) k2 M, 27T /{:2 _mZO ( )

where we have expanded the numerator and we have done the calculation. Here,
and in what follows, we use the fact that in d-dimensions the trace of the metric reads
9uwg"” = d + . Moreover, using the relation k*k” = g‘jT”kQ in d-dimensions the above

integral, which is similar with that from the first Tadpole, reads

(d+ )82 Y2 yama -y
TQO‘ T mHO d k 1
g =2 A2 imd/2 k2 — m2 =
(4m) Z (23)

2V2)\mZo 4dA0

Hy

(4m) 2T = 2(d + €)S7

(mZO)'

The second term of (22) corresponds to the case of equation (513) in the Appendix,
thus here we get that



V2Aom 2
St e Ty STy o dk ik

T3 = &
d  mz, my ) (2m)'k —my, (24)
d+ V2 om4
(4m) T = 2= = SEY R U (1, ).
0

Now adding equations (23) and (24) we obtain that

B 2om?> d+e~2 om
(am2 75 = 23 (0 o i) - 1 ) (29

moreover in this case we have that the diagram comes from a ¢A,A, vertex which

means that it has the following relations

no =
nr =
ﬁl -

v =

=N = =

(26)

thus, the symmetry factor here reads S? = % and therefore the full contribution of the

Tadpoles using equation (520) reads

MH, 2mpy,

(4m) 2Ty = N4d{3\/§mHoA0(mHo) +3 V2homz, Ao(mz,) + Sv2omy, } (27)

2.2 Two-point functions

Now we move on to the calculation of the one-loop two-point functions of the Higgs boson,

which will indicate the nature of the Hierarchy problem.

First we begin with a diagram coming from the ¢jA) A) vertex, which has the form:

_____ @. -—-- —iM! (28)
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The exact relation of this diagram is

Nomy, [ dk Z'<—9W + )
iML, = 4iSL, g 0z / 20/ o (29
. M m%fo (27T)4 (k2 - 7TLQZO) ( )
2 4 S Aomzy 4 2
Aom d*k —1 d—+e Mo m2 d*k ik
ML = 4(d+¢)S} ZO/ + 4 Ho / 30
H ( ) My m%]() (27T)4 kQ _ m2ZO d m2Z0 (27T)4 kz _ mQZO ( )

and as we can see except the coefficient of the integral everything else is the same with

that of (22), moreover in this case we have that the diagram comes from a ¢5A) A vertex

which means that it has the following relations

no = 2

ny = 1

L = 2

by = 2

vy = 1 (31)
therefore, the symmetry factor here reads Si,, = 3. Thus, with that in mind in

d-dimensions and using the relation (520) from the Appendix, we obtain the following

B Aom? d+eXm
MYy = 2 )R Ay () — 25 S U (L) |
0 0
Ao Aom}
a2 my = 46205 Ay(mg,) + 370 % |
Ho Hy

(32)

Next diagram that contributes as a one-loop two-point function comes from the ¢
vertex and has the form

—————— Lomm-- =M (33)

which reads

11



Ak
(2m)" k* — mi,
Ak —i

(2m) k> —m3,

IMEy = 6183, N [
(34)

M%I = 68/2\/11_1/\0/

again this is similar with the first one-leg Higgs Tadpole and moreover since that

diagram comes from a ¢* vertex it has the following relations

no = 4-3
nr = 1
lty = 4
v = 1 (35)
therefore, the symmetry factor here reads 8/2\/11.[ = % and thus in d-dimensions we get
that
(4’/T)d/2./\/l%{ = 3)\0u4_dA0(mH0). (36)

Now we move on to the next diagram which can be obtained multiplying the ¢§ vertex

with itself and gives

//_\\
el T =My (37)
which is equal to
d*k i i
iME = 1883, Ao / =
" “Joen)t (k2= mE,) ((k+p)* = mE,)
d*k —i

M = 1883, amd, / (38)

(2m)" (k2 = m3, ) ((k+p)° —m¥,)

where we should consider that since that diagram comes from the square of the ¢3

vertex it has the following relations

12



no = 3-3
ng = 2-1
6, = 3
by = 3
vy = 1
ve = 1 (39)
therefore, the symmetry factor here reads Sf’\,lH = %
Thus we can write this integral in d-dimensions where it takes the form
M, 9)\0m%{2lud_4 / .ddk; 1 -
(4m) @2 L im 2 (12— m3 ) (ke +p)° — i, )
(Am)2 M3, = 9/\0m§{0,ud_4Bo(p, My, M) (40)

where we have used the exact form of the first case of the equation (455) in Appendix
B.

The last two-point one-loop diagram that contributes to the Higgs-mass counterterm
comes from the square of the A}, A) vertex and gives

—---@--— =M (41)

This diagram corresponds to the following integral

. . k k
A (_gua + ’;'Z“) ( gup + s +p)ﬁ>
0

Zo

om)? (k2 — m2Z0> ((k +p) — mZO)

- ( gua_‘_l:;LLka)( Gus + (k+p7)n(k+p)5>
<t . (42)

o)t (R -m%)  ((k+p)°-mY,)

Aom3
ZM%‘I = —SSjllegf“/gaﬁ 0 QZO /
Hy (

)\0m4
MY = 884, 9" g =52 /
! M, I (

where since it comes from the square of the ngOAgAV vertex it has the following relations
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no =

_ =

nr =
by =
62 ==

v =

=N NN =

Vo =

(43)

therefore, the symmetry factor here reads Sjl\,lH = % In order to go on properly we

have first to deal with the numerator, namely we should simplify it so as to be able to
identify its terms with the relations that we have presented in B. Therefore, we have that

the numerator becomes

vV k ka (k+p)y<k+p)
N = gﬂ g A —Ypa + uT —0vg + 5 Ll
m

Zo ZO
e kP (k+p),(k+p)g
# m2ZO p m2Z0
s kVEP (k+p),(k+p)
- () et
my, my,
v kY kP kY kP
v g
= g 591/,8 - o5 (kukb’ + kupﬁ +p1/kﬁ +p1/p5) - 7291/,8 + —a (kz/kﬂ + kl/pﬁ + pukﬁ + pl/p,é’)
my, mz, mz,
d+e(k*+2k-p+p? k? d+e) k* + 2Kk - p + k?p?
S D A Lt Al AL AL PR
d my, my, d my,

where we can see that there appears a term proportional to k* which actually will give

rise to a highly divergent U-integral. In particular, this integral will read

1 d*k —ik*
UM4(p7mZ07mZO) = 4 /( 4

(45)

and its solution is given in App.D. Fortunately, here we do not have to evaluate it

since the last term of the numerator could be written as

14
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kY4 2k%k - p+ Ep* K*(k +p)? (46)
my, my,

making the reduction easier.
Thus, putting the numerator that we found in equation (42) we get four terms, namely

Ao d*k —14
my, J (2m) (k _mZo) ((k; +p) —mZO)

Jd+e) Ao, / d*k ik?
d - mi, Jo2n)" (k2 —m3,) ((k+p)° —mb,)
(d +€) Aom% d*k i(k +p)?
+ 4 2 : / 4 2
d - mi, Jo@n)t (k2= m) ((k+p) = m,)
_ Ad+e2) Ao / d*k ik*(k + p)?
& miy S 2m)" (k2 = m, ) ((k+p)* —m3,)

where we notice that these terms correspond to the relations (455) and (576) from the

Appendix, thus we can write M?% in a compactified form as follows

Aom%
(4m)PMy = “d4{4(d+5) fn2 2 Bo(p.mz,, mz,)
Hy

v 4 d+€ )\07’712
QMVBH (p7mmeZ0)_ ( g ) mJ2Z0

4(d +é >\07n2 v
( ) Zo G By, (0, Mgy, my,)

B d m, Ho
4(d+6) )\0 v 4(d+€) )\0
+ 7 mi%{omzzog,wB“ (p, mzy, mz,) + pE mig{om%vo(mZo)
(48)
where we have defined that
d*k —i(k + p)? (49)

vBitp(p,mzy, mz,) = / '
9w Bip (25, M) (2m)* (k:2 - m220> ((k +p)° - m2Zo)

Finally, we should add all the corresponding diagrams in order to compute the com-
plete contribution of the one-loop two-point functions to the Higgs boson propagator, thus

adding (32), (36), (40) and (48) we obtain
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2 4
Amz,

3\m
(4W)d/2MH(P) = Md_4{62Ao(mZo) + 3 Zo + 3/\0A0(mH0)

mHO mHO

Aom?
+ 9)\0m121[OBO(p7 MHy, mHo) + TDTL2 = {4(d + 8)80(p7 mzy, mZO)
Hy

4(d+¢)
d

4(d+¢€ ”
_ LS By g m) —

d

4(d + A(d +
+ (dzdguVBuy(pa mZoamZO) +(€)A0(mzo)}}

uv
gMVBk-i-p(p? Mz, mZo)

d2
(50)

Next we should find the reduced form of the above result using the the scalar integrals
that we have presented in the Appendix. This would be done for every set of diagrams
that we will calculate here. Therefore, using equations (471), (473) we obtain the following

form

2 4
AomZO 3>\mZO

Am)*Mpy(p) = Md_4{6 5 Ag(mz,) + —=5> + 3XAo(ma,)

mHO mHO

Aom
+ QAOm%{oBO(pa mHoamHo> + 4(d + E) : QZO BO(p7 mzy, mZo)

mHO

8(d+5) Aoméo 1
— B —A
d m%io 0<p7 mZ07mZO) + m2Z0 O(mZO)

4(d + €) Ao 2
( ) 0 2Zo [BO(pa mZO,mZO) + TnQAo(mZO)] } .

2
d mi, %o

(51)

Now, since we have finished with the first set of the one-loop two-point functions
concerning the Higgs field, comes the turn of the Z-boson. Here, we use the same form
of Feynman rules with the case of the Higgs field and thus the symmetry factors are
straightforward. Fortunately in the second set of the one-loop two-point functions, that
we consider here, contribute only two individual diagrams. In particular, the first one
comes from the ¢5AY A vertex and reads

7

|

\\ /
ANnANAANAAANANANL /LMIZ“LLV (52)
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where

m2Z0 d*k 1

iML = i2gn e / = 53
Z,u g m%{O 0 (27T)4 k2 — m%[() ( )
2 4 .
Mg = 20" 5% [ G oY
0 0

which is similar with the case of the loop diagram (284) which in d-dimensions reads

2
)M = =2 2 N A Ay () (55)

Z, v
Ho

The next two-point one-loop correction comes from the diagram involving the square
of the gboAgAg vertex, which gives

AnAAANAANAANAAAAN iM?Z,;w (56)
where
‘ kaks
4 d4/{5 . 1 (—gaﬁ + m2 >
Z'MQZW = —8g“°“g”BmQZ0 /\0/ 1 ; %/ o
’ i ) @) kgl i, (R — i)
kaks
4 d4l{3 . (_gaﬂ -+ m2 )
MZZ/U/ = _8guaguﬁ mQZO )‘0/ 4 ; & =
’ mi, (2m)* (k+p)° = my, (k> —m3,)
ms d*k —ig
M2 — _8gho vp Z0>\ / af
Zw T, 0 @ (k= md) (e + p) — miy)
2 d*k ko k
_ 8guoaguﬁm7220>\0/ tRakp (57)

mi, ) @2n)" (k2 —mZ, ) ((k+p)* —mY,)

Again the first term of this diagram corresponds to the first case of (455) but here we
have to be careful because we have two different masses in the denominators d; and ds.

Therefore we get that
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ms d*k —ig
MQA L = _8g,uo¢gVﬁ Zo Ao / af PN
miy, ) (2m)" (k2 = m2,) ((k+p)" = m,)

Zo)\ N
MZW = —8gu1/’a)d/230(p, Mz, Mp,) <
4
m
(47T)d/2MZ;w = _89Wm72ZO)\0M4_dBO(p7 My, M) (58)
Hop

Now we move on to the next term of equation (57) which is a little bit more complicated

than the previous one. To be more specific, here we have the following

m? d*k 1kok
MQBV _ _8g,uo¢gVﬁ Zo )\0/ a8 PN
o o (2m)* (k2 - mQZO) ((k +p)? - m%[())
AN 0
g m%zo 2m)" (k2 —m2, ) ((k+p)* —m¥, )
2B g m N4 d
MZ’“V = 8 d m "’ AO( )d/2gl“/B/w<p’ mZovao) g
wom
( )d/2MZ o Sgd ZO )‘Olu guVBIW (p> mzy, mHo) (59>
mHO

where we have used the third case of the relation (455). Thus adding the equations
(58) and (59) we get

4

m
(47T)d/2/\/lZW = —8g“”m—2z°/\0,u4_dBo(p,mZO,mHO)
Ho
+ 8£ ZO)\ 4_d[mgB( Mzy, Mp,) + Ao(m )}
d mH ol Zo o\p, Zoy "V Hy 0 Ho .
0

(60)

Finally, in order to obtain the full result of the one-loop two-point functions concerning
the Z-boson that we have, we should add the two diagrams. Therefore we get the final
form

2

m
(47r)d/2MZ,/uz = guu m220 )\0#4_d{_8m2Z0B0(p7 mgz,, mHo) - 2A0(mH0)
Hy

8 8
+ ngZoBO(p’ mzy, mHo) + dAO(mHo)} :
(61)
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Now, as we have done earlier, we should reduce this form using the scalar integrals

that we have defined in the Appendix. The difference here is that we need the contracted

form of Mz ,,. To be more specific, The Z-boson vacuum polarization amplitude can be

Lorentz-covariantly split into a transverse and a longitudinal part

Mz = (—gyy-i-p;?) HT(p2)+p;];VHL(p2>.

Contracting with p,p, both sides fixes

DPubv
HL(pZ) = ;;2 MZ,/JJ/'

Contracting with g*” gives on the other hand

gNVMZ,uV = _(d - 1)HT + HL

that can be easily solved for the transverse part in d = 4

1 DuDv
nr = g (—gwj + ;) MZ,;U/-

Now, the Schwinger-Dyson equation that the dressed Z-propagator

pi'p”
Guu = _guuG(p2)+ 2 L(pQ)

mZO

obeys is written as

G = Gu+D,M"Gg,

with D,, the tree level gauge boson propagator

_ PuPp
(=0 + 522)

D, =
P> — mg,

wp

19

(63)

(65)

(68)



So, performing the contractions the Schwinger-Dyson equation becomes

MV <—9W+f,‘;§)") —g V+pupv
oy i +( v )i (69)

—9uwG +
mz, p* —mgz, p* —mgz,

Contracting with p#p” we have that

2

o+ P -1 [1- 115G~ L)] (70)

mZO mZO

while contracting with the metric gives

2 —d+o= g4 1
—dG+ L= O e G- L), (71)
mZo pT = mZo pT = mZ() mZo

(72)

Finally, for the reason that we have demonstrated in the previous argument, along
with the condition that gives the physical Z-mass

1
G(m?) = 73
T = (T )
the reduction should be made in the term
4 d/2M — (4 d/QE o pﬂpl’ M 2 2 74
(4m) z = (4) 3\ T Zyw (P = my) (74)

Therefore, we can split the above equation into two pieces so as to make our calculation

easier. In particular, the two terms read
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(47T)d/2MZ1 = (47r)d/29;wMZ,/w(p2 = mQZ)
(47T)d/2/\/122 — (471.)d/2p;13127'/M27W(p2 _ m2Z>

so starting with the first one we and contracting with the metric we get that

m2
()M, = () My = (14 2) 50 Aou4-d{—8m%030<p, M0y mtt) — 240 ()
0
8 8
+ 8mZoBO(p7 mzy, mHo) + gAO(mHo) :
(75)
Now we move on to the M, term which read
Dubv
(4m) 2 Mz, = (4m)? 2*22 M2, (p)
mz, . aalp 2
= mT)\Ol’l’ 9 Guv _8mZOBO<p7 mz,, mH()) - 2AO(mH0)
Ho p
8 o 8
+ ngOBO(]% mZ()?mHo) + gA()(mHo) =
m2
(Am)2 My, = mQZO A0u4_d{—8m2ZOBo(p, Mz, Mu,) — 2A0(Mmmu,)
Hy
8 o 8
+ ngOBO(p7 mZOJmHO) + 8A0(mH0) .
(76)

Finally, in order to see the full one-loop contribution on the vacuum polarization of
the Z-boson, as it was defined by equation (61), we should evaluate the deference between
equations (75) and (76) multiplied by 5. Thus, the full M reads

1 m>
(47T)d/2./\/lz(p2 — mZZ) — §m2ZO /\0M4_d{(d+ 8){8m2ZOBo(p, mZO,mHO) + 2AQ(mHO)
Ho
8 o 8 2
_ ngOBo(p, Mgy, M) — dAO(mHO)} — 8mi, Bo(p, mz,, mu,)

8 8
— 2A¢(mp,) + gm%OBo(P, My, Mi,) + dAO(mHo)} :

(77)
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For completeness in Unitary gauge we present also the calculation of the three- and

four-point functions in the next subsection.

2.3 Three-point functions

In the previous subsection we devoted our work to find and compute all the one-loop
two-point functions that can occur from the model that we study. As we mentioned there
the corresponding functions would reveal the Hierarchy problem through the physical
quantities, which is one of the main motivations of this work. The present subsection is
devoted to the calculation of the one-loop three-point functions which we need in order
to renormalize properly this model.

As we can see from the vertices that we have, there would be four such diagrams that
refer to quantum corrections to the Higgs boson. Therefore we start with the first one

which comes from the cubic power of ¢* vertex and reads

N
3Tt =Ky (78)
/l’//

and has the following explicit form

iKY, = iSL M@ / i i ! &

" R 70 (2m)* (k* —m%) ((k: +p1)? — m%{) ((k‘ +p1+ ) — m%{)
d*k —1
Kl = Sh / ! (79)

@n)" (k2 = m3) ((k+p1)° = m¥) ((k+p1+p2)* —my)

the symmetry factor here reads Sg, = 216 -3 - 4. Now we can rewrite this integral

but this time in d-dimensions where it reads

o1 21630 ANty / dik; 1
" (47)4? i (k2 — m2) ((k +p1)° — qu) ((k 1+ pe) — qu)

and as we can see this integral has the same form with the first case of equation (456)

form the Appendix B, thus it takes the final form

(47r)d/21C11q =216 - 3% - 4)\3vgud_400 (p1, D2, My, Mp, M) . (80)
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Now we move on to the next diagram that corresponds to the cubic power of the

pA, A, vertex. In particular we have

‘&} = ik, (31)

which reads

o (_g#a n k#/;;) ; (_gyﬂ n (k+p1)l,(2k+p1)5> ; (_gﬁa n (k+p1+p2)ﬁ(2k+p1+pz)a>

my my

2m)’ (k2 —m3) ((k ) - mQZ) ((k +p1+p2)’ — ng)

K = —ist, 0" g |

. ko (k+p1), (k+p1) (k+p1+p2) g(k+p1+p2),,
d4]{] —1 (_gua ”2Z> (_guﬁ+ W) (—gﬁa+ : 2757’22 thLL )

om)t (k2 —m}) ((k+p1)* —m2) ((k+p1+p2)* —m%)

Kh = =St,0"sm | ¢
(82)
Now, since this diagram comes from the cubic power of the ¢A, A, vertex i the sym-

metry factor here reads S,ZCH = 8-4 In order to calculate it properly we should first divide

it into eight individual parts and consider each one separately. Thus we get that

d*k —14
K2, = 8- 4¢°m? / (83)
" 2 @)t (62— m3) ((k+p1)* —m3) ((k +py +p2)* —m3)
d*k —ig”*(k + p1 4 p2) 5 (k + p1 + p2),
Kip = —8-4gsz/ 15 5 5 5 2 5 5 (84)
(2m)" (k2 = m2) ((k + p1)* = m%) ((k + pr + pa)” = m%)
d*k —ig"?(k + p1),,(k + p1)
Kic = -8 493mZ/ 1., 2 2 2 : 2 2 (85)
e 8 43 1 d'k —ig™(k+p1),(k+ p1)g(k + 1+ p2) g (K + p1+p2), (86)
o mz ) (2r)" (k2 — m2) ((k: +p1)° — mQZ) ((/{: +p1+pa)’ — mQZ)
d*k —ighok k.,
Khe = —8-dg'mz [ g L < (87)
Agd o dYk —ig" kyko(k + 1+ p2) 5 (k + p1 +
K2, - 8-4g 19" kuko(k + p1+ p2)g(k + p1 + p2), (88)

mz S @)t (k2 = m3) ((k+p1)* = m3) ((k+p1+p2)’ = m3)
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8-4¢3  dk —ig" g%k ko (k + p1), (k4 p1) g
mz S @2m)t (k2 = m3) ((k+p1)° —m3) ((k+pi+p2)* —m3)
8-4¢° 1 d*k —ig"kuka(k +p1)g(k +p1),(k+p1+p2), (k+p1+p2)g
Comy S ent (k= m) ((k+p)? - m) (k4 py+po)? — m)
(90)

2
Kae =

(89)

2 —
]CHI -

so we start our calculation with the first integral, namely K% ,, which is similar with
(80), therefore we get that
(4m)¥2K2, . = 32 - 4g°mS =4 Cy (p1, pa, my, mz,my) . (91)

Now we move on to the next integral which is K% where we should first calculate the
numerator which gives

N = (k+pi+p2)sk+p+p2),
= kgka + kg(p1 + p2), + (p1 + p2)gka + (p1 + p2)s(01 + p2), &
97N = g"kgka + P+ 2p1 - pa + p5 + 2k(p1 + pa) (92)

thus putting this in (84) we obtain that

4 - Ba
Khip = —8- 4g3mz/ ! k4 2 2 z_jgﬁ fﬂka 2
(2m)* (k2 = m3) ((k + p1)* = m%) ((k +p1 +p2)” = m%)
_ 3. 4g3mZ/ d4k4 —i(pi + 2p1 - p2 + p3)
(2m)" (k2 = m) ((k +p1)° = m%) ((k+p1+p2)* — m%)
_ 3. 4g3mz/ d4k‘4 —i2(p1 + p2) '
(2m)" (k2 = m3) ((k +p1)° = m%) ((k+p1+p2)® — m%)

Now in d-dimensions and using the first and the second case of the relation (456) we
get that
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K 8- 4g3mZ,u4_d/ d%k —ig%kgk,,
HB
(4m)d/2 /2 (k2 —m%) ((k +P1)2 — mQZ) ((k + 1 +p2)2 — mQZ)
8 4gPmgpt? / dk —i(p} + 2p1 - p2 + p3)
(4m)/? T2 (k2 = m) ((k+p1)° = m3) ((k+p1+p2)* — m3)
_ 8-4g’mgpt / dk —i2k(p1 + p2) -
(47) 4/ w2 (k2 —m3) ((k+p1)® = m%) ((k+p1 + p2)* — m%)
8 - 4g¥myp* v
ICIQLIB = - (47T)d/2 g,uucu (p17p27mZam27mZ)
8. 4g3m ,u4_d
W(]ﬁ +2p1 - pa + p3)Co (P, P2, Mz, Mz, Mz)
8. 4g3mZ,U4_d
W(pl + p2)uC* (p1,p2; mz, mz,mz) <
(4m) Ky = —8- 493mzu4d{guy0“” (p1, P2, Mz, M7, M7)

(93)

+ 2<p1 _'_pQ)uCu(pl?pZamZ?mZa mZ) + (p% + 2p1 * P2 +p§>00 (p17p27mZ7mZ7 mZ)}

The next integral is K%, which is quite similar with the previous one but witht

defferent numerator, namely here we have that

N = (k’ +p1),,(k:+p1)5
N = kykg+ kypig + piks + prpig &
9°N = g"k,ks + 2kpy + p; (94)

thus we can write straightforward that

d*k —ig"Pk,k
K2, = —8-4¢°my vp

e / (2m)" (k2 = m3) ((k +p1)* = m3) ((k+p1+pa)’ — m})

d*k —ip?

8- 4g3mz L

/ (2m)" (k2 = m2) ((k +p1)* = m) ((k+p1+ p2)* — m3)
_ 8.4g'm / d*k —i2kpy

1@t (k2 —m2) ((k+p1)* =m2) ((k+p1+p2)* —m)

Therefore, in d-dimensions we get that
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8. 4g3mZ'u4—d

K%JC = (47)‘1/2 G C* (p1, p2, Mz, Mz, M7)
- Wpfco (p1, P2, Mz, Mz, My)
- WMHC” (p1, P2, Mz, Mz, M7) &
(47T)d/2’C%{C = -8 493mzﬂ4_d{guuow (p1,p2,mz,mz,mz)

+  2p1,C*(p1, 2, mz,mz,mz) + piCo (p1, pa, mZ7mZ7mZ)}'

(95)

Now we move on to the K%, integral whose numerator gives the following

N = (k+p),(k+p)°(k+pi+p2) sk +p1+p2),
= (k+p),(k+p+p), (F+k-Cotp)+p-(m+p) &
g°N = (K +k-@2p+p)+p-(pr+p2) (K +k-2pi+ps)+pi-(pr+p2)) &
9N = k' + Kk (4p1 4 2p2) + K {2]?1 “(p1+p2) + (2p *l-pz)z}
+ 2k pilpr +p2) (201 +p2) 07 () &
K+ K2k - (dpy + 2p2) + K2 (6p1” + 6pap1 + p2?) + 2k - pr(p1 + p2) (201 + p2) + 07 - (p1 + p2)%.
(96)

gl/aN

Thus we get that

IC?{D _ 8-4¢° d4kz4 —ik?
mz S @m)" (k2 = m3) ((k+p1)* = m3) ((k+p1+p2)* —m3)
L 84g° d*k —iguw kK" (6p1? + 6pap1 + po?)
mz (2m)* (k2 — m%) ((k + )’ — mQZ) ((k +p+p2)’ — mQZ)
N 8-4¢%  d*k —iG,9ap(4p1 + 2p2) k1 kY k°
mz ) (2m)" (k2 — m2) ((k +p1)° — mQZ) ((k +p1+pa)’ - mQZ)
L8 4g° 1 d'k —iguwP1u(P1 + P2)(2p1 - 4+ pa)” K
mz S @2m)" (k2 = m3) ((k+p1)° —m3) ((k+p1+p2)° —m3)
L 84g —ip} - (p1 + p2)’ o7)

mz S @2n)" (k2 = my) ((k+p1)° = m) ((k+p1+p2)’ —m})

26



Thus in d-dimensions (97) reads

K3, = 78'49%476[(6 24+ 6py - 1+ p22) g, C ( Mz, Mz, Mz)
HD — My (4742 P1 P2 - P1 T P2 )G P1, D2, Mz, Mz, Mz

8-dg'n” Lp
+ Wgw(Mh + 2p3),C* (py, pa, iz, Mz, M7)
8. dgB i
+ mz(4:)d/2(pl + p2)(2p1 + p2)p1,C* (1, P2, Mz, Mz, My7)
8. 43yt~
mz(47T)d/2p
8- dgmzp’
(47r)d/2

2. (p1 + p2)°Co (pr, P2y Mz, Mz, M7)
Uka(p1,p2, mz, mz, mz) (98)

where we have defined

d*k —ik4
(2m)" m% (k> = m%) ((k+p1)* = m%) ((k+ p1+ p2)* — m)

Uka(p1, p2, mz,mz,my) :/

which finally gives that

8. 493M47d

4 d/2K2
( ) HD iy

{P% (p1 + p2)°Co (p1, pa, Mz, Mz, mz) + ML Uia(p1, p2, Mz, Mz, my)

+  (p1 4+ p2)(2p1 + p2)p1,C" (p1, 02, Mz, Mz, M7)
+ (61?12 + 6p2 - p1 +p22)guu0’w (p1,p2, Mz, Mz, Mmy)

+ 9;w(4p1 + 2p2)a0;wa (p1,p2, mZ7m27mZ>}' (100)

The next integral that we have to calculate is K% whose result is known since it

corresponds to the second case of equation (456) and it is like the (95), thus it gives

(Am) 2Ky = =8 - 4¢P my g, C* (p1, pa, iz, Mz, my) . (101)

The next two integrals that have to be considered are similar with the case of (97),

but they differ on the numerator. To be more specific, the numerator of K% reads

N = Kk*k+p +p2)g(k +p1+p2),
= k-(k+pr+p)k-(k+p +p2) &
N = E' 4+ 2E% - (p1 + p2) + K2 (p1 + pa)? (102)
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thus in d-dimensions the final form of this integral becomes
(4W)d/2K%{F {(Pl + Pz)QQWCW (p1, P2, Mz, Mz, my)

+ 29yu(p1 +p2)pCHVp <p17p27mZ7mZ7mZ)

+ WQZUm(pl,pQ,mZ,mz,mz)}- (103)

Now, for the K%, integral we can see that its numerator is the same with that of K%

if we perform the replacement (p; + p2) — p1, then we take just the following form

N = k* + 2k%k - py + k*p? (104)
therefore we get that
8.4 3,,4—d
(47T)d/21C?{G = ngM{P%gWCW (p1, P2, Mz, Mz, M7)

+ 2g,ul/plpowjp (pb P2, Mz, Mg, mZ)

+ WQZUm(phpg,mz,mZ,mz)}. (105)

Finally, the last integral coming from the diagram (81) is the K%, whose numerator

reads

N = ¢"kka(k +p1)g(k +p1),(k +p1+p2)(k+p1+pa)y
= B k+p)’ (k+p+p) e
N = K4+ 4k'% - pr+2(k-p1)° + 2k - po+ 3(k - p1)*(k - p2) + (k- p1)(k - p2)* + k'p}

+ K(k-p)? + K (k- (pr+p2)* + 262 (k- pOpi + (k- p1)?pT + K2 (k- p2)pt + (k- p1) (k- p2)p?
+ K'(p1-p2) + 2K (k- p1)(p1 - pa) 4+ (k- p1)*(p1 - p2) + K2 (k- p2)(p1 - p2) + (k- p1)(k - p2)(p1 - p2) -

Therefore, we get that the final integral for the present diagram becomes
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(47T)d/21C2 1
HI m%

—8-4g° 4—d{{2pil+ (p} +p3 +2p1 - p2) P
2p1 + (P} + D3 + 2p1 - p2) D3
1+ (1 23 1 D2) 2}Bo(p,mz,mz)
2my,

—6 2 2 2 4 . —p? — 2 2 4 :
i (( D1 p2m3 D1 pz)pm + ( Y4 P2m3 P1 p2)p2u B“(p, my, mz)
> Z

p12 + 2p2 + 2pl - 2 V
( P p23 L - guVBu (pa mz,mz)
mZ mZ

— mzUke(p1,p2, mz, mz,mz) — (4p1, + 2p2,) Ures (p1, P2, Mz, mz, my)

2

p p1-p

+ <4m22_m1 - 171 2) Uka(p1,p2, mz, mz,mz)
z Z

4 4 2
P1 Do (pl 'p2) v

+ + VCM ) 7m 7m ’m
(mgz 2m% m‘} )gu (pl P2, Mz, Mz Z)

2 2
p1 P1- D2 p1 P1 - D2
+ 3~ vt |l v | C* (p1,p2, mz, mzg,m
([ m% m% ]plupl [m% m ]plup2> (p1,p2, Mz, Mz, myz)

2p  2piopy P PP y
+ guV(l_g_ 3 p1p+ _miéz_ m3Z D2p Cup(plyp%mZamZ?mZ)

2 3 1 wp
+ —mf%pmpwplp - @pluplyp?p - @plup2up2p C (p17P2, mz, Mgz, mz) .

(107)
where we have defined that
Uses (prs pas g, s ) / d*k —ik*kH
K5\M1s P2, 7z 7z Z -
(2m)" m% (k2 = m2) ((k+p1)* — m%) ((k+ p1 + p2)* — m3)
(108)
and
Uses ) / d*k —ikS
ke\P1, P2, Mz, Mz, Mz) =
@) m, (k2 = m3) ((k+p1)* = m) ((k+p1 +p2)* = m3)
(109)

Now, in order to find the full form of the (81) integral we should add all the previously
calculated relations. Therefore adding (91), (93), (95), (100), (101), (103), (105) and

(107) we obtain a general and compactified form of (81) which reads
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(p - P)?

(4m) K3 = 8~493u4d{{4m‘}—mzp?+ -
Z

- mzpf}co (p1, P2, Mz, Mz, myz)

2p, - P 2py - P
+ {—QWZPM —2mzgPy, + fplu + = 1P1M}C“ (p1,p2, Mz, Mz, M7)
Z
2 o 201,
n {_Bngw n D1uP1 " D1t
my my
2P, P, 2p- P p1 - P, Y
Lk + - 1g;w - = 3 1p1,uP11/}Cu (p17p27mZ>mZ7mZ)
myg my mz
PiuPiv 3p1uP1V Pluplu} v 2 v
- - - BM ’ ) CH ) ) ) )
+ { m? m? 2 ( (p1,mz,mz) +my (p1, D2, Mz, My mZ))
+ {4gul/p1p + 4g,u,l/P1p i pl,u,plgplp
mz mz mz
Py Pupy,  gup G P v
- = 13 L2k 31ppl'P1_ L 31pp1'P1}CMp(pl>p2>mZ>mZ7mZ)
mz mz mz
p1-Pr
+ <3mz — - Uika + { —2p1y — 2Py (Uks — mzUxs
Z

where we have defined that Py, = p1, + pau -

Next contribution to the Higgs three-point function comes from the combination of

the ¢ and ¢* vertices and gives

M r== =ik (111)

and it reminds us the two-point diagram that we have already calculated in the pre-
vious subsection, namely (37). Therefore, considering the appropriate coefficients, the

calculation here is straightforward and it gives

K3 = 83 A% / d'k ! ! o
" o (27T)4 (k? —mi) ((k + D +p2)2 — m%{)
4k i

K3, = S,%HA%O/ (112)

(2m)" (k2 = m3) ((k + p1 + p2)* —m3y;)
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Here we should mentioned that these two vertices have the same coefficient multiplying
the coupling, thus we obtain that the symmetry factor here reads S,%H = 36 - 48.

Thus we can write this integral in d-dimensions where it takes the form

o 36 48X uout ! / d'k 1
" (4m) in 2 (12— miy) ((k +p1 + p2)® — m¥y)
36 - 48\ *vop "~ By (p, p2, mar, mur)

- 8 M
(4m)Ppt Ky = (4m) P pd 4§T0H (113)

&
(4m) 2K,

where we have used the exact form of the first case of the equation (455) in Appendix B.

Another case like the previous one is that of the diagram that occur from the combination
of the pA, A, and ¢*A, A, vertices, giving

) -- =Ky (114)

which is similar with that of (41)

dik <_9ua + kmk) i (_gub’ + (’”’”ﬁpz);lé’““’l*pz)ﬁ)
Ky = —Sg,9"9"g'mz / 1 . ?
’ (2m)" (k2= m3) ((k +pr+p)’ — mQZ)
_ (_gm n kﬂ;) (_gyﬂ L etpitpn), (tptpa),

m m2
(k? = m3)

=

4 4 uv af 3 d4k
Ky = SICHg g gmz/(zﬂ>4

Z

>.(115)

((k +p1 +p2)2 — mQZ)

where again here the two vertices have the same coefficient multiplying the coupling,
thus we obtain that the symmetry factor here reads Sg- L, =44

Thus, since we have already calculated an integral like this, we get that the final result
here is
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i 16g%p2 82g3p0t
()K= u 4{(6493mz — ) Balpr iz, my) = =g, B (prmz, mz)
z
16g3’u47d p
+ TPuPVBW(phmZ,mz) +169°mzp” *Upta(pr, p2. mz, mz) ¢ &
7z
12My

(4m)Pptt Ky = (dm) Pt A (116)
Finally, in order to see the complete contribution of the one-loop three-point functions

to the Higgs boson we should add all the corresponding diagrams. Therefore adding (80),
(110), (113) and (116) we get that

(4m)* Ky = M4d{216'33'4>\311800 (p1, P2, M, Mp, mp)

(pr- P)° 2
B —myzP; | Co (p1,p2, mz, mz, my)
7

2p - Py +2p1-P1

+ 8- 4g3,u4_d{ <4m3z — mzp} +

+ (—2mzplu —2mz Py, + Plu) C" (p1,p2, mz, mz,my)

1p
mz
2 v 2p1 P
n {_3ngw+ P11 n D1t
my myz
2P, P, 2p - P p1 - P, w
lutv 4 ZP1 G — 3 1P1MP1V}CI (p1, P2, mz, Mz, Mmz)
mz mz myz
P1uP1v gpluplu PIMPIV B 2 v
- — — ,mz,mz)+m,C" P2, Mz, Mz, M
+ < m%, m% m% ( (p1,mz,mz) z (p1,p2, mz,mz Z))

- 3

+ {4guuplp + 4g,uuplp pl,upluplp
my my my

P, P, » P 5
- -4 13]?1,; — Zglplh P — L 31p]?1 : PI}CW ?(p1, p2, mz, Mz, Mz)
mz mz mz
p1- P
+ (3mz — - Uka + (=2p1u — 2P1,) Us — mzUxs
z
16g°p? 16g° Puby
3 v
+ (649 mz — my )Bo(pl,mz,mz) + my (_QQAW + QI;TLQZ)B# (plamZ7mZ>
+ 16¢°mzUpa(p1, p2,mz, mz) + 36 - 48)\2voBo(p1,mH,mH)} - (117)

or it can be written as
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(4m)* Ky = M4d{216'33'4/\3@800 (p1, P2, Mp, My, mp)

(pr- P)° 2
o —my Py | Co (p1,p2, mz, mz,my)
7

2p - Py +2p1-P1

+ 8- 4g3,u4_d{ <4m% — mzp} +

+ <—2mzp1u —2mz Py, + Plu) C" (p1,p2, Mz, mz,myz)

7
mz
2 . 201, P
n {—3nguy+ PPy | 2Piuia
my my
2P, P, 2p- P Py - P, y
+ e 2 19;w_ : 3 lplqu}C“ (p1,p2, Mz, Mz, MZ)
my my mz
P1uP1v Spluplu PlMPIV v ) v
+ |- — — B" (p1,mz,myz) +m5CH P2, Mz, My, M
( m‘} m% m% < (p1,mz,mz) A (p1,p2, Mz, My Z))
+ {4guup1p + 4g,ul/P1p . pl,uplgplp
mz mz mz
Py, Prp G Gu P v
_ 1 13 lp  Jp Slf)p1 . P1 I 31pp1 . Pl}C“ p(p17p27mZ7mZ7mZ)
myz mz mz
p - Py
+ (3mz — - Uks + (—2p1, — 2P1,,) Uxs — mzUxs
z
SM3,  2Mi
, SMb H} ()
3 (%) Vo

Now has come the time to use the complete reduction formulae that we have presented
in the Appendix B. Therefore, using these relations we will be able to express the final
result of g as a function of only the scalar integrals Ay, By and Cy. To be more specific,
we should use the equations defined in (469), (471), (532), (538), (545) and (551) and
then we get that the reduced form of equation (117) reads
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d/2 4—d 16g°m3, 2
(471') ICH = u 77713 A()(mZ) + 36 - 24\ voBg(mH,mH,mH)
Z

+ 216 - 3% - AN 03 Cy (Mg, M, Mg, Mg, M)

38m%  52m2%  80m
3 H H z
—8 — B
+ 9{ mZ+<9m3Z Oy + 3 ) o{1,2y(Mm, mz,mz)
46m3,  604m?  224my
B
(sz Oy + 3 ) o{1,3y(Ma, mz,mz)
272m* 340m 160m
( H - 7 _ 5 Z) Boga,3y(mu, mz,mz)
my
+

<4m% 352mH _400mimy

+ 96m3> Co(mH, Mg, Mz, My, mz)}
9m3 3 Z

(119)

where the index notation {- - -} refers to the denominators of the calculated integrals.

1

Moreover, we have defined the relation D = 1= &

and the G5 determinant which in
on-shell reads

4
3my

det G2 = 1

(120)

Until now we have presented the calculation of the three-point one-loop diagrams con-
cerning the Higgs boson and in addition we have shown how we can reduce this contribu-
tion using only scalar integrals. Therefore, before we move on to the quantum corrections
of the Higgs quartic coupling we should present the corresponding diagram calculation
concerning the Higgs-Z three-vertex. These loop-corrections contribute to the renormal-
ization of the gauge coupling, thus it is necessary for us to consider them in order to
renormalize properly our Lagrangian. Therefore we start with the three-point diagram

which comes from the combination of the ¢A, A, and ¢* vertices which reads

/:_-_- = Z'K}-IZ,;W (121>

and it has the following form
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1 22 s [ d'k U(—Gap + %) i i
Ky, = 112 X 24g°m7 \veghg” / z &
2 7 (27r)4 (k2 —m%) ((k + P1)2 — m%,) ((k +p —i—p2)2 — m%,)
. ko k
d*k —i(=gas + 72"
Kz = 12 x24g°mZAveg"*g"” / 2 . (122)
! @m)* (k2 = m3) ((k +p1)* —m¥) ((k +p1+pa)’ — m})

Now, as we have done in previous calculations, we will separate this integral in two

terms which we will evaluate them independently, therefore we get that

1A _ 2, 2 iy d'k —1
Kz, = —12x24g°mzAveg @m)" (k2 — m2) ((k+p1)2 B m%{) ((k+p1 ) — qu)
o 12x24 g d%k —ig*m% Mvggh” 4
o (dm)?/2 / i/ (k* —m3%) ((k —{—p1)2 - m%) ((k +n +P2)2 - ml%l) -
(47r)d/21C11qAZW = —12 x 24¢*m3 A vog" 1~ Co(p1, pa, Mz, M, myr) (123)

where we have used the first case of the relation (456). Now, the second term we have

reads

Ky = 12 2g°mEuy [ o e
| (2m)" m% (k2 = m3) ((k+p1)* = m¥) ((k+p1+p2)* —m})
12 x 24g* oot~ d¥k — ik kY
- ()42 / w2 (k2 —m2) ((k+p1)° —m¥) ((k+po+p2)* = m3) <
(47T>d/2’C11LIBZ,W = 12X 2492)\UO/L47dCW(P1,P2,mZ, M, M) (124)

thus adding the two contributions we get that K};, reads

(4W)d/2’czlqz,;w = 12><24g2)\v0,u4d{—g“”m%Co(pl,p% mz,my, mH)—l-C“”(pl,pz,mz, mH,mH) .
(125)

Next we move on to the diagram that occurs from the cubic power of the ¢A,Av

vertex which gives

| = Z.IC%{Z,MV (126>
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and it reads

. S . @
dt (=g + %) i i(—g*® +

ke
m

B
2
Z

)

=

iK%{Z,MV = —idXx SQSm%g#tsguagﬂ/\/

. S LA a arp
'k —i(—g” + £ ) (=g + 1)

K%{Z“u,l/ = —4x 8g3m%gu5guagﬁ)\/

Therefore in order to evaluate this integral we have first to calculate its numerator

which, as we expect, will give four independent terms. To be more specific, the numerator

becomes
KOk kek?
N = rvo - oA — 5 — aﬁ
GusGvagpr(—g°" + 2 ) (=g + o )
o (k+p+p2)*(k+p+p2)° kK
_ gmsguagm{gékg 5 g 1 bt p ) _ gk
KR (k + p1 + p2)*(k + p1+ p2)° }
1 =
my
N = no (k+p1 +p2)“(/€+p1 +p2)y _ kHEY
g e -
n k*(k +p1+p2)’k - (k+ p1+ p2)
my
e 2KMET EM(pr+ ) (prApe)'E (oA p2)! (P p2)”
n JB kv |2 N kYK - (py + po) N Kt (py +p2)”/€2 . K (pr + p2)’k - (p1 + p2)
my my my m

(128)

and putting this in the relation for the K%, ,, we get the following

36

(@m)* (k2 = m3) ((k+p1)* = m% ) ((k +p1+p2)* —m3)

(2m)* (K2 —m%) ((k: +p1)° - m%]) ((k Pt — m%)

(127)



2 4 x8 3m3/ &k —7
, = —4x38
HZp Z] (2n)! (k2 — mZ)((k +p1)’ - m}[) ((k + Pt )’ - m2Z>

+ 4x16g°mz [ @k —IRTR
(2m)* (k2 = m2) ((k +p1)® = m3;) ((k+ p1 +p2)” — m3)
+ 4x 893mz/ d4k4 2 —jk“(pz—i‘pz)y 2 5
(27m)" (k2 —m%) ((k: +p1)” — mH) ((k +p1+p2)” — mZ)
b g, [ 2 i
(27m)" (k2 —m )((k+pl —mH>(k+P1+p2 —m%)
+ 4x 8g3mz/ d4k4 . _Z(p12+ p2)2 (p1 + p2)” ' :
(2m)" (k2 —m2) ((k + 1) — mH) ((k +p1+p2)” — mZ>
_4x 8g3 / d4k: —ikP kY k2
m2)((k +p1)* = m%) ((k+p1+p2)* — m%)
o 4x 89 / d4k: —ik*EVEk - (pr + po)
2= m2)((k +p1)* = m) ((k+p1+ p2)* = m3)
4 8g3/ d4k —ikH(py + p2)Vk?
m%)((k+p1)* = m%) ((k +p1 +p2)” = m%)
_ 4x 89 / d4k —ik*(p1 + p2)"k - (p1 + p2)

2 —m)((k+p1)? —m¥) ((k+p1+p2)* —m3)
(129)

This terms could be reduced to scalar integrals according to the procedure that we

follow throughout this work, therefore writing them in d-dimensions we get that

2 _ 4x 8g3m%ud‘4/ dk —igh”
e (4m)i/2 T2 (k2 = m3) ((k +p1)* = mi;) ((k + p1+p2)* — m3)
4 x 1693mZ,ud_4/ dk —1k* kY
(4m) /2 T2 (k2 —m) ((k +p1)° = m¥ ) ((k +p1 +p2)* — m3)
4 x 8¢myut* / d?k —ik"(p1 + p2)”
(47) /2 T2 (12 —m) ((k +p1)° — m¥ ) ((k +p1+p2)* — m3)
4 x 8¢>myut* / d%k —i(p1 + pa)"'k”
(4m) /2 T2 (12— m3) ((k + p1)* = mi;) ((k + p1+ p2)* — m3)
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4 x 8¢°mypt=* / dk —i(p1 + p2)t(p1 + p2)”

e T GE ) (ot pn) — i) (G54 o1+ ) —103)
4 x 8g3ut=* r dik —ikHkY
mz (4m)¢? / w2 (k (k+p1)° — mH) ((k’ +p1+p2)” — WQZ)

m)((
—ikME"k - (p1 + p2)
( k+p1 _mH)((k + D1 —i—pz) _mQZ)
4 x 8¢g3put4 / dk —zk“(pl + pa) k>
my (4m)d/? Wd/2 ( (k+ pl - mH) ((k +p1+ p2)2 - mzz)
m)((

4 x 8g3ud- 4/ dk
my(4m)d/? 7rd/2

4 x 8¢g3pud—* / dk —Zk“(pl +p2)’k - (p1 + p2)
mz(4m)¥2 ) (g (k+p1)* — mH) ((k? +p1+p2)” — WQZ)
(130)

and now if we recall the relations (456) from the Appendix, then we get that IC%IZW
takes its final form which reads

(47T)d/2’C12qu = 4x 893Md_4{—m%9“1/00(?1>]927mZ>mH>mZ) + 2mzC" (pr, p2, Mz, Mp, mz)

+ mz(p1 + p2)"CH(p1, pa, Mz, mu, my)
+ mz(p1 + p2)'CY (p1, pa, mz, mp,mz) +mz(pr + p2)*(p1 + p2)”Co(p1, P2, Mz, mp, myz)

v + v, p _'_p v o
— mzUgy — (pr+ Pa), p2>p0“ P(p1,p2, Mz, mu, mz) — (1 £ P2 CHP? (pyr, p2, Mz, Mg, Myz)
myz mz
_ (p1 +P2)ﬂ:(p1 +p2)p(1“p(p1,p2,mZ,mH,mz)} ‘ (131)
z

Moreover, we have defined the dimensionless integral U, as

d*k —ikHkY k2
Ui = | ; Z

. 132
4r)* m% (k2 —m?%) ((/f +p1)? - m%) ((k +pi+p2)’ - mQZ) .

Next comes a diagram that occurs from the combination of the ¢?A, A, and ¢* vertices

which gives

r-- — ucigzw (133)
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which is very easy to see that it is connected with the diagram (111) which is connected
with the diagram (37). Therefore we get that

2 v 2 uv
A2 K3 _ g9 A\ 4/2 4453 — 99 A2 N3
(47T)d/21C13LIZ,W = —8X 12929”V)\Uoﬂd_430(p1, mH,mH)

(134)

Finally, in order to evaluate the full contribution of these diagrams to the Higgs-Z
vertex we should add equations (125), (131) and (134), obtaining

(47T)d/ZICHZ7,W = —8X 12929“”)\vopd_430(p1,mH,mH)

+ 4x 892M4_d{3 X 3)\1)0{ — ¢"'m%Co(p1, P2, Mz, Mg, Myr)

+ Ouy(pl)p27mZ7mH7mH)}

+ 9{(mz(p1 + pa)*(p1 + p2)” — myg")Co(p1, P2, Mz, M, mz)
+ 2mzC* (p1,p2, mz, mu, mz) +mz(p1 + p2)’C*(p1, pa, Mz, My, myz)
+ mz(p1 + p2)*C”(p1, p2, mz, mp, mz) — mzUg,

7@1 +p2>pcwp(p1,p2, Mz, Mg, Mz) — 7@1 +p2)ycup0(
my myz

+ pa)u(pr +
. (pl p2) (pl p2)pcﬂp(p1’p2’mz,mH’mZ>}} . (].35)

P1,D2, Mz, My, mz)

mzy

As we can see this result has many common features with the result that we have
obtained from the one-loop three-point functions concerning the Higgs field. On the
other hand it seems more difficult for Kz, to be reduced to scalar integrals since it has
tensor form. Fortunately, this is not the case since for the on-shell renormalization that
we discuss later, we should consider the contracted with the metric case of this result,
namely g,,Krz .. Therefore here the reduction into scalar integrals of the Higgs-Z vertex
correction will concern its contacted version. Therefore, using the equations (493), (494),
(499) and (538) we get the reduced form
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B 4 % 8¢3 32¢°
Am) ¢ Kz = u' d{SQQ)WOBo(mZ,mH,mH) + d Ao(mp) — : Ao(mz)
my ?)mZ
43 (=Tm?2, + 16m?2
+ 9 ( 9H Z)Bo(mz,mHamZ)
mz
3(35DmB; + 32m%m2% — 136 DmS,m?
+ g ( H 61;71 z H Z)C()(mz,mZ7mZamH7mZ)
z
3(—80m?% + 144Dm* m% — 64Dm?mb
i g°( Z 1877{@{ z H Z>C’0(mz,mz,mz,mH7mZ)
z

- 24927”22)\@000(7”2, mz,mz, My, mH)} .
(136)

.

where we have defined the relation D = 3
et Go

and the G5 determinant which in on-shell

reads
2 o M 4
det Gy = 2mym7, — % "Mz (137)

2.4 Four-point functions

In the present subsection we deal with an other important set of one-loop quantum cor-
rections corresponding to the four-point functions, namely the box diagrams. The first
set of these diagrams contributes to the correction of the quartic coupling of the Higgs
boson and corresponds to four external Higgs fields. In particular we start with a diagram

coming from the combination of the ¢ and ¢* vertices which gives

AN

LS =iBy (138)
L

and as we can see if we could replace one of the external Higgs fields with vy then we
would obtain exactly the same diagram with that of (78) except the symmetry factor.
Generally in what follows we will consider diagrams similar with that of the previous
section but with different symmetry factors. Therefore the only thing left is to evaluate
these factors, so for the current diagram, following the reasoning that we have developed

in the previous cases, we have that
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the symmetry factor here reads Sk, = 216 - 3% - 16.
thus it is straightforward to write here that

(47r)d/2811q =216-3%- 16)\31)3/#’400 (p1, D2, Mp, Mg, mp) <
(139)

otherwise, we have that

Kl = %B}{. (140)

Same arguments are true for the case of the next diagram coming from the combination

of the ¢pA, A, and ¢*A, A, which reads

/
/

g:::N\ =B (141)
\

and it is similar with that of (81). Again here following the known procedure for
calculating the symmetry factor we get Si 4 =38

Thus its final form here becomes
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_ 1 2
(47T>d/2812ﬁl = 8- 894N4 d{ (47”22 —P% —(p —|—p2)2 + W(P? + 1 'pz) ) Co (p1,p2, mz, My, my)
A

Apt  Api-p 2pt  2pi-p
+ ([—44—214— 12 2 D1 + —2—|—721+ 12 2 pau | C* (p1,p2, Mz, mz,m7)

my mz my my

27 2p1-p )
+ <_3 721*’ 12 : G C* (p1, P2, Mz, Mz, myg)

z mz
6 p1 P1-DP2 6 P% P1-DP2
+ — =5 — v |l - — — o | C* (p1, p2, g, mg,m
([m% m mi DP1up1 m%  mb i D1uD2 (p1, D2, Mz, Mz, MZ)

[\

+ 72p2up2y0lw (p17p27mZ7mZ7mZ)
mz
8 2p7 2pi-p 4 pl piop y
+ gNV<[2_i_ m4 plp_'_ 72_71_ 4 P2p CMp(plap?amZ7mZ>mZ)

2 3 1 o
+ _@plppluplp — @pluplup2p — @plup2yp2p CH? (p1,p2, mz, My, myz)

2 .
+ < _%_pl 2p2> U’C4(p17p27mZ7mZ7mZ)
mz mz
dp 2p
+ _UICG(plvp27 mZam27mZ) - (J + i)UICE)(plvaa mgzy, m27mZ)}
my my
(142)
which gives that
K2 = %Bif. (143)

Next we deal with two more Box diagrams which are related with the Triangular case
in the same way that we have described previously. To be more specific, the first one that

we consider here comes from the square of the ¢* vertex and gives

N L =By (144)

which is exactly the same with (111) divided by vy but its symmetry factor is different.

To be more specific, here the ¢* vertex gives Sg, = 3.

Moreover, in this particular set of four point functions, we should take into consideration

the existence of u- and t-channels in addition of the s-channel that we have presented
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here. Thus, we have to add two more contributions coming from these channels. Here s,
u and t represent the Mandelstam variables and in the center-of-mass frame are defined

as

s = (p+p)’ =4E*=F2%), (145)
t = (pr—ps)’=mi+mb—2E%+2k (146)
u = (pp—pa)’=mi+m3—2E> 2k p. (147)

These relations, as we will see later in this work, help us to specify the kinematics of
the Feynman diagrams which plays a very important role in the evaluation of the physical
quantities. Thus if we suppose that the external legs of this diagram have indices 7, j, k

and [, then the combination of these channels will give that this diagram reads

(4m)2B2, = 18X2ud=4 (69 6M 4 59 1 5167%) By(py, mp, my). (148)
since every contribution of the s-, u- and ¢-channels is identical, with only difference

in the way that the external legs combine each other. Therefore for each pair of ij and
kl we get that

K3, = %Bﬁ;. (149)

Now, the second diagram comes from the square of the ¢?A4, A, vertex and reads

) =By (150)

thus, using the same arguments with diagram (144), we get Sz4sch = % and so we

obtain that
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3 o o A2 3am?
(4m)?BY, = (5”5kl+5m5ﬂ+5ll5jk),ud_4{6mZOAO(mZO)+ m

2 2 = + 3>‘0A0(mH0)

mHO mHO

Aom?
+  9omiy, Bo(p, muy, mm,) + ) QZO {4(d + &) Bo(p, mz,, mz,)

mi,
- A B (g m) — XD g B (. m )
+ 4<dc;_€)gWBW(p, Mgy, Mz,) + 4(61;2—8)140(7”20)}} (151)
which means that
Kl = %B}*{ (152)

Now we move on to the final two Box diagrams that contribute to the Higgs quartic
coupling. These diagrams do not have any relation with Triangles as the cases that we
have previously dealt with. The first of these new diagrams comes from the fourth power

of the ¢ vertex and gives

| |
i =By (153)
A==
which reads
B, - / &k i iINiSh i
= 1
(27) (k? —mi) ((k? +P1)2 - qu) ((k + p1 +P2)2 - m%) ((k +p1 + Do +p3)2 — m%{)
B - / d*k —i)\%f‘;Sll;H
— : ‘
(2m)" (k2 = m3)) ((k +p1)° = m¥) ((k+p1+p2)° = m¥) ((k+ pr+p2 +ps)* — m3y)

Here the symmetry factor is given by using the same technic with the previous set,
thus we get that the symmetry factor here reads S = 6*-81-8 .

Now, writing this integral in d-dimensions we see that it reads

)\4 4,,d—4 ddk' s
By = 6es1s= 00 [ S
(4m)" im4? dydydzdy
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i—1 2
where d; = (k’ + > pk) —m; + 1€ with ;7 = 1,..,4. Thus, recalling the first case of
k=1
the relation (457) from the Appendix B we obtain the following

(47)(1/28}?1 =6"-81- 8)\4?13/#74170 (p1>p2,p3,mH, My, My, mH) . (154>

The last diagram that we have to consider here comes from the fourth power of the
pA, A, vertex and it has the form

=iBY, (155)

with symmetry factor Sz which is given by Sg = 16 -8 . Therefore this diagram
reads

o . [e% B
e [0 (—g/m + IC:;]'ZZ) i (_gaﬂ 4 (k+m)m(2zk+m)>
Bl = 16-8¢'mbgus0 [

@m*|  (k* —m3) ((k+p1)* = m3)
i <_g5u + (k+p1+p2)6(k+p1+p2)”) i (_g»y& + (k+p1+p2+p3)7(k+p1+p2+p3)5>
X " " =
((k’ +pi )’ - m%) ((k’ +pi+ps+ps)’ - WQZ)
: a “ a < A
BS, = 16-8¢'m / L <_gu i %) (_g Ty B )
= 00 MzGus9v
" 2] (2m)t (k* —m3) ((k +p1) - mQZ)
(_gﬁu + (k+p1+P2)T:(QZk+P1+p2)") (_9’76 + (k+m+p2+1’3);gzk+m+p2+ﬁ3)6)
X
((k +p1 )’ - mQZ) ((k‘ +pit+po+ps)” - mzz>

(156)

Before we start our calculation using the reduction formula as we have done till now,
we should notice that the numerator of this Box diagram has four parenthesis which
give sixteen independent terms. The general form of calculating such integrals which we
have followed throughout this work says that we should fully expand the numerator and
consider each term separately. Nevertheless, here we can change a little bit the procedure,
namely we can expand only the last parenthesis in the numerator. Doing this, including

9us9S, we obtain two terms for the numerator which read
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N = N1+N2

Ktk k+p)*(k+p)° 4 p1 4 )2 (k4 p1 + 1)
= _guv<—9“a+mQ><—gaﬁ+( pl)(z p1) )(_g5u+( b pz)( P1 p2)>

Z mz mz
(k+p1+p2+ps),(k+p1+p2+ps), o | KRS os , (K +p1)(k 4+ p)”
2 9+ -9+ 2
myz myz mgz
B v
x (=g + (k +p1+p2)”(k+p1+ p2) ' (157)
m

Comparing this with the Triangular integral (82) we notice that we have its numerator
multiplied with two different terms. Thus for our case here we can calculate separately
the sixteen terms coming from the two numerators N; and N, using the results from
the corresponding Triangle diagram. To be more specific, from the numerator N; we get
exactly the terms that we have in (81), thus the first eight of them are B, ,, BY 5, BY ¢,

B, BSp, B, BY o and BY; the first one gives

and gives that

(4W)d/2316q,4 = 64 -8¢*myu*""Dy(p1, p2, p3, Mz, Mz, myz). (158)

The second integral has

N = g k'E + pi® + 2pips + p2° + 2k(p1 + p2) (159)
and gives that
(4m)*° By, = —16- 89477122#4d{guuDW(phpz,p:a, Mz, Mz, Mz)

+ (P12 + 2p1p2 +p22)D0(P1>P2:P37 myz, mz,mz) + 2(p1 + p2) D" (p1, p2, p3, mz, Mz, mz)}-

(160)

The next integral is the same with the previous one if we replace (p; + p2) — p1, thus

it reads
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(477)(1/25?10 = —16- 894m22M4_d{QWDW(p1ap2,p3, mz, Mgz, mz)
+ p1°Do(p1, P2, p3, Mz, mz,mz) + 2p1,D*(p1, p2, p3, Mz, Mz, mz)}
(161)

The fourth integral in the row is more complicated since it has bigger mass dimension

than the previous three integrals. However, we know that its numerator becomes

N = k*+ kK- (4py +2pa) + k> (6p1® + 6papy +p2”) + 2k - p1 (pr +p2) (2p1 +p2) + 97 - (1 + p2)°
(162)

so using this relation we obtain that

(47T>d/26?{D = 16- 894M4_d{p%(]91 +P2)2D0 (P17P27P37 mz,mz, mz) + UB4(p1,p27p3» mz, Mz, mz)

+

[p1(p1 + p2)(2p1 + p2)]u D" (p1, P2, P3, Mz, Mz, M7)
+  (6p1® + 6p2 - p1 + P2°) G D (D1, D2, P3, Mz, Mz, M7)

+ g (4p1 + 2p2)a DM (p1, D2, D3, M7, mz,mz)}- (163)

where we have defined

d'k { —ik?
@m)" | (k2 = m2) ((k +p)* = m3) ((k+p1+ )’ — m3)

! } (164)

UB4(p17p27p37mZ7mZ7mZ) - /

((k+p1+p2+ps3)?—m%)

The next integral correspond to the second case of equation (457) and we can write

straightforward that

(47r)d/28?{E = —16-8g4m22,u4’dgw,D“”(p1,pg,pg,mZ,mZ,mZ). (165)

Now we move on to the sixth integral which is similar with (163) and whose numerator

according to (102) reads
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N =k*+ 2Kk - (p1 + p2) + k*(p1 + p2)? (166)
so in d-dimensions this integral gives
(47T)d/26?{F = 16- 894#4_d{(p1 +p2)29uuDW (p1, P2, P3, Mz, Mz, M7)
+ 29, (p1 + p2)a D" (p1, P2, 3, Mz, M7, M7)

+ UB4(p17P2,p3,mZ7mZ,mz)}- (167)

The next integral corresponds to BY%. and as we already know is exactly the same

with B¢ . if we perform the replacement (p; + p2) — p1, then we obtain the following

(47T)d/28?{G = 16- 894N4_d{p%9uVDW (p17p27p37 mz,mz, mZ)
+  2G,up1a D" (p1, D2, D3, Mz, M7, M7Z)

+ UB4(p17p2>p3>mZ7mZamZ)}' (168)

The last integral coming from the first eight terms that we calculate here is BY; and
its numerator according to (106) reads

N = ES 4k k- (4py+2p2) +k* (6p1 2 +6papr +p2°) +2k2K-py (pr+p2) (201 +-pa2) +E2p3- (p1 + p2)°
(169)

and it gives that

d/2 126 16 - 8¢*p* ¢ 2 2
(4m)" By, = s R (6py + 6p1 - p2 + p3)Upa(p1, p2, p3, Mz, mz,my)
7

+ mZUps(p1, Pas p3, Mz, Mz, mz) + mz(4p1 + 2p2) . Uss(p1, P2, p3, Mz, mz, myz)

+ pi(p1 + p2)°guw D" (p1, P2, p3, Mz, M7, M7)

+ guu(4p:f + 6pip2 + 2p103)a DM (p1, P2, p3, Mz, M7, mz)}- (170)

where we have defined the following
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d*k —ik*kH
Uss (1,2, p3, Mz, Mz, M7) = /<27T>4 e
mz

—m2) ((k+p1)* = m%) ((k+p1+p2)* = m3)

1
171
((k‘—i—p1+p2—|—p3)2—m22)} (171)
and
Uss(p1, p2: D3, Mz, Mz, mz) /d4k i
B6\M1, P2y V3, 7z 7z Z ==
(2m)" | m% (k2 = m3) ((k+p1)* = m3) ((k+p1+p2)* — m3)

1
(k4 p1 + p2 + p3)? —m%)}'

Now that we have finished with the calculation of the first parenthesis integrals we
move on to the next eight integrals that occur from the N, numerator which are BY
B, Birr, B, BYin, Byos Birps Biig. As we can recall, the difference here is that we
have the numerator of the (82) multiplied with a zero-mass dimension term. Thus, in
order to evaluate these integrals we have first to calculate the corresponding numerators
something that we should do for each case separately. As an example we give the first

integral of the second set where we have that its numerator reads

N = (k4+pi+p+ps) - (k+p+p2+p3) &
N = K +2k(pi +p2+ps) + (p1 +p2+ p3)° (173)

and now using the same arguments as in each previous case that we have faced, we
get that

(47T)d/26?ij = _16‘894m22M4_d{9WDW(p1,p2,p3,mz,mzamz)

(172)

+ 2(p1 +p2 +p3)u D" (P1, 02,03, Mz, Mz, Mm7) + (D1 + P2 +P3)2D0 (p1, P2, p3, Mz, M7, mz)}

Next we have BY ;- whose numerator becomes
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N = (k+p1+p2+l)3)'(/f+p1+p2+]?3)(/f2+(]?1+p2)2)@
N = k' +2Kk*k(2p1 + 2p2 + ps) + K*[(p1 + p2 + p3)?
+ (pr+p2)? +4(p1 4 p2 + p3)(p1 + p2)] + 2k[(p1 + P2 + p3)*(p1 + p2) + (P14 p2)*(p1 + P2 + p3)]
+ (p1+p2+p3)i(pr+p2)°
(175)

so putting this in the corresponding integral it gives

(47T>d/2316w< = 16'894M4d{UB4(p1,p2,p3,mZ,mZ,mz)

+ (p1+pe+ p3)2(p1 + p2)2D0 (p1, P2, P3, Mz, Mz, M7)
+ [(p1 +p2+p3)*(p1 +p2) + (p1 + p2)* (1 + P2 + p3)| D" (p1, p2, p3, mz, Mz, my)
+ (6pF + 6p5 + 6p2 - p3 + p3 + 6p1 - (202 + 3)) G D™ (p1, P2, P3s Mz, Mz, M7)

+ G (4p1 + 4p2 + 2p3)a D" (p1, P2, p3, Mz, M7, mz)} (176)

Similar with the previous arguments, the next integral occurs by replacing (p; +pa) —
p1. therefore we get that

(47T)d/28?% = 16- 894N4d{UB4 (p1, P2, p3, mz, Mz, myz) + (p1 + p2 +p3)2p%Do (p1, 2,03, Mz, Mz, MZ)

+ [(p1 + 2 +P3)2p1 +P§(P1 + p2 + p3)] D" (p1, p2, p3, Mz, Mz, Mmyz)
+  (6p} + 6p1 - (p2 +p3) + (p2 + p3)*) g D™ (p1, P2, D3, Mz, M7, M7)

+ g (dpr +4ps + 2p3) o D" (p1, D2, p3, Mz, M7, mz)}- (177)

Next we have the integral BY,, so we follow the same procedure as before, which

finally gives that
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16'894M4_d
(47T>d/28?{M = —T m22U36(p1,P2,P3,mZ,mZ,mz)
A

mz((4p1 + 2p2)* + (8p1 + 4ps) (p1 + pa + p3))Uss (p1, 2, p3, Mz, mz,m7)

(6p3 + 6p1 - p2 + P35 + (p1 + P2 + p3)*)Usa (p1, P2, p3. Mz, mz, mz)

(p1 + P2 + ps)?(p1 + p2)?P Do (1, P2, p3, Mz, Mz, Mmz)

[2(p1 + p2)*pi (01 + P2 + p3)

2p1(p1 + p2)(2p1 + p2)(p1 + P2 + ps)*]u D" (pr, p2, ps, Mz, Mz, mz)

((p1 + p2)?pi + (6p7 + 6p1 - p2 + 13) (D1 + P2 + P3)?) G D (p1, P2, p3, Mz, Mz, M)
4[(p1 + p2)(2p1 + p2)lo(Pr + P2 + p3), D" (p1, P2, P3, Mz, M7, M7)

2,0 [(p1 + p2)p1(2p1 + p2) + (6pF + 6p1 - o

+ o+ + o+ +

+

p§)<p1 + po + p3) + (4p1 + 2p2) (p1 + P2 +p3)2]aD“m (p1, P2, p3, Mz, M7, mz)}<178)

The next integral that we face is BY y and its numerator has much simplier form than

the previous one. This case reads

(47T>d/28?{N = 16- 894M4d{UB4 (P17P27P3, mz,mgz, mz)
+  (p1+ p2 + p3)*gw D" (D1, D2, D3, Mz, M7, M7)

+ G (2p1 + 2p2 + 2p3)a D" (p1, D2, p3, Mz, M7, mz)} (179)

Now we move on to the next two integrals, namely we have BY, and BY,, which are
similar with the integral (178) but with much simpler results. To be more specific here

we have that

16 - 8g* A=
(47T)d/26?10 = —TQ'M m22U66(P1,P2,p37mZ,mz,mz)
Z

mz(4p1 + 4ps + 2p3)Ups (p1, P2, p3, Mz, Mz, mz)

[(p1 + p2) + (p1 + P2 + P3)°|Uss (p1, 2, D3, Mz, Mz, M7)

(p1 + p2)*(p1 + P2 + P3)° G D™ (p1. P2, p3. Mz, Mz, M7)

20, [(p1 + p2)(p1 + P2+ p3)* + (1 + p2)*(p1 + P2 + P3)]a DM (p1, D2, P3, Mz, M7, M 7)

+ o+ o+ o+

_|_

g/ﬂ/(pl +p2)a(p1 +p2 + p3)ﬁDW/a/8 (p17p27p37 mz,mgz, mZ)} (180)
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and moreover we now know that B%, could be obtained from BY, by doing the

replacement (p; + p2) — p1, therefore we get that

16.8g4lu47d
(47T)d/28?{P = Y R WQZUBG(Z)MP%Z?B”WZ,WZ,WZ)
Z

mz(4p1 + 2p2 + 2p3)Uss (p1, p2, p3, Mz, Mz, mz)
[0} + (p1 + p2 + p3)*)Us4 (p1. P2, p3. Mz, Mz, M7)
PI(p1 + D2 + 13)gu D (p1, D2, s, Mz, Mz, M)
20w [P1(p1 + P2 + 3)° + D3 (p1 4 P2 + P3)]a D" (p1, P2, P3, Mz, Mz, M)

+ o+ o+ o+

+

GuwPra(p1 + P2 + p3),3DWaﬁ (p1; P2, P3, Mz, M7, mz)}- (181)

Finally, here we consider the most complicated integral from these that we have faced
until now, namely the B?{Q integral. Its numerator occurs using (169) in the same way
that we have treated the previous cases and thus we obtain that the final form of this

integral becomes

16 - 8g4,u4_d

(47r)d/28?'{Q = Wl%{m%UBS (p17p2>p37 mz,mz, mZ)

m3,(6p1 + 4p2 + 2p3)Ust (p1, p2, p3, mz, mz, mz)

my[(6pF + 6p1 - p2 + p3) + (8p1 + 4p2) - (p1 + P2 + ps3) (182)
(p1 + p2 + p3)*|Uss (1, p2, p3, Mz, Mz, myz)

my[(p} + p1 - p2)u(2p1 + p2)u + (4p1 + 2p2)u(p1 + p2 + p3);

(2p7 + 3p1 - 2+ P5) (1 + P2 + p3)u]Ufg (p1, D2, p3. Mz, mz, mz)

mz(6p} + 6p1 - p2 + p3)(P1 + P2 + p3),uUss (p1, p2, p3, Mz, Mz, my)

(0% (p1 + p2)? + (6pF + 6p1 - po + 3) (D1 + P2 + p3)°|Usa (p1, P2, 3, Mz, mz, myz)
(P (1 + p2)*(p1 + D2 + 13)) 90w D (1, 2, 3, Mz, Mz, Mz)

2gw[p1 - (p1 + p2)(2p1 + p2)(p1 + P2 + p3)?

+ o+ o+ o+ + o+ o+t

+

(p1 +p2 + P3)P? (p1 + P2)2]aDWa (p1, P2, p3, Mz, Mz, My) } (183)

where we have defined the zero-mass dimension integrals
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d*k —ik*krkY
(2m)" | m% (k2 = m3) ((k+p1)* = m2) ((k+p1+p2)* — m3)

! } (184)

((k + p1 +p2 + p3)> —m3)

Ugﬁy (p17p27p37mZ7mZ,mz) — /

d*k —ikSkH
2m)" | m3 (k2 — m%) ((k+p1)* = m3) ((k+p1 +p2)* — m3)

! } (185)

((k + p1 + p2 + p3)? — m%)

Ugr(p1,p2, 3, mz,mz,my) = /(

and

U(pppmmm)—/d4k i
B8\M1y P2, M3y A Z Z (27T)4 m%(kQ—m%) <(k+p1)2_mzz) ((k—|—p1+p2)2—m2z)

! } (186)

((k+p1+p2+ps3)?—m%)

In order to move on we should sum up all the sixteen results which we have found and
which constitute the box diagram (156). In addition we can use the similar notation with
that used in the case of the Triangle diagrams so as to obtain a general and compactified
form for the current diagram. Moreover here it should be cleared that we use a similar
calculation technic with that of the evaluation of the U-integrals in App. D. To be more
specific, in the calculation of the BY we deal with highly divergent integrals which in this
diagram correspond to the D#P, DF*P™ and DHr*8 terms. Thus, these cases are treated

using the following relations

2pp ., b 2 _ 2\ e L L o 2 Lp ., o
RPRE ke (R = mB) Rk L[k k (187)
dydodsdy dydodsdy dydodsdy
P 3 R Lo+ doy —d) k" k>
p _ 2 (f + +1 ) (188)
dydadsdy dydadsdy

where we have used the equation (478) from the Appendix .
Therefore, considering the above equations each time that we face the corresponding
highly divergent integrals, (156) reads
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myz my
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+ {2p1'P1p1M+2p1'P1p1M+ l 2 2 —pl 2];1 1P1M—2912—];119P2M+2P1'P2P1“
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Z

(189)

Finally, in order to see the complete quantum corrections of the one-loop four-point
diagrams to the Higgs quartic coupling, we should add all the results that we have pre-
sented here. In particular, we should sum the results from equations (139), (142), (148),
(151), (154) and (189). Therefore, the final result coming from the box diagrams reads
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Since we have obtained the full one-loop corrections to the Higgs four-point function,
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we should proceed similarly with the previous two subsections. To be more specific, we
should reduce the result with the help of the scalar integrals. Here we have to consider
six Box-diagrams, but as we have already mentioned in this section, the first four are
connected with the corresponding Triangle-diagrams. Therefore we can use their relation
in order to obtain the reduced form of this set of Box-diagrams. The remaining two,
which are not included in the previous case, have been treated separately.

An interesting point that could be noticed here is that the reduced form of By depends
on the diagram kinematics. This result plays a crucial role to the understanding of the
physical quantities as we will explain in the section where we obtain the physical quartic
coupling. In this section this dependence just makes our results very complicated and
difficult to be written. So we choose, only for now, a specific allowed value for the

kinematics, namely ¢, = 1 and ¢; = 1, and therefore the reduced form of By reads
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(191)

where we have defined and used that L is the inverse of the determinant of the Gj

matrix which reads

L _ (192)
det Gs  mb;

Before we move on to the renormalization of the Abelian Higgs model that we study
here, we should consider the contribution of the one-loop four point functions with two
external gauge bosons, to the gauge coupling g. Here, the procedure that we follow is
quite the same with that of the Higgs Box diagrams, thus we can start with the first
contribution coming from the combination of the square of ¢A,A, vertex with the ¢*

vertex. The resulting diagram is

S =Bl (193)

where we can notice that putting on of the external Higgs legs equal to vy we get the

result of diagram (121). Therefore we can write the following relation

61



ICl
(4m) Bl = (dm)pt I
b UO

(4m) 2Bl g = 240/1cHz£72>\M4d{—g’wmzzct)(?bp%mZ>mH>mH)+C“V(P1,P2,mzva,mH)}-

(194)
The next integral which we consider here comes from the square of pA, A, vertex with
the ¢?A, A, vertex and it reads
/
/
/
/ 0
\ - /LBHZ,/JZ/ (195)
\\
\
therefore following the same reasoning with the previous diagram, namely comparing
B2, with (126) we get that
/2 122 d oKtz
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v D1 tD v
U/’é4 - MC“ p( plapz,mzij,mz)

my

Now we move on to the next diagram which occur from the combination of the ¢?A, A,

and ¢* vertices. To be more specific, this contribution reads

b= z’BiIZW (197)
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which is exactly the same with the Triangle diagram (133) divide with vy. Therefore

we get that
]C3
(4m) By, = (Am) Wt =t o
9. /l)O
d/2 123 —g°g" d/2, d—43-3 —g°g" dj2, d—4 \ 43
(4m) HZ v 3A0g (4m) = p H 302\ (4m) = My
(4W)d/28?{2,w = _6g2guy)\/id74Bo (p1,mp, mpy).

(198)

Now it is time to move on to the Box diagrams corresponding to the Higgs-Z inter-
actions. Therefore, we start with the diagram which occurs from the combination of the

square of ¢pA, A, vertex with the square of the $*A, A, vertex, giving
! = iB%IZ,;w (199>

which reads

e (k+p1),(k+p1) g
d*k i @< Jap ¥z )

(2m)" (k2 =mip)  ((k+p1)* —m3)

1 1

Blrzu = 1449”977 g*miN\*v; /

X
((k +p1+p2)* = m¥) ((k+pr+ps+ps)* = m¥)
d'k —i144g"*g"7 g*my \*vg (—g o+ W)
Bj%{Z W / my ‘
! (271-)4 (k2 —m3) ((k +p1)2 - mQZ> ((k + 1 +p2)2 - m%]) ((k + p1 + po +p3)2 _ m%{)

(200)

Here, similarly with all the other previous cases, we separate this integral into to pieces

and we calculate them independently. So, we start with the first one which reads

i - / d*k —i144g" g*m2\*v2
Hww (@m)" (k2 = m3y) ((k+p1)* = m3) ((k +p1+p2)* —mdy) ((k+p1+p2+ps)* —m¥)
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where considering this in d-dimensions and using the first case of equation (457) we
obtain that

(47r)d/2B§AZ’W = — 144" G*m2 202 Do(p1, p1, p1, M, Mz, M, mp) . (201)

The second integral that we consider here has the following explicit form

—i144g"° g8 G2 X202 (k + p1)alk + p1)s

o / d*k
A2, (2m)? (k2 —m%) ((k‘ +p1)’ - m2z> ((k +p1+p2)’ — m%) ((k + PP+ ps) — m%{)

where its numerator reads

N = g"g"(k+p)alk+p)s &
N = KK 4+ k'p) + k'Y + plipt (202)

Thus, using the above result along with equation (457) we obtain that

(47T)d/26;1;[BZ,MV = 14492)\2,03“d_4{Duy(p17p27p37mH7mZ7mH)+pTDu(plap27p37mH7mZ7mH)
+ plfDV(p17p27p37mHamZ7mH) +p;1LprD0(p17p27p37mHamZ7mH)} .

(203)

Therefore adding equations (201) and (203) we get the final form for B, ,, which

gives
(4ﬂ)d/26§{Z,uu = 1440-113HZg2)‘2U(2):ud_4 { _ngmQZDO (pla b2, P3, My, Mz, mH)
+ DW(P1>]92>]93> mmg,mgz, mH) + plljD'u(plap%va mmg,mz, mH)
+ Py D" (p1, D2, p3, mu, mz, mp) + pivy Do(p1, P2, p3, M, mZamH)} -

(204)

where o}, is a symmetry factor as usual. The next diagram comes from the com-
bination of the third power of the ¢pA,A, vertex along with the ¢* vertex, specifically it

gives
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= z’BiIZW (205)

and its explicit form reads

, n kakg
B3 24 ghe gV Amy / d'k '\ 9es i i
¢ v = g g
HZ,u Vo (27T) ( ) ((k +p1)2 _ m%{) ((k T +p2)2 _ m%{)
i <_g’y + (k+P1+p2+p3) (k+p1+p2+p3 >

((k +p1+Dpo —I—p3) - mz)

amb [ dik —i <_9a6 + k“k")
85 — g Y mz my
HZuww — g9 v o) 2 5 2 9 2 2
o (2m)" (k2 —m3) ((k +p1)” - mH) (( p1+p2)” — mH)
(—g ot (k+P1+P2+p3)W(k+p1+p2+173)5)
( }

2
my

((k’ +p1+p2+ ) — m%) (206)

The numerator of this integral has two parenthesis and therefore after expanding them

we obtain the following relation

o v kok (k+p1+p2+p3> (k+pl+p2+p5)
N = g~ g”m‘é (—gag—i-azfj) <_gﬁ'y+ 52 1) &

N = még’“’ — Qm%kltky + k- kkyk, + (p1 + p2 + p3) - kk,k, — mQZ(pl +po+p3) -k
- m2Z(p1 + po 4+ p3) k" 4+ (p1 + p2 +p3) k' -k + EF(pr + p2+p3)’(p1 +p2 +p3) - k
— m(pr 4 pa +ps)” (pr+ P2+ ps)” (207)

Now putting this expression in the (206) integral we obtain the following final form
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2462, At
(47T)d/2315qZ,W = —BHUZ a {méQWDo(pl,pzyps,mZ,mH,mH)
0

— 2m3 D" (p1, pa, 3, mz, My, mp) + Uky
+ (P14 p2+p3), D" (p1, 2, 3, Mz, My, M)
— m(p1+ p2 + p3)" D" (p1, 2, p3, Mz, Mg, Mg, Mz
my(p1 + p2 + ps)” D" (p1, p2, p3, iz, mp, M)
+  (p1 + P2+ P3)" 9o D7 (P1, P2, D3, Mz, Mgz, M)
+ (p1+p2+p3)"(p1+ P2+ p3), D" (p1, 2, p3, Mz, Mu, M)

- m22<p1 + p2 + p3)”(p1 + p2 + p3)" Do(p1, p2, p3, Mz, mH,mH)}

(208)

where 0%y, is again a symmetry factor.

Finally, the last diagram that we should consider here comes from the fourth power

of the ¢pA, A, vertex, giving

= iB?IZ’W (209)

which has the explicit form

ko . (k+p1+p2) g(k+p1+p2),
i ( g(ioc"’?i ) i Z(_9,37+ 1 27?12 — )

(2m)' (k2 —m3) ((k: +m) - m%) ((k +pr+p2)’ — m22>

2
Z
(k+p1+p2+p3 k+p1+p2+p3 )

iB}ﬁ'—IZ,,uV = 16Zguagyﬁg4mZ/

U (—gwa +
((k +p1+ P2 +p3) — mz>

g o i (_95a k;l;;) (_gﬁv n (k+p1+p2)7i(22k+p1+p2)w>
&

2m)* L (k2 = m2) ((k+ p1)* = m ) ((k+p1+p2)° —m3)
(k+p1+p2+p3)., (k+p1+pz+p3) )

B?IZ,W/ - 16guagyﬂg4mZ/(

(_g'yé + m2

((k +p1+ D2 +p3) — ’mQZ)

Z

(210)
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As we can recall integrals like this one have occurred again in this section and in
particular in the case of (156). Therefore, we are familiar with integrals like these one
no matter how complicated they are. So we begin this calculation by obtaining the

corresponding numerator which in our case reads

a v k5ka (k +p1 +p2) (k +p1 +p2)
N = g"g"my <—gzsa + 2> <_9Bv + ’ !

(k4 p1 +p2+p3), (K +p1+p2+D03)s
Y

X

kk,k,
l; — 2k - (pl +p2)kuky
mz

2k%k - (p1 + po)kyk, (k- (p1 + 2k k., E2k - (py + po + p3)k, k.
(P1 2 p)kuky (k- (pr 1292)) W ok (o1 + pa + py)aky + (P1 P2 p3)k,.
myz my my

N = —mygu + 3myk.k, — 3k>k,k, +

k- (p1 +p2)k - (pr + p2 + p3)kuky

— kuky(p1 + p2) - (p1 + p2 + p3)

2
mz
" k- (p1 + p2)kuk,(p1 + p2) - (p1 + p2 + ps3) n kauku(m +p2) - (p1 + p2 + ps3)
2 2
mz mz

+ myku(p1 + pa)y — K*ku(pr + p2)y — k- (p1 + p2)ku(p1 + p2)y + Mk, (p1 + p2)y — K2 ku(p1 + p2),

— k- (pr +p2)ku(pr +p2)y — k- (p1 + p2 + p3)ku(p1 + p2)v — ku(pr + p2) - (P1 + D2+ p3)(P1 + p2)u
Kk, (p1 + p2 + 3,

+ m%(p1 + p2)u(p1 + p2)y + Mok, (p1 + pa + p3) — 2k%k,(p1 + P2 + p3)y +

2
my
2k%k - (p1 + p2)ky (p1 + pa + k- (p1+ p2)) 2k (pr + p2 +
_ k'(]?1+p2)ku(p1+p2+p3)u+ (p1 +p2) 2(]?1 b2 p3)u +( (p1 +p2)) 2(101 b2 p3)u
K2k - (1 + p2 + p3)ku (D1 + P2 +
— 2k (p1+pa+p3)k,(pr + P2+ ps), + (p1 + p2 p3)2 (P14 P2+ P3)u

my

k- (p1+p2)k - (p1 + D2+ ps)ku(p1 + P2+ p3),
2
my

k*ky,(p1 + pa 4+ p3)u(p1 + p2) - (p1 + P2 + b3
( )“(mg = ) K (p1+ p2)u(p1 + D2 + p3)
Z

— k- (pr+p2)(p1 +p2)u (1 +p2+p3) — k- (p1 + D2+ p3)(P1 + p2)u(P1 + P2+ p3),

+ (p1+p2) - (1 + P2+ p3)(P1 + p2)u(Pr + P2 +p3), + mzzk‘u(pl + P2+ p3)

ky(p1 + p2 + p3)uk - (p1 + p2)(p1 + p2) - (p1 + P2 + p3)
2
mZ

— ky(p1 + p2 + p3)u(p1 + p2) - (p1 + P2+ ps3)

m7(p1 + p2)u(p1 + p2 +p3)u +

(211)

Therefore, now that we have evaluated the numerator of this integral according to

previous calculations, we have that B%ZW takes the final form
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(47T>d/28?{Z“uu

(p1 + p2 + ps)*
my

16039 " { 3UBatrz + Ubstiz

Ussrz + {—m‘ég‘“’ + m3(p1 + p2) (p1 + p2)” + mZ(p1 + pa)” (p1 + p2)*

(P14 p2) - (p1 + P2+ p3) (1 + p2)" (P1 + P2 +p3)“}Do(p1,pz,p3,mz, My, Myz)
{2m2 (01 4 22 = (b1 4 p2) - (o1 2 20) (01 + 1)

mz(p1 + pa +P3)V}D“(P17P27P37mz,mH,mz)

m (p1 + p2 + p3)t

N~

p1+p2) - (p1+ D2+ p3)(p1 + Do +p3)“}DV(p1>p27p37mZ>mH7mZ)

—(p1 +p2 +p3)"(p1 + p2)”(p1 + p2),

/\,_/H

1+ P2+ p3),(p1 + p2 + p3)*(p +p2)y}Dp(p1,p2,p3, My, Mg, Myz)

3my — (p1 +p2) - (p1 + p2 +p3)}DW(p1,pzap37mZ, My, Myz)
1+ P2+ p3)" (P14 p2)" Gpo D7 (1, P2, D3, Mz, M, M)

/—/‘\/—\/—/‘\

2(p1 +p2)"(p1 +p2)p — (p1 +p2)"(P1 + D2 +D3),

(p1+p2) - (p1+ P2+ p3)(p1 + P2+ p3)” (P1 + p2),
mz

{_(pl + pa +p3)"(p1 + p2),

}Dﬂp(phpz,p:a, mz,mg, mz)

2(p1 + p2 +p3)"(p1 + p2 +p3)p}D“p(p1,p2,p3, Mz, M, Myz)

{(m +p2) - (p1 4+ p2 + p3)(p1 + p2),
my

—2(p1 +p2)p
2(p1 + p2 +p3)p}DW'D(p1,p2,p3, My, M, Myz)

{—2(191 + 02)" Gpo — 2(p1 + D2 +p3)”gpo}D“””(p1,pz,p3, Mz, My, Mz)

{(m + p2),p(p1 + p2)o(p1 + P2 + p3)t N (p1 + p2)o(p1 + P2 + P3)p(P1 + D2 + P3)*
2 2
mZ mZ

Gpo (P14 D2) - (P1 + D2 + p3)(p1 + P2 + p3)*

2 }Dypa(php%p:s,m&m]{,mz)
mz
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N {(m +p2)p(P1 + D2)o N (p1 + p2)p(P1 + P2+ P3)o

my my
p1+p2)-(p1+p2+p vpo
+ <1 2> (; 2 3)9,)0}17’”) (p1,p2,p3,mZ,mH,mz)
my
{2gax(p1 + p2),(p1 + 2 + p3)”
+ 2
my

29,0(P1 + P2 + p3)r(p1 + P2 + p3)*
my

}Dypak(plup%p:%, mz, M, mz)}

(212)

where 03, is a symmetry factor. Moreover, we have defined the following relations

g / d'k —ik? kY
BAHZ =
(2m)" (k2 — m3) ((k +p1)’ - m%,) ((k +p1+p2)” - mQZ) ((k +p1+pe+ps)’— mQZ)
(213)
0054 . / d*k kAR
BsHZ =
i (27)" m (k? —m%) ((/f +p1)° - m%l) ((k +p1 )’ — mZZ) ((k +p1i+pe+p3) — m%)
(214)
and
g / d'k —ik kY
B6HZ = :
(2m)" m3, (k2 — m3) ((k +p1)° - ml%l) ((k +p1+p2)’ — mgz) ((k +p1+p2+ps) — mQZ)
(215)

Finally, in order to obtain the full contribution of the one-loop four-point functions
to the gauge coupling we should add the results of equations (194), (196), (198), (204),
(208) and (212). Thus we get that
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(47T>d/ZBHZ”U«V = Iu4d{24U]1CHZg2)\{_guym2ZCO(p17p27mZ7mH7mH) + C“y(p17p27mZ7mH7mH>}

80126H294
Vo
(p1 + p2)"C"(p1,p2, Mz, mp, mz)

{—WQZQWCO(Z%M, mz,mu,mz) + 2C*" (p1, p2, mz, My, mz)

+ o+ +

(p1 + p2)"C” (p1, p2, mz, mu,mz) + (p1 + p2)*(p1 + p2)" Co(p1, P2, Mz, Mp, Mmyz)

+ v -
plvp?amZ7mH7mZ) - MC/M) (

v (D1 D2)p
Uy — ——=—2C0"(
my myz

P1, D2, Mz, MH, mz)

p1+p2)"(p1+p Y
- ( - 2)m<2 - 2)p0“p(p17p2,mz,mH,mz)} —6929“ )\Bo(phmH,mH)
A

+ 14401131{292)\2@3{—9“”7”221)0 (p1, P2, P3, M, Mz, Mp)
+ D" (p1,p2, p3, mu, mz, mp) + p{ D" (p1, p2, p3, M, Mz, my)
+ PIfDV(pl,pmp& mg,mz, mH»mH) +p§LpTDo(p1,p2,P3a myg,mz, mH)}

240
Yo
— 2my D" (p1, pa, p3, iz, mu, mu) + Ugy

{W%QWDO(PhPm D3, Mz, M, M)

+  (p1+p2 + p3), D" (p1, p2; p3, Mz, Mp, mp)

— mZ(p1 + p2 + p3)" D" (p1, a2, ps, Mz, Mg, Mg, Mz

— m(pr + pa + ps)" D (p1, pa, 3, Mz, Mg, M)

+  (p1+ P2+ P3)" 9o D' (P1, D2, D3, Mz, Mg, M)

+ (1 +p2+p3)"(p1 + P2+ p3), D" (p1, P2, p3, Mz, My, M)

— m(pr+pa+ps)’ (P + e +p3)“Do(p1,pz,p3,mz,mH,mH)}

(p1 + p2 + p3)*
mz

+ 160%HZ94{—3U1’§ZHZ + Ussuz + Ussrz

+ {—még’“’ +m(p1+ p2)* (P14 p2)” +my(py+ pa)” (p1 + p2)*

+ (p1+p2) - (p1+p2+p3)(pr+p2)"(p1 + P2 +p3)“}D0(p1,p2,P3,mz, M, My)
+ {2m22(p1 +p2)” — (p1 +p2) - (1 + P2+ p3)(p1 + p2)”

+ m22<p1 + p2 +p3)V}D”(P1>p2>p3,mz,mH,mZ)

+ {mZZ(pl + po + p3)*

— (p1+p2) - (p1 +p2+p3)(p1 + po —|—p3)“}D”(p1,p1,p1,mZ,mH,mZ,mz)
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+ { (p1 + p2 +p3)(p1 + p2)" (p1 + p2),
— (p1+Dp2+3)p(p1 + 02+ p3)" (01 +pz)”}D”(p1,pz,p3,mz,mH,mz)
3m p1 +p2) (p1 + P2 —l—ps)}DW(pl,pQ,ps, mz, mg, mz)

—2(p1 +p2)"(p1 +p2)p, — (P1 + p2)"(p1 + P2+ D3),

/—/H/—/H

+ (p1+ pa) - (1 + P2 +p3%(fl P2+ pa) +p2)p}D“p(p1,P2yp37mz,mmmz)
z

—(p1 +p2 +p3) (p1 +p2), — 2(p1 + p2 + p3)*(p1 + p2 +P3)p}D“p(p17p27p3,mz, M, Mz)

{ p1+p2) - (p1+ 2+ p3)(p1 +p2),
m

—2(p1 + p2),
- 2(p1 +p2 +p3)p}ijp(plap17p17mZ>mHymZ7mZ)

+ {—2(]91 +p2)ygp0' - 2(271 +p2 +p3)'/9po}DWU(p1>p2>p3,mZ>mH,mZ)
{ (p1 +p2)p(P1 + P2)o(P1 + P2 +p3)"  (P1 + D2)o(P1 + D2+ D3)p(P1 + D2 + D3)"

m? i m%
. Iz
+ 9o (P1 ¥ P2) - (P —H:;;L pa)(p1 + 2 ¥ Po) }Dypg(phpl?pl,mZ; My, Mz, Myz)
z

{ (p1 + p2)p(P1 + P2)s n (p1 + p2)p(P1 + P2+ D3)o

2 2
mz myz

p +p “\p +p +p vpo
. tp) <§ 2 3>gpa}D"p(pl,pz,pg,mz,mﬂ,mz)
myz
n {290,\(]91 + p2),(p1 + p2 + p3)*

2
mz

29,0(p1 + P2 + p3)a(p1 + D2 + p3)*
my

}Dypa)\(phphplamvavaZ7mZ>}} .
(216)
Again here, in order to obtain the reduced form of the Box diagrams with two gauge-

boson and two Higgs-boson external propagators we have to consider the contracted ver-

sion of Bz, with the metric. Therefore we get that
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(47T)d/29WBHZ,;w = :u4d{24011CHZ92)‘{_dm2ZCO(p17p27mZ;mHamH)+m2ZCO(plap27mZ;mH7mH)

+ Bo(PmmZ,mH)}

802 g4
I?Z{—m%dco(phpm mgz, mmg,mz) + QWQZCO(phpm My, My, M)
0
+ 2By(p2, mz, mpy)
+ 2(p1 + p2)C*(p1. D2, Mz, M, mz) + (p1 + p2)" (p1 + P2)uCo(pP1, P2, Mz, Mp, M7)
p1+Dp v
- U/C4 - 2@9#1/0” p(p17p27 mz,mg, mZ)
Z

p1+p P1+p v

- ( ! 2?’;;(2 ! 2)p0“p<p17p27mZ7mH7mZ)} - 6g2g# )\BO(pl)mH7mH)
A

+ 144‘7113H292/\2U(2){—dm22D0(p1, b2, P3, My, Mz, mH)
+ 9 D" (p1, D2, D3, M, Mz, M)
+  2p1, D" (p1, p2, p3, Mmp, mz, M) +p%D0(P17P2,p3,mH7mZ,mH)}

2408 A"
Vo

- 2m2Zgul/ij(plap2ap3a mz,mg, mH) + UB4

{m%dDo(Pth,p?n Mz, Mg, M)

_|_

(p1 + P2 + 3) G D*F (D1, P2y P3, Mz, M, M)
— 2mZ(p1 + p2 + p3)u D" (1, P2, 3, Mz, Mg, Mpr)
Yoo (P1 + P2 + p3) D7 (p1, P2, p3, mz, mur, mr)
(p1 + p2 + p3)u(p1 + P2+ p3), D" (p1, P2, p3, Mz, My, M)

- -

- m22<p1 + p2 + p3)u(p1 + p2 + p3)" Do(p1, p2, p3, Mz, mp, mH)}

(p1 + p2 + p3)
mz

+ 160’?3Hzg4{—3UB4HZ + “Ubsirz + Usonz

+ {—méd + 2m%(p1 + p2)u(p1 + p2)*
+ (p1+p2) - (p1 +p2+p3)(p1 + p2)u(P1 + D2 +p3)“}Do(p1,p2,p3, Mz, M, Mz)
=+ 2m2z(P1 +p2)y —2(p1 +p2) - (p1 + 2 +p3)(p1 +p2)u + 2m22(P1 + p2+p3),

+ (p1+p2) - (p1+p2+ps)(p1 + Do +p3)u}D”(p1,p2,p3,mZ, My, My)
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+ { (p1 + P2+ p3)u(pr + p2)" (P1 + p2),
— (p1 +p2+p3),(p1 + P2+ p3) (P2 +pz)”}D”(p1,p2,p3, Mz, My, My)
3m (p1 +p2) - (p1 + po —i—pg)}gWD“”(pl,pQ,pg, Mz, M, My)

—2(p1 +p2)u(pr + p2)p — (P1 + 02)u(P1 + D2 +D3),

/—/H/—/H

+ +
+ P PP +p3731(2p1 P2+ po)ulin pQ)p}D”p(p1,P2>P3,mZ,mH,mz)
Z

—(p1 +p2 +p3) (p1 +p2), — 2(p1 + P2 + p3)u(p1 + P2 +P3)p}D“p(p17p27p3,mz, M, Mz)

{ p1+p2) - (p1+ 2+ p3)(p1 +p2),
m

- 2(p1 +p2)p
— 2(p1 + p2 +p3)p}QWDWﬂ(P17P1,p1, My, My, My, Myg)

+ {—2(]91 +p2)ugp0' - 2(171 +p2 +p3)ugpa}Dupa(plap27p3a Mz, My, mZ)
{ (P14 p2)p(P1 + D2)o(P1 + P2 +D3) (D1 + D2)o(P1 + P2+ P3),(P1 + P2+ D3),

m? + m%
;G tp) (P ﬂ:;j pa)(p + P +p3)“}D“””(p1,p2,p3, Mz, M, M)
Z

{ (p1 + p2)p(P1 + P2)s n (p1 + p2)p(P1 + P2+ D3)o

2 2
mz myz

PiLtp2) - (prtps+p .
+ (p1 2) 7<n; 2 3>gp,,}9uyDN P (p1, P2, D3, Mz, My, M)
A
+ {290’)\(p1 +p2)p<p1 +p2 —|—p3>‘u

2
mz

29p0(P1 + P2 + + p2 + -
+ Gpol01 + P2 ]79;);(191 b pg)“}D“p A(pl,pg,pg,mz,mH,mZ)}} :
z

(217)

Finally, lets see which is the reduced into scalar integrals form of ¢"”Bgz, . Similarly
with the Box diagrams of the Higgs sector, here we will need the help of some specific
functions. The reason why we should do that is because we have a huge result of the

above integral. Therefore, we have that
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371 Lmimy  53DLm%m3,  181L*mY¥m%  89Lmimb 25 ¢  D63L*mim}

~ odLm® 29D Lmyyms,  23L*m$ms5,

i 8 8

21L2 10
+ 2DLm3my — # — 6DLmIZ2}CO(mZ,mZ,mZ,mH,mH)
N {9mH 509LmiY  1063L*miY N 441Lm}2 N 147L*m1% S 801Lm%,m?%
4 16 256 64 64m?% Tz 16
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N 681L°mjpmy  185Lmimy  191L*mim},
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_ 53LPmymy  9LPmymyF

+ 24Lmy 4H z 2H z }DO(m27mZamZ7mZ7mH7mZ)}}

where we have defined that L and D are the inverse determinant of the GG3 and Go

matrix respectively and to be more specific they have the following form

1
L = 1,4 ,.,2 mymy m,
MMz — 73 a
1
D = —
2 2 H 4

(219)

3 Abelian Higgs Lagrangian in ¢ gauge

Since we have finished with the calculation of all the one-loop corrections in the of the
Abelian Higgs Model in Unitary gauge, we proceed with the same calculation in the Re-
gauge. There, the gauge-fixing term is present and moreover we have both the physical
and the un-physical degrees of freedom. The reason why we are dealing with this, is that
in the renormalization section we clarify the arguments which demand that the physical
quantities should be gauge independent. Thus, we need the above calculation in order to
compare the physical results in the two gauges, and that will help us understand how and

why there would be a &-cancelation from the physical quantities.
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1 1
Lrg = —3F2+ 5 (0,00) (000) + 3 (Gxo) (9°x0) + g3, ALA
V2A 2 om
+ mZOa“XOAZHA 200 A%0, X000 + > (8X0) 2P0 + 52> A8, X0 2
mH mHO Ho
Ao " Aom Zo 0 40 my, 0 40
v ALA HY 20, 2 0o AT A
+ mHO( uXO) Cbo"‘ mHO Qbo‘l‘g e 090 uily
1 5 Ao
oMV Hy Po — ¢o o MtHo @ + const.
(220)

where we have used a specific notation for the parameters of the model in order to clarify
exactly which of them are independent and which are not. Thus we make the following

replacements

do = g \/X

meg
mHO

Vo —

\/_
v = B

m2
govy = Tz, &4/2)Xo

mm,

(221)

and according to this the only independent parameters left in this model are the Higgs
quartic A\, the Higgs mpy, and Z-boson mass my,.
The above Lagrangian is not yet complete since we can not extract the gauge boson prop-
agator, by inverting the operator acting on the gauge field kinetic term. Mathematically
the reason is that we get a zero determinant. On the other hand, from the physics point of
view, gauge invariance prevent us from having a uniq definition of the gauge propagator.
Thus, we have to insert a term which will break gauge invariance without affecting the

physical quantities. Now, according to the path integral formulation we have that

_ /DAMD¢€ifd4xL(A’¢) (222)

where L (A, ) is the Lagrangian coming from Eq.(220). In order to break gauge
invariance we do a gauge fixing by picking some element of the equivalence class of the

gauge field. So, the fields in that gauge will follow a constrain given by G[A] = 0. In our
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case we have that the constrain reads G = G[A, x].
Now, we can insert in the above relation the unit written as follows

1= /Da5 (G [A + gloa““’ X —a(vo+ ¢)D det <5G 4~ 8““@? a (vt M) (223)

so choosing the constrain to be G[A, x| = ﬁ(auAu — &govox) and the gauge transfor-

mation of the fields as

1
A, — A+ —0,a
90
X — x—a(vo+9) (224)

we get that

0G [A+ Ldua,x —a(vy+9)] 1 ) &
det ( 5 = gg\/fdet [6’”8“ +&my, <1 + Uo)] . (225)
Therefore, Eq.(222) becomes
6G A+ L9 —
210 = [ Da [ DA,DGS (G (A, \]) det ( At S (vo + ‘/’ﬂ) ot atL(Aqa6)
a—0

where the a integral is just an infinite constant. As we can see, if we shift G by a
constant the determinant does not change and therefore we can average over a Gaussian-

weighted selection of shifts using

[ ket Pk 5 (G A, x| — k) —e % (227)

which makes Eq.(226) as follows

0G {A + g%auau X —a(vy + Qb)} ) eifd‘l:cﬁ(Aﬁ)—Gg[QA;‘X]
oa
a—0

Z[0] = Const. x / DA, Dédet (

(228)
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where C'onst. is a constant containing the four dimensional volume.
Now, as final step, we use a known general path integral formulation concerning the

anti-commuting fields, which gives that

det[0] = /DcDée”'f‘#“’Ué(O)C (229)

and therefore combining all the previous arguments we get that in our case the path
integral reads

o G? [AuX b _gm2
Z[0] = Const. x / DéDeDA, D' | #7440~ +el-0,0—gmi, (14 ple
(230)
Thus the Lagrangian in Eq.(220) takes its final form which reads
1 2 L 1 o 0 1 2 0 AOp
Lre = —3Fi+ <au¢o> (9" 0) + 5 (Fx0) (9 x0) = f(a A)" + gz, A0
m vV )\ 2 om Ao
+ 2 % 2)‘ A auX0¢0+ 0( MXO) ¢0+ : ZOAO u 0¢0 ( X 0) ¢0
mHO M, mHO mH()
1
+ g ZO A0A0¢0+ w Zm/m AL AL — SEMZ X
Lo o Aoa Ao r
2mHO¢O - Z¢0 - 92 mH0¢0 + ghost + const.
(231)
where
Lghost = (0,€) (0"c) — — /2o 6 My (bcc (232)

An important notation is that by inserting this specific gauge fixing term in the La-

grangian we have get rid of the mixing term between gauge and Goldstone bosons. On
the other hand, the gauge fixing term gave birth to a mass term for the Goldstone boson
which is defined as m,,, = {my,.
Moreover, with our gauge fixing choice the ghost fields have a kinetic term, a mass term
equal to the Goldstone boson’s and they are coupled to the Higgs field but not to the
gauge boson. So, the ghosts are not completely decoupled and unfortunately, an other
un-physical field has been inserted to our calculations.

Now, in order to calculate the n-loop quantum corrections of the tree level procedures we
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need the Feynman diagrams and rules coming from the above Lagrangian. Therefore, in

this case they read
Gauge boson propagator
; v (L=QkrE”
()

ANNNNN = R — (233)

Higgs boson propagator

—_— = 234
k2 —mi, + ie (234)
Goldstone boson propagator
................. _ ‘ (235)
k2 —Emy, +ie
Ghost filed propagator
........ — z (236)
k2 —&my, +ie
and now we go on to present the Feynman rules for the trilinear vertices:
Higgs-x-Z vertex
\
\
\
\
\\ 2mZ
AN 0 2)\0]{511 (237)
L my,
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Higgs-Z-Z vertex

2
--------- = 2igh’ —20 /2
g o 0
Three-Higgs vertex
\
\
\
\
\
\\
\ Ao
JTTTTTTTTT = —6¢ ?mHO
/
/
/
/
/
/
Higgs-x-x vertex
V2
------- = 2iY "0k . (k +p)

Higgs-c-c vertex

next we have the Feynman rules of the quadrilinear vertices:

Higgs-Higgs-Z-7 vertex
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(239)

(240)

(241)



AN
N\
\
N
Four-Higgs vertex
\\\ //
N s
N 7
N v
N i
AN = —6i)g
// N
7 \
, \
s \\
// N
Higgs-Higgs-y-Z vertex
N
N
N
N\
\\ ’f/
ps - _4>‘OWZZ0 T
,// ' mHO
v
7/
/
x-x-Higgs-Higgs vertex
AY
AN
N
\
\ .
\\ K . /\0
S =di——k - (k+p1 +p2)
7/ mHO

(242)

(243)

(244)

(245)

where here, we have defined that the momenta k& and p;, with i = 1,2, correspond

to the Goldstone boson and the Higgs boson respectively, assuming that one Goldstone

boson gets in and the other gets out of the vertex.
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3.1 Tadpoles in R; gauge

Here we present the calculation of the Higgs Tadpoles which are playing a crucial role in
our analysis, since they contribute as a shift of the vacuum and as a correction to the

Higgs mass. The first Tadpole which contributes here reads

// \\
I \
---------- \ ] (246)
\ /
\\ ,/
and it has the form
1R . Ao d*k 7
iR = —i6Sh | 22m / N 247
H T 2 Hy (27T)4 (k‘2 B m%l()) ( )

" 'k i
TR — 3,/ 0/ 248

where its symmetry factor is St = % In d-dimensions this integral takes the form

A
(4m) 2T = 3\/§mHO,U4_dAO(mHD) : (249)

The next tadpole comes from the contribution of the gauge boson and thus it has the

following form

““““““ (250)

which reads
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2R, my d4 ( Guv + <1_5)%)
iTy & = 2iStg™ 0\/2>\/ (k:2 ) L &

d4l<: —z' m? d*k iktkY
Ta' = \/2A | o (1= 2ogu, [
) k2 — m, ") em) (k:2 — mQZO) (k2 - £m2ZO)
(251)
with symmetry factor S2 = % Here, and in what follows, we use the fact that in

d-dimensions the trace of the metric reads g,, 9" = d 4 . Moreover, using the relation

kFkY = g”” k? in d-dimensions the above integral reads

mHO

m2
(47T)d/27ﬁR5 = Z‘)\/Q)\O,u‘l_d{ll/lo(mzo (1—9 A, \/>mZO (1-¢ )mZOBO mzo,fmzo

2
+ (14+&m Zo}
(252)
where we can see that the argument of the By scalar integral corresponds to the
specific case where p? = 0. As a consequence B, does not have its usual form, since it

is completely symmetric under the interchange of its arguments, and thus it obtains the

following symmetrical relation

Ao(1) — Ao(2)

By(1,2) = 253
0( ’ ) %_ % ( )
Therefore, replacing this relation to Eq. (252) we obtain the following
d 2R, 2
2
(4m) 42T ” 200 % 3Ag(miz,) + EAo( \[mzo (14 &m3,
(254)

The next Tadpole comes from the interaction of the Higgs boson to the un-physical

Goldstone boson and reads

___________{: (255)
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and it has the form

.—3R,
ZTH ¢ =

3m/ d4k ik? 256)

—m2 )
X0
\/2>\ d4k i
TR _ m2, / ! (257)

" =
2
mXo)

where its symmetry factor is 8¢ = 3. This is essentially a U-integral, similar with the
integrals that we face in the Unitary gauge. This fact, as we comment in the next section,
comes from our choice to use Polar basis in order to express the scalar field as a function
of the physical Higgs. Now, in d-dimensions and using the Eq.(513) this integral takes
the form

<4ﬂ)d/27§R£ = —L/\Om2

X0
m Hp

i Aoy, (258)

Finally, the last Higgs Tadpole that contributes to the shift of the vacuum comes from
the interaction of the Higgs field with the un-physical ghost field which has been inserted

to the Lagrangian. As a consequence, we get the following diagram

___________{: A (259)

2 4 .
ame o ed ptmy, %
T = —i(=1)Sh/2h /( TE) (260)

T = e (d4k4 N (261)
X

where we have inserted a necessary factor (—1) in the loop, since the ghosts are anti-
commuting bosons. In addition, the symmetry factor of the above diagram is S = 1 and

in d-dimensions this integral takes the form

(47T)d/2T13R§ \/Kg Zy 4 dAO mxo) (262)

mHO
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3.2 Gauge boson two point functions

Here the one-loop corrections to gauge boson propagator in R¢ gauge are calculated. The

contributing diagrams are the following

/
\
ANnANAAN~AAANANAL ZMIZIEV (263)
where
2 4 :
. 1R, o .ol l/mZ d k 1
iMyy, = 4iS,g" quo )\0/ n) =k, & (264)
0 0
m2 d*k —1
M = —ogm ey / 265
Z,M mHO 0 (27_‘_)4 k2 _ m2H0 ( )
where the symmetry factor is S; = % In d-dimensions this integral reads
2
m
(4m)2MyE, = =20 Mo Ao (mug,) . (266)

Hy

Now, the next one-loop correction to the gauge boson propagator coming from

//"\\
\
AN AANAANAANAAA ZMQZ],%;V (267)
where
(1 g)kakﬁ
Ak ; < Jop T % )
’ My, ) (2m)" (k+p)” — mi, (kQ—m%O)
(1 f)kakﬁ
4 4 . + S
d*k ( Yo )
M2ZR§V - _8gwgyﬁm2zo )‘0/ 1 ; 2
| i, ) (k) —mi, (k2 _mZO)
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ms d*k —ig
M = _ggragrP Lo ) / op
miy, ) (2m)" (k2 — ) ((k+p)? —m, )
4 4 y _
_ Sg,uagl/ﬁ mQZO )\0/ d k4 5 Z(l 2£)kak2ﬁ 5 (268)
mh, @) (k2= m%,) ((k+p)° —m¥,) (k2 —&m,)

where here the symmetry factor is Sg2 = 1. Now, using the Veltman-Passarino reduc-

tion formula in d-dimensions we obtain the following

m4
(47r)d/2M2Z]jfl/ = 8 QZO )\Opfl_d{_g’uVBO (pa mzy, mHo)
mHO
Guv
+ (1 - S)% mzZoCO<mZO> \/ngmmHo) + BO(p> mxmmHo)} } :

(269)

Finally, the last diagram that contributes to the one-loop corrections of the gauge

boson propagator reads

3R

W'\.;—————"\/W:Z'M

Z,uv (27())
i —884m220)\ / dk ikt ik”
Yy, ) (@m) R = &, (k+ p)? — mi,
2 4 _ LMY
M, = g% )\U/ dk4 ik"k _ . (271)
’ M, (2m)" (k2 — EmZ, ) ((k + p)” —mi,)

where here the symmetry factor is Sg’ = 1. Therefore, with the help of the integral
notation developed from the Veltman-Passarino reduction formula, in d-dimensions the

final form of M:ny reads

m2 iz
(47T>d/2M3Z{%/fV = 87n2Z0)\01u4_dgd{mxoB0(p7 Mxo> mHo) + A0<mHo)} . (272>
Hy

Thus, since we have finished with the evaluation of the one-loop diagrams of the
gauge boson two-point function, we should add all of them in order to calculate the full

corrections of the corresponding propagator. So we get that
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2

R m — v v

(4F)d/2MZiw - mQZO >‘0:u4 d{_2g# AO(mHo) - 89# Bo(p, mmeHo)
Hy

+ 8(1—¢w

d mZZOCO(mZm \/gmzov mHo) + B()(p, My, mHO)

iz g

+ 89 mioBO(pvmxo’mHo)+8gAO(mHo)}

d

d
(273)

and for completeness here we present the corresponding one-loop corrections to the

gauge boson propagator calculated in the Unitary gauge. The exact form reads

m2
(47T)d/2Mg,W = Gw mQZO )\0M4_d{—8m22030(17; Mzy, M) — 2A0(Mmm,)
Hy

8

8
+ gm%OBo(p, Mz, M) + dAO(mH0>} :

(274)

Actually the relation of M?iw is far from being complete. As we should recall from
the first section, a gauge boson propagator can be split into a transverse part and a

longitudinal part as follows

Guw(p) = <g,w - p;f”) M+ p;f”/\/léii : (275)

In addition, if the mass of the propagators running the loop is zero or smaller than
the external field mass, then we are allowed to ignore the ptp” terms from Eqs.(275).
Generally this is not the case but here for simplicity and in order to see some qualitative
results, we will consider only the contracted with the metric term of G, (p). And now we
can use the Veltman-Passarino reduction formula so as to express Egs.(273) as a function
of the scalar integrals. Now we present some useful relations that we should use in order

to manage to reduce our expressions to scalar integrals

fi = mjy—mi—p?
1 1
puB*(1,2) = j;lBo(L 2) + 5140(1) - §A0(2)

9 B" (1,2) = miBy(1,2) + Ao(2)
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} m2 — m2 — p2 m2 — m2 + 3p2
P, B (1,2) = T2 A1)+ T A (2)

4 4 922 202 .2 2
<m1+m24 m1m2+p(m1 4m2—|—p) Bo(1,2)

9w C*™(1,2,3) = miCy(1,2,3) + Bo(2,3)
(md — m} —p?)’

2 2 2 2 2
+m3 —2mi — 2
pupC"(1,2,3) = 1 ) Cp(1,2,3) + 18T M = 2 = 2P

4
—m3 24+ 2p? 1 1
TETET By (2,3) + 1 Aol1) — 740(2)

(1,3)

(276)

so as an example, we can use these relations obtaining that

2 €

Re . myz 2

{—QAo(mHO) — SBO(p7 Mz, mHo)

Los(1-6)t

d mQZOCO(mZm \/Emzm mHo) + BO<p7 M5 mHo)

1 1
+ 8gmioBo(p, Mg, M, ) + 8dA0(mHO)} )

(277)

The corresponding contribution of the contracted with the metric ./\/lg L Bives

m2 €
g,ﬂ,/\/lg’wj = (d + 5) 2ZO )\Olu{—8m2ZOB()(p, mz,, mHO) — 2A0(mHO)

my, 1672

8 8
+ gm%oBO(pv mzy, mHo) + dAO(mHo)} : (278)

3.3 Corrections to the Higgs mass

Since we have finished with the corrections of the gauge propagator in both R, and Unitary
gauge, we move on to the demonstration of the same procedure for the Higgs propagator,
namely to the corrections of the Higgs mass. In this case the corrections coming from the

following contributions
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_____ Q e = iMEe (279)

. 1R, - ol m2Z
iMyt = 4ZSMHg“”m2°)\O/(
T

Ho 2 )4 (k2 — m> )
2 4 ; 2 4 ; v
My = 2<d+€)m20)\0/ o)t k2 — m? m? o W/ om) (12 — m2 2 g2
Hy (2m) Zo Ho (2m)" (K my, ) (k? —Em,
(280)
where the symmetry factor here is S}\AH = 1 Now in d-dimensions using the Veltman-

5.
Passarino reduction formula and the Eqs.(276), the above integral reads

m2 d+e m?
(47T>d/2./\/l}{R§ = Iu4_d{2(d + 5)m2ZO )\0A0(m20> — 2( d )<1 — g)mQZO )\ogWB“”(mZO, \/gmzo)} =
HO HO

2
(4m) P My = ?f%u“-d{mo(mm = 2(1 = ©)A0(y/Ema,) = 2(1 = mE, Bo(mz, \/Ema,)

Hy

+ 2(1+ f)mQZO} .

(281)

where again here we can see that the argument of the By scalar integral corresponds
to the specific case where p? = 0. As a consequence this By does not have its usual form
so in every time that we face an integral like that, we will denote it as B(my,ms) i.c.
without a p argument. Finally, since this scalar integral is completely symmetric under

the interchange of its arguments, it obtains the following symmetrical relation

Ao(1) — Ao(2)

2

282
m? —m3 (282)

By(my, mg) =

Now, applying the above formula to our case in Eq. (281) we get that
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2
(47T>d/2M:]L'—[R£ — ZzQZO)\OM4d{6AO(mZO) —|— 2£A0(mX0) + 2(1 + £)m2ZO} .

Hy
(283)
The next contribution comes from the diagram
L
S D = iM (284)
which has the following explicit form
. 2R¢ .02 d4kf 7
iMe = —6zSMH)\0/ S
(2m)" K% = (285)
M =35 [ L
H 0 (27T)4 k2 —my
Its symmetry factor reads S%AH = % and thus in d-dimensions we get that
(4m) Y2 M = 3Aou Ay (mupg, ) (286)
Next comes the Goldstone boson Tadpole which reads
g - \\\
““'\\ o= iM?, (287)
and its explicit form is
4 1.2
M = 4is3, 0 /dk . 288
WMy oM m3, ) (2n) k% — m2, (288)
4 .
3Re /\0 9 / d*k —1
= =2 289
Mt = o g, 2
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where here the symmetry factor reads S%AH = % . Now in d-dimensions we get the

following final result

3R 2\ _
(4m) 2 My = —m—imiou‘l “Ap(myy,). (290)
0

So now we move on to more complicated contributions starting with the following

----Q--- — iM (291)

which is equal to

4 . .
2 AR 4 9 d*k ? 1
IMiE = <188k, Ao, [ o
H Mu 70 | (97) <k2 — m%{0> ((k +p)? - m?qo)
d*k —i
M = 9rgm?, / . (292)
Jo@n)t (k2 = m3,) ((k+p)* = m¥,)
The symmetry factor here is Sj‘le = % and in d-dimensions, using the Veltman-
Passarino reduction formula, M;LLIRE reads
(47r)d/2/\/l;1f5 = 9\omi, 1’ Bo(p, mu,, mu,) - (293)
Next we have the Higgs-Goldstone self loop contribution which reads
----- L Tt =My, (294)

which is equal to
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R N [ Ak ik-(k+p) ik-(k+p)
My = _885)\/1Hm2 /(2 ) (k2 2 k 2 2
Ho m ( _mxo) (( +p) _mxo)
A d*k [k* + 2Kk - p + 1p2k?
Mo = a8y, - [ AW+ 2k p g ] (295)
miy ) 2m)" (k2 —m2,) ((k+p) —m2, )

where the symmetry factor here reads S)K’MH = %

From the above relation it is clear that Eq.(295) needs a specific treatment, since it be-
longs to the family of the U-integrals which we have defined in the case of Unitary gauge.
Now, someone could say that this is quite unexpected since in R¢-gauge we do not see
these specific integrals, but we should recall that we have used the Polar basis in order to
express the scalar field as a function of the real Higgs field not the Cartesian. Thus our
argument stays that if we have a theory in R¢-gauge and we consider the scalar field in
Polar basis, then highly divergent integrals i.e. the U-integrals, should appear.

Now, using the Veltman-Passarino reduction formula and the Uy, ’s results, in d-dimensions

we obtain the following

5R A _ 3 3
(47T)d/2MH = 4m20 /‘d 4{[2mi0 - gPQ]AO(mXO) + (mio - gmeio)BMpv Mxos mxo)} .
Hy

(296)

Next we consider the one-loop correction to the Higgs mass coming from the ghost
fields, which have been inserted in the Lagrangian through the gauge fixing. Thus, we
have that

L~
----- ﬁ o =M (297)
NN
which reads
Xo&2m? d*k
iMGe = 288, of QmZO/ ‘ . &
mi, (2m) (k2 —mi()) ((k‘—i—p) —mio)
A 2,4 4 _
M?{R& _ 2 0£ ;TLZO/ d k 7 ~ (298)
migy S @m)" (k2 —m2,) ((k+p)° = m2,)



with symmetry factor S, = 1. Therefore using the Veltman-Passarino reduction

formula in d-dimensions we obtain the following

d/2 p (08¢ )‘szm%o d—4
(47T) My* = 272“ B()(p’mxmmxo)' (299)

mHO

Now we are left only with two more diagrams contributing to the corrections of Higgs

mass. The first one exists also in the Unitary gauge prescription and reads

----G--- = iMp e (300)

Its explicit form is given by the following integral

. 1-Okuka \ - (1-8)(k+p), (k+p)
: d'k " (‘gﬂﬁw) ' (_9”ﬁ+ (P —em?, ﬁ)

A TRe 7 v o Mz,
Myt = —88L,9"9 >\0/
H Mgy o (27r)4 (/@ — mzzo) ((k; ) mzzo)
i A—Okuka ) (_ (1-8) (k+p), (kD)
i o8 M2 d'k Z( G ¥ ’“2—5"5"20) ( 9B+ hap-emZ )
M = agmgi iy, [ 22 —— el (301)
o (2m) (k _mZO> (<k+p) _mZo)

where the symmetry factor here is 8/7\/1H = % Now, we perform the computation in

the contracted numerator of M;IRE from which we obtain the following

(1 = &k,ka (1 =& (k+p),(k+p)s
k? —&my, ) <_g”5 T i -, ) -
d+5{ k> N k2+2k~p+p2}

d k2 —&m7,  (k+p)?—Em3,
2d+5{ k4 4 2k%k - p + K2p? }

d> U[k? — EmZ J[(k +p)? — Em,]

N — g/»lfl/gaﬁ <_gua _|_

N = (d+¢)—(1-¢)

+ (1-9
(302)

Thus, now if we replace this expression in Eq.(301), performing the Veltamn-Passarino

reduction, we will obtain the following form
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d+e
d

m4
()P My = 4m220/\0,ud4{(d+5)Bo(p,mZO,mZO)—(1—§)

Ho

2 1
{mZO C’0 (pv Mz, Mzy, mXo)

B(l)(mzov mxo) + (2m2Z0 + fl +p2>cg(pa mZovammXo)

2Bg(p, mzy, mxo) - Bg(pa mzy, mxo)}

od+e
d?

+ (1-9

{Bg(p, Mz, mXo) + mQZOCg(pa Mzy; Mygs mXo)

+ m2ZogMVD'LW<p7 MZy, MZo, Mygs mXo)} }
(303)
where the ¢ = 1,2 and j = a, b indices correspond to the possible different combinations

of the denominators in the Bjs and Cjs scalar integrals. To be more specific, for a given

scalar integral By, we have that

BY( ) / d*k —i
o\"MZzo, Mo ) = 7
e (2m)" (k2 = m3,) (k2 —m2,)
d*k —1i
B(2) (p7 Mz, M ) = /
e (2m)* (k2 — mQZO) ((k +p)? — mfm)
d*k —i
Bg (p7 mgz,,m ) = / .
o (2m)* (k2 — mQZ0> ((k’ +p)? — mio)
(304)
while for a Cjy we define the following relations
d*k —i
C&(p,mz,mz,mx) = / 4
oA e (2m)" (k2 = m%,) ((k +p)* —m%, ) (k> = m2,)
d*k —1i
CRp sz ) = [ -
e T (2m)" (k2 = m2, ) ((k+p)2 —m3, ) ((k+p)? —m2,)
CS (D, Mgy, Moy, Myy,) / dk !
0\Ps 11bz0, Mxo, Mxo ) = 1 '
oA (2m) (k2 — mQZO) (k:2 — mfm) ((k: +p)? — mio)
(305)

Finally, the last contribution to the one-loop corrections of the Higgs mass comes from

the following
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———A~~A - - :iMiIRé (306)

and its explicit form reads

. (1=8) (k+p) , (k+p),
m%, o d'k kR 2<_9W+ () —€m2, )
Sy [ :

. 8R,
iMy* = =8\
" % 2m)' k= mi, ((k+p)* —m3,)
Lo 4 U9, (),
AR g M / d'k ik \ I T e &
= —O0Ap
" mi, ) 2m)' K —mi, ((k+p)* - m3,)
d+ec. m2 y
Mi]RE = -8 d )\O#QMVBM (p7mX07mZ0)
mHO
s st e [ S Bt
- 0
@ mi, S @) k2 = m2 [k + p)? — m3)l(k+p) —m2,)

(307)

where its symmetry factor is S}, . = 1. So we see that M?LIRE can be split into two

terms which we calculate separately. Therefore we have the following relations

A d+e . m} ,
M?JRé = _STAOFQZOQMVBM (p7 mxg» mZo)
Ho
SR, B d+e m2 d*k —i[k4 + 2k%k -p+ k2p2]
My = 8 d? (1_5))\0711220 /(2 ) T2 2 2 2 2 21"
Hy 7 (2T) (k2 —m3 J[(k + p)” — m J[(k +p)” —m3]
(308)

The first one in d-dimensions, using the Veltman-Passarino reduction formula and
Eqgs.(276) reads

d+e.  m> B
)\0 2ZO :ud ! {mioBO(]% memZo) +A0(mzo>}

R:A
(Am) P MGE = -8
a d miy,

(309)

while the second term, using the same arguments, obtains the following form
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d/2 y (8RB d+e¢ MY a4 2
(47T) MH = 38 2 (1 _g)AOm%{ 2 AO(mXo) +mXOBO<pﬂ mX07mXO)
0

2 2 2
+ mZoBO(p7 mzy, mXo) + mXOmZOCO(p7 Mo MZys mXo)}

(310)

therefore, in order to obtain the full contribution of MZRS we should add the two

results calculated above.Therefore, we obtain the following two relation

d
(am)i2paile = g2EE

m2
d )\0 QZOMd ! _mioBO(pvammZo)_AO(mZ0>
mHO

1
+ g(l - 5){A0(mxo) + mioBO(p7 Mo mxo)

+ mQZOBO(p> mz,, mXo> + miomZZOCb(p? Mo, MZys mxo)}}

(311)

Here we have a misleading point, since someone could say that we need to consider
the MZR£7S mirror diagram which occurs from the interchange of the Goldstone boson
with the gauge boson inside the loop. Nevertheless, this is a step that should not be done

here, since we have that the mirror contribution is exactly the same with that of MZR?

Until now we have calculated all of the necessary diagrams that contribute to the one-
loop corrections of the Higgs mass. Thus, the final step is to evaluate their sum which will

be the complete one-loop correction to the Higgs two point function. So this correction,
which we define as MZE reads
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m? m?
(47T)d/2./\/l§£(p) == ,ud74 3)\0A0(TTLHO) +6 220 /\OA()(mZO) +2£ QZO Avo(mX())
My, mir,
m%o Ao 2
+ 2(1 = &)= — 2—5—m;, Ao(my,) + 9Nz, Bo(p, M, mau,)
mi, miy,
Ao 2 3p* Ao 4 3p* 2 9
+ 4m%{0 [2% =~ | Ao(my,) +4m7% Mo = = P Mg | Bo(ps Mg, M)
Xo&2m? ms
+ 2 ng 2 By (p, myg, M) + 4(d + €) QZO MoBo(p, mz,, mz,)
miy, mir,
d+e. &€m} d+e. m%
_ 8 d )\0 m%{OOBO(p,mXO,mZO) —8 d )\Om%—;;Ao(mZO)
m2 Am? (d+ ¢
+ M- D s 4t R ma )
miy,
d+e d+e d+e
- 4mQZOTBé(mZo’mX0) - 8m2ZoTBg(pa mZovmxo) + 4m2ZOTBg(pa mZovmxo)
d+e d+ e
+ 87140(77%@) + 1677”?(030(177 Mg Mo
d+e d+e
+ 877’7’22030(]9’ mZO’mXO) + 16 d2 miomQZOCO(p7 mX07mZO7mXO)}
ms d+e .
+ 4m2ZO )‘0(1_5)2 a2 {Bg(p7mZo7mxo)+m2ZOCO(p7mmeX07mXO>
Hy

2 nv
+ mZog/WD (pvaovammXovao)}}'

(312)

where the g, D"* term gives only Cy and Dy contributions which are completely finite.
Now, in order to have a complete description of what we have obtained with the above
calculation, we present the corresponding one-loop correction coming from Unitary gauge.
So, using the parametrization from Eq.(221) the correction to Higgs mass in this gauge

reads

98



4

Aom> 3am
(4m)PM(p) = Md4{60220140(m20) +— 20 4 3XoAo(mp,)

Ho mHD
Aom}
+ 9/\Om§{0B0(p7 My, mHo) + 4<d + 6) : 2 2 BO(pv mzy, mZo)

mHO
8(d + ) Aom, 1
— B ——A
d m%;lo 0(p7 mZoamZO) + m2ZO O(mZO)

4(d + &) Aom, [

2 2
d mi,

2
Bo(p, mz,, mz,) + mon(mzo)] } :

Zo

(313)

4 Renormalization of the Abelian Higgs Model

Until now we have calculated all the one-loop corrections of the two- and four-point
functions in both the Unitary and the R, gauge. Generally our final goal is to evaluate
the LCP’s, and thus we should evaluate the effective potential. This would be done by
first adding the one-loop corrections and then renormalizing the potential. Thus, we need
all of the above calculations in order to obtain the effective potential. Moreover, here
we perform a comparison between the counterterms of the physical quantities in the two
gauges, showing the procedure that makes them gauge-independent and clarifying some
dark spots on this calculation. Finally, we show how we should treat the insertion of
the Tadpoles in the effective potential, since in our case there is not any condition which

absorbs them.

4.1 Renormalization in R¢ gauge

Our Lagrangian reads

1 1 1
Lo = —3F2+ 5 (0u60) (0"90) + 5 (Buxo) (0%x0) - ?(a 4)° +§m%0A2A°“
m \/2)\ 2 om
+ 2 %o 20 A° 8MX0¢0+ ( X 0)2¢0 + 0 ZOAO OuX 0¢0 ( uX 0) ¢0
mHO H mHO mH

A 1
+ g “mZ°A°AO<z>0+ o o 2Aodo AL AL = SEm G

1 0 /\0

*m%{ﬂg - Z(% “\

5 g, ds + Lghost + const.

(314)
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We proceed with the renormalization of the Lagrangian (314). We define renormalized

quantities only for the independent parameters which read

my, = miy+0mpy
mQZO = mQZ + 5mZ
N = At (315)

where the subscript 0 denotes the bare quantities. Substituting the above definitions
into the classical Lagrangian, including all the one-loop corrections of the model we will
be able to obtain the 1-loop effective Lagrangian. An important point here, according
to the next section, is that there is a non-zero anomalous dimension only for the Higgs
field and the un-physical Goldstone field. On the other hand, the Z-boson has zero
anomalous dimension. Thus, we have to renormalize also these fields i.e., we should
consider counterterms for ¢ and y fields. As a consequence, we obtain the following

relations

¢0:@¢
XOI\/?XX

(316)
where Z; = 1+ 6j.

Therefore, considering all of the above arguments, the renormalized 1-loop effective La-

grangian reads
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L = FL T (00) (0°6) + 2 (0) (03) — 5 (O

1 i
+ 5 (M3 +0mz — MGE — diT;™ + m30A%] A, A"

[ mzV2N1+ 50F — S+ ) .
+ |2y/ZyZy m; + Kz | AuOuxd

[ VoAl + 5 — i)

my 2

+ ZX Z¢ my “ + lexH (6MX) ¢

_2Z¢1/mez()\+)\gz§ m
+ e z = + BXZH Au0uxd?

A+ A — A2

+ |ZsZ, B (D)0

L mHO

A+ /\‘ZZZ - ym?2,
+ g Zy z 2 “ - + Bflgz AuAu(rbZ
L mHO
r 2 om om 2N
my V21 — G + o + 55 R

Nz My ™y + K5, | pALA,
+ g ¢ M 7| PAL

1 V2
-3 [mi +om,, — MRf - 71? TRE +m 5X] X+ E;%st
— V(o)

(317)
where the effective Lagrangian for the ghosts reads
E;ﬁst = J,c0tc — [mi +om, — Mf,f cc (318)

and the Higgs effective potential reads

my  0¢ 2 Re iR R
(2)\)3/22 o+ = [mH—l—émH—/\/lH— Ty +mioe §]¢

o o\
+ \/7mH—|— \[mﬂéngr\[mHerH /\+IC§§ o

A+2A5¢+5A—BH} \
L 4 ¢

Vig) = _al e

(319)
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where, essentially, the Higgs wave function counterterm is just a shift of the re-
minimized vev. As we can see from the above relations, we have inserted in both the
Z- and the Higgs-quadratic terms the reducible and un-physical diagrams, i.e. the two-
leg Tadpoles. Generally, this is a necessary step in order to obtain gauge independent
physical quantities. Nevertheless, it is not exactly clear how and in what physical quan-
tities we should use the two-leg Tadpoles.
In particular, we can recall from Eq.(314) that we have inserted a gauge fixing term which
seems to break gauge invariance. Actually gauge invariance is steel there but is hidden
and it can be revealed through the combination of Z- and the Goldstone boson. To be
more specific, when we perform the resummation of the gauge boson propagator in tree
and one-loop level, evaluating the quantum corrections to the Z-mass, we include both
the physical and the un-physical degrees of freedom. Thus, since my is protected through
the gauge invariance, we would expect that the one-loop corrections, the counterterm
and the S-function of the Z-mass should be £-independent without the use of the two-leg
Tadpoles.
On the other hand, for the Higgs mass we do not have a specific symmetry that protects
it from being {-dependent. All that we know, from the Nielsen Identities, is that the
extrema of the effective potential should be gauge invariant and this includes only the
my and not the quartic coupling. Unfortunately, the above statement does not indicate if
and with what coefficients the reducible diagrams should be introduced to the Higgs-mass
counterterm so as to get a gauge independent result. Therefore, in what follows we are

going to clarify the above situation.

Now, here we face a very interesting situation, since as we can see from Eq.(314)
we do not have a linear in ¢ term in Polar basis. Nevertheless, inserting the one-loop
contributions so as to obtain the effective potential, a liear term with Tadpoles and d¢
appears. Moreover, these Tadpoles should come with a specific combination since the

potential should be finite. Thus, we can perform the following steps:

Since any counterterm and Tadpole is a function of the scalar integrals we can write

generally that

€ 2

_ K Ya ko 2o 2 1n
da = (47T) ( ‘|‘2on1 +ZfBo/d1 (Az( k’mz)>+Zon)

(320)

and having in mind that
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““““““ (321)

where ¢ indicates the kind of the field that is running the loop and the straight line
indicates the Higgs field, we get that

P :u6 CT i,k Il i,k 2
T = (47r)2(5 = +ZFB@/‘“”m(A@(mk,mz)>+Z )

(322)

where in our case, k corresponds to the subscript Z, H and yx, da is an arbitrary
counterterm and moreover C,, = 23", [ fho+ 7 éo} and Cr =23, [Fj‘f + F,;ﬂ
So, since A} = A} (my,, m;) we can separate the last logarithm of the above relations and

in each case we can write the following

do = A (G -y g /ldwlnN'(m m)+ 3 )
(mpr \ e G TRy S

0

(323)
and
w [c 12 1
i T ik ik I ik
- =T Fik g pik g 2 / In A% (my,, m, F
Ti (47T)2 ( € +;{ Ayt BO} nm% / v mk’m +Z Ao)
(324)

where Al (mg,m;) = —p?z(1 — ) + m2(1 — z) + miz and A} =

k — mk
Now, since we want a finite effective potential, we demand from Eq.(319) that
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. 1)3
0y + 2Co = 06
ik ik US’ k k _
22{% Fly + Fig| + 5 [Fh + 1) } = 0&
k
Z{ai [Fib+ P+ %0 \fho + Fho] } = 0
k
(325)

obtaining a finite linear term

€ 3 2
fR H ik ik, Yok k H
TH ¢ = (47_‘_)2{; |fli[FA0 +FB0]+2[fAO+fB():|‘| lnmii

1 3
- ¥ [aiFgf + fgo} / da In A} (my, mg) + > [a; Fi + %0 fﬁo]} (326)
k 0 k

which generally is not zero and it could be gauge-dependent. Here, the subscript f
indicates the word finite.
Now, recalling that the Tadpoles in the above relation are fixed through Sec.3.1, while d¢
is fixed through the anomalous dimension in Eq.(339), we can imply the above procedure

in our case. To be more specific, we have that

V2 m?y .
I

mpyg

Ty = 3 @mHﬁAD(mm + {a2<3Ao<mz> + EAo(yfEmz) + (1 + &m3)
— a3§A0(mX)—a4£Ao(mX)} (327)

while the Higgs field counterterm reads

A Am> Ami (1 —
0 = ME{?’QAO(mx) + 3652 By(p, my, my) + #Oo(pbpm mz, mZ,mX)}
my miy My

(328)

and from the above relations we can identify the following
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fag = 0

fi, =0
Am?

foy = 0

g, = 0
Am?,

fi, =0

; A
aiFA’f = 3\/;771%{@1

CLZ'FQOZ = 3&2 o
5% 2 \/ﬁm‘é
aiFAO = ¢ o {@2—a3—a4}
aiFgf =0
aFp = 0

(329)

Now, using Eq.(325) we obtain the following specific relation

A V2 mi mym?
3\/gm§’{a1 + o Z {(3 + 52)a2 — a5 — 52(14} + 232\/5 0. (330)

So, now we can use Eq.(326) in order to define the remaining finite part, obtaining

A 2 V2 m? 2
7'13;]“25 = ME{B\/;m%allnﬂ'L;Q +3 5 Za21n’u—2

H my myz
V2 mZ

H

mrm 2 3mgm2
{522—5%3 a, + 671 Zé}l L — 2 ()
X

23/24/)\ 23/2y/)\

mgm> m> V2 m
"z MHMZ ¢ 4 (1 4 €) = Zag}. (331)

H

+ 41 —5)W00<mz,mz,mx)+323/2\/—

where we have defined that
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bo(my,my) = /dmlnABO(ml,mg)

1

A
by(mi,ms) = / —B° 1, ma) (332)
0

with APo(my,my) = —px(1 — z) + m3(1 — ) + mix and

111 .
co(my, mg,m3g) = — /dx/dy/dzA (333)

0 0 0 Co mla ma, m3)

with A (my, me, m3) = —plz(1 —x) — 2ps - poxz — paz(1 — 2) + [mix + miy + m2z].

Finally, we can use Eq.(325) in order to simplify the above result, but in order to

do it we should first perform some calculations. To be more specific, we should add

4

in Eq.(331) the terms £3a;3mj; Inm, and +3a, \/72:’\;”2
H

In &, which help us to create the
proper condition of Eq.(325) as a multiplicative coefficient of In 1’;—22 Thus, following the

X
above arguments we obtain a finite result for the linear ¢ term

R 5 3mym> mygm>
Tzirc C = {—beo(mmmx) +4(1 - 5)237/2200(mz7m27mx)
A 5 omy V2 m%, My V2 m%,
+ 3a1§mH In o~ + 3ay o) Iné + 323/2\/_5 +(1+ )TH% (334)

which is both non-zero and gauge dependent. Thus, in what follows we will see if and

how the above result will affect the physical quantities.

For completeness, and before we move on, we should mention that the amplitudes
7}? ‘) Mff, Ing and Bff correspond to the one-loop corrections of the Higgs one-, two-,
three- and four-point functions respectively. The quantity M?E is an extraction of M?jy
and corresponds to the one-loop corrections of the Z-boson two-point function. Moreover,
IC}Z%f(H, ICff(H, ICffIH, Bfi[, Bre, and K1, are amplitudes with both Higgs, Z and y-boson
external legs and will not be presented here since they will not contribute in the physical

quantities under consideration.

Now, in order to continue with renormalization, we need to use specific conditions
which will help us define the counterterms needed to adsorb the divergences from the one-

loop corrections. Therefore, we choose to use a Physical prescription which is equivalent
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to on-shell renormalization conditions.
To be more specific, and similarly with the Unitary gauge, our Physical prescription

requires that:

e The physical Higgs mass is defined by

Smnt = M 4 T — m250% + ¢ - T (335)

demanding that

V(v)" =m? (336)

fRe . _ .
where, as we have shown, 7 is non-zero and myg = mg,, , i.e. corresponds to

the physical Higgs mass. Here all the ¢’s have dimension of inverse mass.

e The Higgs quartic coupling is defined by

V(v)" = 6A (337)

e The physical Z-mass is

mzphy =Myg. (338)

So, using the above renormalization conditions we fix the needed counterterms, ob-
taining the 1-loop renormalized effective potential. To be more specific, from Eq.(317) we
observe that there are six different counterterms involved into the renormalization proce-
dure, from which, the wave function counterterms are determined through the following

relations

dME (p)

Splte =
) e

2
p2=m3,

5x = 6¢. (339)

Thus, we are left with four undetermined counterterms which will be fixed in the

following. Actually, there are four conditions fixing dmg, dmz, A and dm, but in the
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last case we should be careful. The last counterterm comes from the renormalization of
the y-mass, and since Goldstone boson is un-physical there is not a uniq renormalization
condition that could be used. Nevertheless, we are interested in the quantities that are
determined through the Higgs potential and the Z-mass renormalization condition, thus,
starting with Eq.(337) we get that

SARe = Bhe _ 2)s5gfe (340)

which is used to eliminate d\ from the term in Eq.(319) proportional to ¢®. Next we

consider the condition Eq.(338) from which we get that

— M fd T (341)

which will shows us the necessity of the two-leg Tadpole insertion. Here, all the d’s
have dimension of inverse mass, and the condition Eq.(336) which fixes dmpy according
to Eq.(335) .

Finally, we should notice that we have quantized a classical Lagrangian expanded around
its true vacuum vg, but after the one-loop corrections we end up wth an effective potential
that needs to be re-minimized. This is maximally unconventional since we start from
a "broken” action (its scalar mass and quartic terms have the same sign) and upon
quantization we require that it generates an "unbroken” effective potential. Therefore,
we consider the 1-loop corrected vev through the condition that minimises V(¢), which

is given by

V(v) =0 (342)

where, after renormalization, the one-loop effective potential reads

V(o) = T+ [mh - Tfp%] ¢’

A Ae New TS Biton A
_ K 3 3 4
\fzmHJr 2mH \/;ZmH 2 omy Mo gy TR | 0T e

(343)

+

which generally could be gauge-dependent and hence un-physical. So, using the above

renormalization conditions in order to fix the counterterms and then replacing them into
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V(¢), we observe that d¢™ has been vanished from every term except the linear one.
Therefore, it is valid to say that Higgs wave function counterterm plays just the role of a
shift to the vacuum of the re-minimized one-loop effective potential.

Now, let us use our last condition, so as to calculate the 1-loop corrected vev. To be more

specific, Eq.(381) gives the cubic equation

\Fm + \F ZRE hoc Tit B + KRl
o 2mH 5 omy V2 omy H2\/2)\

V2
- lm% Gk TI;RE] v +7}§R5 =0
H

v +3

(344)

with complex solutions in general.
In the present case, calculating the discriminant of the above cubic equation by expanding
all the amplitudes to the first order we obtain that

6 4
myA  myA

Acuvic : y {1802-7,?{5 + 30 - T
2
+ 18MPE 4 36 me/c 18 gE Ay o(h2)
VA A
(345)
which is expected to be positive. Actually, writing the above relation as
Acuvie = Do+ Ath + O(R?)
(346)
where
A, — mé A
2
4 by ; 2 2
Ay = T TR g0, TR s g6V 2 e M i
4 VA A
(347)

we can see that there are additional constraints that should be fulfilled so as to have

at least one real solution. To be more specific, since Ay > 0 always, then if
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Ay >0 (348)
the discriminant stays positive and we have three real solutions one of which corre-

sponds to the deepest minimum. An other case is if

A < 0
Ay > Ayh (349)

which corresponds to the previous case obtaining again three real solutions. Next we

can consider that there is a high energy limit where

|A0| = |A1h| (35())
and then if
Al < 0
(351)
we have that
Acupic = 0 (352)

which has a multiple root and all of them are real corresponding to one minimum.

Finally, if we suppose that there is a high energy limit where

[Ao] < |Agh) (353)

and

A < 0
(354)
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we get

Acubic <0 (355)

which means that the potential has three solutions, corresponding to one real and two
complex conjugate roots. Thus, if there is a limit like that one should check only if the
real solution corresponds to the deepest minimum.

Nevertheless, since the physical Higgs mass is of order

my; > O(h) (356)

the Eq.(345) seems to correspond to the first case where the discriminant stays positive.
Now, if we have a positive discriminant then there are three real independent solutions.
Now, the next step is to determine the appropriate solution for the re-minimized vev, and
a first constrain is that the correct solution should correspond to a global minimum. In

particular, beginning with the last one we get that

. ma [_ BMyf  3Biimy | 3K | 3Tyt 2Th

= 2 4 — h+ O(R?
3 V2 2mpgV 2\ (2X)3/2 A 2m?, m2 (")

(357)

therefore, replacing it to the second derivative of the potential Eq.(343), we get that

V'(vg) = —

m%+ _3M§5 BBHmH 3\/_ICHmH 3v2Ae; T
2 2 2\ W5 2y

V2 V2
— T T 43Xl }h +O(R?)
myg mg

(358)

where the above relation is negative and gives a local maximum for v3. Thus we are
left with the other two possible solutions which both correspond to a minimum. Actually,

for the second solution we have that

v~ oM, 3M 315’HmH_6/C§€ 3¢; ’Rﬁ_TJRﬁ bt O()
’ Vx| T mavmh VAR A my  my

(359)

111



so if we replace it to the second derivative of the effective potential we get that

1 o 2 }-_{€ . 6BH TTLH 12\/§’CH mg 6\/ 2)\C1TH

- mck-TlngJerTng}h +O(12)
myg my

(361)

(360)
which corresponds to a minimum since we have supposed that
6B 12v/2K ;¢ 6V2Ae; T V2A V2
GMflé H mH + \/_ H mH Aci Ty _ e - THng + 377;];}25 < qu
A N2\ my my my
Finally we have the first solution which reads
fRe
U1 T h + O(h2)
m¥
(362)
and the second derivative of the effective potential with this solution gives
A
V() =m% — |3 VA +2-c | T ™0+ O (363)
\/§mH

Actually, if the inequality

\/imH ' ! A \/X mg

V2 V2A
— e TR 3T (364)
mg meg

holds, then v, corresponds to a local minimum and v; to the global minimum.
This seems to be the correct vacuum shift, since we should recall that we started by
quantizing an "unbroken” Lagrangian and after the 1-loop correction of the potential we

get a vev of order O(h).
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Finally, the renormalization condition Eq.(336) with the chosen vev reads

VA
\/§mH

V"(v) = m3 — <3 +2- ck> T (365)

: Re . S L .
and since Tlf ¢ is non-zero and our renormalization condition defines the physical

Higgs mass as the second derivative of the potential calculated on the vev, we get that

3 VA

Cp=———F7 366
and if we express the above relation as a function of the vev, then we get that
1
~— 367
Ck 200 ( )
Thus, with the above definition we have that
V"(v) = my (368)

and that the physical Higgs mass and the corresponding counterterm would be given
by

iRg_S VA

2 _ 2 Re
i = i, — M = ¢iTa 2 V2my

T 4 m2 507

(369)

and

i 3 A
St = MO 4 o Ti — m2 598 — 2 VA T (370)
22mpy

respectively. Here, notice that even if T}];Rg is finite will affect the physical Higgs mass
through its relation with the bare Higgs mass, which we will use for the LCP’s. We will

see how to handle this in following sections.
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Finally, using all the above arguments, the renormalized one-loop effective potential

reads

1
Vie(g) = ‘7§R5¢+2[ : 2\/{HTfR§]¢
I\ /\/l \/X iR 3\F fRe B,f‘,f R A
- ;T —— Ty Kif| 8%+ St

At this point and before we move on to the next section, we would like to present
some comments concerning the choice of the Polar instead of the Cartesian Basis and
how this could affect our results. To be more specific, we have inserted the physical Higgs
field through the Polar Basis and all the calculations and the arguments that have been
developed here are based on this choice. Now, if we have used the Cartesian Basis, then
the Feynman rules would be quite different preventing us from seeing the unexpected
appearance of the highly divergent integral, Upy,, in R¢-gauge. Of course this would not
affect the results of the physical quantities that we have.

On the other hand, it is common for R¢-Lagrangian in Cartesian Basis to be renormal-
ized before the SSB. Thus, after the SSB, adding the one-loop corrections, the effective
potential would contain a linear ¢ term multiplied by a counterterm combination. In that
case we could define a condition which would absorb all the Tadpoles from the linear ¢
term making it finite and this would affect the vev. This procedure seems helpful with
the Tadpoles, but recall that the above counterterm combination would be proportional
to the counterterm of the Higgs-mass and that indicates that the contributions of these
tadpoles would affect the Higgs two-point functions. Thus, with the above procedure

essentially the Tadpoles disappear from one quantity and then they appear in an other.

4.2 Renormalization in Unitary gauge

In the previous section we have presented the way of renormalizing the Lagrangian
Eq.(314) in the R¢ gauge. Actually, we have shown that we can have a renormalized
potential which is finite and generally {-dependent, by implying specific conditions for
the counterterms. Therefore, in order to have a complete picture of the renormalization
procedure we should do the same calculation in the Unitary gauge where actually the
result is quite unexpected. To be more specific, both the effective potential and the vev
in Unitary gauge could be infinite, without that result affecting the physical quantities.

Now recall that the Lagrangian in Unitary gauge is
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U
Lan =

1 1
4F5V 5 (8M¢0) (

V2 h0m,

mm,

m [ Ao
—— 2 ¢A0AO - 5 M, 3 — 9 mHo% O¢é + const.

1 Ao
S, ALAY 4+ g Z°¢2A°A°
mHO

“ho) +

(372)

Notice here that there is not any contribution from the Goldstone and ghost fields,

since we are in the physical gauge and thus all the unphysical degrees of freedom have

been decoupled.

Now, generally the potential is gauge-dependent and thus unphysical, but nevertheless,

the physical quantities are gauge-independent and so there should be a matching between

Unitary and

R¢ gauge. Thus, we start with the Lagrangian (372) defining the same

independent renormalized quantities with Eq.(315) and again here we should consider

wave function renormalization for both the gauge and the Higgs boson at 1-loop. Substi-

tuting the above definitions into the classical Lagrangian, we obtain the 1-loop effective

Lagrangian
Z ! T
i = Tt *( 0,0) (") + [mz +omy — MY — dTV + mLsA] A, A
[ (A + A2z — \omy + SA)m%,
+ 9" | ZaZy 2z +BY,| A,A,0°
mHO
B m2 \/2_( 6mH + JmZ + 6)\>
g | Zan 22 mr DT KU | 6A,LA,
mmg
- V(o) (373)
where
[ I i mg 5¢U Ji
[ 3 . §mH CR N
A+ 2X60Y + 6X — BY
+ = i) ¢! (374)

4

is the effective Higgs potential. Again here, somebody would expect that we should

define a relation between the Tadpoles and ¢ in such a way that we would get a finite

result like the following
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m3 SV

iU _ qUf
Unfortunately, in Unitary gauge we have that
dMY,
SpU = — deH =0 (376)

and form the above equation we are left only with

TV = TV (e) + i THY . (377)

Thus, here we have something very interesting and seemingly disastrous, since Eq.(377)
will get in our calculations. To be more specific, this infinite contribution will get in the
first derivative of the effective potential, affecting the vev, and moreover it will be inserted
into the definition of the Higgs-mass counterterm. Thus, in the following we show how

we should treat this situation.

Now, before we move on and similarly with the previous section, we should mention
that the amplitudes 75, MY, KY and BY which are computed in Sec.2. The quantity
My is an extraction of MY, which was determined in Sect. 2.2. The Kf;, and B,
are amplitudes with both Higgs and Z-boson external legs and will not be presented here

because they will not play a role in what follows.

In Unitary gauge our Physical prescription requires:

e That the physical Higgs mass and quartic coupling are defined by

omy = My + T + ¢, [T () + T — mbog? (378)
V)" = 6\e
AU = BY —2x6¢Y (379)

with ¢, and ¢}, two yet undetermined constants with inverse mass dimension.

e That the physical Z-mass is
(380)

mz = mthy .
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Finally, the 1-loop corrected vev v is the one that minimises V' (¢)

V'(v) =0 (381)

where V(¢) is the one-loop, renormalized effective potential

Vo) = [THE+ T o+ Sty - [T ) + T }o?

A MU \/X / Uz
VA
2\/§mH

¢ [T @) + T —m

3 4
2\/— }¢+¢

(382)

which has the same form with that of Eq.(343). Thus using the same arguments and

performing the same calculations with the previous section we obtain

e that the correct vacuum shift is

[Tg () + 7’|

2
2my;

U = — T h+ O(h?)

2m?,;

h+ O(h?) (383)

which shows clearly that in Unitary gauge the vev is divergent and the divergence

is proportional to the physical Tadpoles of the theory.

e that the second derivative of the potential is

V(W) = m¥ (384)

which, recalling the similar situation in R¢-gauge, gives that

V) =iy (322

=m
e \/_mH

+ 2ck> 75 (e) + T (385)

and demanding the above condition to hold, we get that ¢} = %

, giving the
following relation
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3 VA

mu = mu,, = mu, — MY — TV + T () + T ] + m¥oaY
2 \/_ 2mpy
(386)
e that the counterterms of the physical Higgs and Z-mass reads
- 3 VA
omY = MY + TV — m% oY — 2 v |75 (e) + Ti] (387)
2 \/ﬁmH
and
1 )
smy = M + gdgT;}f — m%6AY (388)

respectively. Here, the d"’s are dimensionfull with dimension of inverse mass,

Finally we get that the one-loop renormalized effective potential in Unitary gauge

reads

Vi) = |[TH@E) +Td o+ { H+2ffm

A v A
" {\@quL AMi | \/— AT

3V Ly Url By
4\/§mH {TH (5)+TH } mHzm

[T () + 7] }o?

A
+ICEI}¢3 + Z¢4‘

(389)

which, generally, is infinite.

4.3 Evaluation of the Counterterms

In this part of the present document we calculate the counterterms associated with the
renormalized Higgs and gauge boson mass. Moreover, we give a qualitative relation be-
tween the renormalized quartic coupling and its counterterm. According to the previous
section, we should recall that we perform the renormalization using only the independent

parameters of the Lagrangian through the relation Eq.(315).
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Thus, using these arguments along with the Physical renormalization conditions, we have
developed in Sec.4.1, specific relations for our counterterms. But before we move on, let
us present the divergent part of the Tadpoles calculated in Sec.3.1 . This is very impor-
tant since we will use it to investigate if there would be a &-cancelation from the physical
quantities. Actually, for completeness we present the divergent part of the Tadpoles in

both R¢ and Unitary gauge, so

R, ,ua )\0 vV 2)\0m22 vV 2)\0m2Z
Ta® = 1672 {3 ?mHvo(mH) + 3700140(7”2) + fTOOAO(mx)
(390)
from which we can extract the divergent part reading
€ V2 V2 m3 | 1
T = M 6\/> md; + 6 mZ pIh il Ay
1672 2 mey €
(391)

On the other hand, concerning the Unitary gauge, we have the following relations

/’LE >\ \V4 2)\0m2
Td = 16#2{3 ?fvnﬂbfb(“IH)4‘3“;%;;i@7400n2) (392)
which gives
THE = 16 6me Ll
1672 2 mpy e’
(393)

Now, we move on to the calculation of the counterterm of the Higgs mass. To be
more specific, according to the Physical renormalization conditions that we applied on

the Higgs effective potential, the Higgs-mass counterterm is given by Eq.(335)

3 VA
:MR£+Ci [Re 2 siRe  °©
H H oo 2 \oma

T (394)
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for ¢ = 2\[f and i = 1,2, 3,4 in R gauge.

Here, the term cZTH includes all the possible terms corresponding to the two-leg Tad-
poles. This is a very important notation since, considering the contribution of these
reducible diagrams to the Higgs and Z two-point functions we will investigate if our re-

sults will be gauge dependent, 7.e. unphysical, or not

Moreover, here we should notice that the ter

2 f ¢ is finite and thus, the coun-
terterm is not just the divergent part of the correspondmg amplitudes. This argument
is not so strange if we recall that the renormalization conditions that we have used in
order to fix this counterterm was a generalization of the On-shell renormalization scheme.

Therefore, our dmy is not a M.S counterterm so it can include finite parts.

Nevertheless, for the following analysis it i enough to consider only the divergent part
of the one-loop corrections in order to obtain the Higgs mass counterterm and to verify
the previous argument. The reason is that S-functions do not understand the convention
that we make in order to fix the counterterms, they need only the divergent part of them.
Therefore at On-shell, namely at p* = m?%, using Eq.(391) and Eq.(339) we obtain for
5m that

R e A
i = o)

A A V2 m?
+ ( 24\m7 + 20 mZ—i—Z mZ§+[02—03—c4] mZ){
my miy my
Am? V2im? 1
+ <18 ﬂgz+602mz>}

(395)

2
where dpfte = 12¢ ’:Zl—?z Therefore, demanding the counterterm, and as a consequence
H

the physical Higgs mass, to be gauge independent we get the following

g VX /3
ez e amy oy ©

M 10 )1 (396)
Cop—C3—0C4 = - — 1] —
2 3 4 ng 5 o

Cy —C3 — (4

while ¢; and ¢, stay yet undetermined. Now, replacing the above relation in Eq.(395)

we get that the Higgs mass counterterm reads
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Re M A Am, V2im?, 1
my = 167r2{(24)\mH+6\/7chl> (18 w2, + 6c2 _— =

(397)

On the other hand, we should perform the same calculation for the Unitary gauge in
order to compare the corresponding counterterms. But, here we should recall that the

expression that gives mass counterterm in Unitary gauge, is enhanced by the quantity

—3 T (e) + T’

In particular, we have that

omY, = MY+ TV — 3 VA [THU(eE) + THUf} —m%0¢0Y (398)
2 \/imH

and thus, concerning here only for the divergent parts, the above relation gives

U ue Am?, V2 m?, N Amy | 1
my = 167r2{24>\mH+18 w3, Z + 6¢ \/;mH~|—6 4 —9Amy — 18 w2, g(:)
U ue 9 A, ) Am? Amy , V2 m?, Amy\ | 1
(399)
where d¢V = 0.

So, since 5m§€ has been left only with its -independent parts, in order to perform a

matching between the R¢ and Unitary gauge counterterms, the following relation should
be fulfilled

., 3 /a1, 3
4= AT S = 2
o3 /x1 ., 3
S ) D e T

Finally, as we can see from the above relation, there is an extra freedom in the choice
of ¢} and ¢,. Nevertheless, we know that the Tadpoles should not affect the physical

quantities and generally there are arguments which say that they cancel from them.

(400)
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Thus, for our case this possibility comes from the choice ¢ = % and ¢, = ﬁ which

set ¢; = ¢ = 0. Thus, now in both the Unitary and the R, gauge we are left with two

identical relations, which read

€ 4
Re M 9 Amy | 1
my = 1622 {24/\mH + 18 w2, }6
€ 4
v o_ M 2 Amy (1
my = 1622 {24/\mH + 18 w2, }6

(401)

respectively.

Here, before we move on to obtain the counterterm for the Z-mass, let us present a very
important comment concerning the introduction of the reducible two-leg Tadpoles. In
particular, it is well known that in R gauges in order to have ¢-independent countert-
erms for the masses, we should consider also the two-leg Tadpoles. But here, we face a
contradiction. To be more specific, the general idea is that we add the two-leg Tadpoles
as corrections of the propagator, and thus, performing the resumation we obtain their
contribution to the masses. But this procedure says something very constrained, since if
we follow it, then the two-leg Tadpoles should have coefficient unity, there should not be
any mixing and we should add all of them despite of their é&-dependence.

Now, our analysis shows something different, since recalling Eq.(400) we see that the phys-
ical two-leg Tadpoles can be and should be absent from the physical quantities, which
means that we need only the un-physical Tadpole contributions in order to make our
result &-independent. In addition, from Eq.(396) for ¢; = 0, we observe that there is not
solution for ¢3 = ¢4 = % and moreover, in order to make 5mff gauge independent we

should consider mixing between the two-leg Tadpoles.

Now, lets move on to the calculation of the Z-boson mass counterterm. Again from
the On-shell renormalization condition that we apply in the effective Lagrangian for the

Z-boson pole mass we get that

1.
Smys = My + 50 Al 2 5 AR (402)
where 1 = 1,2, - - -,n. Now, according to our calculations we have that
R -1 Pubv v
M =T (m%) = 3 (gw/ — ;2 ) M%R§ (p* = m3). (403)
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which could be split into two parts and we will calculate them separately. Thus, form
Eq.(277) the first part reads

m2 e
gw,./\/l];fw = (d+¢) QZO)\Olg2{—2AO(mH0)—8Bo(p,mzo,mH0)
mi, T
1
+ 8(1 = &) |m3, Colmay, \/emaze, mu,) + Bolp,myq, ma,)

1 1
+ ngioBo(p, Mg, M, ) + 8dA0(mHO)} )

(404)

As we showed previously, the second part of Mzg, corresponds to the contraction of

Eq.(273) with the term p;ﬁ’y

, so performing this calculation we get the following relation

13

1
1672

Y my,
pg MFZ“;%g (p) = 0 )‘0

2
mHO

{—2A0(mH0) - 830(]), mzy, mHo)

1
+ 8(1-¢) {WQZOCO(mZm \/ngmmHo) + Bo(p, M. M)

1 1
+ SEmiOBo(p, Mg, M) + SdAo(mHO)} )

(405)

Finally, as we mentioned previously, the term that we need to evaluate is given by

Eq.(403), so following this relation we get that

2 €
_1 mZO

= Mz
Mg (p) 3 i, 0

L
1672

{(d + 8){—2A0(mH0) — 8By(p, Mz, mp,)

1
+ 8(1 - S)g [mQZoCO(mZ()v \/gmzovao) + Bﬂ(pv mxovao)]

1 1
+ 8gmiOBo(p, My, M) + 8dA0(mHO)}
- {_2AO(mH0) - 8BO(p7 mz,, mHo)

1 2
+ 8<1 _f)g mZOC()(mZO?\/ngO?mHO) +B0(p7 mx07mH0):|

1 1
+ 8gmioBO<p7 mXOamHO) + 8dA0(mHO)}} :

(406)
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Thus according to Eq.(341), with AT = 0, we get at On-shell that

c A V2\
smie = M {12 mZ+6d1\/; + 6d, mz}g

(47)? m2 my

(407)

and as we can see it is £-independent without using the two-leg Tadpoles as we have
expected through the gauge invariance argumnets that we have developed previously. So
a non-trivial check for our calculation and a physical expectation, is to find exactly the
same counterterm in Unitary gauge where there are only the physical degrees of freedom

and is gauge independent from the beginning.

Thus, according to Eq.(388), again with §AY = 0 we find that

omy = L 12Amz 6d’\/> + 6, mZ
(47)? m2 €

which is identical with the (5m§5 relation. Again we should consider that d; = dy =
d} = dy = 0 getting that

(408)

(409)

Thus, we have ended up with some very interesting conclusions. To be more specific,
we saw that we indeed need the reducible two-leg Tadpoles in order to make the Higgs
mass counterterm gauge independent, but for that purpose we should considered specific
coefficients, different to unity, and mixing between the Tadpoles. On the other hand we
saw that in the case of the Z-boson mass counterterm, the result was ¢-independent from

the very beginning and we did not worry about the insertion of the two-leg Tadpoles.

5 Physical quantities and the [-functions

5.1 General Framework

Let us start here with a theoretical framework for the evaluation of the S-functions so as

to have a complete picture of the derivation that follows in the next sections. Therefore,
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we begin by denoting a generic bare coupling by «g, the corresponding renormalized
coupling and counter-term by « and d« respectively and its beta function by S,. Quantum
corrections introduce a p-dependence of the counterterms that induces a p-dependence of

the renormalized coupling so that the bare coupling

a0 = alp) + dalp). (410)

is p-independent. Now, a(p) will denote the renormalized running coupling and the
counterterm da(pu) is considered to be a function of the renormalized couplings, through
their dependence on p. In addition, we define the value of the renormalized running

coupling at some renormalization scale p1 = mypys. to be

alp =mpp,) = . (411)

Now, we can express any counterterm as

2

€ C., 2 1
Sa = (4*;) ( +§k;f/’301n;;z +%f§0!dxln (“) +§fﬁ§o) (412)

€ AL (my, m;)

where we have defined that the summation on index i corresponds to all the possible
different fields that contribute to the quantum corrections. In addition, we should notice
that the relation ¢ = 4 — d, indicates that the py-dependence is only explicit.
Now, the RG flow equation in d-dimensions, where for dimensional reasons all the renor-
malized couplings, must be rescaled by u® which is pulled out in front of the counterterm,

and thus, defining the following relations

_ da(p)
T
d
foa = /L@a(ﬂ)
Ba = %‘ (413)
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we have for a general coupling that

0 = ”;LO‘O = ui{uea(u)(l + 5a)} = udd{/fa(u) + ug&x(u)} &

(9 004
Ba(l+6a) = —ca(l+06,) — %6 &=
M.
Lo = —5oz—oz,ua; &

(414)

where, since 0, = d,h, we have performed an expansion in A in order to get rid of
terms of O(h?) like 4, 66}1‘ Now, since we have more than one couplings, the above

relation should become as follows

004 004 00,
fo = —ea-— CY{ﬁ,\a)\ + ﬁmgw + 5mQZamg} :
(415)
Now, in our case where the only couplings are A\, my and my; we get that
00 ) o)
Br = —EA = MG+ B g+ s
# Om3, z Om%
Oy, 85 00,
6m§{ - —sm%{ mH{B)\ O\ 5mH om /Bmz om }
aémz 8(5 35
(416)

which, collecting the equal S-functions in each case, reads
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) Bh) Bh)
ﬁx(1+a;)+A{+ﬁ 248 A} = —e)\

mh om?, Z om?,
A0, 00, foJ
H z
D0, 0o, D0y,
Bz (14 8m2;) +m%{ﬁx s+ Bz, 8m§} = —emy
(417)
which could be written in the following matrix form
L+ 5 g A B A
9 Omy Doy o Oy )
my—x- L+ 580 Mgt || Bz | = €| mE
2 2 Oomy Doy " 2
Mz =ax Mzgmt 1+ 5.7 B, mz
(418)
thus, inverting the matrix in our case we get that
Ca o&r P LN
— 28 2 90 A2
2 ax M gmy T omg
01 o 0
B2 = Amd m%‘irlizm% 1 5%
"H 8)\ 2 GmH 2 H 8mz
acnﬂz 8%22 acm%
m2 ]- m2 ]- m2
Y 2 Z T2 Z T2 z_
Oy = A T 2 Gy T 2" O
(419)

Thus, all that we need to do in order to obtain the various S-functions, is to identify
from the explicit form of the counterterms the quantities C, and f, defined in Eq.(412)
and build the S-function, according to Eq.(419). Moreover, the solution of the differential
equation of the second term in (413) gives the following relation

a = a(u)+ Ba ln(mphy'><:>
I

a(p)
1-— ﬁ; In (M>

I

(420)
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for the RG evolution of the coupling. We can write it also as

«
1+ﬁ~a In (mp%)

a() (421)

where the latter determines the Landau pole associated with the coupling a to be

1
pi, = mefe &

ni, = meba . (422)

5.2 Evaluation of the g-functions

In the previous section we have developed the full procedure that someone should follow
in order to calculate the [-functions of a model. Thus, we are ready to imply all the
above arguments on the counterterms that we have extracted in Sec.4.3, obtaining the
corresponding beta functions and as a consequence the ”running” of the independent
couplings that we have defined previously.

Let us start with the g-function of the Higgs mass (,,,,, thus comparing Eq.(394) with

the general form Eq.(412) for the counterterms we can see that

A 4
Chp = 24m% + 1852
H mH
(423)
Now, using the definition of the S-function Eq.(419) we obtain the following
B = Lomm? + 18272 (424)
= G (P
and from Eq.(413)
< 1 Am?,

Therefore, according to the definition in Eq.(421) we get that the "running” Higgs

mass reads
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2
My

1 + BmH In (mthy'>

I

() = (426)

Now, we can perform the same calculation for the Z-boson mass beta function f,,,.
To be more specific, following the same arguments with the previous derivation we get
that

by 4
Cp, = 12702
my
(427)
So, using again Eq.(419) we obtain the following
1 Am?,
Bz = ame e (428)
and
< 1 Am?,
Thus, here the "running” Z-mass reads
2 my
my(p) = (430)

~ m2 ’
14 By In ( )

Finally, in order to investigate further the results that we obtained in the above rela-
tions, we present here the Renormalization Group Equation’s flow for the physical Higgs-
and Z-mass in Fig.1 and Fig.2 respectively. This, would be very helpful for the next
section where we evaluate the LCP’s since, in order to have a complete picture about the

physical results, we should compare the RGFE’s flow with them.

Here, we should notice that both the physical Higgs- and Z-mass are getting bigger for
a vast variety of energy scales. Nevertheless, this is not generally the case since, looking
carefully the above Figures, we can observe that there is a energy scale where both masses

go to infinity. This energy scale is the known Landau Pole, which was obtained through
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Figure 1: The "running” of the physical Higgs-mass as a function of the renormalization
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I

130



Eq.(422) for each mass. Generally, the Landau Pole is different for each coupling and
here reads for the Higgs- and the Z-mass

pplt = 5x10%GeV

mz

pr, = 06X 10'GeV
(431)

respectively.

5.3 Lines of Constant Physics

In this last subsection, as we have already mentioned, we are dealing with the evaluation
of the Lines of Constant Physics. Therefore, here we should make an important notation
here concerning the physical quantities. To be more specific, we know that in order to
obtain the RGE’s, Eq.(426) and Eq.(430) are what we need. Nevertheless, in what follows
we will evaluate the LCP’s, and thus, we will need a relation between the bare and the
physical independent couplings. Thus, for the purpose of this specific calculation we

should use the general relation of the renormalized quantities which reads

a =y — o (432)

where « is an arbitrary coupling. Thus, preparing our selves for the calculation of the
LCP’s we perform a mini comparison between the physical quantities coming form the
[B-functions analysis and the physical quantities coming from the above relation.
Therefore, we will use Eq.(320) in order to see the exact expanded form of the countert-
erms, but now including also their finite parts and excluding the divergent ones. This
is a legitimate step since we have renormalized our Lagrangian. Then, with the help of
Eq.(432) we will find the physical quantities in order to see if and how it differs from that
of the previous section.
Let us start with the Higgs mass where, implying all the previous arguments and adding

. 2
the appropriate terms so as to create everywhere In -£5- we get that
H

131



am? Am A VoONmA
my = mi — {12)\mH+9 T2 12amE + 1050 2¢ + W;Zg +[—e5 — cilé mz}ln r
H H myg 2mH my
A —
+ My (my, my) + 16m7%{b6(mz,mz) — 16—~ w2, In 2
Amy m3 Am, m¥
_ o~ { —6 + 6§}[ o(mz,my) +1In mQZ] + 8m7%{[ bo(my,mz) +In m—%]
Ams m2 m?
+ mHZ{l — mH + 26 + 3¢2 }[—b{,(mx,mx) +1In mg]
A AmS
+ ;ZLIZ{Q 26 }CO(mvavax> - Tr%rz{l — 2§ + 52}d0(mZ7mZ7mX7mX)
Am . m2  m m? m m m2
o 2 Zl H o Z{_3 H 2 6 2 o 2 H o 2 H }1 H 2
m%{ anZ m%{ m2Z + 2§ + 6§ 563\/5 §C4m 1 mfi +& [C3+C4]
Am? Am? Am
— 3xm% —3=—Z +3\m 9 Ze T Zg2
= 35+ B —0°h ke — S

which generally seems £-dependent. Here, as in the previous section, we have define
that

bo(my,mg) = /dxlnABO(ml,mg)

0

1
A
By(my, my) = /dm B°<m;’m2)
my
0
1 1 1 .
co(my,mo,m3) = — d:v/d/dz
o(my, ma, ms) 0/ / CUO Aco(m1,m2,m3)

1 1 1 1 ]

do(my, mg, mgz, my) = /d:v/dy/dz/dw ) (434)
0 0 0 0 A2D0 (m17 ma, m3)

Nevertheless, we should not forget that the relation between the bare and the renor-
malized couplings is quite arbitrary from the very beginning. To be more specific, we
know that generally a bare quantity can take any value that it wants and it could be

infinite, so we always can write that

ay = ar+da&
ao(e)—l—aé(ﬁ)—irag = ap+dale) + 67 (6) + 6a.
(435)
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Now, recall that here we want to evaluate the LCP’s coming form a perturbative
regime and then to compare them with LCP’s coming from a non-perturbative regime
from Lattice. In order to do so, we have to consider a specific action in Lattice which
would correspond to a specific prescription choice in the perturbation theory. For our
case, this choice corresponds to the absorption of da(e) and 6/ (£) from ag(e) and af) ().

Thus, for the LCP’s, we are left only with the following relation

A 'u2
2 2 2 Z !
= — <12\ 9 1 )
My miy, { my + ", } nm%{phy +omy
(436)
where using the above arguments, we define that
f 2 my
dmy = 9 myby(my, my) + 16m—2bg(mz,mz)
H
A 4 2 by 4
— a2 T gyp2 322 (437)
my  my 2my;
which is completely ¢-independent and finite. Now, from Eq.(426) we have that
m2 A 4 2
m3; = ma (1) + By, In @ =m7(p) — { 24 m3;, + 18 W;Z In 'l; (438)
H my Hyphy

which gives a very interesting result since, comparing the above relation with Eq.(436)

we see that it lacks a finite part but nevertheless, the two results have the same relative

signs in the coefficient of In mg:hy This result is crucial since any difference here could
affect the physical Higgs mass and as a consequence the LCP’s. On the other hand, the
term 5me could be an indication of the Hierarchy problem, which is hidden in dimensional
regularization, since it contains terms proportional to the square of the masses. The
validity of this statement will be checked when we will construct the LCP’s in the next

section.

Following the same arguments with the Higgs-mass, we perform the same calculation

for the my obtaining the following relations

2
L

5 In—

my o omy,

Am?
Z + (5mé

m2Z = mZZO —12
(439)
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where we have defined that

8Am; 4 m3
omy = —— A (mzma) + 57 (440)
H H
and from Eq.(430) we get that
2 — 2 Iy = 2 () — 12202, 441
my =my(p) + fm, In 22 my (1) , anZ (441)

phy

Thus, again here, we have found that the second relation lacks a finite part but the

. . 2 .
relative signs of the In mé‘ coefficient are the same.
Z,
phy

Appendices

A Feynman Rules

As we have mentioned in the first section of this document, here we study the Abelian

Higgs model in the Polar basis, and its Lagrangian in the unitary gauge has the form

1 1 1 nv
Lan == 752+ (0,0) (0"0) + Sm3 A A" + S0 A, A,
1 A
+ g“”gmzd)AuA,, - §m§q¢2 — Z¢4 — )\v0¢3 + const.

The loop Feynman diagrams that we encounter in section 2 are based on the specific

Feynman rules of this Lagrangian which read:

Gauge boson propagator

(442)

Higgs boson propagator

_____________ L (443)



and now we go on to present the Feynman rules for the trilinear vertices:

Higgs-Z-Z vertex

= 2ig"" gmy (444)

Three-Higgs vertex

;T T T T T = —6i\v (445)

next we have the Feynman rules of the quadrilinear vertices:

Higgs-Higgs-Z-Z vertex

= 2ig*g" (446)

Four-Higgs vertex

< — —6i) (447)
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B Veltman-Passarino Reduction Formula

Here we demonstrate the full mathematical formulation that we have used in the section 2
following [1] . This has been done since we would like to simplify our results coming from
the calculation of the one loop Feynman diagrams. In contrast the traditional approach
that someone uses along with the dimensional regularization(DR), in order to calculate
one-loop diagrams, gives quite messy results. To be more specific, when we have to
calculate one-loop diagrams in any possible model, then we have deal with integrals of

the following form

e / d*k N (k)
(4m)” ((k+q0)* = m3) ((k+q)* = m3) -+ ((k + qv-1)” = m})

(448)

J
where N is the number of the external particles, g; = > py and p;+pa+---+py = 0 due
k=1

to the momentum conservation at the loop vertexes. Generally, the N'(k) is a polynomial
function of the loop momentum k£ , the external momenta p; , the external polarization
vectors, the spinors etc. Moreover there is a special case where N (k) = 1 which is referred
to as the scalar integral. Now, if we have to calculate an integral like (448) , then scalar
integrals make our life easier since, as we will show, in them we can compactify all the bits
of information encoded in the original integral. Thus, since we would like to obtain an
efficient way to perform this calculations without doing it explicitly with the traditional
way, the scalar integrals played a crucial role in our computation.

Generally it turns out that in the limit D — 4 any integral Iy can be written as a linear
combination of the one-loop scalar integrals which include one-, two-, three- and four-
point functions and a remnant of the dimensional regularization that is called rational

part R. The form of that specific combination is

]N = C4;jl4;j + Cg;jlg;j + CQ;j[Q;j + Cl;jll;j + R + O (d — 4) (449)

where the coefficients cy,; with (N = 1,...4) are evaluated in d = 4, namely they do
not have any dependence on . In addition Ir,; stands for an L-point one-loop scalar
integral of type j, specifying the combination of the external momenta p; which built up
the ¢;. This kind of decomposition has its origin on simple Lorentz invariance which allows
us to decompose a tensor integral to invariant form factors and on the four dimensional
nature of space time which allows scalar higher point integrals to be reduced to sums of
boxes.
Specifically the possible scalar integrals that may appear in (449) are tadpoles, bubbles,

triangles and boxes. Their form is
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Iud74 ddk?

2 _
]1(Tn1) = i ] a0 (450)
d—4 d
2.2 2 _ M d’k
I, (P17Tn177n2) = i ] ddy (451)
d—4 d
2.2 2. 2 2 2y _ M d*k
IS (p17p27p37m17m2am3) = i?Td/2T‘F d1d2d3 (452)
d—4 d
! d*k
I4 (p%ap%apgap?la 3127323;m%7m3am§ami) - ?:7Td/27”r / d1d2d3d4 (453>

where d; = (k —i—pi,1)2—mi+i€ G = ipi . Sij = (ps +pj)2 andrp =T2(1—¢)T' (1 +¢) /T (1 — 2¢).
Now, here we calculate one-loop Feynmanldiagrams which give rise to tensor integrals con-
taining powers of the loop momentum in the numerator, as we can see in section 2. The
calculation of these integrals is simple but quite messy, thus we should reduce them to the
scalar integrals that we mentioned previously. Following [1] we define the scalars integrals
Ay, By, Coy, Dy which correspond to scalar tadpole, bubble, triangle and box integrals

respectively. The exact form of these integrals reads

1 1
1 1 ks ki
Bo; B*; B* (p1,m1, ma) = i /ddkdldg (455)
1 1; ks kHEY EFEY RS
CO;CM;CMV;CMVa (pl,pz,ml,m%mS) — Z'7rd/2 /ddk‘ d d2d3 (456)
1
1 L ks kY Rk e Rk ko R
. . v, va, vaf _ d ) ) ) 3
D07DH7DH aDM 7DH (p17p27p3,m17m2)m37m4) - Z'7Td/2 /d k d1d2d3d4
(457)

i—1 2
where the denominators are given by d; = (k + > pk> —m; +1e with ,i = 1,...4.
k=1
Now, the next step that we should follow in order to make this reduction to scalar integrals

procedure easier, is that we should present the pattern which we use.

B.1 B, scalar integrals

A non-trivial example that we can give is that of the reduction of the rank-one and rank-
two tensor bubble functions to scalar integrals. Thus form Lorentz invariance we have
that

B* :p‘uBl

o W oy (458)
B" = g Byy + p''p” Bi1
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where we refer to the coefficients B;, Byy, B11 as form factors. The exact dependence
of these form factors on the appropriate Lorentz invariants, namely p?, m?, have been
dropped for simplicity.
In order to express these form factors as scalars integrals we have first to perform two
steps. The first one is to contract B* and B*” with respect to p;, and the second one is

to contract B*” with the metric g,,. Thus contracting with p;, we obtain that

puB" =p-pBi. (459)

No we have to calculate the lefthand side so we use the relation

bop =5 (fi+dy = dy) (460)

where we should define here the following useful relations

_ 2 2 2
Ji = my—mi—p

kH 1 fH
didodn- ] T Ak ————— 461
<d1d2d3 - > imd/? / dydods - - - (461)

and we get that

/dd o /dd % fl+d2_d1)
N Z d/2 d1d2 7T'd/2 dldQ (462)

= L ABy (1,2) + Ao (1) — 40 (2))

thus replacing this to equation (459) it reads

pepB =3 (fiB(1,2) + A (1) — 49 (2)) &
. (463)
Bl(p, mq, m2> = 27})2 (le(] (1, 2) + A() (].) — AO (2))

Since we have fund the form factor B; now we contract with p, the B*” getting

puB" = p"Byo + p'p - pBni (464)

and therefore the left hand side becomes

1 pukrEY L(fi+dy—dy) K
B* — : /dd/{? K /dd 2
Pu ”Zd/Q dydy 7rd/2 dydy (465)

_ % (f1B1 (1,2) + A9 (2)) .
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Finally, if we put this relation into equation (464), then we will obtain that

p"(p - pBi1 + Boo)

Byi(p,my,mg) =

E(AiB1(1,2) + Ay (2)
(f1B1(1,2) + Ag (2) — 2Boo) - (466)

1
2p2

Now, the second step that we should make, as we have already mentioned, is to
contract with g,, the B*”, which will give the following

g B = <k2> = dBy + p*Bn <
<]€2 — mf> = dBy +p2311 — m%Bo(l, 2) =
m%Bo(l, 2) = dBOQ + = (f1B1 (1 2) A[) (2)) — By &

Boo(p, m1, my) 2miBo(1,2) - f1B1(1,2) + 4 (2)) (467)

1
2(d—1)(

where according to (454) and (455) we have that

1 1
40(2) = —75 [ dh——s

k?* —ms3
1 Guk'k”
VB;U/ — /ddk nv /dd
gu i?Td/Q dldz 7Td/2 d1d2

respectively. Thus, until now we have presented the exact formula that we follow in

order to reduce B* and B* into scalar integrals.

Nevertheless, before we move on in this section the last step that is missing and it is very
useful for our calculation, is to obtain an explicit general form of B*” and its contraction
g B* as functions of the By’s and Ay’s. To do so, we expand B* as in (458) and we
use the relations (466) and (467) along with the relation f = m?% — m?% — p? in order to
obtain the following
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B" = ¢" By +p'p"Bn &

B"(p,mz,my) = {—g;: {m‘é +(m - p?)" — 2m3 (m3 +p2)]

prp” 2 9 2 2 2] | Bo(p, mz, mp)
+ o [—4mZp +d(—mH+mZ+p) ]} A(d—1)

+ {—gw (m2z —mi — p2) + p;p” {—4}92 +d (3p2 +m% — qu)} }AO ()

p? 4 4(d—1)
9" p'p” Ao (mz)
+ {_p2 (m%—mQZ—p2>+ pr d(m%—m%—pQ)}él(Od_i) (468)

and moreover, after contracting this relation with respect to g,, we get that

9w B"™ (0, mz, mp) = mzBo(p, mz, my) + Ao(mp). (469)

and if we do this with p,p, we get that

2

mH—mQZ—p2AO m%—m%+3p2A0

pupl,BW(p, mz,mH) = 4 (mz) + 4 (mH>
mt + md — m2m?2 2(m2 — m2, + p?
i ( z H4 zmar | p(my 4H p°) Bo(p, mz, my)
(470)
which for equal masses my; = my = m,, it reads
p! P’
pMpVBNV (p7 Mg, ma) = ZBo(p, Mg, ma) + EA[)(ma) . (471)

Moreover, if we had the relation By(p, mq, m,) we just have to replace each mass with

m, obtaining

B (p,ma, ma) =

g" 4 2 92 pi'p” 2 92 4 Bo(pz,ma,ma)
o ] S [aml +dp]} Hd—1)

A(d—1)

+ {g"” + ify [—4p? + 3dp*] }Ao(ma)

(472)
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and thus, performing the contraction with the metric, we will obtain the following

relation

G B" (p, Mo, my) = m2Bo(p, Ma, ma) + Ag(my). (473)

B.2 () scalar integrals

Now we move on to another useful example of this formula is the reduction of the triangle
functions to scalar integrals. This will be sufficient to illustrate the general pattern of the
reduction method that we follow through out this work, in order to simplify our results.

Thus from Lorentz invariance we have that

cr = pffC’l +p502 (474)
2
e = g"Coo+ > PipjCy (475)
i,j=1

where C12 = Uy and we define the coefficients C;, Cyo, Cjj, 2,7 = 1,2 as form fac-
tors. Of course these coefficients have an appropriate dependance on specific Lorentz
invariants,namely p?, p3, (p1 + p2)?, m3, m3 and m3 which for now we have suppressed.

Therefore, contracting (474) with p; and py we get that

p1uC" = p1-p1C1 + p1 - p2Cs (476)
p2uC* = p2 - p1C1 + p2 - p2Ca. (477)

The numerator in the left hand side of the previous equation can be expressed accord-

ing to the following relations

k-p1 = ;(f1+d2—d1) (478)

where fi = m3 —m? — p? and fo = m3 — m3 — p3 — 2p; - po. With that in mind and
using the second case of the terms (456) the left hand side of (476) and (477) obtain a

specific form. Particularly the first term reads
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1 P1 k‘ l f1 -+ dg — dl)
- Ak = / k2 4
leO iﬁd/Q / d1d2d3 ’L7Td/2 d1d2d3 ( 80)

— é(f100(1,2,3) + By (1,3) — By (2,3)) (481)

and the second

L
s (fa+ds —dy)

cr = /dd g P2 /dd 2 482

p2,u Z7Td/2 d1d2d3 Z7Td/2 d1d2d3 ( )

= (f200 (1,2,3) + By (1,2) — By (1,3)) . (483)

Thus, we can make a system of equations for the coefficients C', C5 of the form

o) k- pr R
a(a)- () (%)

where the G5 is a 2 x 2 Gram matrix which reads

P1-P1 P1-DP2
GQZ
(pl‘p2 pz']?z)

and we have used the notation

1 pi - k
kop) = — [ Ak
< p> ’i7Td/2 d1d2d3

for i = 1,2. Thus, from (484) we can define R as follows

RE = D(hCo(1,2,3) 4 By (1,3) — By(2,3)) (185)

R = D (hCh(1,2,3)+ By(1,2) ~ Bo(1,3)) (456)

where we have used a compact notation which labels the form factors according to the

denominators that they have, namely we get that

(487)

dk 1
Bo(2,3) = By (pi,po,mams) = [ £ o (k2 — m3) (k +pa)’ —m3)
2 3
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where the loop momentum & has been shifted with respect to the defining equation

for the triangle integrals since d; has been cancelled.

Finally, in order to solve the system of the equations that we have obtained, we should
invert GGo which reads

1 1 P2-D2  —D1-D2
Gy =
detGa \ —p1-p2 p1-m

so we get that our system becomes

[c]
el ) (458)
02 R2

which gives the coefficients C and Cs. For this example we get that

1

C . R[C] — . R[C] 489

1(p17p2>m17m2am3) ]eth (p2 b2 vy P1 - P2l ) ( )

02(171 D2, M1, M2 m3) = ! (_pl . pgli e +p1-m R M) (49())
e det Gy ! 2

where, as we have already mentioned, Rl and Ry are given from equation (485) and
(486) respectively.
Now, we move on to the next case which refers to the equation (475). Here we contract
this relation with p; and py in order to define C; and 5. Moreover we want to find the
exact form of the Cyp so we should multiply from left with the metric g,,, which in our

case reads g, = diag[l, —1, —1, —1]. Thus, the first step in this calculation gives

p1,C*" = pl{ (p1-p1Cii + p1 - p2Cia + Coo) + 15 (p1 - p1Chia + 1 - p2Csa2)

P2 C" = p{ (p1-p2C11 + p2 - p2Ci2) + py (p1 - P2Cha + P2 - P2Ca2 + Cpo) . (491)

As we can see from the above equation along with the obtained relations of k - p; and

k - pa, here we have to solve two systems independently, namely we get that

o G\ B G o) o B (492)
Cis R Cas R
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Now we have to define the terms R[fl] : R[;l] , R[fQ] and R[;?], which could be done by
calculating the lefthand side of the (491). Thus concerning the first case we have that

1 krEY

= Z(AC1(1,2,3)+ B (1,3) - B (2,3) = 200 (1,2,3))

n %2 (f1C2(1,2,3) + By (1,3) — B1 (2,3))
(493)

and for the second case we obtain

5 1
P2, C" (p1,p2, M1, M2, m3) = md/g/d

Kk 1
dkp;fdeg =5 (o +ds — d2) C

_ pj (f2C1(1,2,3) + By (1,2) — By (1,3))

+ % (f205(1,2,3) + By (1,2) — By (1,3) — 2Cy (1,2,3))

(494)
thus we get the desired relations
c 1
Rl — 5 (/1C1(1,2,3) + Bi (1,3) + By (2,3) — 2C00 (1,2, 3)) (495)
o 1
R — 5 (201 (1,2,3) + B (1,2) = By (1,3)) (496)
and
. 1
R{ = 2 (A0 (1,2,3) + Bi (1,3) — Bi(2.3)) (497)
. 1
R{ = 2 (f20(1,2,3) = By (1,3) — 200 (1,2.3)). (498)
Finally, contracting (475) with the metric we obtain that in one hand
G = (i) &
GO = (12— m) + ()
9 C" = miCy(1,2,3) + By (2,3) (499)
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where we have used the first case of (456) and the equation (487), and in the other
hand that

1
g C" = d000+§(f101(1a2a3)+Bl(1’2)+80(2’3))_COO

1
+ 3 (f2C2(1,2,3) — By (1,2)) — Coo — miCy (500)

thus combining this two relations we get that

(2m3Co — f2C2(1,2,3) — f1C1 (1,2,3) + By (2,3)) .
(501)

1
Coo(p1,p2,m1,m2,m3) = m

Thus, as follows from the analysis that has been done here, we note that the coefficients

which we face through the diagram calculation, follow a special pattern which reads

Ci; — Coo,Cs, B, (By)
Coo — Cj (Coa Bo)
Cz’ — (Co, Bo) .

Similar patterns with the previous one govern the B, as we have already seen, and
the D integrals, making our life easier and demanding from us to calculate only the cor-

responding scalar integrals By , Cp and Dy.

B.3 D, scalar integrals

Until now, we have presented specific examples explaining the procedure that we follow
through the loop-integrals calculation referring to the bubble and triangular integral cases.
Nevertheless, in our calculation we face also box integrals where we follow the same
reasoning as we described here. Thus in the following we present the needed relations
that we deal with in 2.

So, we start here by presenting the coefficients that we deal with in the case of the box

integrals, specifically here we have that
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D' = pi'Dy+phDy+ p5Ds (502)

3
D" = g" Do+ Y pi'viDi (503)
ij=1
3 , 3
DF = Zg{“”pf‘ Dooi + Z p?p;*p?Dijk (504)
i=1 i k=1

3 3
Dol = gl @B Dogog + > gt sz‘ap?}DOOij + > prgpgplﬁDz‘jkz (505)
i=1 ihl=1

where the curly braces denote fully symmetrization of the indices. The main result
that we demonstrated before and we use here in order to reduce the box integrals to scalar

ones is that many of mentioned coefficients satisfy equations like

D, Ry
D, | =G5 | RY (506)
Dy Ry

where G5 is the 3 x 3 Gram matrix whose definition reads

P1-P1 P1-P2 P1-°DP3
Gs=| pa-p1 pP2-p2 P2-D3 |- (507)
P3-pP1 P3 P2 P3-P3

The interesting feature of this procedure is that all the form factor triplets which
satisfy equations of the form of equation (506) can be defined through the reasoning that
we have followed till now corresponding to the bubble and triangle integrals. Now we
demonstrate a short list with the needed relations that govern the form factors of the box

integrals. Therefore we give the Table which contains these relations, which reads
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Form Factors

RHS
D, Do D5 R?
Dy Dys D3 R#
Dy Doy Do R%#
D3, Dy D33 R#
Doo1 Doz Doos R0
Do D19 Dya3 R2
D13 Dia3 D33 RM3
D33 Do D33 R
Dy Di1p D13 Rt
D3 Dyao Dyas Rd22
D33 D33 D333 R4
Doo11 Doo12 Doo13 R0
Door12 Doo2z Doo23 Rd002
Doo13 Dooas Dooss R003
D11 Di112 Dy113 R
D329 Daa2r Daa3 Ri22
D333 D333 D3333 R333
D111z D127 D123 Rt
Dy113 D123 D133 RAM3
D129 D120 D993 R
D133 D933 D333 R33
D923 Dyga3 Dyo33 R
D933 D33 D333 R233
D123 D993 D933 R

C Integrals in d-Dimensions
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In the present work we adopted the formalism explained in the previous section, coming
from [1], in order to calculate the emergent integrals coming from the loop Feynman
diagrams. However, we face situations where these integrals do not correspond to any
relation familiar with what we have presented until now. Thus these cases, which we refer
to as the U; integrals, are treated separately. To be more specific, when we deal with them

we use the traditional calculation procedure as could be seen from section 2. Therefore,




here we present the basic tools that we use in order to perform that kind of calculation.

C.1 Feynman Parameterization

The first step is to demonstrate the way that the products of the denominators can be

rewritten according to the Feynman parameterization, namely the general case is

1 1 1
1
[ — — 1) _
A4, A (n 1).0/d:c10/dx2 O/da:n5<1 En xn>

1
X -
[Alxl + A2x2 + -+ An$n]

(508)

In the case that we have n = 2 and the denominators are in first power then we take

1 1
ABZO/dx[A+(B—A):):]2

(509)

but if the denominators are raised to a general power in the n = 2 case then we obtain

1

1 TI(a+p) (1 — z)"
A*BY T (a)T(B) O/dx [zA+ (1 —z) B]*"" (510)

As a finall example we give the n = 3 case which reads

1 1
1 Y
R S 511
ABC O/xo/ y[xyA+(1—x)yB+(1—y>C]3 o

C.2 d-Dimensional Integrals with Gamma Functions

Now that we have demonstrated the Feynman parameterization we move on to the next
step that we follow when we perform the traditional loop diagram calculation. Specif-
ically, we refer to d-dimensional integrals which occur from the transormation of the
4-dimensional ones when we perform a specific variable changing. Generally each one of
the resulting integrals has its own mass dimension, but here we would like to obtain di-
mensonless relations thus we multiply them with the factor (m?)®. The resulting integrals

read

Ak —q o (1) r (n— g) 1\ "—d/2
(2m)? (k2 — A)" i(my) () T (n) <A> (512)

Jo(n, ) = () |

148



i . wv (. 2\n—3 d?k —ik? - A, 5ns (-1)” r (n —1- g) 1\ "—1-d/2
U 0.8 = g = ) [ 6 = 0 gy (a)
(513)
o _ P T o ) L o (e e WA R s
I, 8) = U 8) = ™ [ St g = =5 e (5)
(514)
v po g [ AR =i (KD, 4d(d+2) ()" T (” —2- %) 1\ "—2-d/2
o 7 0, 8) = ()™ [ St e = T T (3)

(515)

vpo s [ A% =ik kRk (- (R —2- ) 1y
JHP7 (n, A) = (m?) 4/ T —i(m2) 4 ( 3/2 ( 2) ()
(2m)® (k* = A) (47) T (n) A
1
X Z(Q“VngJrg“pg”%—g“"g””)
(516)

where we have used the demand that

4 —2n+2x=0xr=n-—2
4+2—-2n+2xr=0<zxz=n—-—3
4+4-2n+2xr=0<x=n—-4

for equations (512), (513) and (515) respectively. Thus the final result of these d-
dimensional integrals remains dimensionless.
Next for symmetry reasons we demand that the odd powers of the k* in the numerator

should vanish, namely

d
/ (;lw];dku F(k?) = 0. (517)

Before we move on to the final part of this subsection and since we have defined
B" . By and Ay we would like to obtain a relation between the above integrals and these
quantities because it would be very interesting for our calculation. Therefore starting

from equation (513) for n = 1 and A = m, and defining that

k2 d?k k?
— 1
<k:2—m2> /z'(27r)dk‘2—m2 (518)

we can write the following relations
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) 1/ kR 1 g | K
Ur(Lm) = m4<k2—m2>_m4 d <k2—m2>@
. d+e k?
g U7 (1,m) - = mAd <k:2—m2><:>

. d+e 1 d+e [k*—m?
gu Uy (1,m) - = m2d </€2—m2>+ md <k2—m2>

and now, since we know that the volume integral in dimensional regularization is zero

(519)

and the scalar integral Ag is written as

we obtain that Eq.(519) reads

g, U (1,m) = HAQ(TTL)‘F* (520)

An other relation occurs if we start from (455) which gives

Ak krk
(QW)dm
Ak K

(2r)? didy’

=

~ivm) [

e

Now according to the traditional calculation of these integrals, in order to calculate
them we should find the Feynman parameters. Thus for the n = 2 case we get from

Appendix D that our relation reads

ddk: k* + p*(x — 1)
B — —i(2 /d /
I V) @) (k2 — A)?

where we have defined that A = —pz(1 — x) + m? and we have made the shift
k — k + p(x — 1). Then using the relations from (512) and (513) we get that

wo_ dk k?+p*(x —1)2
g,uyB 2\/_ /d / 7T d (kg . A) (521>

1

G B = (2¢/7)° / da (~m2g,u, " (2, A) + pP(x — 1)2Jo(2,A)) .

0
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Now, as we know from equation (458), we have that

G B" = g (9" Boo + p"'p” B11)

so replacing this relation into (521) we obtain that

1 1
G (¢ Boo + 9" B1y) = — g (29/7)m? / dzJ™ (2, A) + g, (2v/7)° / depp? (z — 12 J6(2,A) &
0 0

1 1
¢" Boo + pp* Biy = —(2¢/7)%m? / drJ" (2, A) + pp” (2/7)" / dr(z — 1)20p(2,A) =
0 0

(522)
and therefore comparing the lefthand side with righthand side we get that
1
(Qﬁ)d/dx(x C1)20(2,A) = Bh e
0
/ 1
2 _
O/da:(a: “1P2A) = B e (523)
1
1 dp? — 4m? d
/dx(:z: —1)%0(2,A) = 7 K a) By <p27ma7ma) + ——4o (mi)]
/ 2(2y/7) " p? 2(d-1) d—1
and
1
—(2y7)tm? / deJ"™(2,A) = ¢" By <
0
i 1
deJ" (2,A) = ———F+—¢""B 24
T v o2

O/de“”(Z, A) = _QmZ(Q\/g%)d(d Y KZmi - p2> By (p2,ma,ma) — Ay (mz)]

where we have expanded Bj; and By according to the equations (466) and (467)
respectively. Thus we have obtained a specific relation between the J* integrals and the
scalar integrals By and Ay.

An other relation that can be produced is that between the J**?? and B*” when we have

the n = 2 case, which could be useful for our calculation. In particular we have from
(516) that
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e 1 Ak kFEVEPKC
iJ"P7(2,A) = — (27T)d (k‘Q—A)Q

. vpo 1 d’k k#k’/(p i k)(p ) k)
Bpa 2 A) = T [ o k2 A)?

, e 1 dk KPRV L(f1 + do — dy)?
Pope "7 (2,A) = — (27)? 4<k:2 — A

1 / d kPEY[fE+ fi(dy — dy) + (do — dy)?]
Ams | (27 (k2 — A)?

ipppo I (2,A) = (525)

where we have used the relation (460). Now, from the relation (455) we get that

ddk; Kk + prp” (x — 1)?
e /dm/ ey (526)

—i(2y/7)" / da / Ak (kf“_’“;)g _i(2y/m) 0/1 dap'p” (x — 1)2Jo(2, A)

so integrating (525) with respect to z and combining it with (526) we get that

1
[ e 7 2.8) = B / dapp (e — 12,
1 dk k:“k”[fl(dg—dl) (dy — dy)?]
" 2t (7 - A -

1
/dxpppO'JuypU<27 A) = Buy(p27ma7mb)
0

-

402

1 dp? — 4m? ) d 9

- 8(2ﬁ)dm2p2 [( 2 (d IR 1) ) BO (p 7maamb> + d— 1AO (ma)]

o 1 / dk k”ky[fl(dg — dl) + (dg — d1)2]
Z4m3 (2m)? (k2 — A)?

)tmg

which gives a specific relation between the quantities J***? and B"".

Now lets forget about the above calculations and move on to the next subject of this

Appendix. In particular, we present the necessary steps that should be followed, concern-

ing the dimensional expansion, in order to use properly the DR procedure. Therefore, the

terms A%, uf and (47)° would be expanded as follows
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AF = 1—51nA+O<€2)

uoo= 1—|—5lnu+(9<52>

(47)° = l+elndr+0 ()
(528)

where we have used the general form

() =) (- dmaro ((2 g))] |

Moreover we should deal with the Gamma function I'(x). Here we deal with two cases

where the first one is when Gamma function has integer arguments, which gives I" (1) = 1,
I'2)=1,I(3)=2,I'(z) = (x—1)!. The second one occurs when the argument of the
Gamma function is zero or negative integer, where it has a pole!. So if we expand the

argument around the two kind of poles we get that

F(g):i—'YE‘i'O(E)‘l'"‘
F(—n+€> = (=1

2 n!

o)+ 0

respectively, where ¢ (z 4+ 1) = ¥ (2)+1 , ¥ (1) = —yg and g is the Euler-Mascheroni
constant defined as yp ~ 0.577.

D Calculation of the U-integrals

In this part of the Appendices we present two different methods in order to calculate
several integrals that we face through out our calculation. Generally this integrals could
be either identified with the cases contained in Appendix B or not. In particular, here
we deal with a specific form of highly divergent integrals, namely the U;’s, which will
evaluated by using the reduction formulas from Appendix B and explicitly. Of course
the straightforward calculation of these integrals is the explicit one, but here, we use the
scalar integrals coming from the Veltman - Passarino reduction formula to compactify
our results. It is very interesting to see if these two different procedures are essentially
equivalent, containing the same physical information and leading to the same physical

results.

LA short notation that we have to mention is that when we perform the expansion around d =2 — ¢

we do not have negative integers as Gamma function pole.
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D.1 U;’s as scalar integrals

Lets start the calculation of the U-integrals with the first case that we mentioned before,
namely using the scalar integrals and their relations. Thus we start with the dimensionless
integral that we face for the first time at the calculation of the one-loop two-point functions

of the Higgs boson in section 2, which reads

d'k ik
R b ] (Cewr
/{Z4
UM4(p7 meg, ma) = <m3 (k2 B mg) ((k n p)2 B mg) > (529)

where we used the second case of relation (461). Generally, the evaluation of integrals
like this one or like the upcoming ones which are more and more divergent, could be done
using several mathematical tricks. A common one, which is mainly used, refers to specific
shifts of the integrating momentum. In particular, someone could perform shifts of the
integrating constant momenta contained in the denominator of the integrals under con-
sideration. This can reduce the order of divergence but this is done in an inappropriate
way, since it adds extra infinite integrals which give wrong physical quantities.
Therefore, the way that we choose to consider so as to lower the divergence of our inte-
grals, namely of the U-integrals, is quite different. Specifically we use the terms in the
integral’s numerator in order to construct the corresponding denominators. This reduces
the divergence without inserting extra infinities and seems to work correctly. Neverthe-
less, for completeness, after evaluating Uxqy we present the same calculation using the
shift-procedure in order to highlight the differences that appear even in the simplest case

of the U’s. Thus we start the calculation-procedure as follows

Unma(p, ma; ma) = <m3 (k2 — m2) I(Tk +p)° - mﬁ) >

B < (k* — m2)k? > N < k*m?
mi (k2 —m2) (k+p)* —m2) /[ \mi (k> —=m2) ((k+p)* —m2)
k? 1
U y Mg, Mg, - + — VBMV y Mg, Mg,) -
M4(p ) <m3 ((k+p)2—mg)> mggu (p )

Now lets deal with the first term since the others are already known, therefore we have
that
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<mﬁw:&—ma>:

(531)

where we have canceled the 2k - p term because it is odd under £ — —k and we have
used the relation (454). Therefore adding (530) and (531) and using the equation (469),
we get the final form

2
2m; —

1 2
UM4(p, mavma) - 5 + ( P ) AO(ma) + BO(p> Mg, ma) .

4
myg

(532)

Now that we have finished with this calculation we present the results coming from
the evaluation of Upyy using the shift procedure. In order to do so we start again with the

first part of the equation (530) where now we complete the square obtaining the following

(k% — m2)? > < 2k*m?
_|._

Ushift Mg, Ma _ <
i ) mi (k2 —m2) (k+p)* —m2) /[ \md (k> —=m2) ((k+p)* — m2)

__Q%W—%ﬁiﬂfﬂﬁﬁﬁ

2 2
U/‘Q\Z‘th(p, mﬂ?ma) - < k — T;La > + %gHVB#V<pJ maama) - BO(p7 maama> .
mi ((k+p)* —m2)/  m;

;

(533)

Now lets deal with the first term since the others are already known, therefore doing
a shift of the form k& — k£ — p we have that

K —m, I L SV R S R N WS
mi (k4 p)? —m2)/ — \ mi(R2—m2) [ mz T
k2—m2 2 1

(534)
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where we have canceled the 2k - p term because it is odd under ¥ — —k and we have
used the relation (454) . Therefore adding (533) and (534) we get that

2
shi v p 1 2 v
U./\Z4ft(p7 ma7ma) = gMV‘]M (17 ma) + <m4 - m2> Ao(ma) + m2 g;u/BM <p7 mayma) - BO(pa mmma)

(535)

so using the Egs. (473) and (520) the final form of Uj,4 integral reads

p? +2m3

4
mg,

shift 1

U/vl4 <p7 maama) = 5 + ( ) AO(ma) + B()(p, mmma) .

(536)

Therefore if we compare Eqgs. (532) and (536) we will see that there is only one dif-
ference. In particular, p* in the coefficient of Ag(m,) has opposite sign in the two cases.
This is a tiny but very important difference since we can see that Uy calculated using
shifts, and calculated using Veltman-Passarino reduction formula, has a difference analog
to a Tadpole contribution. And this is exactly the problem with the insertion of the
U-integrals in Unitary gauge. In particular, we should be very careful when we use these
integrals, since they are highly divergent and using shifts, in order to reduce them, seems
that is not allowed.

Now, even in this case which is quite easy to handle there is an inconsistence between the
two procedures. So, it is clear that things getting worst as we move to more complicated
integrals and we should be very careful about the correct usage of the shifts when we

apply them on highly divergent integrals.

Now, we move on to an other dimensionless integral, which is similar with the previous

one, and comes from the triangle one-loop diagrams. To be more specific we have that

Ukca(p1, p2, Ma, My, My) /d4k i
K4\P1, P2, Ma; Mq, Mqa) =
1 (2m)’ m2 (k2 — m2) ((k + ) — mg) ((k +p1+p2)” - mg)
k}4
U]C4(p1,p2,ma,ma7ma) = < >
m2 (k2 —m2) ((k+p1)* = m2) ((k+p1+ p2)* — m2)
(537)

so, again here we try to construct all the possible denominators until we get a reduced

divergent integral, which we know how to calculate. Therefore we get that
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(k* — mg)k* >

U/C4<p17p2ama7ma7ma) - <
m2 (k2 —m2) ((k +p1)* = m2) ((k +py + p2)* = m2

k?m?
+ < 5 = > &
m2 (k> = m2) (k+p1)* —m2) ((k+p1 +p2)* —m3
1
UK4<p17p2ama7ma7ma) = QQ,UJ/B{Q 3}(p1ama7ma) +gMVC{123}(p1ﬂp2ama7ma7ma

(538)

and again here appears a dilemma between the usage of shifts and the usage of the
general Veltman-Passarino reduction formula. To be more specific the first term of the

above relation forgetting — 2 reads

4o <((’f+p1)2 —m3) (IZ/ZH% +p2)” —m§)> ) <C£;> -

A = A0<ma) - <2dk;df> + (mz - p%) BO(mmma) (539>

and thus in the second term there is not d; in the denominator as usual. Therefore,
we have two chooses. To be more specific, we can perform a shift of the form & — k& — p;

and then to use the Veltman-Passarino formula obtaining

UEhifts — p2Bi(my, ma, 0, po) (540)

or we can use directly the Veltman-Passarino reduction formula getting

U2V P p%B0<mCL7 ma7p1,p1 +p2) . (541)

Therefore, there is a difference in By’s arguments which does not play any role, and
also we can observe that, for equal masses, the two results are equal and opposite. This is
a very important difference which could affect drastically our results and thus, we should
choose correctly the way that we will calculate these integrals. Thus, since in these highly
divergent integrals the usage of shifts is ambiguous, here and in what follows we will

evaluate the U-integrals performing directly the Veltman-Passarino reduction formula.

Now, let us move on to the next case, where as we can see from equation (117), except
from the Uiy we face in addition two more dimensionless integrals, namely Uxs and Ujg.

Starting with the first one we get that
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d'k ik
/5 “

Uks(p1, P2, Ma, Ma; Ma) =
2m)" mi (k2 —m2) ((k +p1)* = m2) ((k +py+p)* —m2)

Ues( ) < EAkH >
Kk5\P1, P2, Mg, Mg, Mg -
P m3 (k2 — m2) ((k+p1)? = m2) ((k+p1+ pa)* —m2)
(542)

so following the same reasoning with the previous cases we get that

(k2 — m2) k2 >

UIC5(p17p2ama,ma7ma) - <
mi (k2 —m2) ((k+p)* —m2) ((k+p1+p2)* —m2)

k2m2 K+
N <mg (k2 = m2) ((k+p1)* = m2) ((k+p1 +p2)* — mg)> “

Ues( ) < K2k >
P1; P2, Ma, M, M) =
o mi; ((k+ pa)? = m2) ((k -+ pr o+ p)® = m2)

+ I e g, g, ma) (543)
m

a

So now we deal with the first term which becomes

< K2k > _ < [(k + p1)* — m2]k* >
md ((k+p1)° —m2) ((k+p1+p2)* — m2) md ((k+p1)° = m2) ((k+p1+p2)* — m2)

2p1V v p2
- B?Q 3} (p17 Mme, ma) - milgB?Q;;} (ph Mg, ma)
1
—B a a) <
+ e {2,3}(p1,m mq)
= VB#2V3 (phmaama) - 71BH23 (plymayma)
<m2 ((k—l—pl)z—mg) ((k+p1 +p2)2—mg> 23} m3 {23}

1
— B as Mta
+ e {2,3}(p17m Ma)

(544)
where again here we have canceled the k-odd term. Therefore combining (544) with
the second term that we obtained from the Uxs we take the form
Ugs = 2pl”B‘“’ (p1, Ma,my) + i—ﬁ By, 5 (p1, m m)—l—gﬂC’“’p( Mgy, M, My
K5 — {2,3} D1, Mg, Mg my mi {2,3} D1, Mg, Mg my DP1,P2, Mg, Mg, Myg,) -
(545)
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Finally we move on to the second integrals that we mentioned before, namely the Ujg.

Therefore, following the same procedure as before this integral reads

d*k kS
4 4(1.2 2 2 2 2 2
2m)" md (k> = m2) ((k +p1)* = m2) ((k+p1 +p2)® = m?2)

U/CG(p17p27ma7ma7ma) = / ( =

U;a;(pl,pmma,ma,ma) =

kﬁ
<m3 (k2 = m2) ((k+p0)* = m2) ((k +p1 + po)* = m2) >
(546)

again here we have that

U/ce(p1,p2,ma,ma7ma) =

(k? — m2)k* >

mi (k2 = m2) ((k+p1)* = m2) ((k+p1+p2)* —m2)
m2k*

m2 (k2 —m2) ((k+p1)* = m2) ((k+p1+p2)” - mz)> -

(
(
St = { )
(
s

(
ma (k? — mg)k?
) — m2> ((k’ +p1+pa)’ — m3>> -

k‘4
Uke(P1; D2; My Mg, My >
olp1- P ) H((k+p1)* = m2) ((k+p1+p2)* —m2)

g v 174 v
+ = B?z 3} (p17 Mg, ma) + g,uVCf{l’Q,g} (pb P2, Mg, Mg, ma) . (547>

Now we should evaluate the first term of the above relation therefore using the same

reasoning with the previous calculations we get that
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B[k + p1) — m2)

k4 >
<m3 ((k +p1)* = m2) ((k+p1+p2)” —m2) m [(k +p1)° = m2| [(k+pr +p2)°

2]{32])1 -k

2]
ma_

(]C —l—p1)2 — mg (k) + P1 +p2)2

2|
ma_

k2

2]
ma_

m2 [(k‘ —l—p1)2 — mg} [(k’ + 1 +p2)2

2 >
m [(k + p1 +p2)* — m)]
2p1‘uk2k“

<mi (k4 p0)* ~ mgff@ o1+ pe)” = m3) > )

<
<

e e Ll :
mi [(k+p1)* = m2] [(k + pr + pe)
<
<
<

mé [(/{ +p1)2 — mg} [(lﬂ + 1 —l—p2)2

1 p w
+ 5 w g,uuB{Zg}(pl; Mg, ma)

a

so now we have to deal with the first and the second term of (548). Starting with the

first one we we get

(k + P1)2 —m?

mi {(l{: +p1+ pg)2 — mg} >
2P, - k

mi [(k+ p1 + pa)” — m2] >

<
<

- < i > + LAy (ma)
<

<m§ (k +p1kj po)? = m2| > B

my {(kf + D1 +p2)2 — m(ﬂ m;

1> N [1 _ :ﬂ Ao (ma) (549)

2
my

a

<m3 ( +p1kj p2)? —m2| > -

where we have defined that P, = p; + p». Now we move on to the second term which

reads
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2p k2kH >
. mé<W¢Uk+pn”—mﬂkk+py+mf—w@} -

i -l o
mg \\[(k+p1)* = m2] |[(k+pr +p2)* = m]
< 2kFp, - k >
{(k +p1)° — mg} [(k +pi ) — mg}

_ < k' p1 >
[(k+p1)* = m2] [(k+py+p2)® — m?2]

joT
o )@
[(k +p1)” - mg} [(k +p1+p2)” — mcﬂ
4p1 Piv v
A = 7,;:4 B?Q 3}(p17ma7ma>
2p2
+ miiplluB?Z:;} (plu Mg, ma)
2p
1u 2 Blaay (p1, 10, m0) (550)

[l

therefore combining all these together we obtain the final form of Uxg which reads

1 P? 2p 2py
( - 77’14> AO(ma> + <Tnip1u m# B{Q 3}(]71, Mg, ma)

a a

1
2
( Guv gm/pl + 4p1up1u

m4 ) B{Q 3} (p17 Mg, ma) + guucf£273}(pl7p27 Meg, Mg, ma) -

(551)

Since now we have seen all the U;’s that occur in the case of the scalar reduction of
the Triangle-integrals. Thus it is time to move on to the U; integrals that occur in the
calculation of the Box diagrams which we have defined in subsection 2.4 . Generally, the
method that we use in order to reduce these integrals is exactly the same with that we have
followed throughout the calculation of the Triangle U;’s. To be more specific, again we are
trying to construct the appropriate denominator in the numerator of the corresponding
integrals, and then we manage to reduce its divergence in a proper way. Therefore it is
straightforward to write the exact form of these integrals since the calculation is already

known. So we start with the dimensionless integral Ug, which reads
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Upa( My M, M, M) / Ak k!
DP1,P2,P3, Mq, Mq, Mg, Mg) =
SR 2m)* | (k2 — m2) <(k +p1)° — mz) ((k‘ +p1+pa)’ - mg)

1
X =
((k:+p1+p2+p3)2—m§)}
/{4
U s P25 U3y Tlay gy Tlbqy TTlq =
5a(P1; P2, P3; M, Ma; Ma Ma) <[k’] [k + pillk + p1 + po] [k + p1 + s +p3]>

(552)

where we have defined that [k] = (k* — m?), [k+p| = ((k +p1)° — mg), (k+p1+ps] =

((k +p+p2)’ - mg) and [k+p1+p2+ps| = ((k + P+ Pt ps) — mg) in order to have
a more compact notation which we will follow in the Box-U; integrals. Thus we can write

here the following relation

Usa( Ma, Mg, Mg, M) = il
Ba\P1, P2, D3, Mg, Mg, Mg, Mg, - [k] [kf“—pl] [k+p1+p2] [k+p1+p2+p3]

k2
+ m; <
<W [k +p1] [k +p1 4 p2] [k + p1 + p2 +P3]>
UB4(p17 P2, D3, Mg, Mg, Mg, ma) = gpucéu’g’z;} (p17p27 Mg, Mg, ma) + ng,ul/ij(av a,a, CL) .

(553)

Next, following the same reasoning we present the reduced form of the Ugs integral

which reads

A { ik

UB5(pl7p27p37ma7maamavma) - /
(2m)" | ma (k2 = m2) ((k+p1)* = m2) ((k+p1+p2)* — m2)

X

1
=
(k4 p1+p2+p3)?— mi)}

kA kH
U s P25 U3y Tlas Mgy TTha,y TTlq =
53(P1; P2 P3; M, Ma; Ma Ma) <ma (K] [k + pal[k + p1 + pa] [k + p1 + o +p3]>

(554)

so after using the relations that we have obtained previously we have that
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Uss(p1, D2, P3, Ma, Mg, Mg, M) =

< kK2 [k] >
my [k] [k + p1] [k + p1 + pa [k + p1 + P2 + p3)

< )

+ myg =
(k] [k + p1] [k + p1 + pa] [k + p1 + pa2 + p3]

UB5 (p17p27p37 Mg, Mg, Mg, ma) = %Cfgy’gzl} <p17p27 Me, Mg, ma) + mag,uVDlwp(aa a, a, CL) .

(555)

Now using the same arguments for the g, D*"*(a,a,a,a) we get the final form of Ups

which reads

9uv
UB5 (p17p27p37 Mg, Mg, Mg, ma) - mLCfgltgA} (pla D2, Mg, Mg, ma) + ma0?2’3,4} (p1,p2, Me, Mg, ma)
a

+ mdD"(a,a,a,a)

(556)

where we have left intact the terms with indices since they are contracted with the
momenta or the metric when we consider their full calculation. Now we move on to the

next dimensionless Box integral which is

U(pppmmmm)—/d4k ik
B6\M1y V25 V3, ITta, 11la, as 'ta (27T)4 mz (kQ—mZ) <<k+p1)2—m2> ((k+p1+p2)2_m2)

1
=
((k4+p1+p2+p3)?— mi)}

k2k*
U y P2, P35 Mhay Mgy Mg, T ) = ’
86(P1, P2: P, Ma Mas M, M) <m3[k;][k+p1][k+p1+p2][k+p1+pz+p3]>

(557)

This integral could be seen as the Up, integral with an extra k? term in the nominator

and divided by m2. Therefore we get that the reduced form reads

/{4
U, y P2, P35 MThay Mgy TTg, T ) =
56(P1, P2; Pa; Mas Ma; Ma; M) <mg[kz+p1] [k +p1 + po] [k + p1 +pz+p3]>

+ 9w Clyz0y(P1, D2, Mgy Moy M) + Mg, D' (a, 0,0, a) &

k‘4
+ Ugs .
<m§[k:+p1][k—|—p1+p2][k+p1+p2+p3]> 5
(558)

UBﬁ(p17p27p37 Me, Mg, Mg, ma)
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Now we should deal with the first term of the above equation which we define as B

and it reads

k4
m2 [k + p1] [k + p1 + p2] [k + p1 + p2 + ps]

=

m2 [k + p1] [k + p1 + p2] [k + p1 + p2 + ps]
k2p1
m2 [k + p1] [k + p1 + p2] [k + p1 + p2 + ps]

k2 [k + pi) >
m2 [k + p1] [k + p1 + p2] [k + p1 + p2 + ps]

(o

S
_< 2%k py

(o

i

k‘2
[k +pi] [k + p1+ pa] [k + p1+ pa +p3]>
Guv v 2p1 v
B = £ B€34}(p1’ma7ma) - ;gupcégzl}(php%maamayma)

2
p v
+ (1 - m12> guyC€2,3,4} (Pl,pg, Mg, Mg, ma>

a

(559)
thus we obtain the final form of the Ugg which reads
T 2]91“
UBG(pl,pQ,pB, Mg, Mg, Mg, ma) - B{g 4} (ph Mg, ma) - m2 gl/pC{z 3 4}<p1; D2, Mg, Mg, ma)
pi
+ (1 - TTL2> gw/C?QV,gA} (p17p27 Mg, Mg, ma) + UB4 . (560)

Here we have an other dimensionless integral of the same numerator dimension, namely
Ulg which is exactly as the Ugg but without being contracted with either the metric or

the momentum. Therefore we can write straightforward that

Uk (D1, P2, D3, Mgy Mg, My, Mg) = / d4k4{ —ik* kP
(2m)" \mg (2 = m2) ((k +p1)* = m2) (K +po + p2)” = m2)
1
S (CES e —mg)} <

v .
UBG (p17p27p37 Mg,y Mg,y M, ma) -

< k4 kv >
mg [k} [k + pi][k + p1 + pa] [k + p1 + p2 + p3]
(561)

164



so we have that

v 1 v
UgG(plap%pSamaamaamavma) = WB%,A}(phmaama)_

2
" (2 B 7]7)”Ll> 0553,4} (php?v Mg, Ma, ma) + szMV(a7 a, a, a) .

2p1 v,
7;0?2574} (p17p27 Mg, Mg, ma)

2
a

(562)

Now we move on to the next dimensionless integral that we face in the Box calculation

which is Ug; and has the following form

d*k —ikSkH
2m)" | m3 (k2 = m2) ((k +p1)* = m2) ((k +p1 + p2)* = m2)

UB7<p1>p2>p3>maamaammma) = / (

1
=
((k4+p1+p2+p3)?— mi)}

ESkr
U s P25 P35 Hbay gy Tlba, 1Tl =
57(P1, P2, P, Mas M, Mas Ma) <nﬁ[ﬂ[k—%pﬂ%r+p1+jb]M%+p1+jb-%pﬂ>

(563)
Since now we have seen in a very analytical way the method that we use in order
to evaluate the U-integrals. Thus, the remaining two highly divergent integrals could be
written without the intermediate steps, since we have already seen them. So we get that
1 Pl2 2p11/ 2P1V v
UB?(p17p27p37maamaamayma) - (T)’La - Tn2> B?3,4}(p17ma7ma) + <_ mg - mig B?374}(p1,ma7ma)
2pt 2 v
+ (7%2 - mia ph/C?Q’gA} (p17p27 Mg, Mg, ma)
+ b P + Joe Clyt il Ma, Ma, Mg) + U,
mi mgg"p My P1v {2,3,4} P1, P2, Mg, Mg, Mg B5 -
(564)

Finally, we have the last dimensionless Box integral which is Ugg which has the fol-

lowing form
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Us( ) / d*k —ikB
B8\P1, D2, P3, Mg, Mg, Mg, Mg =
(2m)" | md (k2 = m2) ((k+p1)* = m2) ((k+p1+p2)* — m2)
X 1 =
(k4 p1 +p2 +p3)? —m2)
k8
U, P1,DP2,DP3, Mg, Mg, Mg, Mg - < >
a(p1, P2, Po ) ma [k] [k + p1][k + p1 + p2] [k + p1 + p2 + ps]
(565)
therefore its reduced form reads
1 1 P} 4p? 4 u
UBB(php?vp&ma; Mg, mavma) - 5 + mig - miﬁ Ao(ma) + mig - mig pl,uB{gA}(plama; ma)
29 v P2 p2 8291 Pll/ 4p1 Piv v
+ ( ml; - m714 [ 7 7149;1,1/ + 724 + 7:;4 3?3’4}(]91; m(uma)
2 4
p p
+ {guu - 2 12 g/u/ + 5149#1/

4 4pi o
+ mfgpmpw—migplupw 123,41 (P1, D2, Ma, Ma, M)

2 gl/p 4 gl/p
a ma

N { _ e 2PiP

a m(l a

2p% 2 8 uvp
* d Tz | 9w Pre = PP P Cla5.4y (D1, D2, May Ma; Ma) -

(566)

XXX

D.2 Explicit calculation of the U-integrals

The first case that we have is the following

d*k 1
(2m)" (k2 —m2) ((k +p)* —m2)

Ui(p,masma) = [ (567)

here we can see that the Feynman parameters are that of the equation (509), thus we

have that the denominator takes the form
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1
1 / 1
— = [ dx (568)
AB ) T [A+ (B - A)al’
where A = k% —m?2 and B = (k + p)® — m2. This gives
M=[A+(B-Az]= |k -—m2+(k+p’—m2—E+m?)z
= [k2 + p*x + 2kpx — mi}
then we complete the square adding the term +p? (1 — x)2 and we get
= |(k+pz)+p*z(l—z —m?
[(k + pa)” + pPa (1= 2) = mi] 570)

=k —-A
where we have performed the shift & — k& — pr and we have defined that A =

—p*z (1 — x) + m2. Thus, now U; becomes

Ak
(2m)" (k2 = A)*

1
Ul(pu maamzz) - /de/
0

Now in d-dimensions and using equation (512) this integral reads

(571)

1
1 d 1\ 2-4/2
1 mame) = iy | T (2 ) 2) (5)

and using the expansion relations of the Gamma function and expanding around d =

4 — ¢ the Ui(p, m,, m,) becomes

1

1 (2 dre e

Umpﬂnmn%)::QMdQ(g-F/}Mﬂn S ). (572)
0

The next integral that we deal here is a little bit more complicated but we use the
same reasoning in order to calculate it. In particular we have the following

d*k ik?
2m)" (k> = m2) ((k +p)* —m2)

%@m%mﬁz/ (573)
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where we have again the same n = 2 case concerning the Feynman parameters and
thus we obtain that the shift is k — k — p(z — 1) and A = —p?z (1 — x) + m2.
The only difference with the previous calculation occurs in the numerator where here it
has to be shifted, namely

N =k* = (k — px)?
. p2 22
where we have omitted terms which are odd to the k. Therefore we obtain that

d*k i(k* + p*z?)
(2n) (k- AF

1
U2<p7 mmma) = /d.’L’/
0

so in d-dimensions and using equations (512) and (513) this integral reads

dk i(k* + p*a?)
(n) (= A

1
U2<p7 maama) = /dl‘/

0

1 1
1 d\ 71\ 1 ) d\ /1242
U2<p7ma7ma) :—m)d/?b/dl'r (1—2> (A) +W!dxp T F<2_2> (A)

(574)

and using the expansion relations of the Gamma function and expanding around d =

4 — ¢ the Us(p, mg, m,) becomes

1 P> m?

1
e E 2
Uz (p, ma, ma) = —*+J+/d:tA1n e —p+m2>
0

[\

(4m) 3 ¢ A 6 “

1
1 2p? 4re1E
= drp®z?®1 &
G 3g+0/xpan)

1 P> m? dre=E  p?

1
Us(p, ma,my) = ———+ /dprx (2x —1)In N + mi) (575)
0

[\

—~

[\

(4m)?2 \ 3 ¢

Now, lets deal with the explicit calculation of the dimensionless integral Uy where
we already know that the Feynman parameters are in the n = 2 case. In addition the
corresponding shift and A are the same with the previous two integrals. Moreover the
numerator after the shift becomes

N =k* = (k + px)?
= k' + 6k*p"a® + p'at
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therefore we obtain that

d*k i(k* + 6k*p?2? + ptat)
(2n)" mi(k? = A)°

1
U./\/I4(p7 maama> - /d]?/
0

so in d-dimensions and using equations (512) , (513) and (515) this integral reads

dk i(k* + 6k*p*2? + piat)
(2m)"  mi(k? = A)

1
UM4<p7 maama) - /dl‘/

0

1
6 v
W/dxp2x2gwju (Q,A)
%0

1
1
UM4(pa mmma) = _W/dxgﬂl’gpff‘]uypg(27 A) + (47‘(‘)

1

4 4

1
1
U./\/l4(p7 mmma) = W{ /dxguugpajuypa 2 A 72/ xp z g,uut]/w 2 A)
Ma g

1
—4/ rp x4Jo 2 A)}
ao

(576)
so after expanding around d = 4 — ¢ the U4 becomes
1 2p? A2 4me® 9 3p2 3 pt
UM4(pvma’ma) = (47T)2 <6_+ > +/d$6f1n +§+§m7+%ﬁ

2

6p
UM4(p7maama> - {<6+ m2 5m4> /dl’{

a

16p*x* dre® 9  5p2 9 pi
1 242F 2P 577
i ma } TTA N 2 * 2m2  20m? (577)

Finally a common case that we face in that kind of calculations is that of

U}Vl4(p> Mg, ma) = ,u4_dUM4(pa Mg, ma)
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so if we combine equation (577) with U}, and do the expansion around d = 4 — ¢,

then we will obtain the following form

Next integral that corresponds to interesting features of our work is the dimensionless
Ujy. This case is between the most common integrals that we face during the calculation

of the one-loop three-point functions in section 2. So we have that

Ak —ik*
Ua = ; . - 579
o=/ (2m)* m2 (k2 = m2) ((k + p1)* = m2) ((k+p1 + p2)* = m2) o

where its Feynman parameters correspond to the n = 3 case. In particular we notice
that this integral is exactly the same with (597) concerning the denominators and the
Feynman parametrization thus using the relation (511) for A = k2—m2, B = (k+p)* —
m?2 and C' = (k + p; + p2)® — m? the denominator reads

II = [Av+By+Cz] &

I1 [:1:!{:2 — am? + yk* 4+ yp? + 2ykpr — ym? + 2k + 2(py + p2)? + 22k(py + pa) — zmi]
{ + 2k (pry + (p1+ p2)2) + ypi + 2(p1 + p2) — mi]

= K+ 2k (py + (p1 +p2)2) & (yps + 2(p1 + p2))” + ypi + 2(p1 +p2) —m2| &

k

I = kK-A (580)

where we have completed the square adding the term 4(yp; + z(p1 + p2))?, we have
used the relation z + y + z = 1 and we have done the shift & — &k — p1y — (p1 + p2)2.
Finally considering everything mentioned above, we have defined that A = —p?z(1—z) —

2p1paxrz — piz(1 — z) +m2. Now we should do the shift in the numerator which becomes

N = K= (k—py—(p+p2)2) <
N = k' —4(py+ (p1 +p2)2)k* +6(pry + (p1 + p2)2)*k? — 4(pry + (p1 + p2)2)*k + (pry + (p1 + p2)2)*
(581)
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and if we putt it in (579) it will read

T | 5 e
U ) ) a — 2/d /d /d5 1— i /
’C4(p1 " m) ’ ’ . < zz_:lx> m2 ]{;2 A)S
o 0 0
11 5 .
dk —14( 3
-2 fan fay [ (1= 3 [ AR
0 0 0 i=1 m2 (k2 — A)
T | 5 . )
— k
- Z/dx/dy/dz5<1 Zx>/ Lk 56wy + (o +p2)2)
0 0 0 i=1 ma(k —A)
T 5 .
dk: —14( k
- Q/dx/dy/dzé 1-— le ‘ p1y—|—(p1—|-p§) 2)°
i=1 mg (k* — A)

0 0

+ 2/dm/dy/d25 (1—2:5@)/ Ak _Z(p%?kgpix;) 2 (582)

Similarly with the case of the Triangular integrals here we face integrals that have

numerator which is different from one. One case like that is the dimensionless integral

Upy = / d*k g
(2m)* (k# —m3) ((k +p1)2 - mZ) ((k + 1 —I—p2)2 - m?L) ((k’ + D1+ D2 +p3)2 - mg)

(583)

and this integral has the same Feynman parameterization with that of (602), thus

using the n = 4 case for the Feynman parameters we get that the denominator gives

II = [Av+ By+ Cz+ Du| <
I = {xkz —am? + yk® + yp? + 2ykpr — ym? + 2k + 2(p1 + p2)? + 22k(p1 + po) — 2m?

+ wk®+ w(pr +p2 + p3)2 + 2wk(p1 + p2 + p3) — wmi}
= {k2 + 2k (p1y + (p1 + p2)z +w(pr + p2 +p3)) + yp% + z(; +p2)2 +w(p1 + p2 +p3)2 — mi}
= {k2 + 2k (pry + (p1 + p2)z + w(py + p2 + ps)) £ (yp1 + 2(p1 + p2) + w(p1 + p2 + p3))?

+ ypi+2(pr+p2)’ +wpr +p2+p3) — mi} <~
I = kK-A (584)

where we have completed the square adding the term +(yp; + z(p1 + p2) + w(py +
p2 + p3))?, we have used the relation z + y + 2 + w = 1 and we have done the shift
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k — k—piy— (p1 +p2)z — w(ps + p2 + p3). Finally we have defined that A = —yp? —

2(p1 + p2)® — w(pr + p2 + p3)* + (yp1 + 2(p1 + p2) + w(ps + p2 + p3))* + my.
Now performing the shift that we have mentioned we get that the numerator reads

N = k' = (k—pwy— (pr+p2)z —wp +p2+p3))* &
N = k'- A(pry + (p1 + p2)z + w(pr + po +P3))/€3 + 6(p1y + (p1 + p2)z + w(p1 + p2 +p3))2k2
— Apy + (p1+p2)z +w(pr +p2 +p3)°k + (pry + (p1 + p2)z + w(py + p2 + ps))*

(585)
and if we putt it in (583) it will read
1 1 11
d*k —ik?
Uga(pi, ma) 6 [de [ dy [ dz | dwd (1 — xl>
[ e [ s =) [ Gy s
1 1 11
d*k —id(p1(1 — x) + p2(z + w) + wps) k>
6/d:€/dy/dz/dw5<1—2xi>/(2 )4 (k2—A)4
0 0 0 0 =1 T
1 1 11
d*k —i6(p1(1 — x) + pa(2z + w) + wps)?k?
6 (dr [dy [ dz | dwd (1 — Z xl>
0/ 0/ 0/ 0/ i=1 / (27T)4 (k* — A)4
1 1 11
d'k —id(p1(1 — x) + pa(z + w) + wp3 )3k
6/dx/dy/dz/dw5<1—2mi>/(2 )4 (kQ—A)4
0 0 0 0 =1 T
1 1 11 4 4 B A
6/dm/dy/dz/dw5 (1—21;1)/ ;ik4 i(pa(1 m);pz(zjwﬂwpg) |
o 0 0 0 i=1 (27) (k* = A)

(586)

where ¢ takes the values © = 1, 2, 3.

XXX

E Calculation of the Ay, By, Cy and D, Integrals

In the present section of the Appendices we demonstrate the analytic calculation of the

scalar integrals that we have used throughout this work. This is very important since

every reduced result that we have obtain in section 2 is according to these scalar integrals,

therefore in order to use them to calculate properly the S-functions we will need their

analytic form. So, we start with the Ay(m,) which reads
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_ d*k —1
Ag(ma) = p? 4/(27r)4/<;2—m2 (587)

and with the help of equation (512) for the n = 1 case in d-dimensions we get that

Ag(my) = p*'m2J(1,m,) &
d—4
— L d 1
Ao(ma) = WP <1 — 2) W . (588)

Now, we should perform the expansion around the d = 4 — ¢ which will give us the

following relation

2 2
Ao(m,) = i —|—miln'u—2 +m?2.
€ m?2
(589)
Next we move on to the By(p, my, ms) case which reads
d*k —1
Bo(p mi,my) = [ (590)

(2m)" (k2 = m3) ((k+p)* —m3)

and as we can see, the Feynman parameters are that of the equation (509), thus we

get that the denominator takes the form

1
1 / 1

— = [dx 5 (591)

AB J [A+ (B — A)z]

where A = (k+ p)* —m?2 and B = k* — m2. This gives
M=[A+(B-A)a]=[(k+p)*—mj+ (K —mi—(k+p)*+mj)a] 592

= {kQ +p? (1 —2)+2kp (1 —2) —m3(1 — ) —m%x}
then we complete the square adding the term +p? (1 — x)2 and we get
M=(k+p(l—=x 2—|—p2.7c 1—a)—m2(l —z) —m?x

[+ p (1= 2)) + e (1= ) = m3(1 — ) — miz] 503

=k - A
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where we have performed the shift & — k 4+ p(x — 1) and we have defined that A =

—p?z (1 —z) + m3(1 — z) + m2x. Thus, now By(p*, m1, my) becomes

d*k —1
(2m)" (2 — A

1
By(p, my,ms) = /dx/
0

Now in d-dimensions, using equation (512), this integral reads

(594)

1
. d 1\ 2-4/2
Bo(p,mq,ms) = (47) /2 /d:cF <2 N 2) (A)

thus, using the expansion relations of the Gamma function and expanding around
d = 4 — ¢ we obtain

1

1 2 dre B

Bg(p, ml,mg) = (47)2 (6 + /dl‘ In A ) (595)
0

or we can have the following useful relation for our calculation which reads

By(p,mi,ms) = p**Bj(p,mi,ms) <

Bo(p,mi,mq) = (471r)2 (i—i—o/d:cln A;:(ac)) (596)

Following the same procedure we can see that the integral By(p, mg, m1) has the same

e-expansion with the one that we have just calculated, namely with By(p, mq, ms), inter-
changing the two masses m? and m3 in the A expression.
Now lets move on to consider a different case from what we have seen till now, namely
we will explicitly calculate the integral corresponding to the Co(p1, pa, M, M, My ) case of
the Appendix B. To be more specific, integrals like Cy(py, p2, Ma, Ma, Mg) has 1/m? mass
dimensions, therefore here

d*k —1
(2m)" (k2 = m2) ((k + p1)* = m2) ((k + pr + p2)* — m?2)

Cy(1,2,3) = / (597)
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and as we can see its Feynman parameters correspond to the n = 3 case. Therefore
using the relation (511) for A = k2 —m2, B = (k+p1)>—m2 and C = (k + py + ps)° —m?

the denominator reads

II = [Az+By+Cz] &

I {xkz —am? +yk® + ypi + 2ykpy — ym?2 + zk* + z(p1 + p2)® + 22k(p1 + p2) — zmﬂ
= [K* + 2k (pry + (01 + p2)2) + ypt + 2(p1 + p2)” — my

= [+ 2k 1y + (01 + p2)2) £ (yp1 + 201+ 2))* + 97 + (01 +p2)” —m2] &

k

I = kK-A (598)

where we have completed the square adding the term 4(yp; + 2(p1 + p2))?, we have
used the relation z + y + z = 1 and we have done the shift & — &k — p1y — (p1 + p2)2.

Finally considering everything mentioned above, we have defined that A = —p?z(1—z) —

2p1perz — p3z(1 — z) + m?2. Therefore equation (597) becomes

05(1,2,3) = 2/dx/dy/dz5 (1 —Zg;z>/ d4l§ G :img (599)

and this specific form corresponds to the equation (512) for n = 3, thus the above

integral in d-dimensions reads

Co(1,2,3) = 2

Co(1,2,3) = 2

dz6 (1 - i}) Jo(3,8) (600)

|
/

Now, in order to compute explicitly the Cy(1, 2, 3) we should do the expansion d = 4—¢,

thus using the expansion forms that we have presented in Appendix C.2 we obtain the

(601)

final form
I T 3 p ) 3-d/2
Co(p1, P2y Ma, My, My) = /da:/d /dzé(l— >F<3—> () &
0(]71 D2 ) (47‘(‘)d/2 J ; Y 4 ; Aco(x Y, < )
;! 1 1 3 !
Co(p1, p2, Ma, My, my) = — /d:v/d /d25 (1 — :131> _
0(p1 D2 ) (47T)2 J J yo ; ACO($,y7Z)



where we have defined the notation z; = z, 9 = y, v3 = 2. As we could have seen

from the beginning, the above result is completely finite.

Now we move on to another interesting case that occurs in section 2 and in partic-
ular, it refers to the Box diagrams. To be more specific, here we deal with the case
of the Dy(p1, pa, p3, Ma, Ma, Ma, Mg) which has mass-dimension 1/m?. Thus we have the

following

d*k —q
(@m)" (k2 = m2) ((k+p1)* = m2) ((k+p1+p2)* = m2) ((k +p1+p2+ ps)” = m2)
(602)

Do(1,2,3,4) :/

and as we can see its Feynman parameters correspond to the n = 4 case. Therefore
using the relation (511) for A = k> —m2, B = (k+p1)°> —m2, C = (k+p1 + p2)* — m?
and D = (k+p; +p2 + p3)2 — m?2 the denominator reads

II = [Ax+By+Cz+ Du| &
I = {fﬂkQ — am? 4 yk* 4+ ypi + 2ykpy — yml + 2k + 2(p1 + p2)® + 22k(py + p2) — zm;

+ wk® 4+ w(pr + p2 + p3)® + 2wk(pr + p2 + p3) — wmi}

= {k‘2 + 2k (pry + (p1 + p2)z + w(ps +pa +p3)) +ypt + 2(p1 + p2)? + w(ps + pa + ps)? — mi}
= {k2 + 2k (pry + (p1 + p2)z + w(py + p2 +ps)) £ (ypr + 2(p1 + p2) + w(py + p2 + ps))?

+ oyt 2o+ 0w+ p+ ) — i)

I = K-A (603)

where we have completed the square adding the term +(yp; + z(p1 + p2) + w(p; +
p2 + p3))?, we have used the relation * +y + 2z + w = 1 and we have done the shift
k — k—py— (p1+p2)z — w(py + p2 + p3). Finally considering everything mentioned
above, we have defined that A = —yp? — 2(p1 + p2)? — w(pr + p2 + p3)* + (yp1 + 2(p1 +
p2) + w(pr + p2 + p3))? + m2. Therefore equation (602) becomes

Do(1,2,3,4) = 6/1dx/1dy/ldz/ldw5 (1 —éx> / (;i’; i :@'A)4 (604)

and in d-dimensions using equation (512) for n = 4 it reads
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Do(1,2,3,4) = 6

Do(1,2,3,4) = 6

/
/

dx | dy

d

P ek =
O/dzo/dw(S(l—;xZ)/(W) (l{;Q—A)4<:>
dy /1 dz /1 dw ( 4 ) JU(;‘%’A‘A» (605)

Now in order to have an explicit calculation of this integral we use the exact form of

the equation (512) and therefore we obtain the following

DO(plaanp?n Mg, Mg, Mg, ma)

D0<p17p27p37 Me, Mg, Mg, ma)

1 1 1 1 1 4 I (4 — 4)
(47) /2 0/ dxo/ dyo/ dzo/ e <1 _;x> (ADO(%%%;))A‘_W 2

1 1 1 1
1 / 4 1
dx/dy/dz/dwé(l— SL’z) )
e | ] ) 4 2% 83 v ow)

(606)

where here we have defined that r1 =z, 2o =y, x3 =2z and 24y = w
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