ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ

Αμαλία Α. Κώνστα

ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ

2η Έκδοση

Ομότιμη Καθηγήτρια Ε.Μ.Π.

Αθήνα 2015

Στη μνήμη του πατέρα μου Αναστασίου Σ. Κώνστα

ΠΡΟΛΟΓΟΣ

"Statistical mechanics is the art of turning the microscopic laws of physics into a description of Nature on a macroscopic scale".

DAVID TONG (2011)

Η Στατιστική Μηχανική, μαζί με την Κβαντομηχανική, παρέχουν τα θεμέλια της σύγχρονης Φυσικής. Συγκεκριμένα, η Στατιστική Μηχανική συνιστά τον σύνδεσμο μεταξύ της μικροσκοπικής (κβαντομηχανικής) περιγραφής της ύλης και της μακροσκοπικής θερμοδυναμικής περιγραφής, και αποτελεί απαραίτητο εργαλείο για τη μελέτη της φυσικής των ιδιοτήτων των υλικών. Από τα πιο πάνω είναι προφανές ότι, χωρίς τη στενή συνεργασία με τη Στατιστική Φυσική, η Κβαντομηχανική δεν θα ήταν από μόνη της σε θέση να ερμηνεύσει τη Φυσική του μακρόκοσμου.

Στο βιβλίο αυτό δίνεται μια σύγχρονη άποψη της Θερμοδυναμικής, βασισμένη στις σημερινές μας γνώσεις πάνω στην Ατομική Φυσική και στην Κβαντική Μηχανική, και σκοπός του είναι να αποκτήσει ο σπουδαστής θεμελιώδεις γνώσεις Θερμοδυναμικής και Στατιστικής Μηχανικής και να μάθει να εφαρμόζει τις βασικές αρχές τους για τη λύση φυσικών προβλημάτων. Του δίνει τη δυνατότητα να αναπτύξει ικανότητες για την κατανόηση φυσικών εννοιών και μεγεθών και να αποκτήσει ευχέρεια στην εφαρμογή προσεγγιστικών μεθόδων για την πρόβλεψη αριθμητικών αποτελεσμάτων, χωρίς απαραιτήτως τη χρησιμοποίηση πολύπλοκων μαθηματικών μεθόδων, έτσι ώστε να είναι σε θέση να αναγνωρίσει τις σημαντικές έννοιες και σχέσεις και να κάνει χρήσιμες προβλέψεις.

Η Στατιστική Φυσική παίζει, όπως θα δούμε, μεγάλο ρόλο στη Φυσική της Στερεάς Κατάστασης, την Επιστήμη των Υλικών, την Πυρηνική Φυσική, την Αστροφυσική, τη Χημεία, τη Βιολογία και την Ιατρική (π.χ. μελέτη της εξάπλωσης μολυσματικών ασθενειών), στη θεωρία και τεχνική των Πληροφοριών, αλλά και σε εκείνες τις περιοχές της τεχνολογίας που οφείλουν την ανάπτυξή τους στην εξέλιξη της Σύγχρονης Φυσικής. Έχει ακόμη σημαντικές εφαρμογές σε θεωρητικές επιστήμες όπως η Κοινωνιολογία και η Γλωσσολογία και είναι χρήσιμη σε ερευνητές ανώτατης εκπαίδευσης, διοίκησης εταιριών και βιομηχανίας.

Αμαλία Α. Κώνστα alef@central.ntua.gr

Αθήνα 2014

"Είναι γνωστή η απόλυτος ανεπάρκεια των γνώσεων, τας οποίας από τα γυμνάσια συναποφέρουν οι φοιτηταί, όσον αφορά τας Θετικάς Επιστήμας. Δια τούτο ο συγγράφων βιβλίον σχετικόν προς τας Φυσικάς Επιστήμας και προωρισμένον δια τους Έλληνας φοιτητάς οφείλει εις το ελάχιστον να περιορίσει τα ως γνωστά προϋποτιθέμενα, και, ει δυνατόν, να προχωρήσει εις την έκθεσιν του θέματός του χωρίς την προϋπόθεσιν καμίας ειδικής γνώσεως. Πρέπει όμως εξ άλλου να λάβη υπ' όψιν ότι αποτείνεται προς αναγνώστας ανωτέρας διανοητικότητος, των οποίων η σκέψις, καλλιεργηθείσα έστω και ετερομερώς δια της συμπληρώσεως της μέσης εκπαιδεύσεως, δεν ημπορεί να ικανοποιηθή από την εντελώς στοιχειώδη έκθεσιν των πραγμάτων, οφείλει δε συγχρόνως να κρατήση το βιβλίον εις το ύψος των απαιτήσεων της πανεπιστημιακής διδασκαλίας."

Από τα «ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣ ΧΡΗΣΙΝ ΤΩΝ ΠΡΩΤΟΕΤΩΝ ΦΟΙΤΗΤΩΝ ΤΩΝ ΦΥΣΙΚΩΝ ΚΑΙ ΜΑΘΗΜΑΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΗΣ ΙΑΤΡΙΚΗΣ. ΤΟΜΟΣ ΠΡΩΤΟΣ» υπό Δ. ΧΟΝΔΡΟΥ, ΤΑΚΤΙΚΟΥ ΚΑΘΗΓΗΤΟΥ ΤΗΣ ΦΥΣΙΚΗΣ ΕΝ ΤΩ ΑΘΗΝΗΣΙΝ ΕΘΝΙΚΩ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΩ ΠΑΝΕΠΙΣΤΗΜΙΩ ΕΝ ΑΘΗΝΑΙΣ, ΕΚΔΟΤΙΚΟΝ ΒΙΒΛΙΟΠΩΛΕΙΟΝ Δ.Ν. ΤΖΑΚΑ, ΣΤ. ΔΕΛΛΑΓΡΑΜΜΑΤΙΚΑ & ΣΙΑ, 1932.

Το αρχικό κείμενο του συγγράμματός μου είχε κυκλοφορήσει με τη μορφή σημειώσεων, που χρησιμοποιήθηκαν, από το 1982 μέχρι το 2002, στις παραδόσεις των μαθημάτων κορμού Σύγχρονης Φυσικής, του μαθήματος επιλογής Στατιστικής Φυσικής, καθώς και, εν μέρει, στον μεταπτυχιακό κύκλο σπουδών "Επιστήμη Υλικών", σε σπουδαστές του ΕΜΠ. Ύστερα από επανειλημμένες προσθήκες και βελτιώσεις, είναι τώρα η πρώτη φορά που οι σημειώσεις κυκλοφορούν με τη μορφή βιβλίου στο διαδίκτυο. Μερικά σχήματα έγιναν με το χέρι και, αν και σωστά, είναι αισθητικώς αρκετά ατελή. Σε μια επόμενη έκδοση, θα γίνει προσπάθεια να βελτιωθούν. Παρά το γεγονός ότι το κείμενο, οι εξισώσεις και τα σχήματα του βιβλίου πέρασαν από πολλές διαδοχικές διορθώσεις, είναι βέβαιο ότι, ακόμη και σε αυτή τη δεύτερη έκδοση, θα υπάρχουν ακόμη αρκετά λάθη και παραλείψεις. Οποιεσδήποτε παρατηρήσεις και βελτιώσεων, θα είναι εξαιρετικά ευπρόσδεκτες από τη συγγραφέα και θα ληφθούν όλες πολύ σοβαρά υπόψη.

> A. A. K alef@central.ntua.gr aakonsta@otenet.gr

Αθήνα 2015

ΠΕΡΙΕΧΟΜΕΝΑ

Πρόλογο	ος		iii
Εισαγωγ	γή		1
Κεφάλα	ιο Ι Στ	ατιστική περιγραφή συστημάτων	5
11	Ισορογ	τία	5
1.1	Προσδι	ορισμός της κατάστασης συστήματος	5
1.2	121	Σωματίδιο σε μονοδιάστατο κουτί	6
	1.2.1	Σωματίδιο σε τοισδιάστατο κουτί	
	123	2 αρματίδια σε τοισδάστατο κουτί	7
	1.2.5	Ένα μοναδικό σπιν	7
	1.2.1	Τέσσερα σωματίδια με σπιν	
	1.2.6	Ν σωματίδια με σπιν	9
	1.2.7	Γενικό συμπέρασμα	9
1.3	Μικροκ	αταστάσεις, μακροκαταστάσεις, προσιτές καταστάσεις	9
1.4	Στατιστ	ικό σύνολο	10
	1.4.1	Η έννοια του στατιστικού συνόλου	10
	1.4.2	Μικροκανονικό σύνολο	10
1.5	Πιθανότ	πτες και μέσες τιμές	12
	1.5.1	Το αίτημα των ίσων πιθανοτήτων	
	1.5.2	Υπολογισμός πιθανοτήτων	
	153	Υπολογισμός μέσης τιμής μιας μεταβλητής	13
16	Μακοο	τκοπικά συστήματα – Συνεγές ενεογειακό ωάσμα	14
1.0	161	Πυκνότητα καταστάσεων	11
	1.6.2	Γιοκνοτητα καταστασος μουτά	
	1.0.2	Σωματίδιο σε ποισδιάστατο κουτί	15
	1.0.5	$2 \sin \mu t \cos \theta = t \sin \theta \sin \theta \tan \theta \cos \theta$	10
17	1.0.4 Vécoc	N comparison of the contract contraction of the contraction of the contraction of the contract	1/
1.7	171		10
	1.7.1	$E\log x \log r (\log x \log $	10
	1.7.2	E v a δωματίδιο δε μία διαστάδη	19
	1.7.5		20
	1.7.4	Χωρος των φασεων για Ν σωματιδια	21
Κεφάλα	юIIА	λληλεπίδραση συστημάτων	23
2.1	Εισαγω	γή	23
2.2	Θερμικ	ή αλληλεπίδραση	23
2.3	Αδιαβα	τική αλληλεπίδραση	25
2.4	Γενική	αλληλεπίδραση	27
2.5	Ειδικές	περιπτώσεις μεταβολών	28
	2.5.1	Κυκλική μεταβολή	28
	2.5.2	Απειροστή μεταβολή	28
	2.5.3	Αντιστρεπτή μεταβολή	28
	2.5.4	Θεωρητική μελέτη μη αντιστρεπτής εκτόνωσης και συμπίεσης αερίου	30
Κεφάλα	ю III (Θερμική αλληλεπίδραση	33
3.1	Εισαγω	γή	33
3.2	Κατανο	μή ενέργειας μεταξύ μακροσκοπικών συστημάτων	33
	3.2.1	Θερμική επαφή συστημάτων-Διερεύνηση της κατάστασης ισορροπίας	33
	3.2.2	Οξύτητα του μεγίστου της P(E)	35
	3.2.3	Η έννοια της θερμοκρασίας	35

	3.2.4	Εκτίμηση της θερμοκρασίας μακροσκοπικού συστήματος	
3.3	Εντροπ	τία	
	3.3.1	Η έννοια της εντροπίας	
	3.3.2	Προσθετότητα της εντροπίας – Εντατικές και εκτατικές μεταβλητές	
3.4	Ισορρο	πία συστήματος σε θερμική δεξαμενή	
	3.4.1	Εισαγωγή	
	3.4.2	Κανονικό σύνολο - Η κανονική κατανομή	
	3.4.3	Συνάρτηση διαμερισμού	
	3.4.4	Συνεχής κατανομή	
	3.4.5	Υπολογισμός μέσων τιμών	
	3.4.6	Εντροπία συστήματος σε θερμική δεξαμενή	
	3.4.7	Ελεύθερη ενέργεια συστήματος σε θερμική δεξαμενή	
	3.4.8	Μεταβολή της εντροπίας θερμικής δεξαμενής	47
3.5	Θερμοχ	χωρητικότητα και ειδική θερμότητα	
Κεφάλα	uo IV	Παραμαγνητισμός	51
4.1	Εισανα	ονή	
4.2	Ενεονε	α τη	
	4.2.1	Μέση τιμή της ενέργειας	
	4.2.2	Οσιακές τιμές	
	4.2.3	Αριθμητικές τιμές	
4.3	Θεομο	γωοητικότητα παραμαγνητικής ουσίας – Ανωμαλία Schottky	
4.4	Εντροπ	τία παραμαννητικής ουσίας	
	4.4.1	Οριακές τιμές της εντροπίας	
	4.4.2	Γενική συμπεριφορά της εντροπίας	
Κεωάλα	υο V Ι	δανικό κλασικό αέριο	57
Γ εφα <i>π</i> ο 5 1			57
5.1	Συναοτ	γ_{11}	
5.2	2000pt	Γιοεις κατανομης	
	5.2.1	Δυναρτηση σιαμερισμου	
	523	Νιού ενεργεια	
	524	Ενεργειακή κατανομή	
	525	Μέση και πιθανότερη ταγύτητα και ενέργεια	
53	0.2.5 Μέση 1	πίεση ιδανικού αερίου	
5.5 5.4	Μακοο	ακοπικό έργο	
5.1	Fιδική	θεομότητα ιδανικού κλασικού αεοίου	63
5.5	Εντοοπ	τία ιδανικού κλασικού αερίου	
5.0 5.7	Κοιτήο	μα του παγή της κλασικής ποοσέννισης	
5.8	Ηισοκ	ατανομή της ενέργειας.	
0.0	5.8.1	Θεώσημα ισοκατανομής της ενέονειας	
	5.8.2	Εφαρμογές του θεωρήματος ισοκατανομή της ενέργειας	
Kenála	uo VI		75
κεψαλυ			13
0.1 6.2	Απειρο	οτες αντιστρεπτες μεταρολες	נווסייייייייייייייייייייייייייייייי
0.2	1000050	μη μεταρολη	// 70
0.3	Notapo Nacional	ιτικη μεταρολη	
0.4	1 πυλθ	γισμος εργου σε σιαφορες σιεργασιες	
	0.4.1	Αντιοτρεπτη ισοθερμη εκτονωση η συμπιεση	
	0.4.2	Αντιοτρεπτη ασιαρατική εκτονωση η συμπιεση	
65	0.4.5 Vaolo	τουραρης μεταβολής της ευτορπίας σε διάφορος διερωστίας	
0.5	1 10/10	γισμος της μεταρολής της εγτρολιώς σε σιαψυρες σιεργασιές	

	6.5.1	Θέρμανση ουσίας υπό σταθερό όγκο – Αντιστρεπτή μεταβολή	81
	6.5.2	Μεταβολή φάσης – Αντιστρεπτή μεταβολή	81
	6.5.3	Ισόθερμη συμπίεση ιδανικού αερίου	81
	6.5.4	Ισόθερμη εκτόνωση ιδανικού αερίου	82
	6.5.5	Αδιαβατική αντιστρεπτή μεταβολή	82
	6.5.6	Αδιαβατική εκτόνωση στο κενό	83
	6.5.7	Γενική μεταβολή της εντροπίας	84
Κεφάλα	ao VII	Θερμοδυναμική – Νόμοι και εφαρμογές	85
7.1	Νόμοι τι	ις Θερμοδυναμικής	85
	7.1.1	Μηδενικός Νόμος	85
	7.1.2	Πρώτος Νόμος	85
	7.1.3	Δεύτερος Νόμος	85
	7.1.4	Τρίτος Νόμος	86
7.2	Εξισώσε	ις του Maxwell	87
7.3	Θερμοδι	ναμικές συναρτήσεις	87
7.4	Θερμικέ	ς και ψυκτικές μηγανές	88
	7.4.1	Θεριικές μηγανές	88
	7.4.2	Ψυκτικές μηγανές	92
7.5	Αδιαβατ	ική ψύξη	94
7.6	Αδιαβατ	ική εκτόνωση	94
7.7	Αδιαβατ	ική απομαγνήτιση	95
Κεφάλα	ao VIII	Κβαντική Στατιστική	99
8.1	Οι τρεις	τύποι στατιστικής	99
8.2	Υπολογι	σμός του αριθμού μικροκαταστάσεων	. 101
	8.2.1	Περίπτωση (Α): Πανομοιότυπα αλλά διακρίσιμα σωματίδια	.101
	8.2.2	Περίπτωση (Γ): Μη διακρίσιμα σωματίδια με ημιπεριττό σπιν	. 101
	8.2.3	Περίπτωση (Β): Μη διακρίσιμα σωματίδια με ακέραιο σπιν	. 102
8.3	Κατανομ	ιές Maxwell-Boltzmann, Bose-Einstein και Fermi-Dirac	. 103
	8.3.1	Περίπτωση (Α): Πανομοιότυπα αλλά διακρίσιμα σωματίδια	. 103
	8.3.2	Περίπτωση (Γ): Μη διακρίσιμα σωματίδια με ημιπεριττό σπιν – Φερμιόνια	. 104
	8.3.3	Περίπτωση (Β): Μη διακρίσιμα σωματίδια με ακέραιο σπιν – Μποζόνια	. 105
8.4	Εφαρμογ	γές της Κβαντικής Στατιστικής	. 105
	8.4.1	Εφαρμογές της κατανομής Bose-Einstein	. 105
	8.4.2	Εφαρμογές της κατανομής Fermi-Dirac	. 109
8.5	Σύγκρισ	η των τριών στατιστικών	. 112
Παραρτ	τήματα		. 115
Παρ	οάρτημα I	Προλεγόμενα	. 115
Παρ	ράρτημα II	[Περί θερμογόνου	. 117
Παρ	ράρτημα II	ΙΙ Μηχανικό ισοδύναμο της θερμότητας	. 118
Παράρτημα IV		V Ο νόμος Dulong-Petit	. 120
Παράρτημα V		⁷ Δημήτριος Χόνδρος	. 121
Παράρτημα VI		1 Βιβλίο Φυσικής Ganot-Maneuvrier	. 122
Παρ	ράρτημα Ν	/ΙΙ Ολικά και μη ολικά διαφορικά	. 123
Βιβλιογ	ραφία		. 125
Ευροτή	010		. 127

ΕΙΣΑΓΩΓΗ

"Anyone who wants to analyze the properties of matter in a real problem might want to start by writing down the fundamental equations and then try to solve them mathematically. Although there are people who try to use such an approach, these people are the failures in this field. ..."

RICHARD F. FEYNMAN (1964)

Η Στατιστική Φυσική ασχολείται με τη μελέτη των φυσικών ιδιοτήτων μακροσκοπικών συστημάτων, συστημάτων δηλαδή με πολύ μεγάλο αριθμό σωματιδίων. Στις εφαρμογές της Στατιστικής Μηχανικής μελετάμε συνήθως κάποιο πραγματικό μακροσκοπικό σύστημα, π.χ. ένα κομμάτι πάγου, τα ηλεκτρόνια μέσα σε ένα σύρμα, ένα δοχείο με αέριο. Έχουμε λοιπόν να κάνουμε με έναν τεράστιο αριθμό σωματιδίων², της τάξης του 10²⁰.

Σύμφωνα με τη Μηχανική, για να προσδιορίσουμε πλήρως ένα τέτοιο σύστημα, θα έπρεπε να μετρήσουνε όλες τις παραμέτρους όλων των σωματιδίων, κάθε στιγμή. Ή θα έπρεπε να γνωρίζουμε όλες τις αρχικές συνθήκες και να λύσουμε τις 3N εξισώσεις του συστήματος, όπου N ο αριθμός των σωματιδίων του, πράγμα εξαιρετικά πολύπλοκο. Και, επιπλέον, όταν θα λύναμε αυτές τις εξισώσεις, δεν θα ξέραμε τι να κάνουμε τις λύσεις τους, γιατί θα χρειαζόμαστε ένα ολόκληρο φορτηγό για να μεταφέρουμε τα αποτελέσματα που περιγράφουν την κίνηση ενός δευτερολέπτου από τη διαδρομή του συστήματος.

Εξάλλου, τα αποτελέσματα αυτά δεν μας ενδιαφέρουν καν. Γιατί, παρ' όλη την πολυπλοκότητα των μακροσκοπικών συστημάτων όταν τα θεωρούμε από την ατομική άποψη, η καθημερινή εμπειρία και πειράματα ακριβείας έχουν δείξει ότι τα μακροσκοπικά συστήματα υπακούουν σε τελείως καθορισμένους νόμους. Όταν, για παράδειγμα, δύο σώματα έρθουν σε επαφή, οι θερμοκρασίες τους εξισώνονται. Το νερό βράζει πάντα στην ίδια θερμοκρασία, όταν η πίεση είναι σταθερή. Τα αραιά αέρια υπακούουν στους νόμους των τελείων αερίων, κ.τ.λ.

Οι νόμοι λοιπόν των μακροσκοπικών συστημάτων είναι τελείως διαφορετικοί από εκείνους της Μηχανικής και της Ηλεκτρομαγνητικής Θεωρίας. Δεν απαιτούν πλήρη γνώση των μικροσκοπικών μεταβλητών, αλλά παρέχουν, παρ' όλα αυτά, μακροσκοπικά μεγέθη, π.χ. πίεση, θερμοκρασία και ενέργεια ενός συστήματος, που δεν είναι τίποτε άλλο από τις μέσες τιμές των μικροσκοπικών μεταβλητών του συστήματος αυτού.

Οι μακροσκοπικοί νόμοι λοιπόν είναι στατιστικής φύσης. Και επειδή, όπως αναφέραμε, στη Στατιστική έχουμε να κάνουμε με έναν τεράστιο αριθμό σωματιδίων, οι στατιστικές διακυμάνσεις όπως θα δούμε είναι εξαιρετικά μικρές, στην πράξη αμελητέες.

Υπάρχουν δύο τρόποι για την προσέγγιση της μελέτης των μακροσκοπικών συστημάτων. Ο παλαιότερος ιστορικά τρόπος είναι η Θερμοδυναμική, που βασίζεται σε μερικές βασικές αρχές –τους νόμους της θερμοδυναμικής– που προέκυψαν από έναν πολύ μεγάλο αριθμό πειραμάτων σε μακροσκοπικά συστήματα. Είναι νόμοι φαινομενολογικοί, που δικαιολογούνται από την επιτυχία τους στην περιγραφή των συστημάτων αυτών. Η Θερμοδυναμική, λοιπόν, από μόνη της αποτελεί μια φαινομενολογική προσέγγιση. Αγνοεί τις ατομικές έννοιες, δηλαδή τις φυσικές εικόνες ατόμων και μορίων, και ασχολείται μόνο με μακροσκοπικά μεγέθη, παρέχοντας σχέσεις μεταξύ αφηρημένων σχετικά εννοιών, όπως πίεση, θερμοκρασία, εσωτερική ενέργεια, εντροπία, ελεύθερη ενέργεια, ενθαλπία, κτλ. Με

¹ Όποιος θέλει να αναλύσει τις ιδιότητες της ύλης σε ένα πραγματικό πρόβλημα μπορεί να θελήσει να ξεκινήσει γράφοντας τις θεμελιώδεις εξισώσεις και μετά να επιχειρήσει να τις λύσει. Αν και υπάρχουν άνθρωποι που προσπαθούν να χρησιμοποιήσουν μια τέτοια προσέγγιση, αυτοί οι άνθρωποι αποτελούν την αποτυχία στο πεδίο.

² Καμιά φορά μπορεί να μιλάμε για πολύ περιορισμένα συστήματα, π.χ. 2 ή 4 σπιν, όπως θα δούμε, αυτό όμως γίνεται μόνον καταχρηστικά, για λόγους απεικονιστικούς

τη γνώση της Θερμοδυναμικής και μόνο είναι επομένως αδύνατον να διερευνήσει κανείς βαθύτερα τις ατομικές διεργασίες στις οποίες βασίζεται κάθε φυσικό φαινόμενο.

Η δεύτερη προσέγγιση είναι η της Στατιστικής Μηχανικής, που μάς παρέχει έναν σύνδεσμο ανάμεσα στους φυσικούς νόμους του μικρόκοσμου και εκείνους του μακρόκοσμου. Οι μέθοδοι της στατιστικής μηχανικής μάς δίνουν τη δυνατότητα να προβλέψουμε τις ιδιότητες της ύλης του μακρόκοσμου με βάση την συμπεριφορά των βασικών συστατικών-σωματιδίων από τα οποία αποτελείται. Με άλλα λόγια, η Στατιστική Φυσική αποτελεί μια "γέφυρα", που μας μεταφέρει από τη μικροσκοπική περιγραφή της ύλης στη μακροσκοπική θερμοδυναμική περιγραφή, χρησιμοποιώντας στατιστικές μεθόδους για να συσχετίσει τις μακροσκοπικές ιδιότητες της ύλης με τη συμπεριφορά των επιμέρους σωματιδίων της.

Στηρίζεται στην αρχή ότι όλα τα μακροσκοπικά συστήματα αποτελούνται από άτομα, με μικροσκοπικές ιδιότητες που υπακούουν στους νόμους της κβαντικής μηχανικής. Ο συνδυασμός των μικροσκοπικών αυτών εννοιών με ορισμένες στατιστικές παραδοχές οδηγεί άμεσα σε μερικά γενικά συμπεράσματα στο καθαρά μακροσκοπικό επίπεδο. Προφανώς, για να προχωρήσει σε μια τέτοια περιγραφή, είναι υποχρεωμένη, όπως θα δούμε, να κάνει μερικές αρχικές παραδοχές, να δεχθεί δηλαδή ορισμένες προτάσεις ως αξιώματα.

Τα συμπεράσματα στα οποία φθάνει τελικά είναι ανεξάρτητα από το είδος και τις αλληλεπιδράσεις των σωματιδίων που αποτελούν το σύστημα, έχουν επομένως την πλήρη γενικότητα των κλασικών νόμων της Θερμοδυναμικής. Με τον τρόπο αυτό η Στατιστική Μηχανική καταλήγει στις ίδιες σχέσεις με τη Θερμοδυναμική (π.χ. καταστατική εξίσωση των αερίων), ξεκινώντας όμως από μικροσκοπικές ιδιότητες.

Και επειδή η Στατιστική Μηχανική βασίζεται σε μικροσκοπικά πρότυπα για τα σωματίδια που αποτελούν το σύστημα, δίνει τη δυνατότητα υπολογισμού μακροσκοπικών μεγεθών με βάση πληροφορίες από τον μικρόκοσμο. Μακροσκοπικά μεγέθη, όπως εσωτερική ενέργεια, πίεση, ειδική θερμότητα, μπορούν να εξαχθούν απ' ευθείας από πρότυπα που περιγράφουν τη μοριακή ή μικροσκοπική συμπεριφορά των συστατικών του συστήματος.

Ένα από τα σημαντικά πλεονεκτήματα της Στατιστικής Φυσικής είναι ότι οι στατιστικές μέθοδοι δεν εφαρμόζονται μόνο στα κλασικά υλικά σωματίδια, όπως άτομα και μόρια, για την ερμηνεία της μακροσκοπικής συμπεριφοράς υλικών συστημάτων, αλλά και σε ηλεκτρόνια, φωτόνια, ελαστικά κύματα στα στερεά, ακόμη και σε κυματοσυναρτήσεις, για να ερμηνεύσουν φαινόμενα, όπως τη συμπεριφορά των ηλεκτρονίων μέσα στα μέταλλα, την ακτινοβολία μέλανος σώματος, την ειδική θερμότητα των στερεών και ένα πλήθος άλλων φυσικών φαινομένων. Αλλά και πέρα από το βασίλειο της Φυσικής, η σημασία αυτής της επιστήμης διεισδύει ταχύτατα στη Χημεία, τη Βιολογία, τη Νευρολογία, τις κοινωνικές επιστήμες και σε εκείνες τις περιοχές της τεχνολογίας που οφείλουν την ανάπτυξή τους στην εξέλιξη της σύγχρονης φυσικής.

Τα κλασικά και τα κβαντικά συστήματα που θα εξετάσουμε σε αυτό το μάθημα είναι σε κατάσταση ισορροπίας. Η θερμοδυναμική των καταστάσεων ισορροπίας είναι φυσικά η απλούστερη, εφόσον τα συστήματα αυτά είναι, όπως θα δούμε, ανεξάρτητα από τον χρόνο. Οι στατιστικές έννοιες που θα χρησιμοποιήσουμε για τη μελέτη των καταστάσεων ισορροπίας συνιστούν όμως μια κατάλληλη προετοιμασία για την προβολή τους σε συστήματα που βρίσκονται μακριά από την ισορροπία, στα συστήματα δηλαδή που απαντώνται στην πραγματικότητα μέσα στη φύση.

Γιατί, πράγματι, κανένα σύστημα στη φύση δεν βρίσκεται σε κατάσταση απόλυτης ισορροπίας. Η βιόσφαιρα πάνω στη γη είναι σε μια μόνιμη κατάσταση μη ισορροπίας, εξαιτίας της συνεχούς ροής ενεργείας από τον ήλιο, και η ροή αυτή είναι φυσικά το αποτέλεσμα της μη υπάρξεως ισορροπίας στο σύμπαν.

Τα βιολογικά συστήματα, οι ζωντανοί οργανισμοί, είναι συστήματα πολύ μακριά από την ισορροπία και κατά τις τελευταίες δεκαετίες έχει δοθεί μεγάλη έμφαση στη μελέτη τέτοιων συστημάτων, ιδιαίτερα από την ονομαζόμενη "Σχολή των Βρυξελλών", ιδρυτής της οποίας ήταν ο Ilya Prigogine³, βραβείο Nobel Χημείας 1977.

Σύμφωνα με τη Σχολή αυτή, καταστάσεις πολύ απομακρυσμένες από την ισορροπία οδηγούν σε νέες χωροχρονικές δομές. Γιατί, ενώ σε συστήματα που βρίσκονται κοντά στην ισορροπία οι διακυμάνσεις που προκύπτουν οδηγούν το σύστημα τελικά στην ισορροπία, στα συστήματα που βρίσκονται μακριά από αυτήν οι διακυμάνσεις μπορεί να ενισχυθούν και να οδηγήσουν, με την αποκαλούμενη "αυτο-οργάνωση", σε νέες δομές, που αδυνατούν να υπάρξουν σε καταστάσεις ισορροπίας. Πολλά νέα υλικά, όπως σύνθετα υλικά, ψευδοκρύσταλλοι, υπεραγωγοί υψηλών θερμοκρασιών, υπερδομές, αποτελούν συστήματα σε μη θερμοδυναμική ισορροπία.

Αλλά και η βιολογική εξέλιξη, σύμφωνα με τη Σχολή των Βρυξελλών, είναι αποτέλεσμα διαδικασιών που οφείλονται ακριβώς στην απομάκρυνση από την ισορροπία. Είναι πλέον γενικά παραδεκτό ότι η βιολογική εξέλιξη είναι η συνδυασμένη δράση της φυσικής επιλογής του Δαρβίνου και της αυτο-οργάνωσης, που είναι το αποτέλεσμα χαοτικών διεργασιών. Οι δομές που προκύπτουν από την αυτο-οργάνωση δεν είναι, εν γένει, προβλέψιμες. Υπάρχουν, πράγματι, πολλές δομές στις οποίες μπορεί να καταλήξει το σύστημα ύστερα από σημαντικές διακυμάνσεις. Με αυτόν τον τρόπο εξηγείται η τρομακτική ποικιλία των δομών που παρατηρούμε στη φύση, από την Αστροφυσική ώς τις Βιολογικές επιστήμες και την Οικονομία. Η διατήρηση της οργάνωσης στη φύση μπορεί να επιτευχθεί μόνο με την αυτο-οργάνωση και όχι με την κεντρική διοίκηση.

Αυτο-οργάνωση σε βιολογικό σύστημα

³ Ο Ilya Prigogine γεννήθηκε στη Μόσχα το 1917. Ήταν καθηγητής και, ακολούθως, ομότιμος καθηγητής στο Université Libre de Bruxelles (1950 – 2003) και ανακηρύχτηκε επίτιμος διδάκτωρ του Ε.Μ.Π. τον Μάιο του 2000. Πέθανε στις Βρυξέλλες το 2003.

ΚΕΦΑΛΑΙΟ Ι

ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ

"The principal goal of equilibrium statistical mechanics is to provide a connection between the macroscopic properties of materials in thermodynamic equilibrium and the microscopic behaviours and motions occurring inside the material."⁴

JOSIAH WILLARD GIBBS (1902)

1.1 Ισορροπία

Ας θεωρήσουμε ένα σύνολο από πανομοιότυπα απομονωμένα συστήματα. Το κάθε σύστημα θα βρίσκεται σε μια κατάσταση που, στη γενική περίπτωση, θα περιέχει διάφορες ανομοιογένειες, π.χ. στη θερμοκρασία, την πίεση, την πυκνότητα. Είναι φανερό ότι ένα τέτοιο σύστημα δεν βρίσκεται σε ισορροπία και θα μεταβάλλεται με το χρόνο, ωσότου όλες οι βαθμίδες μηδενιστούν και όλες οι ανομοιογένειες εξαφανιστούν, οπότε πλέον δεν θα εμφανίζει μακροσκοπικά παρατηρήσιμες μεταβολές. Μια τέτοια κατάσταση ονομάζεται κατάσταση ισορροπίας. Εννοείται ότι η ισορροπία αυτή δεν είναι στατική αλλά δυναμική, πράγμα που σημαίνει ότι, σε μικροσκοπική κλίμακα, μπορεί να υπάρχει ένα πλήθος από μεταβολές (όπως η γνωστή κίνηση Brown), που όμως δεν είναι αντιληπτές μακροσκοπικά. Στην ισορροπία, επομένως, η μακροσκοπική κατάσταση ενός συστήματος είναι ανεξάρτητη από τον χρόνο.

Ο μέσος χρόνος που χρειάζεται ένα σύστημα για να φτάσει στην ισορροπία εξαρτάται από τις διαδικασίες που παίρνουν μέρος και ονομάζεται χρόνος αποκατάστασης. Υπάρχουν συστήματα που φτάνουν στην ισορροπία μέσα σε κλάσματα του δευτερολέπτου, ενώ άλλα χρειάζονται ολόκληρους αιώνες. Ένα παράδειγμα που αντιστοιχεί στην πρώτη περίπτωση είναι η επαναφορά στη θέση ισορροπίας ενός εμβόλου που συμπιέζει το αέριο μέσα σε έναν κύλινδρο. Πράγματι, αν συμπιέσουμε το αέριο και αφήσουμε μετά το έμβολο ελεύθερο, αυτό θα επανέλθει στη θέση του (ιδιαίτερα αν δεν υπάρχουν τριβές) σε χιλιοστά του δευτερολέπτου. Αντίθετα, ένα κομμάτι σίδερο που αφήνουμε εκτεθειμένο στην ατμόσφαιρα, θα χρειαστεί πολλά χρόνια (ανάλογα και με το μέγεθός του) για να σκουριάσει τελείως μέχρι το εσωτερικό του. Σε μια περίπτωση σαν την τελευταία, μπορούμε στην πραγματικότητα να πούμε ότι, για τις πειραματικές μας ανάγκες, το σύστημα βρίσκεται σχεδόν σε ισορροπία, αφού ο χρόνος αποκατάστασής της είναι πολύ μεγάλος σε σχέση με τους χρόνους μέτρησης οποιουδήποτε μεγέθους. Λέμε τότε ότι το σύστημα βρίσκεται σε μετασταθή κατάσταση. Από την άλλη μεριά, όταν ο χρόνος αποκατάστασης είναι πάρα πολύ μικρός, όπως στο πρώτο παράδειγμα, μπορούμε να υποθέσουμε ότι, στην πράξη, το σύστημα βρίσκεται πάντοτε σε ισορροπία. Και μόνον στην περίπτωση όπου οι δύο χρόνοι, μέτρησης και αποκατάστασης, είναι συγκρίσιμοι, μάς ενδιαφέρει να περιμένουμε να φτάσει το σύστημα στην κατάσταση ισορροπίας για να μπορέσουμε να το μελετήσουμε

Η περιγραφή ενός συστήματος στην κατάσταση ισορροπίας είναι ιδιαίτερα απλή, γιατί όλα τα μακροσκοπικά του μεγέθη είναι σταθερά μέσα στον χρόνο.

1.2 Προσδιορισμός της κατάστασης ενός συστήματος

Η ακριβής κατάσταση ενός συστήματος περιγράφεται από την Κβαντομηχανική [Βιβλ. Αναφορές 13-16],. Είδαμε πράγματι ότι κάθε κβαντικό σύστημα χαρακτηρίζεται από συγκεκριμένες δυνατές κβαντικές καταστάσεις (π.χ. σωματίδιο σε πηγάδι δυναμικού

⁴ Ο κύριος στόχος της Στατιστικής Μηχανικής (σε κατάσταση ισορροπίας) είναι να παράσχει μια σχέση μεταξύ των μακροσκοπικών ιδιοτήτων των υλικών σε κατάσταση θερμοδυναμικής ισορροπίας και των μικροσκοπικών συμπεριφορών και κινήσεων που συμβαίνουν μέσα στο υλικό.

απείρου ύψους, αρμονικός ταλαντωτής, άτομο υδρογόνου). Κάθε κβαντική κατάσταση ενός απομονωμένου συστήματος χαρακτηρίζεται από μια κυματοσυνάρτηση και συνδέεται με μια ορισμένη τιμή της ενέργειάς του, που αντιστοιχεί σε μια συγκεκριμένη ενεργειακή στάθμη (Σχ. 1.1). Μπορούν να υπάρξουν πολλές κβαντικές καταστάσεις που να αντιστοιχούν στην ίδια ενεργειακή στάθμη. Λέμε τότε ότι οι καταστάσεις αυτές είναι εκφυλισμένες. Ο βαθμός εκφυλισμού (δηλαδή ο αριθμός των καταστάσεων που αντιστοιχούν στην ίδια ενεργειακή στάθμη) εξαρτάται από τους βαθμούς ελευθερίας του συστήματος και συμβολίζεται εν γένει με το γράμμα g.

Σχήμα 1.1 Το σχηματικό διάγραμμα δείχνει τις πρώτες ενεργειακές στάθμες ενός τυχαίου συστήματος. Κάθε γραμμή παριστάνει μια δυνατή κβαντική κατάσταση του συστήματος, ενώ η θέση της γραμμής στην κατακόρυφη κατεύθυνση δείχνει την ενέργεια του συστήματος, *E*, στην κατάσταση αυτή. Η πρώτη κατάσταση δεν είναι εκφυλισμένη, ενώ ο βαθμός εκφυλισμού, που συμβολίζεται με *g*, για τις ανώτερες στάθμες είναι 3, 5 και 9 για τη δεύτερη, τρίτη και τέταρτη στάθμη αντιστοίχως.

Ας θυμηθούμε τώρα μερικά από τα παραδείγματα που συναντήσαμε στην Κβαντομηχανική.

1.2.1 Σωματίδιο περιορισμένο να κινείται μέσα σε μονοδιάστατο κουτί (μονοδιάστατο πηγάδι δυναμικού)

Σχήμα 1.2 Διάγραμμα των ενεργειακών σταθμών ενός σωματιδίου περιορισμένου μέσα σε μονοδιάστατο κουτί εύρους *L*. Η ενέργεια της θεμελιώδους κατάστασης, η ελάχιστη δηλαδή επιτρεπόμενη ενέργεια, είναι *E*₁, με τιμή

2.2

$$\boldsymbol{E}_1 = \frac{\pi^2 \hbar^2}{2\boldsymbol{m} \boldsymbol{L}^2}$$

Στο σύστημα αυτό (Σχ. 1.2) οι *ιδιοτιμές* της ενέργειας, δηλαδή οι επιτρεπόμενες τιμές ενέργειας του σωματιδίου, βρέθηκαν [βλ. Βιβλ. Αναφορές Κβαντικής Φυσικής: 13 -16] ίσες με

$$E_n = \frac{\hbar^2 \pi^2 n^2}{2mL^2}$$
(1.1)

όπου m η μάζα του σωματιδίου που είναι εγκλεισμένο μέσα στο πηγάδι (κουτί), L η διάσταση του κουτιού και $n = 1, 2, 3 \dots \infty$. Οι ιδιοτιμές της ενέργειας του συστήματος αυτού δεν είναι εκφυλισμένες. Σε κάθε τιμή του n αντιστοιχεί μια διαφορετική ιδιοτιμή της ενέργειας και μια διαφορετική **ιδιοκατάσταση** που περιγράφεται από την **ιδιοσυνάρτηση**:

$$\psi_n = A \sin \frac{n\pi}{L} x \tag{1.2}$$

Το ενεργειακό φάσμα δεν είναι συνεχές αλλά διάκριτο και, όσο το *n* αυξάνει, αυξάνεται η απόσταση ανάμεσα στις στάθμες (οι στάθμες αραιώνουν προς τα πάνω). Από την άλλη μεριά, όσο το κουτί πλαταίνει (*L* αυξάνει), τόσο μειώνεται η απόσταση ανάμεσα στις γειτονικές στάθμες. Αυτό είναι ένα χαρακτηριστικό όλων των συστημάτων: όσο αυξάνει ο

όγκος τους, τόσο πλησιάζουν μεταξύ τους οι ιδιοτιμές.

Οι δυνατές κβαντικές καταστάσεις μέσα στο κουτί μπορούν να προσδιοριστούν από τις τιμές του **κβαντικού αριθμού** n (Εξ. 1.2). Ένας μόνος κβαντικός αριθμός είναι αρκετός για τον πλήρη προσδιορισμό της κατάστασης του συστήματος ή, με άλλο λόγια, το σύστημα έχει μόνον έναν βαθμό ελευθερίας.

1.2.2 Σωματίδιο σε τρισδιάστατο κουτί (τρισδιάστατο πηγάδι δυναμικού)

Οι ιδιοτιμές και οι ιδιοκαταστάσεις σε αυτήν την περίπτωση υπολογίζονται με τη μέθοδο χωρισμού των μεταβλητών. Οι ιδιοτιμές βρίσκονται ίσες με

$$E_{n_x, n_y, n_z} = \frac{\pi^2 \hbar^2}{2m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2} \right)$$
(1.3)

ενώ οι ιδιοσυναρτήσεις, που περιγράφουν τις ιδιοκαταστάσεις του συστήματος, είναι της μορφής:

$$\psi_{n_x,n_y,n_z} = A \left(\sin \frac{n_x \pi}{L_x} x \right) \left(\sin \frac{n_y \pi}{L_y} y \right) \left(\sin \frac{n_z \pi}{L_z} z \right)$$
(1.4)

και είναι, εν γένει, εκφυλισμένες όταν $L_x = L_y = L_z$, όταν δηλαδή το κουτί είναι κυβικό. Παρατηρήστε όμως ότι η θεμελιώδης κατάσταση, που αντιστοιχεί στις χαμηλότερες τιμές των n_x , n_y , $n_z = 1$, 1, 1, δεν είναι εκφυλισμένη. Στη γενική περίπτωση χρειάζονται 3 κβαντικοί αριθμοί n_x , n_y , n_z για τον πλήρη προσδιορισμό της κατάστασης του συστήματος, όσοι δηλαδή είναι και οι βαθμοί ελευθερίας του.

1.2.3 Ν σωματίδια σε τρισδιάστατο κουτί

Αν έχουμε N μόρια αερίου μέσα σε ένα κουτί, τα οποία δεν αλληλεπιδρούν μεταξύ τους, τότε η ολική ενέργεια, E, του συστήματος θα είναι ίση με:

$$E = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \dots + \varepsilon_N$$

όπου ε_i συμβολίζει την ενέργεια του κάθε σωματιδίου, *i*, χωριστά. Η κατάσταση τού κάθε σωματιδίου προσδιορίζεται με τη βοήθεια τριών κβαντικών αριθμών, οπότε κάθε δυνατή κατάσταση ολόκληρου του αερίου θα προσδιορίζεται από τις τιμές 3N κβαντικών αριθμών $(n_{1x}, n_{1y}, n_{1z}, \dots, n_{Nx}, n_{Ny}, n_{Nz})$.

1.2.4 Ένα μοναδικό σπιν

Ένα μοναδικό σωματίδιο, με σπιν ίσο με ½ (π.χ. ηλεκτρόνιο, πρωτόνιο, νετρόνιο), χαρακτηρίζεται από μια μαγνητική ροπή, μ_0 , η οποία, παρουσία μαγνητικού πεδίου, μπορεί να πάρει δύο μόνο κατευθύνσεις στον χώρο. Έτσι, αν θεωρήσουμε ως άξονα z εκείνον του μαγνητικού πεδίου, η συνιστώσα της μαγνητικής ροπής του σωματιδίου κατά τον άξονα αυτόν θα είναι είτε παράλληλη είτε αντιπαράλληλη στη φορά του πεδίου. Οι κβαντικοί αριθμοί της μαγνητικής ροπής που αντιστοιχούν στις δύο αυτές κατευθύνσεις συμβολίζονται με $m_s = + \frac{1}{2}$ και $m_s = -\frac{1}{2}$, για μαγνητική ροπή παράλληλη και αντιπαράλληλη στο πεδίο αντιστοίχως. Αν ονομάσουμε **B** τη μαγνητική επαγωγή του πεδίου, η μαγνητική ενέργεια, που είναι ίση με το εσωτερικό γινόμενο -M.B (M =διάνυσμα μαγνητικής ροπής), θα δίνεται από τις τιμές $E_+ = -\mu B$, για τον παράλληλο και $E_- = +\mu B$, για τον αντιπαράλληλο προσανατολισμό. Το σωματίδιο έχει επομένως μόνο δύο κβαντικές καταστάσεις, που μπορούμε να χαρακτηρίσουμε με κάποιον κβαντικό αριθμό σ, ο οποίος παίρνει τις τιμές $\sigma = +1$ (για $m_s = +\frac{1}{2}$) και $\sigma = -1$ (για $m_s = -\frac{1}{2}$). Ένας και μοναδικός κβαντικός αριθμός αρκεί για να χαρακτηρίσει το σύστημα.

Οι προσανατολισμοί του σπιν στον χώρο, οι ενεργειακές στάθμες και οι αντίστοιχες τιμές δίνονται στο Σχ. 1.3 και στον Πίνακα 1.1 που το συνοδεύει.

Σχήμα 1.3 Το διάγραμμα στα δεξιά δείχνει τις ενεργειακές στάθμες ενός σωματιδίου με σπιν ½ και με μαγνητική ροπή μ, τοποθετημένου μέσα σε μαγνητικό πεδίο εντάσεως B. Το m_s συμβολίζει τον κβαντικό αριθμό της μαγνητικής ροπής για τις δύο κατευθύνσεις του σπιν. Ο Πίνακας στα αριστερά δίνει τις αντίστοιχες κβαντικές καταστάσεις του σωματιδίου. Κάθε κατάσταση χαρακτηρίζεται από τον κβαντικό αριθμό σ. Η ολική μαγνητική ροπή κατά την κατεύθυνση του μαγνητικό πεδίο συμβολίζεται με M και η ολική μαγνητική ενέργεια με E. Παρατηρούμε ότι η κατάσταση που αντιστοιχεί σε μαγνητική ροπή του σπιν παράλληλη στο μαγνητικό πεδίο έχει μικρότερη ενέργεια από εκείνην που αντιστοιχεί σε μαγνητική ροπή του σπιν αντιπαράλληλη.

1.2.5 Τέσσερα σωματίδια με σπιν

Στο παράδειγμα του Πίνακα 1.2 περιγράφονται όλες οι κβαντικές καταστάσεις ενός συστήματος που αποτελείται από 4 σωματίδια με σπιν ¹/₂. Το καθένα από αυτά έχει μαγνητική ροπή μ και είναι όλα τοποθετημένα μέσα σε ένα μαγνητικό πεδίο μαγνητικής επαγωγής **B**. Κάθε κβαντική κατάσταση χαρακτηρίζεται από το σύνολο των τεσσάρων κβαντικών αριθμών σ_1 , σ_2 , σ_3 , σ_4 . Το σύμβολο + (σ = + 1) σημαίνει παράλληλη και το – (σ = - 1) σημαίνει αντιπαράλληλη προβολή της μαγνητικής ροπής του σωματιδίου στην κατεύθυνση του μαγνητικού πεδίου, **B**. Η ολική μαγνητική ενέργεια του συστήματος συμβολίζεται με το γράμμα *M*. Η ολική μαγνητική ενέργεια του συστήματος συμβολίζεται με το γράμμα *E*.

Bλέπουμε στον Πίνακα ότι οι 4 καταστάσεις με A/A = 2, 3, 4, 5 έχουν την ίδια ενέργεια, ίση με – 2μB, χαρακτηρίζονται επομένως από βαθμό εκφυλισμού g = 4, ενώ οι 4 καταστάσεις με A/A =12, 13, 14, 15 έχουν ενέργεια + 2μB και χαρακτηρίζονται επίσης από βαθμό εκφυλισμού g = 4. Οι 6 καταστάσεις με A/A = 6, 7, 8, 9, 10, 11 έχουν ενέργεια 0 και βαθμό εκφυλισμού 6. Αντιθέτως οι καταστάσεις 1 και 16, με τη χαμηλότερη και την υψηλότερη ενέργεια αντιστοίχως, δεν είναι εκφυλισμένες. Υπάρχει μόνο μία κατάσταση με ενέργεια – 4μB και μόνο μία με ενέργεια + 4μ₀B.

A/A	σ_1	σ_2	σ_3	σ_4	М	E
1	+	+	+	+	$+ 4\mu$	$-4\mu B$
2	+	+	+	-	$+ 2\mu$	$-2\mu B$
3	+	+	-	+	$+ 2\mu$	$-2\mu B$
4	+	-	+	+	$+2\mu$	$-2\mu B$
5	-	+	+	+	$+ 2\mu$	$-2\mu B$
6	+	+	_	-	0	0
7	+	-	+	_	0	0
8	+	_	-	+	0	0
9	-	+	+	_	0	0
10	-		_	+	0	0
11	-	-	+	+	0	0
12	+	_	_	-	-2μ	$+ 2\mu B$
13	-	+	-	_	-2μ	$+ 2\mu B$
14	-	-	+	_	-2μ	$+ 2\mu B$
15	_	_	-	+	-2μ	$+ 2\mu B$
16	—	_	_	_	-4μ	$+4\mu B$

Πίνακας 1.2 Κβαντικές καταστάσεις συστήματος τεσσάρων σωματιδίων με σπιν ½ και μαγνητική ροπή μ₀ το καθένα, που βρίσκονται τοποθετημένα μέσα σε μαγνητικό πεδίο **B**.

Κάθε κβαντική κατάσταση του συστήματος χαρακτηρίζεται από την τετράδα των κβαντικών αριθμών σ₁ σ₂ σ₃ σ₄. Όπως και στο προηγούμενο σχήμα, η ολική μαγνητική ροπή κατά την κατεύθυνση του μαγνητικού πεδίου συμβολίζεται με *M* και η ολική μαγνητική ενέργεια με *E*.

Παρατηρούμε ότι η κατάσταση με την μεγαλύτερη ενέργεια (A/A=16), αντιστοιχεί στις 4 μαγνητικές ροπές αντιπαράλληλες στο πεδίο, ενώ εκείνη με τη χαμηλότερη ενέργεια (A/A=1) αντιστοιχεί στις 4 ροπές παράλληλες στο πεδίο. Βλέπουμε εξάλλου ότι οι δύο αυτές καταστάσεις δεν είναι εκφυλισμένες, ενώ οι υπόλοιπες έχουν εκφυλισμούς, g:

4 (A/A = 2,3,4,5 και A/A = 12,13,14,15) και 6 (A/A = 6, 7, 8, 9, 10, 11).

1.2.6 N σωματίδια με σπιν $\frac{1}{2}$

Όπως και πιο πάνω η ολική ενέργεια του συστήματος θα είναι ίση με το άθροισμα των επιμέρους ενεργειών όλων των σπιν:

$$E = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \dots + \varepsilon_N = -(\sigma_1 + \sigma_2 + \sigma_3 + \dots + \sigma_N) \mu B \qquad \mu \varepsilon \sigma_i = \pm 1$$

Η κβαντική κατάσταση του συνολικού συστήματος χαρακτηρίζεται από N κβαντικούς αριθμούς και ο συνολικός αριθμός καταστάσεων είναι 2^N .

Το τελευταίο αυτό προκύπτει με τον ακόλουθο συλλογισμό: Κάθε σπιν μπορεί να πάρει 2 καταστάσεις. Για κάθε κατάσταση του πρώτου υπάρχουν 2 καταστάσεις του δεύτερου (συνολικά επομένως 4 καταστάσεις), 2 του τρίτου (8 συνολικά καταστάσεις), 2 του τέταρτου (16 συνολικά) κ.ο.κ. Γενικότερα, αφού η κάθε κατάσταση του ενός σωματιδίου συνδυάζεται με όλες τις καταστάσεις του καθενός από τα άλλα σωματίδια, αν το κάθε ένα από αυτά μπορεί να πάρει n καταστάσεις, το σύστημα των N σωματιδίων θα μπορεί να πάρει συνολικά n^{N} καταστάσεις.

1.2.7 Γενικό συμπέρασμα

Κάθε δυνατή κατάσταση ενός συστήματος μπορεί να προσδιοριστεί από ένα σύνολο *f* κβαντικών αριθμών. Ο αριθμός αυτός εκφράζει τους *βαθμούς ελευθερίας* του συστήματος, είναι δηλαδή ίσος με τον αριθμό των ανεξάρτητων συντεταγμένων που απαιτούνται για την περιγραφή του συστήματος.

Οι ενεργειακές στάθμες του συστήματος εξαρτώνται από τις εξωτερικές παραμέτρους. Στα παραδείγματα που μελετήσαμε οι εξωτερικές αυτές παράμετροι ήταν ο όγκος, V, για το αέριο, και η μαγνητική επαγωγή, B, για το σύστημα των σπιν.

1.3 Μικροκαταστάσεις, μακροκαταστάσεις, προσιτές καταστάσεις

Όπως είδαμε και πριν, κάθε σύστημα χαρακτηρίζεται από ορισμένες δυνατές κατάστάσεις, σύμφωνα με την Κβαντομηχανική. Αν το θεωρούμενο σύστημα αποτελείται από πολλά σωματίδια, στην κατάσταση ισορροπίας τα σωματίδια αυτά θα είναι κατανεμημένα με κάποιο τρόπο στις διάφορες αυτές δυνατές καταστάσεις.

Στο παράδειγμα του Σχ. 1.4, όπου οι ευθείες γραμμές αντιπροσωπεύουν τις διάφορες καταστάσεις και όπου, όπως βλέπουμε, οι στάθμες E_2 , E_3 , E_4 είναι εκφυλισμένες, έχουμε 7 σωματίδια στην κατάσταση της στάθμης E_1 , 2, 3 και 1, αντιστοίχως, στις τρεις καταστάσεις της στάθμης E_2 , κ.ο.κ. Τα σύμβολα g(1), g(2), g(3)g(4) συμβολίζουν τους αντίστοιχους εκφυλισμούς

Σχήμα 1.4 Παραστατική απεικόνιση μιας μικροκατάστασης ενός τυχόντος συστήματος.

Μια τέτοια κατανομή αποτελεί τη *μικροκατάσταση*, με άλλα λόγια την ακριβή κβαντομηχανική περιγραφή του συστήματος.

Αντίθετα, η μακροκατάσταση ενός συστήματος ορίζεται από τις μακροσκοπικές μεταβλητές του, ανεξάρτητα από την ακριβή μικροσκοπική δομή του. Μια μακροκατάσταση μπορεί εν γένει να δημιουργηθεί από έναν τεράστιο αριθμό διαφορετικών μικροκαταστάσεων. Όλες οι μικροκαταστάσεις που αντιστοιχούν σε μια συγκεκριμένη μακροκατάσταση του συστήματος ονομάζονται προσιτές καταστάσεις του συστήματος για τη συγκεκριμένη μακροκατάσταση.

Παράδειγμα 1. Μια μακροκατάσταση ενός αερίου θα είναι, για παράδειγμα, εκείνη που αντιστοιχεί σε πίεση P = 5 b, όγκο V = 8 m³ και ενέργεια E = 10 J, ανεξάρτητα από την ενέργεια του κάθε σωματιδίου που το αποτελεί.

Παράδειγμα 2. Αν υποθέσουμε ότι το σύστημα των τεσσάρων σπιν που μελετήσαμε πριν (Πίνακας 1.1) είναι απομονωμένο, και γνωρίζουμε ότι η ολική του ενέργεια είναι $-2\mu_0 B$, με άλλα λόγια βρίσκεται σε μια μακροκατάσταση που αντιστοιχεί σε ολική ενέργεια $-\mu_0 B$, τότε οι προσιτές του καταστάσεις είναι οι εξής τέσσερις: (+ + + -) (+ + - +) (+ - + +) (- + + +). Οι υπόλοιπες 12 καταστάσεις δεν είναι προσιτές στη συγκεκριμένη μακροκατάσταση, γιατί αντιστοιχούν σε διαφορετική ολική ενέργεια.

Παράδειγμα 3. Θεωρούμε ένα σύστημα A* που αποτελείται από δύο υποσυστήματα A και A', που μπορούν να αλληλεπιδρούν και να ανταλλάσσουν ενέργεια μεταξύ τους, Το σύστημα A αποτελείται από 3 σπιν ¹/₂, με μαγνητική ροπή μ το καθένα και το A' από 2 σπιν ¹/₂. με μαγνητική ροπή 2 μ το καθένα, μέσα σε μαγνητικό πεδίο **B**. Η ολική ενέργεια του A* δίνεται από το άθροισμα $E^* = -(M + M')B$, όπου M και M' είναι, αντιστοίχως, οι τιμές της ολικής μαγνητικής ροπής των συστημάτων A και A'. Το A* αποτελείται από 5 σπιν, άρα έχει $2^5 = 32$ δυνατές κβαντικές καταστάσεις, η κάθε μία από τις οποίες μπορεί να χαρακτηριστεί από 5 κβαντικούς αριθμούς: σ_1 , σ_2 , σ_3 και σ_1' , σ_2' , που χαρακτηρίζουν τις διευθύνσεις των μαγνητικών ροπών των συστημάτων A και A' αντιστοίχως. Έστω ότι γνωρίζουμε ότι το σύνθετο σύστημα A* έχει ολική ενέργεια $E^* = - 3\mu B$. Τότε το A* θα πρέπει να βρίσκεται σε μία οποιασδήποτε από τις πέντε προσιτές καταστάσεις του Πίνακα 1.3, που είναι συμβιβαστές με αυτή την ολική ενέργεια.

r	σ_1	σ_2	σ_3	σ_{1}	σ_2	М	M	$M^* = M + M'$	<i>E</i> *
1	+	+	+	+	_	3μ	0	3μ	$-3\mu B$
2	+	+	+	-	+	3μ	0	3μ	$-3\mu B$
3	+	_	_	+	+	$-\mu$	4μ	3μ	$-3\mu B$
4	-	+	-	+	+	$-\mu$	4μ	3μ	$-3\mu B$
5	-	-	+	+	+	$-\mu$	4μ	3μ	$-3\mu B$

Πίνακας 1.3 Συστηματική απαρίθμηση όλων των κβαντικών καταστάσεων που είναι προσιτές για το σύνθετο σύστημα Α*, όταν γνωρίζουμε ότι η ολική του ενέργεια, *E**, μέσα σε μαγνητικό πεδίο *B*, είναι – 3μ*B*. Βλέπουμε ότι οι προσιτές καταστάσεις του συστήματος, για τη συγκεκριμένη αυτή ενέργεια, είναι πέντε.

1.4 Στατιστικό σύνολο ή Συλλογή (Ensemble)

1.4.1 Η έννοια του στατιστικού συνόλου

Οι φυσικές ιδιότητες που μας ενδιαφέρουν σε ένα σύστημα σε ισορροπία με το περιβάλλον του είναι συνήθως οι μέσες τιμές των μεταβλητών του, ως προς τον χρόνο, για ένα ορισμένο χρονικό διάστημα. Πράγματι, αυτό που μένει σταθερό σε ένα τέτοιο σύστημα δεν είναι η τιμή που μετράμε κάθε στιγμή, αλλά η μέση τιμή που μετράμε μέσα σε κάποιο χρονικό διάστημα. Ανάμεσα σε δύο στιγμιαίες καταστάσεις ισορροπίας μπορεί το σύστημα να περάσει από μικροστιγμές ανισορροπίας.

Θα πρέπει λοιπόν να βρούμε έναν τρόπο για να υπολογίζουμε μέσες χρονικές τιμές, πράγμα που στην πράξη δεν φαίνεται εύκολα κατορθωτό. Τη λύση στο αδιέξοδο αυτό την έδωσε ο Josiah Willard Gibbs (1839 – 1903). Πρότεινε, συγκεκριμένα, αντί να υπολογίζουμε τις μέσες χρονικές τιμές των μεταβλητών ενός συστήματος, να θεωρήσουμε ένα σύνολο από πανομοιότυπα (από μακροσκοπική άποψη) συστήματα και να προσδιορίζουμε τις μέσες τιμές των μεταβλητών σε όλα τα συστήματα την ίδια χρονική στιγμή⁵. Ένα τέτοιο σύνολο, που αποτελείται από συστήματα που αντιστοιχούν στην ίδια μακροκατάσταση αλλά

⁵ Το πρόβλημα της απόδειξης της ισοδυναμίας των δύο αυτών τρόπων υπολογισμού των μέσων τιμών έχει απασχολήσει επανειλημμένως πολλούς επιστήμονες ειδικούς στον κλάδο και, αν και δεν έχει λυθεί στη γενική περίπτωση, η ισοδυναμία είναι γενικώς αποδεκτή.

σε διαφορετικές, εν γένει, μικροκαταστάσεις του ίδιου συστήματος, λέγεται διεθνώς ensemble και, στα Ελληνικά, στατιστικό σύνολο ή συλλογή.

Ένα στατιστικό σύνολο αποτελείται λοιπόν από πάρα πολλά συστήματα που είναι ισοδύναμα με το αρχικό, από μακροσκοπική άποψη, αλλά αντιστοιχούν σε όλες τις δυνατές μικροκαταστάσεις ή, αλλιώς σε όλες τις προσιτές καταστάσεις του συστήματος, τις καταστάσεις δηλαδή από τις οποίες θα περνούσε το σύστημα μέσα στον χρόνο.

Έτσι, αντί να μετράμε π.χ. την ενέργεια, *E*, ενός συστήματος ως συνάρτηση του χρόνου και να υπολογίζουμε τη μέση τιμή της σε κάθε σύστημα, αρκεί να υπολογίσουμε τη μέση τιμή της μέσα σε ολόκληρο το σύνολο, την ίδια χρονική στιγμή. Πρόκειται για ένα θεωρητικό τέχνασμα το οποίο, όπως θα δούμε, θα μας βοηθήσει στον υπολογισμό, όχι μόνο μέσων τιμών των μακροσκοπικών μεταβλητών που μας ενδιαφέρουν, αλλά και των πιθανοτήτων να πάρουν οι μεταβλητές αυτές μια συγκεκριμένη τιμή.

1.4.2 Μικροκανονικό σύνολο (Microcanonical ensemble)

Μια ειδική περίπτωση στατιστικού συνόλου είναι το μικροκανονικό σύνολο. Πρόκειται ένα σύνολο για που αποτελείται από συστήματα απομονωμένα από το περιβάλλον τους και επομένως με τελείως καθορισμένη ολική ενέργεια, εφόσον αυτά δεν είναι σε θέση ανταλλάξουν ενέργεια να uε το περιβάλλον τους. Στο Σχ. 1.5, P(E)παριστάνει την πιθανότητα να έχουν τα μικροκανονικού συστήματα ενός συνόλου ολική ενέργεια γύρω από κάποια μέση τιμή, \overline{E} , μέσα σε ένα διάστημα ΔΕ.

Σχήμα 1.5 Η κατανομή της πιθανότητας P(E) να έχουν τα συστήματα ενός μικροκανονκού συνόλου ενέργεια γύρω από μια μέση τιμή \overline{E} , με διασπορά $\Delta E << \overline{E}$.

Μπορούμε, για παράδειγμα, να φανταστούμε ένα σύνολο από πανομοιότυπα δοχεία, με πολύ καλή μόνωση, γεμάτα με το ίδιο αέριο, στην ίδια πίεση και θερμοκρασία, επομένως με την ίδια ολική ενέργεια. Στην περίπτωση αυτή τα συστήματα μπορούν να πάρουν μόνον εκείνες τις μικροκαταστάσεις που αντιστοιχούν στη συγκεκριμένη τιμή της ολικής ενέργειας, *E*. Αν έχουμε δηλαδή N_1 σωματίδια με ενέργεια E_1 , N_2 σωματίδια με ενέργεια E_2 , κ.ο.κ., θα πρέπει πάντα η ολική ενέργεια, $E_{o\lambda}$, να ισούται με

$$E_{0\lambda} = N_1 E_1 + N_2 E_2 + N_3 E_3 + \dots N_n E_n$$
(1.5)

όπου n ο συνολικός αριθμός ενεργειακών σταθμών. Είναι φανερό ότι υπάρχουν πολλές διαφορετικές κατανομές των σωματιδίων που οδηγούν στην ίδια ολική ενέργεια.

Σε ένα στατιστικό σύνολο τέτοιων συστημάτων γνωρίζουμε ότι το κάθε σύστημα βρίσκεται σε κάποια από τις προσιτές κβαντικές καταστάσεις του. Αυτό όμως που δεν γνωρίζουμε είναι ποια είναι η πιθανότητα να βρίσκεται το σύστημα σε κάθε μία από αυτές τις μικροκαταστάσεις. Αν βρούμε έναν τρόπο για να υπολογίζουμε αυτήν την πιθανότητα, τότε θα μπορέσουμε να απαντήσουμε στα ακόλουθα ερωτήματα, που παρουσιάζουν φυσικό ενδιαφέρον: (α) ποια πιθανότητα έχει κάθε παράμετρος του συστήματος (π.χ. η πίεση ή η μαγνητική ροπή) να πάρει κάποια καθορισμένη τιμή; (β) ποια είναι η μέση τιμή κάθε παραμέτρου; και (γ) πόση είναι η τυπική της απόκλιση;

Από τις γνώσεις που έχουμε μέχρι τώρα δεν μπορούμε να απαντήσουμε στα πάρα πάνω ερωτήματα. Θα πρέπει λοιπόν στα αιτήματα που δεχθήκαμε στην Κβαντομηχανική να προσθέσουμε και κάποιο άλλο, για να μπορέσουμε να προχωρήσουμε στους υπολογισμούς στη Στατιστική Μηχανική.

1.5 Πιθανότητες και μέσες τιμές

1.5.1 Το αίτημα των ίσων πιθανοτήτων

Ας υποθέσουμε ότι ένα σύστημα έχει, κάποια χρονική στιγμή, ίση πιθανότητα να βρίσκεται σε οποιαδήποτε από τις προσιτές του καταστάσεις. Στη γλώσσα των συνόλων, θεωρούμε την περίπτωση όπου τα συστήματα ενός στατιστικού συνόλου είναι, κάποια χρονική στιγμή, ομοιόμορφα κατανεμημένα στις επιτρεπόμενες προσιτές του καταστάσεις. Τι περιμένουμε να συμβεί με την πάροδο του χρόνου; Περιμένουμε, κατ' αρχήν ότι το κάθε σύστημα θα κάνει συνεχώς μεταπτώσεις ανάμεσα στις διάφορες προσιτές του καταστάσεις. Όμως, σύμφωνα με τους νόμους της Μηχανικής, δεν υπάρχει τίποτε το ενδογενές που να δίνει προτίμηση σε μια προσιτή κατάσταση έναντι κάποιας άλλης. Έτσι, καθώς ο χρόνος περνά, δεν περιμένουμε ότι ο αριθμός των συστημάτων του συνόλου που ανήκουν σε μια συγκεκριμένη μικροκατάσταση θα ελαττωθεί ή θα αυξηθεί σε βάρος μιας άλλης προσιτής κατάστασης. Μπορούμε επομένως να υποθέσουμε ότι:

> Αν ένα απομονωμένο σύστημα έχει την ίδια πιθανότητα να βρίσκεται σε κάθε μία από τις προσιτές του καταστάσεις, το σύστημα είναι μακροσκοπικά ανεξάρτητο από τον χρόνο.

Όμως ένα σύστημα ανεξάρτητο από τον χρόνο είναι σε κατάσταση ισορροπίας, εφόσον η κατάστασή του παραμένει σταθερή. Μπορούμε λοιπόν να αντιστρέψουμε την παραπάνω πρόταση και να διατυπώσουμε έτσι το βασικό αίτημα της Στατιστικής Μηχανικής, το *Αίτημα των a priori ίσων πιθανοτήτων:*

Στα συστήματα που αποτελούν ένα μικροκανονικό σύνολο σε κατάσταση ισορροπίας θα αντιπροσωπεύονται όλες οι δυνατές προσιτές καταστάσεις του με την ίδια πιθανότητα.

Ή, με άλλα λόγια,

Αν ένα απομονωμένο σύστημα βρίσκεται σε κατάσταση ισορροπίας, θα έχει την ίδια πιθανότητα να βρεθεί σε οποιαδήποτε από τις προσιτές του καταστάσεις.

Από τα παραπάνω προκύπτει ότι ένα σύστημα, που δεν βρίσκεται με ίση πιθανότητα σε κάθε μία από τις προσιτές του καταστάσεις, δεν θα είναι σε κατάσταση ισορροπίας. Έτσι, με την πάροδο του χρόνου, το σύστημα αυτό θα τείνει να μεταβληθεί, ώσπου να φθάσει στην κατάσταση ισορροπίας, όπου θα έχει ίση πιθανότητα να βρίσκεται σε κάθε μία από τις προσιτές του καταστάσεις.

Παράδειγμα. Στην κατάσταση ισορροπίας, στο στατιστικό σύνολο απομονωμένων συστημάτων (μικροκανονικό σύνολο) με τέσσερα σπιν και ενέργεια $-2\mu_0 B$ (βλ. Παρ. 1.2.5, Πίνακα 1.1) έχουμε την ίδια πιθανότητα να πετύχουμε οποιαδήποτε από τις μικροκαταστάσεις (+ + + -) (+ + +) (+ + +).

Αν όμως ξεκινήσουμε από το ίδιο στατιστικό σύνολο, στο οποίο όλα τα συστήματα βρίσκονται, για παράδειγμα, στην κατάσταση (+ + + -), ύστερα από ένα ορισμένο χρονικό διάστημα, εξαιτίας των αλληλεπιδράσεων μεταξύ των μαγνητικών ροπών μέσα σε κάθε σύστημα, τα διάφορα συστήματα θα βρεθούν με ίση πιθανότητα σε καθεμιά από τις τέσσερις προσιτές τους καταστάσεις (+ + + -), (+ - + +), (- + + +).

1.5.2 Υπολογισμός πιθανοτήτων

Ας θεωρήσουμε ένα απομονωμένο σύστημα σε ισορροπία, η ενέργεια του οποίου έχει μια σταθερή τιμή μέσα σε μια περιοχή $E \pm \delta E$. Σύμφωνα με τα παραπάνω, αν ονομάσουμε u_r τις μικροκαταστάσεις εκείνες που αντιστοιχούν σε ολική ενέργεια E_r , η πιθανότητα, P_r , να βρεθεί το σύστημα σε μια μικροκατάσταση, u_r , θα πρέπει να είναι σταθερή, αν η κατάσταση αυτή είναι προσιτή στο σύστημα.

Ή, αλλιώς:

 $P_{\rm r} = C (= \text{stat})$ an $E < E_{\rm r} < E \pm \delta E$ $P_{\rm r} = 0$ gia opoiadýpote álly timú tou $E_{\rm r}$

Εδώ E είναι η ενέργεια της μακροκατάστασης και E_r η ενέργεια των διαφόρων μικροκαταστάσεων του συστήματος.

Θα πρέπει, προφανώς, το άθροισμα όλων των πιθανοτήτων να είναι ίσο με τη μονάδα, αφού το σύστημα σίγουρα θα βρίσκεται σε κάποια από τις μικροκαταστάσεις του. Έχουμε λοιπόν,

$$\sum_{r} P_r = \sum_{r} C = \Omega C = 1 \tag{1.6}$$

όπου Ω είναι ο συνολικός αριθμός προσιτών καταστάσεων. Επομένως το $C = 1/\Omega$ αντιπροσωπεύει την πιθανότητα, σε ένα μικροκανονικό σύνολο, να βρεθεί ένα σύστημα σε μια οποιαδήποτε από τις προσιτές του καταστάσεις.

Έτσι, στο Παράδειγμα 2 πιο πάνω, με τα 4 σπιν και συνολική ενέργεια $-2\mu_0 B$, θα έχουμε πιθανότητα ανά προσιτή κατάσταση ίση με ¹/4.

1.5.3 Υπολογισμός μέσης τιμής μιας μεταβλητής

Ας υποθέσουμε τώρα ότι, σε ένα απομονωμένο σύστημα σε κατάσταση ισορροπίας, θέλουμε να υπολογίσουμε τη μέση τιμή μιας μεταβλητής, y, του συστήματος, για παράδειγμα της πίεσης ενός αερίου. Θα ψάξουμε πρώτα να δούμε ποιες τιμές παίρνει η μεταβλητή αυτή στις διάφορες προσιτές καταστάσεις, u_r , του συστήματος. Αν ονομάσουμε τις διάφορες αυτές τιμές της πιθανότητας P_r , η μέση τιμή της y θα δίνεται, προφανώς, από το

$$\overline{y} = \sum_{r} P_{r} y_{r}$$
(1.7)

Για να υπολογίσουμε τις τιμές της πιθανότητας, P_r , σκεπτόμαστε ως εξής: Ανάμεσα στις προσιτές καταστάσεις, Ω , του συστήματος θα υπάρχουν ορισμένες, ας τις ονομάσουμε Ω_r , στις οποίες η παράμετρος *y* παίρνει την τιμή *y*_r. Άρα, η πιθανότητα που αναζητούμε είναι η πιθανότητα να βρεθεί το σύστημα σε μία από τις μικροκαταστάσεις Ω_r . Αυτή όμως είναι ίση με:

 $P_{\rm r} = P(\Omega_{\rm r}) = C \Omega_{\rm r} = \Omega_{\rm r} / \Omega$

$$\overline{y} = \sum_{r} P_{r} y_{r} = \frac{1}{\Omega} \sum_{r} \Omega_{r} y_{r}$$
(1.9)

Στο πιο πάνω Παράδειγμα 3 των τεσσάρων σπιν, η πιθανότητα να κατευθύνεται το πρώτο σπιν προς τα πάνω, για τη συγκεκριμένη μικροκατάσταση που έχει ολική ενέργεια – $2\mu_0 B$, είναι ίση με 3/4, γιατί από τις 4 καταστάσεις που είναι προσιτές στο σύστημα μόνον οι 3, συγκεκριμένα οι (+ + + -), (+ + - +), (+ - + +), αντιστοιχούν σε αυτήν την περίπτωση. Πόση είναι τότε η μέση τιμή της μαγνητικής ροπής του πρώτου σπιν; Αφού έχει πιθανότητα 3/4 να είναι + (προς τα πάνω) με μαγνητική ροπή + μ_0 , και 1/4 να είναι – (προς τα κάτω) με μαγνητική ροπή + μ_0 , και 1/4 να είναι – (προς τα κάτω) με

$$\overline{M} = \frac{3\mu_o + \left(-\mu_o\right)}{4} = \frac{\mu_o}{2} \tag{1.10}$$

(1.8)

1.6 Μακροσκοπικά συστήματα – Συνεχές ενεργειακό φάσμα

1.6.1 Πυκνότητα καταστάσεων

Όσο ασχολούμαστε με την περιγραφή μικρών συστημάτων, στα οποία μπορούμε να απαριθμήσουμε τις καταστάσεις μία-μία, τα πράγματα είναι απλά. Τι γίνεται όμως στην περίπτωση των μακροσκοπικών συστημάτων, όπου έχουμε έναν τεράστιο αριθμό σωματιδίων και μικροκαταστάσεων;

Θα δείξουμε πιο κάτω ότι, στα συνηθισμένα μακροσκοπικά συστήματα, οι ενεργειακές στάθμες είναι τόσο κοντά μεταξύ τους σε σχέση με την τιμή της ενέργειας τού συστήματος, ώστε να μπορούμε να θεωρήσουμε ότι αποτελούν ένα συνεχές φάσμα, που εκτείνεται από το 0 μέχρι μια μέγιστη τιμή. Έτσι, αντί να απαριθμήσουμε τις καταστάσεις που αντιστοιχούν σε κάθε ενεργειακή στάθμη, υπολογίζουμε τον αριθμό των καταστάσεων, $\Omega(E)$, που αντιστοιχούν σε ενέργεια μέσα στο ενεργειακό διάστημα δ*E*, όπου το δ*E* πρέπει να είναι αρκετά μεγάλο, ώστε να καταλαμβάνει πολλές καταστάσεις, αλλά και πολύ μικρό σε σχέση με την αναμενόμενη ακρίβεια μιας μακροσκοπικής μέτρησης.

Αν ονομάσουμε πυκνότητα καταστάσεων, g(E), τον αριθμό των καταστάσεων ανά μοναδιαίο ενεργειακό διάστημα, τότε ο αριθμός των καταστάσεων μέσα σε ένα ενεργειακό διάστημα, δ*E*, (βλ. Σχ. 1.6), θα δίνεται από το:

$$\Omega(E) = g(E). \,\delta E \tag{1.11}$$

Αν γνωρίζουμε το $\Omega(E)$ ή το g(E), μπορούμε να υπολογίσουμε τον αριθμό καταστάσεων, $\Phi(E)$, με ενέργεια μικρότερη από E ή, αλλιώς, με ενέργεια μεταξύ 0 και E. Θα έχουμε, πράγματι:

$$\Phi(E) = \sum \Omega(E) = \int_{0}^{E} g(E) dE$$
(1.12)

και, αντιστρόφως,

$$g(E) = \frac{d \Phi(E)}{dE}$$
(1.13)

Σχήμα 1.6 Οι οριζόντιες ευθείες μέσα στο πηγάδι απεικονίζουν τις δυνατές ενεργειακές στάθμες ενός σωματιδίου. (Υποθέτουμε εδώ, για απεικονιστικούς λόγους, ότι οι στάθμες δεν είναι εκφυλισμένες και, επομένως, σε κάθε στάθμη αντιστοιχεί μία μόνο κατάσταση, αυτό όμως δεν επηρεάζει τη γενικότητα του συλλογισμού). Ο αριθμός των ευθειών στην περιοχή από 0 έως Ε, (που σημειώνεται με κίτρινο), είναι το $\Phi(E)$, δηλαδή ο αριθμός όλων των καταστάσεων για τις οποίες η ενέργεια του σωματιδίου είναι μικρότερη από Ε, ενώ η περιοχή με πλάτος δE (με πορτοκαλί) περιλαμβάνει μόνο τις καταστάσεις $\Omega(E)$, για τις οποίες η ενέργεια του σωματιδίου βρίσκεται μέσα στο διάστημα δΕ. (Στο σχήμα έχουμε σχεδιάσει τις διάφορες στάθμες σε τυχαίες μεταξύ τους αποστάσεις, αλλά και πάλι δεν επηρεάζεται η γενικότητα του συλλογισμού).

1.6.2 Σωματίδιο σε μονοδιάστατο κουτί

Θεωρούμε ένα μόνο σωματίδιο με μάζα *m*, ελεύθερο να κινείται μέσα σε μονοδιάστατο κουτί μήκους *L*. Τότε, σύμφωνα και με την Εξ. (1.1), οι δυνατές ενεργειακές στάθμες του συστήματος είναι:

$$E_n = \frac{\hbar^2 \pi^2 n^2}{2mL^2}$$
(1.14)

όπου n = 1, 2, 3, ... Εύκολα μπορούμε να δείξουμε ότι, στην περίπτωση όπου το μήκος, L, και η μάζα, m, είναι μακροσκοπικά μεγέθη, ο συντελεστής του n^2 είναι πολύ μικρότερος της μονάδας, οπότε το n θα είναι πολύ μεγαλύτερο της μονάδας για ενέργειες μακροσκοπικού συστήματος με κάποια λογική τιμή.

Για παράδειγμα, για L = 1 cm και $m = 5 \times 10^{-28}$ kg (μάζα του μορίου του αζώτου), ο συντελεστής του n^2 είναι περίπου 10^{-39} J. Στη θερμοκρασία περιβάλλοντος η μέση ενέργεια ενός τέτοιου μορίου είναι της τάξης του 10^{-21} J. Έτσι, από την Εξ. (1.14), βρίσκουμε ένα n της τάξης του 10^9 . Για μια τόσο μεγάλη τιμή του n μπορούμε να δούμε ότι μια μεταβολή τού n κατά μία μονάδα επιφέρει ασήμαντη ποσοστιαία αλλαγή στο ίδιο το n και επομένως και στην τιμή της ενέργειας. Αυτό σημαίνει ότι, στην περίπτωση των συνηθισμένων μακροσκοπικών συστημάτων, οι ενεργειακές στάθμες είναι τόσο κοντά μεταξύ τους σε σχέση με την τιμή της ενέργειας του συστήματος, ώστε να μπορούμε να θεωρήσουμε ότι αποτελούν ένα συνεχές φάσμα, που εκτείνεται από το 0 μέχρι μια μέγιστη τιμή. Μπορούμε λοιπόν να χειριστούμε τα n και E, αλλά και τις μεταβλητές Φ(E) και g(E), ως συνεχείς συναρτήσεις.

Στον «αριθμητικό χώρο» που ορίζεται από τον άξονα n (Σχ. 1.7), οι δυνατές τιμές τού κβαντικού αριθμού n απεικονίζονται, τελείως σχηματικά, με μικρές ισαπέχουσες κατακόρυφες γραμμές στις τιμές n = 1, 2, 3, ... Επειδή οι διαδοχικές κβαντικές καταστάσεις αντιστοιχούν σε τιμές του n που διαφέρουν κατά μία μονάδα, ο ολικός αριθμός, $\Phi(E)$, των κβαντικών καταστάσεων που αντιστοιχούν σε ενέργεια μικρότερη από E, δηλαδή σε κβαντικό αριθμό μικρότερο από n, είναι προφανώς ίσος με n.

Σχήμα 1.7 Οι μικρές κατακόρυφες γραμμές πάνω στην ευθεία δείχνουν τις δυνατές τιμές του κβαντικού αριθμού, *n*, για ένα σωματίδιο που κινείται σε μία διάσταση, όπου *n* = 1, 2, 3, … Η περιοχή που σημειώνεται με ανοικτό γκρι περιλαμβάνει όλες τις τιμές του *n* για τις οποίες η ενέργεια του σωματιδίου είναι μικρότερη από *E*, ενώ η περιοχή με σκούρο γκρι περιλαμβάνει όλες τις τιμές του *n* για τις οποίες η ενέργεια του σωματιδίου βρίσκεται μεταξύ *E* και *E* + δ*E*.

Έχουμε λοιπόν, από την Εξ. (1.14)

$$\Phi(E) = n = \frac{L}{\pi\hbar} (2mE)^{1/2}$$
(1.15)

και, από την Εξ. (1.13)

$$g(E) = \frac{\mathrm{d}\Phi(E)}{\mathrm{d}E} = \frac{L}{2\pi\hbar} (2m)^{1/2} E^{-1/2} = \frac{L}{2\pi\hbar} \sqrt{\frac{2m}{E}}$$
(1.16)

Από την Εξ. (1.16) παρατηρούμε ότι η πυκνότητα καταστάσεων, g(E), στη συγκεκριμένη αυτή (μονοδιάστατη) περίπτωση, μειώνεται με την αύξηση της ενέργειας, E (Σχ. 1.8a), πράγμα αναμενόμενο αφού, όπως φαίνεται και στο Σχ. 1.2, οι ιδιοκαταστάσεις της ενέργειας απομακρύνονται μεταξύ τους ($E_n \sim n^2$) όσο αυξάνουν τα E και n. Ο συνολικός αριθμός καταστάσεων με ενέργεια από 0 μέχρι E προφανώς αυξάνει ($\Phi(E) \sim \sqrt{E}$) (Σχ. 1.8b).

Σχήμα 1.8 (*a*) Η πυκνότητα καταστάσεων g(*E*) και (*b*) Ο συνολικός αριθμός καταστάσεων Φ(*E*) με ενέργεια μικρότερη από *E*, για ένα σωματίδιο περιορισμένο σε μονοδιάστατο κουτί. Παρατηρούμε ότι η πυκνότητα των καταστάσεων μειώνεται, ενώ ο συνολικός αριθμός καταστάσεων αυξάνει, με την ενέργεια, *E*.

1.6.3 Σωματίδιο σε τρισδιάστατο κουτί

Θεωρούμε ένα σωματίδιο με μάζα *m*, ελεύθερο να κινείται μέσα σε ένα τρισδιάστατο κουτί. Για λόγους απλότητας υποθέτουμε ότι το δοχείο είναι κυβικό με ακμή *L*. Σύμφωνα με την Εξ. (1.3) οι δυνατές ενεργειακές στάθμες αυτού του συστήματος δίνονται από τη σχέση

$$E_{n_x, n_y, n_z} = \frac{\pi^2 \hbar^2}{2m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2} \right)$$
(1.17)

όπου n_x , n_y , n_z , = 1, 2, 3 και $L_x = L_y = L_z = L$.

Στον «αριθμητικό χώρο» που ορίζεται από τρεις ορθογώνιους άξονες n_x , n_y , n_z (Σχ. 1.9), οι δυνατές τιμές των τριών αυτών κβαντικών αριθμών βρίσκονται γεωμετρικά στα κέντρα των κύβων που έχουν ακμές ίσες με τη μονάδα.

Σχήμα 1.9 Οι μαύρες κουκίδες δείχνουν, τελείως σχηματικά σε δισδιάστατη προβολή, τις δυνατές τιμές των κβαντικών αριθμών n_x , n_y , $n_z = 1, 2, 3, 4, ...,$, που καθορίζουν την κατάσταση ενός σωματιδίου που κινείται σε τρεις διαστάσεις. (Ο άξονας n_z είναι κάθετος στο επίπεδο του χαρτιού και κατευθύνεται προς τα πάνω). Η περιοχή που σημειώνεται με ανοιχτό γκρι αντιστοιχεί στις τιμές των n_x , n_y , n_z για τις οποίες η ενέργεια του σωματιδίου είναι μικρότερη από E, ενώ η περιοχή που σημειώνεται με σκούρο γκρι περιλαμβάνει όλες τις τιμές των n_x , n_y , n_z για τις οποίες η ενέργεια του σωματιδίου βρίσκεται μεταξύ E και $E + \delta E$.

Όπως και στο μονοδιάστατο παράδειγμα, οι κβαντικοί αυτοί αριθμοί, που αντιστοιχούν σε ένα μόριο μέσα σε ένα μακροσκοπικό δοχείο, είναι συνήθως πολύ μεγάλοι σε σύγκριση με τη μονάδα, μπορούμε επομένως και πάλι να χειριστούμε τις μεταβλητές *E* και *n_x*, *n_y*, *n_z*, ως συνεχείς συναρτήσεις,. Από την προηγούμενη σχέση προκύπτει ότι η ακτίνα του κύκλου που αντιστοιχεί σε μια ενέργεια *E* δίνεται από τη σχέση

$$n_x^2 + n_y^2 + n_z^2 = 2mE \left(\frac{L}{\pi\hbar}\right)^2 = R^2$$
(1.18)

Για μια δεδομένη τιμή της ενέργειας, *E*, οι τιμές των κβαντικών αριθμών n_x , n_y , n_z , που ικανοποιούν αυτή την εξίσωση, βρίσκονται μέσα σε μια σφαίρα με ακτίνα *R*, όπως φαίνεται στο σχήμα. Αφού κάθε συνδυασμός n_x , n_y , n_z (για n_x , n_y , $n_z > 0$), αντιστοιχεί σε μια διαφορετική κβαντική κατάσταση, ο αριθμός $\Phi(E)$ των καταστάσεων με ενέργεια μικρότερη από *E* είναι ίσος με τον αριθμό των μοναδιαίων κύβων που περικλείονται μέσα σε αυτή τη σφαίρα για θετικές τιμές του *n*. Το $\Phi(E)$ θα είναι επομένως ίσο με το 1/8 του όγκου της σφαίρας με ακτίνα *R*. Έχουμε λοιπόν

$$\Phi(E) = \frac{1}{8} \frac{4}{3} \pi R^3 = \frac{\pi}{6} \left(\frac{L}{\pi \hbar}\right)^3 (2mE)^{3/2}$$
(1.19)

από όπου προκύπτει ότι

$$g(E) = \frac{\mathrm{d}\Phi(E)}{\mathrm{d}E} = \frac{V}{4\pi^2 \hbar^3} (2m)^{3/2} E^{1/2}$$
(1.20)

όπου $V = L^3$, ο όγκος του δοχείου.

Η Εξ. (1.20) μάς δείχνει ότι, στην τρισδιάστατη περίπτωση, η πυκνότητα καταστάσεων, g(E), αυξάνεται με την αύξηση της ενέργειας, E (Σχ. 1.10α), σε αντίθεση με τη μονοδιάστατη περίπτωση (Σχ. 1.8α). Αυτό οφείλεται στο γεγονός ότι, παρόλο που, σε κάθε μία διάσταση, οι ιδιοκαταστάσεις της ενέργειας αραιώνουν ($E_n \sim n^2$) όσο αυξάνουν τα E και n, μέσα στην τρισδιάστατη σφαίρα ο αριθμός των κύβων με πλευρές n_x , n_y , n_z , αυξάνει ανάλογα με τον όγκο, άρα με το n^3 . Έτσι, τελικώς, $g(E) \sim n \sim E^{1/2}$. Όσο για το $\Phi(E)$, τον αριθμό των καταστάσεων με ενέργεια μικρότερη από E, σύμφωνα με την Εξ. (1.19) αυξάνει ανάλογα με το n^3 , επομένως ανάλογα με το $E^{3/2}$ (Σχ. 1.10β).

Σχήμα 1.10 (a) Η πυκνότητα καταστάσεων g(E) και (b) ο συνολικός αριθμός καταστάσεων Φ(E) με ενέργεια μικρότερη από E, για ένα σωματίδιο περιορισμένο σε τρισδιάστατο κουτί. Παρατηρούμε ότι η πυκνότητα των καταστάσεων αυξάνεται με την ενέργεια E ανάλογα με το E^{1/2}, ενώ ο συνολικός αριθμός καταστάσεων αυξάνεται. με το E^{3/2}.

1.6.4 Ν σωματίδια σε τρισδιάστατο κουτί

Για να βρούμε την πυκνότητα των καταστάσεων που αντιστοιχούν σε N σωματίδια μέσα σε τρισδιάστατο κουτί σκεπτόμαστε ως εξής:

Έστω ότι κάθε σωματίδιο έχει ενέργεια ε. Τότε το σύνολο των N σωματιδίων θα έχει ενέργεια $E = N\epsilon$. Επειδή κάθε κατάσταση του ενός σωματιδίου συνδυάζεται με όλες τις καταστάσεις όλων των άλλων σωματιδίων, ο συνολικός αριθμός καταστάσεων με ενέργεια μεταξύ 0 και E δίνεται από το $[\Phi(\epsilon)]^N$. Έχουμε επομένως:

$$\Phi_{N}(E) = [\Phi_{1}(\varepsilon)]^{N} = [\Phi_{1}(E/N)]^{N} = C_{1} V^{N}(E)^{3N/2}$$
(1.21)

με

 $C_1 = \frac{(2m)^{3N/2}}{(6\pi^2 \hbar^3 N^{3/2})^N}$

Παραγωγίζοντας την (1.21) ως προς την ενέργεια, παίρνουμε την πυκνότητα των καταστάσεων, g(E), και πολλαπλασιάζοντας το g(E) επί δE έχουμε τον αριθμό των καταστάσεων με ενέργεια μεταξύ E και $E + \delta E$.

Έχουμε λοιπόν

$$g_{\rm N}(E) = \mathrm{d}\Phi_{\rm N} / \mathrm{d}E = C_1 (3N/2) V^{\rm N} E^{(3N/2)-1} \approx C V^{\rm N} E^{3N/2}, \quad \text{gra} \ N >> 1$$
(1.22)

και

$$\Omega_{\rm N}(E) = C \, V^{\rm N} E^{3{\rm N}/2} \, \delta E \tag{1.23}$$

όπου C μια σταθερά ανεξάρτητη από την ενέργεια και τον όγκο του δοχείου.

Προσοχή! Θα ήταν λάθος να πούμε ότι $\Omega_N(E) = [\Omega_1(\varepsilon)]^N$, γιατί η συνολική ενέργεια $E = N\varepsilon$ μπορεί να προκύψει, όχι μόνο από N σωματίδια με ενέργεια ε, αλλά και από όλους τους δυνατούς συνδυασμούς ενεργειών των N σωματιδίων που αντιστοιχούν σε ολική ενέργεια Nε (π.χ. N-2 σωματίδια με ενέργεια ε, 1 σωματίδιο με ενέργεια 2ε και 1 σωματίδιο με ενέργεια μηδέν). Γι' αυτό υπολογίζουμε πρώτα τις συνολικές καταστάσεις, $\Phi_N(E)$, με ενέργεια από 0 ως $E = N\varepsilon$, και από αυτές κρατάμε τελικά μόνον εκείνες που βρίσκονται μεταξύ E και $E + \delta E$ για να υπολογίσουμε το $\Omega_N(E)$.

Από την Εξ. (1.23) μπορούμε να υπολογίσουμε τον λογάριθμο του $\Omega(E)$, που θα μας είναι χρήσιμος σε πολλές περιπτώσεις αργότερα. Έχουμε

$$\ln \left[\Omega_{\rm N}(E) \right] = \ln C' + N \ln V + (3N/2) \ln E \tag{1.24}$$

όπου $C' = C \delta E = \sigma \tau \alpha \theta$., ανεξάρτητο από τα E και V.

1.7 Χώρος των φάσεων

1.7.1 Εισαγωγή

Αν για ένα σωματίδιο γνωρίζουμε, κάποια χρονική στιγμή, t, τις τρεις συνιστώσες της θέσης, q (x, y, z), και τις τρεις συνιστώσες της ορμής, p (p_x , p_y , p_z), έχουμε πλήρη γνώση της δυναμικής του σωματιδίου από τη γνώση των 6 αυτών μεταβλητών. Για λόγους απεικονιστικούς, στο Σχ. 1.11 έχει παρασταθεί ο χώρος των φάσεων για ένα σωματίδιο που κινείται μόνο σε μία διάσταση. Η κατάσταση τού σωματιδίου, κάποια χρονική στιγμή, παριστάνεται από ένα μοναδικό σημείο σε αυτόν τον χώρο.

Μπορούμε επομένως να παραστήσουμε την κατάσταση ενός σωματιδίου, τη στιγμή $t = t_0$, με ένα μοναδικό σημείο σε έναν χώρο 6 διαστάσεων, που αποκαλείται "χώρος των

Σχήμα 1.11 Ο χώρος των φάσεων για σωματίδιο που κινείται σε μία διάσταση. Τα σημεία Α και Β προσδιορίζουν την αρχική και την τελική κατάσταση του σωματιδίου, αντιστοίχως.

φάσεων". Ο χώρος των φάσεων, ή μ-χώρος στην περίπτωση ενός μόνο σωματιδίου, σχηματίζεται από το γινόμενο του τρισδιάστατου "χώρου των θέσεων" (x, y, z) και του τρισδιάστατου "χώρου των ορμών" (p_x, p_y, p_z) . Η χρονική εξέλιξη του σωματιδίου θα παριστάνεται με την τροχιά του αντιπροσωπευτικού σημείου σε αυτόν τον εξαδιάστατο χώρο.

Αντίστοιχα, για ένα σύστημα N σωματιδίων, η γνώση 6N μεταβλητών (3N για τη θέση και 3N για την ορμή) κάποια χρονική τιμή, t, μας εξασφαλίζει την πλήρη γνώση της κατάστασης του συστήματος αυτού. Κατά αναλογία με την προηγούμενη περίπτωση, μπορούμε να παραστήσουμε την κατάσταση ενός συστήματος αποτελούμενου από Nσωματίδια, τη στιγμή $t = t_0$, με ένα μοναδικό σημείο σε ένα χώρο 6N διαστάσεων. Η χρονική εξέλιξη του συστήματος θα παριστάνεται σε αυτόν το χώρο με την τροχιά του αντιπροσωπευτικού σημείου στον χώρο αυτόν, οποίος ονομάζεται και **Γ- χώρος των** φάσεων (**Γ- phase space**). Ο χώρος Γ κτίζεται από το γινόμενο των N χώρων μ. Ας δούμε ορισμένα παραδείγματα χώρων των φάσεων.

1.7.2 Ένα σωματίδιο σε μια διάσταση

1.7.2.1 Μονοδιάστατο πηγάδι δυναμικού

Στον χώρο των φάσεων, ένα σωματίδιο που κινείται μέσα σε ένα μονοδιάστατο πηγάδι δυναμικού, πλάτους L, με ενέργεια μικρότερη από $E = p^2/2m$, όπου p η ορμή του και m η μάζα του, έχει στη διάθεσή του "όγκο" $L \times 2p$ (Σχ. 1.12), εφόσον η ορμή του μπορεί να πάρει τιμές από – p έως + p, ή

$$2(2mE)^{1/2} \times L$$

Αν έχει όμως ενέργεια μεταξύ E και E + δE, θα πρέπει η ορμή του να βρίσκεται στο διάστημα $2\delta p = (2m/E)^{1/2} \delta E$, θα έχει επομένως στη διάθεσή του "όγκο" $L \times 2\delta p$, (βλ. Σχ. 1.12) ή

$$L \times (2m/E)^{1/2} \,\delta E \tag{1.25}$$

Είχαμε βρει (Παράγρ. 1.6.1) ότι ο αριθμός των καταστάσεων που αντιστοιχούν σε ενέργεια μεταξύ E και E + δE είναι ίσος με

$$g(E) = \frac{\mathrm{d}\Phi(E)}{\mathrm{d}E} = \frac{L}{2\pi\hbar} (2m)^{1/2} E^{-1/2} = \frac{L}{2\pi\hbar} \sqrt{\frac{2m}{E}}$$
(1.26)

Άρα, στο χώρο των φάσεων, σε κάθε κατάσταση αντιστοιχεί "όγκος":

$$=\frac{(2m/E)^{1/2}L\delta E}{(L/2\pi\hbar)(2m/E)^{1/2}\delta E}=h \quad (1.27)$$

Ο χώρος ή "όγκος" που καταλαμβάνει μία μοναδική κατάσταση στον χώρο των φάσεων ονομάζεται και "στοιχειώδης κυψελίδα" του χώρου των φάσεων.

Για τη μονοδιάστατη κίνηση, η στοιχειώδης κυψελίδα έχει επομένως "όγκο" (δηλαδή καταλαμβάνει χώρο) ίσο με h.

Σχήμα 1.12 Ο χώρος των φάσεων σωματιδίου που κινείται σε μονοδιάστατο πηγάδι δυναμικού πλάτους *L*, με ορμή από 0 έως $\pm p$ (λευκό) και μεταξύ $\pm [p$ και $(p+\delta p)]$ (σκούρο γκρι).

1.7.2.2 Μονοδιάστατος αρμονικός ταλαντωτής

Η ολική ενέργεια ενός μονοδιάστατου αρμονικού ταλαντωτή είναι, ως γνωστόν, ίση με το άθροισμα της κινητικής και της δυναμικής του ενέργειας

$$E = (p^{2}/2m) + \frac{1}{2}m\omega^{2}x^{2}$$
(1.28)

όπου ω η κυκλική του συχνότητα και m η μάζα του. Σύμφωνα με την Κβαντομηχανική, οι ενεργειακές του στάθμες δίνονται από τη σχέση (βλ. βιβλία Κβαντομηχανικής)

$$E_n = (n + \frac{1}{2}) \hbar \omega, \quad n = 0, 1, 2, 3, \dots$$

Αντικαθιστώντας τη δεύτερη εξίσωση στην πρώτη βρίσκουμε:

$$\frac{p^2}{2m\hbar\omega(n+1/2)} + \frac{x^2}{[2\hbar(n+1/2)]/m\omega} = 1$$
(1.29)

Στον δισδιάστατο χώρο των φάσεων οι ισοενεργειακές του καταστάσεις θα αντιστοιχούν επομένως σε ελλείψεις (Σχ. 1.13) με ημιάξονες:

 $b = [2m\hbar \omega(n+1/2)]^{1/2}$ και $a = [2\hbar (n+1/2)]^{1/2}/(m\omega)^{1/2}$ αντιστοίχως, άρα με επιφάνεια:

$$S = \pi a b = 2\pi \hbar (n + \frac{1}{2}) = h (n + \frac{1}{2})$$
(1.30)

Σχήμα 1.13 Ο χώρος των φάσεων ενός μονοδιάστατου αρμονικού ταλαντωτή. Οι διαδοχικές ελλείψεις αντιστοιχούν σε τιμές του κβαντικού αριθμού, *n*, που διαφέρουν κατά μία μονάδα, άρα σε διαδοχικές κβαντικές καταστάσεις του συστήματος.

Από την Εξ. (1.30) βλέπουμε ότι, για κάθε αύξηση του n κατά μία μονάδα, δηλαδή κατά τη μετάβαση από μία κατάσταση στην αμέσως επόμενή της, η επιφάνεια τής έλλειψης αυξάνει κατά h, ή αλλιώς: $S_{n+1} = S_n + h$, άρα σε κάθε κατάσταση αντιστοιχεί και πάλι επιφάνεια h, και ο αριθμός καταστάσεων ανά μονάδα επιφανείας είναι 1/h, όπως και στην περίπτωση του σωματιδίου μέσα σε μονοδιάστατο πηγάδι δυναμικού απείρου ύψους.

1.7.3 Ένα σωματίδιο σε τρεις διαστάσεις

Κατ' αντιστοιχία με την προηγούμενη παράγραφο, ένα σωματίδιο που κινείται μέσα σε έναν κύβο πλευράς L (ή σε ένα τρισδιάστατο πηγάδι δυναμικού απείρου ύψους και πλευράς L) και έχει ενέργεια μεταξύ 0 και E, θα καταλαμβάνει στον χώρο των θέσεων έναν κύβο με πλευρά L, άρα όγκο L^3 και στον χώρο των ορμών μια σφαίρα με ακτίνα $p = (2mE)^{1/2}$, άρα "όγκο" (4/3)π $(2mE)^{3/2}$. Επομένως, ο "όγκος" που θα καταλαμβάνει στον χώρο των φάσεων θα είναι το γινόμενο των δύο πιο πάνω "όγκων", δηλαδή:

$$L^3 \times (4/3) \pi (2mE)^{3/2} \tag{1.31}$$

ενώ, αν έχει ενέργεια μεταξύ E και $E + \delta E$, στον χώρο των ορμών, το αντιπροσωπευτικό του σημείο θα βρίσκεται μέσα σε έναν σφαιρικό φλοιό με ακτίνα p και πάχος δp (Σχ. 1.14), όπου

$$\delta p = m \, \delta E / (2mE)^{1/2} = (m/2E)^{1/2} \, \delta E \tag{1.32}$$

Ο όγκος αυτού του φλοιού είναι

$$4\pi p^2 \delta p = 4\pi \ (2mE) \ (m/2E)^{1/2} \delta E \tag{1.33}$$

Στον χώρο των φάσεων θα έχει επομένως στη διάθεσή του "όγκο":

$$L^{3} \times 4\pi p^{2} \delta p = 4\pi L^{3} (2Em^{3})^{1/2} \delta E$$
 (1.34)

Και, επειδή είχαμε βρει, στην Παράγρ. 1.6.3 ότι ο αριθμός των καταστάσεων, $\Omega(E)$, που αντιστοιχούν σε ενέργεια μεταξύ E και E + δE, στο τρισδιάστατο πηγάδι δυναμικού, είναι ίσος με (Εξ. 1.20):

 $Ω(E) = (L^3/4π^2 \hbar^3) (2m)^{3/2} E^{1/2} \delta E$ (1.35) έπεται ότι ο "όγκος" που αντιστοιχεί σε κάθε κατάσταση ή, με άλλα λόγια, ο "όγκος" της στοιχειώδους κυψελίδας στο χώρο των φάσεων ισούται με το πηλίκον:

$$\frac{\stackrel{\text{``\acute{oykoc'}``\acute{o}\lambda\omegav \, t\omegav \, katastásewv}}{\text{apiθµ\acute{o}\varsigma \, katastásewv}} = \frac{\left(2Em^3\right)^{1/2} 4\pi L^3 \delta E}{\left(L^3/4\pi^2\hbar^3\right) \left(2m\right)^{3/2} E^{1/2} \delta E} = h^3 \quad (1.36)$$

Σχήμα 1.14 Το θετικό ογδοημόριο του σφαιρικού χώρου των ορμών για ένα σωματίδιο που κινείται σε 3 διαστάσεις, με ορμή από 0 έως *p*. Ο γκρι σφαιρικός φλοιός αντιστοιχεί σε μέτρο της ορμής μεταξύ *p* και *p* + δ*p*.

Μπορεί κανείς, αντιστοίχως, να υπολογίσει ότι, για ένα σωματίδιο που κινείται στον δισδιάστατο χώρο, ο "όγκος" της στοιχειώδους κυψελίδας στον χώρο των φάσεων είναι ίσος με h^2 .

1.7.4 Χώρος των φάσεων για Ν σωματίδια

Εάν, στις παραπάνω περιπτώσεις, έχουμε N σωματίδια αντί για ένα, πολλαπλασιάζουμε τούς N μ-χώρους των φάσεων μεταξύ τους, για να κατασκευάσουμε τον Γ-χώρο των φάσεων, στον οποίο, προφανώς, η στοιχειώδης κυψελίδα, δηλαδή η κάθε κατάσταση, θα καταλαμβάνει "όγκο" h^{N} , h^{2N} , h^{3N} , για μονοδιάστατη, δισδιάστατη και τρισδιάστατη κίνηση αντιστοίχως.

ΚΕΦΑΛΑΙΟ ΙΙ

ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΣΥΣΤΗΜΑΤΩΝ

"Όταν δύο σώματα κείνται εις διαφορετικήν θερμοκρασίαν, το θερμότερον μεταδίδει θερμογόνον εις το ψυχρότερον, μέχρις ού έλθωσιν και τα δύο εις την αυτήν θερμοκρασίαν, και τότε περιέχουν ποσότητας θερμογόνου, αι οποίαι ισορροπούν, ήγουν είναι εις την αυτήν τάσιν, καθότι ενεργούν επί του θερμομέτρου με την αυτήν δύναμιν".

Από το βιβλίο «ΣΤΟΙΧΕΙΑ ΤΗΣ ΠΕΙΡΑΜΑΤΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΤΗΣ ΜΕΤΕΩΡΟΛΟΓΙΑΣ», υπό ΕΜΜΑΝΟΥΗΛ ΨΥΧΑ, ΕΚ ΤΗΣ ΒΑΣΙΛΙΚΗΣ ΤΥΠΟΓΡΑΦΙΑΣ, ΕΝ ΑΘΗΝΑΙΣ, 1840

2.1 Εισαγωγή

Δύο ή περισσότερα συστήματα αλληλεπιδρούν όταν ανταλλάσσουν μακροσκοπικά μετρήσιμη ενέργεια. Έστω ότι ένα σύστημα Α αλληλεπιδρά με το Α΄ και ότι το συνδυασμένο σύστημα A* = A + Α΄ είναι απομονωμένο. Στο σύστημα αυτό, A*, μπορούμε να εφαρμόσουμε το βασικό αίτημα ίσων πιθανοτήτων, ότι δηλαδή όλες οι μικροκαταστάσεις που είναι συμβιβαστές με την ίδια μακροκατάσταση έχουν την ίδια πιθανότητα να είναι κατειλημμένες.

Έστω ότι οι αρχικές ενέργειες των δύο συστημάτων είναι E_i και E_i' , αντίστοιχα. Θα έχουμε, προφανώς,

$$E^* = E_i + E_i'$$
 (2.1)

όπου E^* η συνολική ενέργεια του συνδυασμένου συστήματος, A^* . Αν οι τελικές ενέργειες των δύο υποσυστημάτων, μετά την αλληλεπίδραση, είναι E_f και E_f αντίστοιχα, η συνολική ενέργεια, E^* , θα πρέπει να είναι σταθερή, αφού το συνολικό σύστημα είναι απομονωμένο. Θα ισχύει επομένως:

$$E^* = E_f + E_f' = E_i + E_i'$$
(2.2)

Δημιουργούμε τώρα ένα μικροκανονικό στατιστικό σύνολο, αποτελούμενο από συνδυασμένα συστήματα A*, με ενέργεια E*. Τότε $\langle E_i \rangle$ και $\langle E_i \rangle$ θα συμβολίζουν τις μέσες τιμές των αρχικών ενεργειών των δύο υποσυστημάτων μέσα στο σύνολο και $\langle E_f \rangle$ και $\langle E_f \rangle$ τις μέσες τιμές των τελικών ενεργειών, αντιστοίχως.

Από την αρχή διατήρησης της ενέργειας έχουμε:

$$\Delta \langle E \rangle + \Delta \langle E' \rangle = 0 \tag{2.3}$$

2.2 Θερμική αλληλεπίδραση

Στην απλούστερη δυνατή περίπτωση αλληλεπίδρασης θεωρούμε ότι όλες οι εξωτερικές παράμετροι (π.χ. V, B, βλ. Παράγρ. 1.2.7) παραμένουν αμετάβλητες. Όπως είδαμε στο προηγούμενο κεφάλαιο (Παράγρ. 1.2.7), αυτό σημαίνει ότι οι ενεργειακές στάθμες των συστημάτων δεν μεταβάλλονται. Τα συστήματα απλώς θα ανταλλάσσουν θερμική ενέργεια μεταξύ τους. Η μεταβολή, $\Delta < E >$, τής μέσης ενέργειας του κάθε συστήματος ονομάζεται σε αυτήν την περίπτωση θερμότητα, συμβολίζεται με Q και μπορεί να είναι θετική ή αρνητική. Έχουμε επομένως:

$$\Delta \langle E \rangle = Q, \quad \Delta \langle E' \rangle = Q' \quad \text{kat} \quad Q + Q' = 0$$
$$\acute{\eta} \quad Q = -Q' \tag{2.5}$$

Η πιο πάνω σχέση μας λέει ότι η θερμότητα που απορροφάται από το ένα σύστημα ισούται με τη θερμότητα που αποβάλλεται από το άλλο. Όταν Q < 0, λέμε ότι το σύστημα αποβάλλει θερμότητα και επομένως ψύχεται, ενώ όταν Q > 0, λέμε ότι απορροφά θερμότητα και επομένως θερμαίνεται κατά την ανταλλαγή αυτή. Το σύστημα που αποβάλλει θερμότητα λέμε ότι είναι θερμότερο, ενώ εκείνο που απορροφά είναι ψυχρότερο.

Ο πρώτος που διέκρινε και εδραίωσε τη διαφορά μεταξύ θερμότητας και θερμοκρασίας ήταν ο βρετανός καθηγητής του Πανεπιστημίου της Γλασκώβης, Joseph Black (1728 – 1799), η φύση όμως της θερμότητας παρέμενε ένα αίνιγμα για μεγάλο χρονικό διάστημα. Όπως διαβάζουμε στο [6]: Whether heat was an indestructible substance, called the "caloric", that moved from one substance to another or whether it was a form of microscopic motion, continued to be debated as late as the 19th century. Finally it became clear that heat was a form of energy that could be transformed to other forms.....⁶

Εδώ αξίζει να παραθέσουμε ένα μέρος από την εισαγωγή του περί θερμότητος κεφαλαίου του βιβλίου του Ε. Ψύχα (στο οποίο αναφερθήκαμε και στην αρχή αυτού του κεφαλαίου). Η πρώτη σελίδα του κεφαλαίου απεικονίζεται ολόκληρη στο Παράρτημα ΙΙ και έχει μεγάλο ενδιαφέρον, γιατί είναι χαρακτηριστικό των αντιλήψεων περί θερμότητας στα μέσα του 19^{ου} αιώνα. Το κεφάλαιο ξεκινάει ως εξής:

"Τα σώματα προξενούσιν εις τα αισθητήριά μας αίσθημά τι ιδιαίτερον, το οποίον ονομάζουμεν θερμότητα..... είναι δε τοιαύτης φύσεως, ώστε δεν δυνάμεθα να την αποδώσωμεν εις αυτήν την ύλην των σωμάτων Υπάρχει λοιπόν ενεργόν τι, διάφορον της κυρίως ουσίας των σωμάτων, το οποίον εξερχόμενον από την μάζαν αυτών διαπερά τας μεγαλυτέρας αποστάσεις, και αποτελεί συνεχή συγκοινωνία μεταξύ ημών και εκείνων. Τούτο δε το ενεργούν, το οποίον είναι η αιτία του γινόμενου αισθήματος ωνομάζετο διαφόρως μέχρι της μεταρρυθμίσεως της χημικής ονοματολογίας, ήτις έγινε παρά των Κ.Κ. Λαβοϊζιέρου, Βερθολέτου, Μορβώ και Φουρκροά, οίτινες εκ συμφώνου το ωνόμασαν θερμογόνον, ή θερμαντικόν (Calorique)".

Το κυριότερο χαρακτηριστικό της θερμικής αλληλεπίδρασης είναι ότι οι στάθμες τού συστήματος παραμένουν αμετάβλητες. Πράγματι, όπως τονίσαμε πιο πάνω, οι ενεργειακές στάθμες εξαρτώνται μόνον από την τιμή των εξωτερικών παραμέτρων. Όταν το σύστημα απορροφήσει θερμότητα, η αύξηση της μέσης ενέργειάς του οφείλεται στην αύξηση του πληθυσμού των υψηλότερων ενεργειακών σταθμών και μείωση του πληθυσμού των κατώτερων ενεργειακών σταθμών, ενώ η ελάττωση της μέσης ενέργειας οφείλεται στην αντίστροφη διαδικασία.

Ένα πρώτο παράδειγμα θερμικής αλληλεπίδρασης απεικονίζεται στο Σχ. 2.1. Το σύνθετο σύστημα (1 + 2) είναι απομονωμένο από το περιβάλλον του και αποτελείται από δύο δοχεία, 1 και 2, γεμάτα με αέριο, που διαχωρίζονται με ένα τοίχωμα, σταθερό αλλά διαθερμικό, πράγμα που σημαίνει ότι μπορούν να ανταλλάσσουν μεταξύ τους μόνο θερμική ενέργεια.

⁶ Το αν η θερμότητα ήταν μια αδιάφθορη ουσία, αποκαλούμενη «θερμογόνο», που μεταφερόταν από ένα υλικό σε ένα άλλο, ή ήταν μια μορφή μικροσκοπικής κίνησης, εξακολουθούσε να συζητείται μέχρι τον 19° αιώνα. Τελικά, έγινε σαφές ότι η θερμότητα ήταν μια μορφή ενέργειας που μπορούσε να μετασχηματιστεί...

Ένα δεύτερο παράδειγμα θερμικής αλληλεπίδρασης απεικονίζεται στο Σχ. 2.2, όπου βλέπουμε το αποτέλεσμα της θερμικής αλληλεπίδρασης σε ένα σύστημα με δύο ενεργειακές στάθμες, αποτελούμενο από ένα σωματίδιο με σπιν 1/2, τοποθετημένο μέσα σε μαγνητικό πεδίο εντάσεως Β. Ρ+ συμβολίζει την πιθανότητα να βρεθεί το σύστημα στην κατάσταση με ενέργεια Ε+ (σπιν παράλληλο στο μαγνητικό πεδίο) και Ρ- συμβολίζει την πιθανότητα να βρεθεί το σύστημα στην κατάσταση με ενέργεια Ε- (σπιν αντιπαράλληλο στο μαγνητικό πεδίο). Η αργική κατάσταση ισορροπίας (a) αντιστοιχεί στην περίπτωση όπου το σωματίδιο (σύστημα A) βρίσκεται ενσωματωμένο μέσα σε ένα στερεό. Μετά, το στερεό σώμα βυθίζεται μέσα σε θερμότερο υγρό και το σωματίδιο απορροφά ενέργεια από το σύστημα Α΄, που αποτελείται από το στερεό και το υγρό, και έστω ότι απορροφάει ποσότητα θερμότητας 0,6 μ. Στο (b) απεικονίζεται η τελική κατάσταση, μετά την απορρόφηση της θερμότητας Q. Έχουμε $\pi\rho\dot{\alpha}\gamma\mu\alpha\tau\iota^{7}$:

$$\langle E_{\rm i} \rangle = 0.9 \; (-\mu_{\rm o}B) + 0.1(\mu_{\rm o}B) = -0.8 \; \mu_{\rm o}B$$

$$\langle E_{\rm f} \rangle = 0,4 \ (-\mu_{\rm o}B) + 0,6(\mu_{\rm o}B) = +0,2 \ \mu_{\rm o}B,$$

άρα: $\Delta < E > = < E_i > - < E_i > = Q = + 0,6 μ_0 B.$

2.3 Αδιαβατική αλληλεπίδραση

Σχήμα 2.2 Το αποτέλεσμα θερμικής αλληλεπίδρασης σε ένα απλό σύστημα που αποτελείται από ένα σωματίδιο με σπιν ½, τοποθετημένο μέσα σε μαγνητικό πεδίο εντάσεως *B*. Το σωματίδιο απορροφά από το περιβάλλον του θερμότητα $Q = 0,6 \ \mu_0 B$. Οι ενεργειακές στάθμες παραμένουν αμετάβλητες, αλλά οι πιθανότητες κατάληψής τους μεταβάλλονται, έτσι ώστε η μέση ενέργεια να αυξηθεί κατά 0,6 $\mu_0 B$. (a) Αρχική κατάσταση ισορροπίας και (b) Τελική κατάσταση ισορροπίας, μετά την απορρόφηση θερμότητας $Q = 0,6 \ \mu_0 B$.

Μπορούμε να μονώσουμε θερμικά δύο ή περισσότερα συστήματα μεταξύ τους, π.χ. βάζοντάς τα πολύ μακριά το ένα από το άλλο ή χωρίζοντάς τα με ένα τέλειο μονωτικό υλικό, έτσι ώστε να μην μπορούν να ανταλλάξουν θερμική ενέργεια. Οποιαδήποτε μεταβολή συμβαίνει σε ένα σύστημα θερμικά απομονωμένο από τα άλλα συστήματα ονομάζεται αδιαβατική μεταβολή.

Δύο συστήματα θερμικά μονωμένα μεταξύ τους μπορούν να αλληλεπιδράσουν μόνο με τη μεταβολή μίας ή περισσοτέρων παραμέτρων. Μιλάμε τότε για αδιαβατική αλληλεπίδραση. Η μεταβολή, θετική ή αρνητική, της μέσης ενέργειας ενός αδιαβατικά μονωμένου συστήματος ονομάζεται μακροσκοπικό έργο (ή απλώς έργο) και συμβολίζεται με w. Αν το w είναι θετικό (αν δηλαδή η μέση ενέργεια του συστήματος αυξάνει), λέμε ότι προσφέρεται έργο στο σύστημα ή το σύστημα καταναλίσκει έργο, ενώ αν το w είναι αρνητικό, λέμε ότι το σύστημα προσφέρει ή παράγει έργο. Σε μια αδιαβατική αλληλεπίδραση δύο συστημάτων, Α και Α΄, θα έχουμε λοιπόν:

$$w = \Delta \overline{E}$$
 Kal $w' = \Delta \overline{E}'$ (2.6)

Για το συνολικό (μονωμένο) σύστημα θα έχουμε και πάλι $\Delta \overline{E}^* = 0$. Άρα w + w' = 0,

⁷ Τη μέση τιμή μιας ποσότητας, *E*, τη συμβολίζουμε εδώ, αδιακρίτως, άλλοτε με τη μορφή $\langle E \rangle$ και άλλοτε ως \overline{E} .

οπότε και w = -w'. Αυτό σημαίνει ότι, αν δύο συστήματα αλληλεπιδρούν αδιαβατικά μεταξύ τους και το συνολικό σύστημα είναι μονωμένο από το περιβάλλον του, το έργο που προσφέρεται από το ένα σύστημα καταναλίσκεται από το άλλο.

Στο Σχ. 2.3 εικονίζεται σχηματικά ένα σύνθετο σύστημα που χωρίζεται σε δύο υποσυστήματα (δοχεία με αέριο 1 και 2) με ένα κινητό μονωτικό τοίχωμα μεταξύ τους. Τα δύο υποσυστήματα δεν μπορούν να ανταλλάσσουν μεταξύ τους ενέργεια, μπορεί όμως να μεταβάλλεται ο όγκος του καθενός, ενώ ο όγκος του σύνθετου συστήματος παραμένει σταθερός.

Σχήμα 2.3 Το σύνθετο σύστημα (1 + 2) είναι μονωμένο από το περιβάλλον του και αποτελείται από δύο υποσυστήματα 1 και 2, που διαχωρίζονται με ένα κινητό αλλά μονωτικό τοίχωμα. *Ε_i*, *V_i* και *N_i* συμβολίζουν την ενέργεια, τον όγκο και τον αριθμό σωματιδίων του κάθε συστήματος, i.

Η περίπτωση της αδιαβατικής αλληλεπίδρασης είναι πιο πολύπλοκη από τη θερμική. Μεταβολή των εξωτερικών παραμέτρων σημαίνει, υποχρεωτικά, μεταβολή των ενεργειακών σταθμών του συστήματος, εξαιτίας της οποίας μπορεί να συμβεί, ή μπορεί και να μην συμβεί, μεταβολή της πιθανότητας κατάληψης της κάθε στάθμης, ανάλογα με τον τρόπο με τον οποίο γίνεται η διαδικασία.

Αν οι πιθανότητες μείνουν αμετάβλητες, τότε η μέση ενέργεια του συστήματος θα μεταβληθεί εξαιτίας της μεταβολής του ύψους των σταθμών του, αν όμως μεταβληθούν και οι πιθανότητες, τότε η μέση ενέργεια του συστήματος θα μεταβληθεί, αφενός επειδή αλλάζει η ενέργεια των σταθμών του και αφετέρου επειδή αλλάζει η πιθανότητα να καταληφθεί μια συγκεκριμένη στάθμη.

Στο Σχ. 2.4 απεικονίζεται το αποτέλεσμα της αδιαβατικής αλληλεπίδρασης σε ένα σύστημα με δύο ενεργειακές στάθμες, αποτελούμενο από ένα σωματίδιο με σπιν ½ και μαγνητική ροπή μ_0 , που είναι τοποθετημένο μέσα σε μαγνητικό πεδίο εντάσεως *B*. Το σωματίδιο είναι θερμικά απομονωμένο από το περιβάλλον. Υποθέτουμε τώρα ότι η ένταση του μαγνητικού πεδίου μεταβάλλεται, με τη βοήθεια ηλεκτρομαγνήτη, από την αρχική τιμή, *B*, στην τελική τιμή, *B*₁ > *B*. Στο (*a*) απεικονίζεται η αρχική κατάσταση, στο (*b*) η τελική όταν οι πιθανότητες κατάληψης της κάθε στάθμης μένουν αμετάβλητες, ενώ στο (*c*) πάλι η τελική, όταν όμως οι πιθανότητες κατάληψης της κάθε στάθμης μεταβληθούν.

Σχήμα 2.4 Το αποτέλεσμα αδιαβατικής αλληλεπίδρασης στο σύστημα του ενός σωματιδίου του Σχ. 2.2. Οι ενεργειακές στάθμες του συστήματος (*a*) μεταβάλλονται, ενώ οι πιθανότητες κατάληψής τους υπάρχει περίπτωση να μείνουν αμετάβλητες (*b*) ή να μεταβληθούν και αυτές (*c*).

Στην περίπτωση (b) το έργο που προσφέρεται στο σύστημα είναι ίσο με

$$\Delta \overline{E} = w = -0.8 \ \mu_0 \left(B_1 - B \right)$$

ενώ, στην περίπτωση (c) όπου μεταβάλλονται και οι πιθανότητες κατάληψης της κάθε στάθμης με κάποιο αυθαίρετο τρόπο, το έργο που προσφέρεται είναι ίσο με

$$\Delta E = w = -0.4 \ \mu B_1 + 0.8 \ \mu B$$

Θα δούμε αργότερα πώς πρέπει να γίνει η διαδικασία της μεταβολής, ώστε να μην μεταβληθούν οι πιθανότητες κατάληψης της κάθε στάθμης σε μια αδιαβατική αλληλεπίδραση.

2.4 Γενική αλληλεπίδραση

Στην πιο γενική περίπτωση, ούτε τα συστήματα είναι αδιαβατικά μονωμένα, ούτε οι εξωτερικές παράμετροι διατηρούνται σταθερές. Αυτή είναι η περίπτωση της γενικής αλληλεπίδρασης. Μια περίπτωση γενικής αλληλεπίδρασης απεικονίζεται στο Σχ. 2.3, εάν θεωρήσουμε ότι το τοίχωμα είναι, όχι μόνο κινητό, αλλά και διαθερμικό. Η αύξηση της μέσης ενέργειας, \overline{E} , ενός συστήματος γράφεται, στην περίπτωση αυτή, ως:

$$\Delta \overline{E} = w + Q \tag{2.7}$$

όπου το w αντιπροσωπεύει την αύξηση της ενέργειας του συστήματος Α λόγω της μεταβολής των εξωτερικών παραμέτρων του, ενώ το Q αντιπροσωπεύει την υπόλοιπη αύξηση της μέσης ενέργειάς του.

Η σχέση αυτή αποτελεί τον Πρώτο Θερμοδυναμικό Νόμο⁸, που δεν είναι τίποτε άλλο από μια διατύπωση της γνωστής μας Αρχής Διατηρήσεως της Ενέργειας.

Σύμφωνα με λοιπόν με τον Πρώτο Θερμοδυναμικό Νόμο:

Η αύξηση της μέσης ενέργειας ενός συστήματος είναι ίση με τη θερμότητα που απορροφά το σύστημα συν το έργο που του προσφέρουμε.

Η μέση ενέργεια είναι μια συνάρτηση της κατάστασης του συστήματος και μόνο, και δεν εξαρτάται από τον τρόπο με τον οποίο το σύστημα έφτασε στην κατάσταση αυτή. Αυτό σημαίνει ότι, για μια μεταβολή από μια μακροκατάσταση 1 σε μια μακροκατάσταση 2, η μεταβολή της μέσης ενέργειας, $\Delta \overline{E}$, είναι ίση με τη διαφορά των δύο ενεργειών, E_1 και E_2 , που χαρακτηρίζουν τις δύο καταστάσεις και είναι ανεξάρτητη από τον τρόπο με τον οποίο έγινε η μεταβολή. Το ίδιο ισχύει και για το άθροισμα w + Q, όχι όμως για τα w και Qξεχωριστά. Με άλλα λόγια, τα Q και w δεν είναι συναρτήσεις της κατάστασης του συστήματος. Δεν υπάρχει δηλαδή συνάρτηση "θερμότητα συστήματος" ούτε "έργο συστήματος", έτσι ώστε, όταν το σύστημα μεταβαίνει από μια κατάσταση σε μια άλλη, τα μεγέθη αυτά να μεταβάλλονται. Δεν υπάρχει λοιπόν ούτε διατήρηση έργου ούτε διατήρηση θερμότητας. Έργο και θερμότητα είναι απλώς δύο διαφορετικές μορφές μεταφοράς ενέργειας και εξαρτώνται από τον τρόπο με τον οποίο έγινε η μεταβολή.

Η διαφορά ανάμεσα στη θερμότητα και το έργο είναι ότι, ενώ το έργο μεταφέρεται μέσω των μακροσκοπικά παρατηρήσιμων παραμέτρων (π.χ. μετακίνηση εμβόλου και άρα μεταβολή του όγκου), η θερμότητα μεταφέρεται απ' ευθείας με τη μεταβίβαση ενέργειας ανάμεσα στις μικροσκοπικές παραμέτρους (π.χ. κινητικής ενέργειας μορίων). Στην

⁸ Προσοχή: Πρόκειται για Νόμο και όχι Αξίωμα, όπως εσφαλμένα διαβάζει κανείς σε ορισμένα, βιβλία Θερμοδυναμικής (συνήθως Ελληνικά ή Ελληνικές μεταφράσεις ξενόγλωσσων διδακτικών βιβλίων). Ο Νόμος αυτός είναι απλώς το αποτέλεσμα της Αρχής Διατηρήσεως της Ενέργειας και όχι μια καινούργια αρχή.

πραγματικότητα, η θερμότητα είναι μη μακροσκοπικά μεταφερόμενο έργο, γιατί οφείλεται σε απ' ευθείας ενεργειακές ανταλλαγές μεταξύ των μορίων των συστημάτων, είναι δηλαδή το άθροισμα πολλών μικρών ατομικών έργων άτακτα κατανεμημένων.

Παρατήρηση: Στη Μηχανική μαθαίνουμε ότι το έργο είναι ανεξάρτητο από τον δρόμο. Αυτό συμβαίνει γιατί δεχόμαστε ότι δεν υπάρχει μεταφορά θερμότητας, με άλλα λόγια υποθέτουμε εξ αρχής ότι Q = 0, άρα το w στην περίπτωση αυτή είναι ίσο με το $\Delta \overline{E}$, που είναι ανεξάρτητο του δρόμου. Όταν όμως θεωρήσουμε ότι υπάρχει τριβή, οπότε $Q \neq 0$, το έργο δεν είναι πια ίσο με $\Delta \overline{E}$ αλλά με $\Delta \overline{E} + Q$ και εξαρτάται, βέβαια, από τον τρόπο με τον οποίο έγινε η μεταβολή.

Παράδειγμα 1 - Μετατροπή έργου σε θερμότητα. Ως παράδειγμα αυτού του τύπου μπορούμε να αναφέρουμε τη συμπίεση ενός αερίου με τη μετακίνηση ενός εμβόλου. Με τον τρόπο αυτόν προσφέρουμε έργο στο σύστημα, με αποτέλεσμα το αέριο να θερμαίνεται, γιατί, καθώς το έμβολο προχωράει, τα μόρια του αερίου με τα οποία συγκρούεται επιστρέφουν μετά την κρούση με μεγαλύτερη ταχύτητα, άρα και μεγαλύτερη κινητική ενέργεια. Αντίθετα, όταν τραβάμε το έμβολο, τα μόρια του αερίου μετά την κρούση με μικρότερη κινητική ενέργεια, και το αέριο ψύχεται.

Παράδειγμα 2 - Μεταφορά θερμότητας. Απ' ευθείας μεταφορά θερμότητας από ένα σύστημα σε ένα άλλο έχουμε όταν φέρουμε σε επαφή δύο συστήματα 1 και 2 με διαφορετικές θερμοκρασίες⁹. Αν το σύστημα 1 είναι θερμότερο από το 2, τότε τα μόρια που φεύγουν από το 1 και πάνε στο 2 έχουν μεγαλύτερη κινητική ενέργεια, κατά μέσον όρο, την οποία και μεταφέρουν στο 2, αυξάνοντας έτσι τη μέση του ενέργεια, οπότε το σύστημα 2 θερμαίνεται ενώ το 1 ψύχεται.

2.5 Ειδικές περιπτώσεις μεταβολών

Θα περιγράψουμε στη συνέχεια διάφορες περιπτώσεις μεταβολών.

2.5.1 Κυκλική μεταβολή

Σε μια κυκλική μεταβολή το σύστημα επανέρχεται στην αρχική του κατάσταση μετά το πέρας της μεταβολής. Εφόσον η μέση ενέργεια είναι συνάρτηση της κατάστασης του συστήματος, θα έχουμε $E_i = E_{f,i}$, άρα $\Delta \overline{E} = 0$ και, σύμφωνα με τον πρώτο Θερμοδυναμικό Νόμο, Q = -w, επομένως όλο το επιπλέον έργο μετατρέπεται σε θερμότητα.

2.5.2 Απειροστή μεταβολή

Όταν η τελική κατάσταση διαφέρει ελάχιστα από την αρχική, λέμε ότι έχουμε απειροστή μεταβολή. Τότε η σχέση διατήρησης της ενέργειας γίνεται

$$\mathrm{d}E = \mathrm{d}w + \mathrm{d}Q \tag{2.8}$$

που αποτελεί την απειροστή μορφή του πρώτου Θερμοδυναμικού Νόμου. Εδώ dE είναι η απειροστή μεταβολή της ενέργειας, ενώ τα dw και dQ είναι απειροστές ποσότητες έργου και θερμότητας και όχι μεταβολές. Το d, με την πλάγια διαγράμμιση, σημαίνει ότι δεν πρόκειται για ολικά διαφορικά (βλ. Παράρτημα VII, σελ. 118), με άλλα λόγια ότι το ολοκλήρωμα των dw και dQ, από μια κατάσταση 1 σε μια κατάσταση 2, δεν ισούται με Q_2 – Q_1 και $w_2 - w_1$, αντιστοίχως, δηλαδή ότι

$$\int_{1}^{2} dw \neq w_{2} - w_{1} \qquad \kappa \alpha i \qquad \int_{1}^{2} dQ \neq Q_{2} - Q_{1} \qquad (2.9)$$

2.5.3 Αντιστρεπτή μεταβολή

Μια μεταβολή είναι αντιστρεπτή όταν, οποιαδήποτε στιγμή, μπορούμε να αντιστρέψουμε τη φορά της με μια απειροστή μεταβολή των εξωτερικών παραμέτρων. Για να συμβεί αυτό

⁹ Η έννοια της θερμοκρασίας, σύμφωνα με τη Στατιστική Μηχανική, θα οριστεί στο Κεφάλαιο ΙΙΙ.
θα πρέπει, κατά τη διάρκεια της μεταβολής, η κατάσταση του συστήματος να είναι σχεδόν στάσιμη, με άλλα λόγια θα πρέπει το σύστημα να βρίσκεται κάθε στιγμή στην κατάσταση ισορροπίας. Στην πράξη, αυτό σημαίνει ότι η μεταβολή πρέπει να γίνεται πολύ αργά σε σχέση με τον χρόνο αποκατάστασης της ισορροπίας. Μια αυθόρμητη μεταβολή είναι εν γένει μη αντιστρεπτή, όπως θα δούμε πιο κάτω.

Σε μια αντιστρεπτή κυκλική μεταβολή δεν θα πρέπει να παρατηρηθεί καμία μεταβολή στο περιβάλλον. Στην αντίθετη περίπτωση η μεταβολή είναι μη αντιστρεπτή.

Ένα πείραμα αντιστρεπτής και μη αντιστρεπτής εκτόνωσης και συμπίεσης αερίου

Έστω ότι, στο παράδειγμα του Σχ. 2.5a, το έμβολο διατηρείται στη θέση του με πολλά μικρά βαράκια. Στην ισορροπία, η πίεση του συμπιεσμένου αερίου ισούται με την πίεση που οφείλεται στα βάρη συν την ατμοσφαιρική πίεση. Αν αρχίζουμε να αφαιρούμε ένα-ένα τα βαράκια, τοποθετώντας τα στα διπλανά ράφια, η εξωτερική πίεση μειώνεται ελάχιστα κάθε φορά, ο όγκος αυξάνει επίσης ελάχιστα και η ισορροπία αποκαθίσταται σχεδόν αμέσως. Επαναλαμβάνοντας τη διαδικασία αυτή ωσότου εξαντληθούν όλα τα βαράκια, θα φθάσουμε στη δεύτερη εικόνα του σχήματος, όπου η πίεση που επικρατεί μέσα στο αέριο θα είναι ίση μόνο με την ατμοσφαιρική και όλα τα βαράκια θα βρίσκονται τοποθετημένα στα πλαϊνά ράφια (Σχ. 2.5b).

Εδώ πρέπει να τονίσουμε το γεγονός ότι αν, κατά τη διάρκεια της διαδικασίας, προσθέσουμε πίσω ένα βαράκι, κάποια στιγμή, η εξωτερική πίεση θα αυξηθεί ελάχιστα, ο όγκος θα μειωθεί επίσης ελάχιστα και η ισορροπία θα αποκατασταθεί και πάλι σχεδόν αμέσως. Εφόσον λοιπόν η όλη διαδικασία έγινε πολύ αργά, μπορούμε να θεωρήσουμε ότι το σύστημα ήταν συνέχεια σε στατιστική ισορροπία και ότι η εκτόνωση ήταν αντιστρεπτή. Για να επαναφέρουμε το σύστημα στην αρχική του κατάσταση, αρκεί να αντιστρέψουμε τη διαδικασία, τοποθετώντας τα βάρη πάνω στο έμβολο διαδοχικά, χωρίς (πρακτικά) κατανάλωση έργου. Στο πέρας της διαδικασίας αυτής το αέριο και το περιβάλλον του θα βρίσκονται στην αρχική τους κατάσταση (Σχ. 2.5c), άρα η διαδικασία ήταν κυκλική αλλά και αντιστρεπτή, αφού δεν παρατηρείται καμία μεταβολή στο περιβάλλον του συστήματος.

Σχήμα 2.5 Αντιστρεπτή εκτόνωση αερίου από την κατάσταση (a) στην κατάσταση (b) και αντιστρεπτή συμπίεση και πάλι στην κατάσταση (c).

Μπορούμε τώρα να χρησιμοποιήσουμε την εκτόνωση του ίδιου συστήματος για να απεικονίσουμε μια μη αντιστρεπτή μεταβολή. Θεωρούμε ότι έχουμε το ίδιο ακριβώς σύστημα με πριν, αλλά με όλα τα βάρη συνενωμένα σε ένα μεγάλο βαρίδι, Α (Σχ. 2.6a). Αν αφαιρέσουμε το Α από το έμβολο και το τοποθετήσουμε στο διπλανό ράφι, η εξωτερική πίεση μειώνεται ξαφνικά και το αέριο εκτονώνεται απότομα, με άτακτη κίνηση των μορίων του, δημιουργώντας στροβίλους. Κατά τη διάρκεια της εκτόνωσης δεν επικρατούν βέβαια συνθήκες ισορροπίας και η πίεση μέσα στο αέριο είναι πάντα μεγαλύτερη από την εξωτερική πίεση.

Σχήμα 2.6 Μη αντιστρεπτή εκτόνωση αερίου από την κατάσταση (a) στην κατάσταση (b) και συμπίεση και πάλι στην κατάσταση (c).

Όταν τελικά το αέριο ισορροπήσει στη νέα του θέση (Σχ. 2.6b), η πίεση μέσα στο αέριο θα είναι και πάλι ίση με την ατμοσφαιρική πίεση. Για να το επαναφέρουμε στην αρχική του κατάσταση, θα πρέπει να μετακινήσουμε το βάρος B από το επάνω ράφι και να το τοποθετήσουμε πάνω στο έμβολο. Κατά τη διάρκεια της συμπίεσης, η οποία και πάλι θα γίνει σε πολύ σύντομο χρονικό διάστημα, δεν θα επικρατούν συνθήκες ισορροπίας μέσα στο αέριο. Και όταν το αέριο φθάσει στην αρχική κατάσταση, θα έχει συμβεί μια σημαντική μεταβολή στο περιβάλλον. Το βάρος B θα βρίσκεται πάνω στο έμβολο και όχι στο επάνω ράφι (Σχ. 2.6c) και για να το επαναφέρουμε στην αρχική του θέση, ανυψώνοντάς το, θα πρέπει να καταναλώσουμε έργο ίσο με τη διαφορά της δυναμικής ενέργειας του βάρους ανάμεσα στις δύο θέσεις. Η μεταβολή ήταν επομένως κυκλική μεν για το αέριο, όχι όμως και αντιστρεπτή.

2.5.4 Θεωρητική μελέτη μη αντιστρεπτής εκτόνωσης και συμπίεσης αερίου

Θεωρούμε ένα αέριο απομονωμένο από το περιβάλλον του και περιορισμένο μέσα σε έναν αρχικό όγκο V_i (Σχ. 27) και έστω ότι αυξάνουμε απότομα τον όγκο του σε V_f . Ο αριθμός των προσιτών καταστάσεων του κάθε μορίου είναι, όπως είδαμε, ανάλογος του όγκου που μπορεί να καταλάβει το μόριο αυτό. Είχαμε πράγματι βρει ότι ο αριθμός καταστάσεων μέσα στο ενεργειακό διάστημα δ*E* δίνεται από το

$$\Omega(V, E) = C V E^{1/2} \delta E \tag{2.10}$$

για κάθε σωματίδιο και

$$\Omega(N, V, E) = C V^{N} E^{3N/2} \delta E \qquad (2.11)$$

για ένα σύνολο N σωματιδίων, όπου C μια σταθερά, ανεξάρτητη από την ενέργεια και τον όγκο. Ο λόγος επομένως του αριθμού των τελικών προς τον αριθμό των αρχικών καταστάσεων για N μόρια θα δίνεται από το

$$\frac{\Omega_f(N)}{\Omega_i(N)} = \left(\frac{V_f}{V_i}\right)^N \tag{2.12}$$

ή, αλλιώς,
$$\Omega_f(N) = \Omega_i(N) \left(\frac{V_f}{V_i}\right)^N$$
(2.13)

Βλέπουμε λοιπόν ότι, ακόμη και στην περίπτωση όπου ο τελικός όγκος είναι ελάχιστα μεγαλύτερος από τον αρχικό, έχουμε $\Omega_{\rm f} >> \Omega_{\rm i}$ για μακροσκοπικά συστήματα, δοθέντος ότι το N είναι της τάξης του 10^{23} . Με άλλα λόγια, ακόμη και για μια ελάχιστη αύξηση του όγκου ενός μακροσκοπικού δοχείου γεμάτου με αέριο, ο αριθμός των τελικών προσιτών καταστάσεων του συστήματος είναι εξαιρετικά μεγαλύτερος από τον αριθμό των αρχικών.

Αν θυμηθούμε όμως την Εξ. (1.8), που μας δίνει την πιθανότητα να βρεθεί ένα σύστημα σε μια μακροκατάσταση που αντιστοιχεί σε αριθμό μικροκαταστάσεων Ω_r ,

$$P_{\rm r} = \Omega_{\rm r} / \Omega \tag{2.14}$$

όπου Ω είναι ο συνολικός αριθμός μικροκαταστάσεων, εύκολα μπορούμε να δούμε ότι ο λόγος των πιθανοτήτων να συμβούν δύο μακροκαταστάσεις (1) και (2) που αντιστοιχούν σε συνολικό αριθμό μικροκαταστάσεων Ω_1 και Ω_2 αντιστοίχως, θα δίνεται από το πηλίκον

$$P_1/P_2 = \Omega_1/\Omega_2 \tag{2.15}$$

Ας υποθέσουμε λοιπόν ότι το αέριο είναι αρχικά περιορισμένο στο αριστερό τμήμα του δοχείου, όπως στο Σχ. 2.7*a*, και ότι στη συνέχεια αφαιρούμε το πέτασμα. Έστω ότι, αμέσως μόλις απομακρυνθεί το πέτασμα και αυξηθεί ο διαθέσιμος όγκος, τα μόρια παραμένουν στο πρώτο κομμάτι του δοχείου με όγκο V_i . Αυτή η κατάσταση δεν θα είναι κατάσταση ισορροπίας, γιατί θα υπάρχουν μόνον Ω_i καταστάσεις κατειλημμένες, ενώ οι υπόλοιπες $\Omega_f - \Omega_i$ θα είναι κενές. Εφόσον το σύστημα δεν ανταλλάσσει ενέργεια με το περιβάλλον του, στην κατάσταση ισορροπίας θα πρέπει όλες οι προσιτές καταστάσεις του να έχουν την ίδια πιθανότητα καταλήψεως. Έτσι, η κατανομή των μορίων του αερίου αλλάζει με τον χρόνο, ωσότου το σύστημα φθάσει στην τελική ισορροπία, με ίση πιθανότητα κατάληψης όλων των Ω_f προσιτών καταστάσεών του (Σχ. 2.7*b*). Στην κατάσταση αυτή, που θα είναι η κατάσταση ισορροπίας του, το κάθε μόριο του αερίου θα έχει την ίδια πιθανότητα να βρίσκεται οπουδήποτε μέσα στον όγκο V_f ή, με άλλα λόγια, το αέριο θα είναι ομοιόμορφα κατανεμημένο μέσα σε ολόκληρο το δοχείο.

Για να επανέλθει το σύστημα στην αρχική του κατάσταση από μόνο του, χωρίς προσφορά έργου, θα πρέπει να περιμένουμε ώστε κάποια στιγμή να βρεθεί, από μόνο του, στις Ω_i αρχικές του καταστάσεις ή, με άλλα λόγια, να βρεθούν όλα τα μόρια του αερίου μέσα στον αρχικό όγκο V_i (Σχ. 2.7c), και τότε να ξαναφέρουμε το πέτασμα στην αρχική του θέση.

Σχήμα 2.7 Σχηματική εικόνα μορίων αερίου μέσα σε δοχείο. Το αέριο εκτονώνεται αρχικά από τον αρχικό όγκο V_i (a) στον τελικό όγκο V_i. (b). Για να συμπιεστεί το αέριο και πάλι στον αρχικό του όγκο, χωρίς κατανάλωση έργου, θα πρέπει να περιμένουμε να συγκεντρωθεί όλο στο πρώτο τμήμα του δοχείου με όγκο V_i, από μόνο του (c), πράγμα εξαιρετικά απίθανο.

Όμως, σύμφωνα με τις Εξ. (2.13) και (2.15), η πιθανότητα να συμβεί κάτι τέτοιο είναι:

$$\frac{P_1}{P_f} = \frac{\Omega_i(N)}{\Omega_f(N)} = \left(\frac{V_i}{V_f}\right)^N$$
(2.16)

επομένως απειροελάχιστη για ένα μακροσκοπικό σύστημα. Για το λόγο αυτό μια τέτοια μεταβολή, όπως και όλες οι αυθόρμητες, δεν είναι αντιστρεπτή όταν το N είναι ένας πολύ μεγάλος αριθμός, όταν δηλαδή αντιστοιχεί σε ένα μακροσκοπικό σύστημα. Αν όμως το N ήταν μικρό, η πιθανότητα να αντιστραφεί μια τέτοια μεταβολή δεν θα ήταν αμελητέα.

Έστω, π.χ. ότι $V_i = V_f/2$. Τότε, για 2 μόρια, η πιθανότητα αυτή είναι ίση με 1/4, για 3 μόρια είναι ίση με 1/8, για 4 ίση με 1/16, κ.ο.κ.

Η έννοια τής μη αντιστρεπτότητας στις αυθόρμητες μεταβολές δεν είναι επομένως συνέπεια μιας νέας αρχής της φύσης, αλλά οφείλεται απλώς στον μεγάλο αριθμό των σωματιδίων που αποτελούν ένα μακροσκοπικό σύστημα.

2.5.5 Παραδείγματα αντιστρεπτών και μη αντιστρεπτών μεταβολών στη φύση (και όχι μόνον)

Τα σχήματα που ακολουθούν δείχνουν χαρακτηριστικά παραδείγματα αντιστρεπτών και μη αντιστρεπτών μεταβολών

Σχήμα 2.8 Οι φυσικές αλλαγές φάσης: τήξη, εξάτμιση, εξάχνωση, στερεοποίηση, είναι αντιστρεπτές μεταβολές. Κατά τη διάρκεια των μεταβολών αυτών το σύστημα βρίσκεται συνεχώς σε κατάσταση ισορροπίας. Αρκεί να προστεθεί ή να αφαιρεθεί μια απειροστή ποσότητα θερμότητας, για να αντιστραφεί, οποιαδήποτε στιγμή, η φορά της διαδικασίας.

Σχήμα 2.9 Δεν ισχύει βέβαια το ίδιο για τον θρυμματισμό ενός γυάλινου ποτηριού. Καμία μεταβολή οποιασδήποτε εξωτερικής παραμέτρου δεν μπορεί να επαναφέρει το ποτήρι στην αρχική του κατάσταση. (Εκτός, βέβαια, από την τήξη των θραυσμάτων και την επανακατασκευή του ποτηριού, που όμως απαιτεί σημαντική προσφορά έργου). Είναι προφανές ότι το σύστημα δεν βρισκόταν σε θερμοδυναμική ισορροπία, κατά τη διάρκεια του θρυμματισμού.)

ΚΕΦΑΛΑΙΟ ΙΙΙ Θερμική αλληλεπιδράση

"Η θερμοκρασία αποτελεί έννοιαν, ήτις έχει σημασίαν δια το σύνολον των μορίων, και δεν εφαρμόζεται επί ενός εκάστου μορίου, καθορίζεται δε μόνον εκ της μέσης τιμής της κινητικής ενεργείας όλων των μορίων."

ΜΕΓΑΛΗ ΕΛΛΗΝΙΚΗ ΕΓΚΥΚΛΟΠΑΙΔΕΙΑ «ΠΥΡΣΟΣ Α.Ε.», Τόμος 12°ς, εν αθηναις 1930

3.1 Εισαγωγή

Στο κεφαλαίο αυτό θα μελετήσουμε τη θερμική αλληλεπίδραση μεταξύ δύο συστημάτων. Η αλληλεπίδραση αυτή αποτελεί, όπως είδαμε, την απλούστερη περίπτωση αλληλεπίδρασης, αφού οι ενεργειακές στάθμες των συστημάτων που αλληλεπιδρούν παραμένουν σταθερές. Θα αναζητήσουμε τις συνθήκες που επικρατούν όταν δύο ή περισσότερα συστήματα που αλληλεπιδρούν βρίσκονται σε ισορροπία και θα προσπαθήσουμε να υπολογίσουμε πιθανότητες και μέσες τιμές διαφόρων παραμέτρων, όπως για παράδειγμα της ενέργειας ή της πίεσης, και θα ορίσουμε την έννοια της *θερμοκρασίας*.

3.2 Κατανομή ενέργειας μεταξύ μακροσκοπικών συστημάτων

3.2.1 Θερμική επαφή δύο συστημάτων - Διερεύνηση της κατάστασης ισορροπίας

Θεωρούμε δύο μακροσκοπικά συστήματα Α και Α΄, σε θερμική επαφή μεταξύ τους, με ενέργειες E και E' αντιστοίχως. Συμβολίζουμε με $\Omega(E)$ τον αριθμό των καταστάσεων που είναι προσιτές στο Α, όταν η ενέργειά του βρίσκεται μεταξύ E και $E + \delta E$ (όπου το $\delta E << E$ αλλά περιλαμβάνει μεγάλο αριθμό καταστάσεων) και με $\Omega'(E')$ τον αριθμό καταστάσεων που είναι προσιτές στο Α΄, όταν η ενέργειά του είναι μεταξύ E' και $E' + \delta E'$. Τα δύο συστήματα έχουν σταθερές εξωτερικές παραμέτρους, αλλά είναι ελεύθερα να ανταλλάσσουν ενέργεια μεταξύ τους.

Η ενέργεια του κάθε συστήματος δεν είναι σταθερή, όμως το σύνθετο σύστημα $A^* = A + A'$ είναι απομονωμένο, οπότε η ολική του ενέργεια $E^* = E + E'$ είναι σταθερή. Έχουμε λοιπόν

$$E' = E^* - E \tag{3.1}$$

Σκοπός μας είναι να αναζητήσουμε τις συνθήκες ισορροπίας ανάμεσα στα δύο συστήματα. Όταν φθάσει στην κατάσταση ισορροπίας, το απομονωμένο σύστημα, A*, θα βρίσκεται με την ίδια πιθανότητα σε όλες τις προσιτές του καταστάσεις, τις οποίες συμβολίζουμε με Ω_{tot} *. Αν ο αριθμός των καταστάσεων τού A*, που χαρακτηρίζονται από την πιθανότητα να έχει το υποσύστημα A ενέργεια E, είναι ίσος με $\Omega^*(E)$, τότε η πιθανότητα να έχει το σύστημα A ενέργεια E (στην πραγματικότητα μεταξύ E και E + δE) θα δίνεται από το

$$P(E) = \Omega^*(E) / \Omega_{\text{tot}}^* = C \ \Omega^*(E)$$
(3.2)

όπου το $C = 1/\Omega_{tot}^*$ είναι μια σταθερά ανεξάρτητη από την ενέργεια E.

Ας κοιτάξουμε τώρα το καθένα από τα δύο συστήματα χωριστά. Όταν το Α έχει ενέργεια E, θα μπορεί να βρίσκεται σε μια οποιαδήποτε από τις προσιτές του καταστάσεις, $\Omega(E)$. Τότε το Α΄ θα έχει ενέργεια $E' = E^* - E$ και θα μπορεί να βρίσκεται σε οποιαδήποτε από τις προσιτές του καταστάσεις, $\Omega'(E^* - E)$. Αφού κάθε δυνατή κατάσταση του Α μπορεί να συνδυαστεί με κάθε δυνατή κατάσταση του Α΄, έπεται ότι ο συνολικός αριθμός καταστάσεων του Α*, που είναι προσιτές σε αυτό όταν το Α έχει ενέργεια E, δίνεται από το γινόμενο

$$\Omega^*(E) = \Omega(E) \,\Omega'(E') = \Omega(E) \,\Omega(E^* - E) \tag{3.3}$$

και επομένως (Εξ. 3.2):

$$P(E) = C \Omega^*(E) = C \Omega(E) \Omega(E^*-E)$$
(3.4)

Παράδειγμα

Το απλό παράδειγμα του διπλανού σχήματος, αν και χρησιμοποιεί πολύ μικρούς αριθμούς που δεν μπορούν να αντιπροσωπεύσουν πραγματικά μακροσκοπικά συστήματα, είναι ωστόσο χρήσιμο για την κατανόηση των βασικών ιδεών που αναπτύξαμε πιο πάνω.

Θεωρούμε δύο συστήματα Α και Α΄, στα οποία οι αριθμοί προσιτών καταστάσεων, $\Omega(E)$ και $\Omega(E')$, εξαρτώνται από τις αντίστοιχες ενέργειες, Eκαι E', με τον τρόπο που δείχνει το Σχ. 3.1. Οι ενέργειες μετρούνται με μια αυθαίρετη μονάδα και υποδιαιρούνται σε μοναδιαία διαστήματα.

Ας υποθέσουμε ότι η συνολική ενέργεια, Ε*, του συστήματος A* = A + A' είναι ίση με 13 μονάδες. Τότε, αν E = 3, E' = 10, οπότε το σύστημα Α μπορεί να βρίσκεται σε οποιαδήποτε από τις 2 δυνατές καταστάσεις του και το σύστημα Α΄ σε μια οποιαδήποτε από τις 40 δυνατές καταστάσεις του. Υπάρχουν τότε συνολικά $Ω^* = 2 \times 40 = 80$ διαφορετικές προσιτές καταστάσεις στο σύνθετο σύστημα Α*. Ο Πίνακας 3.1 απαριθμεί συστηματικά τις δυνατές καταστάσεις που είναι συμβιβαστές με την καθορισμένη ολική ενέργεια, Ε*, ως συνάρτηση της ενέργειας Ε. Παρατηρούμε ότι, σε ένα στατιστικό σύνολο τέτοιων συστημάτων, το πιθανότερο είναι να βρεθεί το σύνθετο σύστημα Α* σε μια κατάσταση όπου Ε = 5 και E' = 8. Η περίπτωση αυτή θα πραγματοποιείται δύο φορές συχνότερα από την περίπτωση όπου E = 3 και E' = 10.

Ε	E	$\Omega(E)$	$\Omega'(E')$	$\Omega^{*}(E)$
3	10	2	40	80
4	9	5	26	130
5	8	10	16	160
6	7	17	8	138
7	6	25	3	75
		_		

Σχήμα 3.1 Για την περίπτωση δύο μικρών συστημάτων Α και Α΄ σε θερμική επαφή, τα διαγράμματα δείχνουν τον αριθμό των καταστάσεων, $\Omega(E)$ και $\Omega'(E')$, που είναι προσιτές στο Α και στο Α΄ αντιστοίχως, ως συνάρτηση των αντίστοιχων ενεργειών *E* και *E*'.

Πίνακας 3.1 Απαρίθμηση του δυνατού πλήθους καταστάσεων των συστημάτων, Α και Α΄, που περιγράφονται στο Σχ. 4.1, οι οποίες είναι συμβιβαστές με μια καθορισμένη συνολική ενέργεια *E** = 13 του σύνθετου συστήματος Α*, αλλά με διαφορετικούς συνδυασμούς ενεργειών των Α και Α΄. Το σχήμα στα δεξιά απεικονίζει αυτό το πλήθος των καταστάσεων του σύνθετου συστήματος Α*, ως συνάρτηση της ενέργειας, *E*, του υποσυστήματος Α. Βλέπουμε ότι η πιθανότερη κατανομή είναι εκείνη που αντιστοιχεί σε ενέργεια του Α ίση με *E* = 5 (μεταξύ 5 και 6).

Βλέπουμε επομένως ότι η κατάσταση ισορροπίας είναι η μακροκατάσταση που έχει τη

μεγαλύτερη πιθανότητα να προκύψει, με άλλα λόγια η κατάσταση που αντιστοιχεί στον μεγαλύτερο αριθμό μικροκαταστάσεων. Αυτό μπορεί να εκφραστεί με το ακόλουθο αίτημα:

Η κατάσταση ισορροπίας ενός συστήματος σε θερμική ισορροπία με το περιβάλλον του αντιστοιχεί στη μακροκατάσταση εκείνη για την οποία ο αριθμός των προσιτών μικροκαταστάσεων του συνολικού απομονωμένου συστήματος έχει τη μεγαλύτερη δυνατή τιμή.

3.2.2 Οξύτητα του μεγίστου της P(E)

Θεωρούμε ότι τα συστήματα Α και Α΄ έχουν πάρα πολύ μεγάλο αριθμό σωματιδίων, άρα και πάρα πολλούς βαθμούς ελευθερίας. Τότε γνωρίζουμε ότι οι αριθμοί $\Omega(E)$ και $\Omega(E')$ αυξάνουν πολύ γρήγορα με την ενέργεια, εφόσον είδαμε ότι $\Omega(E) \sim E^{\mathbb{N}}$ [Βλ. Εξ. (1.23)].

Άρα, στις Εξ. (3.3) και (3.4) το $\Omega(E)$ αυξάνει πολύ γρήγορα με το *E*, ενώ το $\Omega(E^*-E')$ μειώνεται πολύ γρήγορα. Το γινόμενο των δύο, επομένως, άρα και το *P*(*E*), θα εμφανίζει ένα πολύ οξύ μέγιστο για κάποια συγκεκριμένη τιμή του *E*, που συμβολίζουμε με *Ê* (πιθανότερη τιμή του *E*). Το πλάτος Δ*E* της κατανομής του *P*(*E*), για το οποίο η πιθανότητα έχει κάποιο αξιόλογο μέγεθος, βρίσκεται ότι είναι της τάξης τού

Σχήμα 3.2 Για ένα μακροσκοπικό σύστημα, σε θερμική ισορροπία με το περιβάλλον του, η πιθανότητα, P(E), να έχει το σύστημα συνολική ενέργεια E, εμφανίζει ένα πολύ οξύ μέγιστο γύρω από την πιθανότερη τιμή της, \tilde{E} , που είναι επομένως στην πράξη ίση με τη μέση τιμή της, \bar{E} (ή <E>).

$$\Delta E \sim \tilde{E} / f^{1/2} \tag{3.5}$$

όπου f οι βαθμοί ελευθερίας του μικρότερου από τα δύο συστήματα (Σχ. 3.2). Σε ένα μακροσκοπικό σύστημα το f είναι της τάξης του 10^{24} , άρα $\Delta E \approx 10^{-12} E$. Από την μορφή της κατανομής της πιθανότητας, P(E), αντιλαμβανόμαστε ότι η μέση τιμή της ενέργειας, \overline{E} , του συστήματος A στην κατάσταση ισορροπίας θα είναι πρακτικά ίση με την πιθανότερη τιμή της, \tilde{E} , και πολύ καλά καθορισμένη, όταν το σύστημά μας αποτελείται από πολύ μεγάλο αριθμό σωματιδίων

3.2.3 Η έννοια της θερμοκρασίας

Ξαναγυρίζουμε στην Εξ. (3.4), που μας δίνει την πιθανότητα να βρεθεί το σύστημα Α σε μια μακροκατάσταση με ενέργεια Ε. Σύμφωνα με το παραπάνω αίτημα, στην κατάσταση ισορροπίας, το σύστημα Α θα έχει την ενέργεια που αντιστοιχεί στην πιθανότερη τιμή τού E, με άλλα λόγια στη μεγαλύτερη τιμή του P(E), άρα και του ln P(E). Έχουμε λοιπόν ότι, στην ισορροπία¹⁰,

$$\frac{\partial P}{\partial E} = 0 \qquad \text{ápa } \kappa \alpha i \qquad \frac{\partial \ln P}{\partial E} = \frac{1}{P} \frac{\partial P}{\partial E} = 0 \qquad (3.6)$$

Στην κατάσταση θερμικής ισορροπίας έχουμε λοιπόν, από τις Εξ. (3.4) και (3.6),

¹⁰ Η μερική παράγωγος υπονοεί ότι όλες οι άλλες παράμετροι (V, N) παραμένουν σταθερές. Πράγματι, εφόσον βρίσκονται σε θερμική αλληλεπίδραση, το μόνο που ανταλλάσσουν τα δύο συστήματα είναι θερμική ενέργεια.

$$\frac{\partial \ln P(E)}{\partial E} = \frac{\partial \ln C}{\partial E} + \frac{\partial \ln \Omega}{\partial E} + \frac{\partial \ln \Omega'}{\partial E} = 0$$
(3.7)

και, επειδή dE = - dE', η Εξ. (3.7) δίνει

$$\frac{\partial \ln \Omega(E)}{\partial E} = \frac{\partial \ln \Omega'}{\partial E'}$$
(3.8)

Θέτοντας, εξ ορισμού,

$$\beta \equiv \frac{\partial \ln \Omega(E)}{\partial E} = \frac{1}{\Omega} \frac{\partial \ln \Omega}{\partial E}$$
(3.9)

έχουμε, στην κατάσταση ισορροπίας,

$$\beta = \beta' \tag{3.10}$$

Εδώ πρέπει να τονίσουμε ότι η Εξ. (3.9) ισχύει μόνο σε κατάσταση ισορροπίας, γιατί δεν έχει κανένα νόημα σε καταστάσεις μακριά από την ισορροπία.

Προφανώς, αν είχαμε περισσότερα συστήματα, 1, 2, 3, κτλ., σε κατάσταση θερμικής ισορροπίας, θα βρίσκαμε $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \dots$

Με άλλα λόγια, όταν δύο ή περισσότερα συστήματα σε θερμική αλληλεπίδραση βρίσκονται σε κατάσταση θερμικής ισορροπίας, οι μεταβλητές τους β (Εξ. 3.9) εξισώνονται. Η παράμετρος β, σύμφωνα με τον ορισμό της, έχει διαστάσεις αντιστρόφου ενέργειας. Και επειδή, εν γένει, το $\Omega(E)$ είναι αύξουσα συνάρτηση της ενέργειας, το β είναι θετικό, $\beta > 0$.

Από την εμπειρία μας ξέρουμε ότι αυτό που τείνει να εξισωθεί ανάμεσα σε δύο ή περισσότερα συστήματα, όταν έρθουν σε επαφή, είναι η θερμοκρασία. Θα μπορούσαμε λοιπόν να συμπεράνουμε ότι το β είναι η γνωστή μας θερμοκρασία ή κάποιο μέγεθος ανάλογο της θερμοκρασίας. Όμως αυτό δεν συμβαδίζει με το γεγονός ότι η ενέργεια μεταφέρεται πάντα από το θερμότερο στο ψυχρότερο σώμα. Πράγματι, παραγωγίζοντας το ln Ω^* ως προς το χρόνο, έχουμε:

$$\frac{d\ln\Omega^*}{dt} = \frac{d\ln\Omega}{dt} + \frac{d\ln\Omega'}{dt} = \frac{d\ln\Omega}{dE}\frac{dE}{dt} + \frac{d\ln\Omega'}{dE'}\frac{dE'}{dt} = \beta\frac{dE}{dt} + \beta'\frac{dE'}{dt} = \frac{dE}{dt}\left(\beta - \beta'\right) \quad (3.11)$$

δοθέντος ότι dE = -dE'. Εφόσον, μετά την επαφή, το συνολικό σύστημα τείνει στην κατάσταση ισορροπίας, θα πρέπει ο αριθμός των καταστάσεών του να αυξάνει συναρτήσει του χρόνου, θα πρέπει επομένως, σύμφωνα με την Εξ. (3.11),

$$(\beta - \beta') \left(\frac{dE}{dt} \right) > 0 \tag{3.12}$$

πράγμα που σημαίνει ότι, αν $\beta > \beta'$, θα πρέπει και dE/dt > 0, με άλλα λόγια θα πρέπει να αυξάνει η ενέργεια του συστήματος εκείνου που έχει το μεγαλύτερο β . Για να είναι επομένως συμβιβαστή η Εξ. (3.12) με το γεγονός ότι η ενέργεια "ρέει" από το θερμότερο στο ψυχρότερο σώμα, θα πρέπει το β να είναι αντίστροφο της θερμοκρασίας.

Ορίζουμε επομένως ένα μέγεθος *Τ*, που ονομάζουμε *απόλυτη θερμοκρασία*, σύμφωνα με τη σχέση:

$$\beta = 1/kT \tag{3.13}$$

Η σταθερά k ονομάζεται σταθερά Boltzmann και η τιμή της καθορίζεται ανάλογα με τις μονάδες στις οποίες εκφράζεται το T και τις μονάδες στις οποίες εκφράζεται η ενέργεια. Είναι προφανές ότι, αφού $\beta > 0$, θα πρέπει και η θερμοκρασία να είναι πάντα θετική: $T \ge 0$.

Θα μπορούσαμε να είχαμε επιλέξει k = 1 και να μετρούσαμε τη θερμοκρασία σε μονάδες ενέργειας (Joule, erg, cal, eV). Όμως η παράδοση να εκφράζεται η θερμοκρασία σε βαθμούς

Kelvin ή Κελσίου προϋπήρχε πολύ πριν βρεθεί η σχέση μεταξύ της θερμοκρασίας και της δομής ενός συστήματος, και δεν μπορούμε να την αγνοήσουμε. Έτσι η σταθερά *k* θα πρέπει να είναι ίση, εξ ορισμού, με:

$$k \equiv 1,3805 \times 10^{-23} \text{ J.K}^{-1} = 8,6178 \times 10^{-5} \text{ eV. K}^{-1}$$

Τονίζουμε εδώ ότι το k δεν είναι μια "παγκόσμια σταθερά", με την ίδια έννοια όπως η σταθερά του Planck, h, ή η παγκόσμια σταθερά της βαρύτητας, G. Επινοήθηκε απλώς για να συμβιβάσει μεταξύ τους τις μονάδες ενέργειας και θερμοκρασίας, που προϋπήρχαν.

Το γινόμενο kT ονομάζεται θερμική ενέργεια ενός συστήματος.

Σύμφωνα με τον ορισμό της, η θερμοκρασία (Εξ. 3.13) είναι έννοια στατιστική και ισχύει μόνο για ένα σύστημα σωματιδίων σε θερμοδυναμική ισορροπία. Επομένως δεν μπορεί να εφαρμοστεί σε ένα μοναδικό σωματίδιο ή σε ένα σύστημα που βρίσκεται μακριά από την ισορροπία.

Από την πιο πάνω ανάλυση προκύπτει ότι:

Αν δύο ή περισσότερα συστήματα σε θερμική αλληλεπίδραση βρίσκονται σε κατάσταση θερμοδυναμικής ισορροπίας μεταξύ τους, θα πρέπει να έχουν την ίδια θερμοκρασία.

Η παραπάνω πρόταση αποτελεί μια διατύπωση του *Μηδενικού Νόμου της Θερμοδυναμικής*. Μια εναλλακτική διατύπωση είναι η ακόλουθη:

Αν δύο ή περισσότερα συστήματα βρίσκονται σε θερμική ισορροπία με ένα τρίτο σύστημα, τότε θα πρέπει να βρίσκονται σε θερμική ισορροπία και μεταζύ τους και θα έχουν, επομένως, την ίδια θερμοκρασία.

Η ισχύς αυτού του νόμου κάνει δυνατή τη χρησιμοποίηση των θερμομέτρων.

3.2.4 Εκτίμηση της θερμοκρασίας ενός μακροσκοπικού συστήματος

Είδαμε ότι, στα μακροσκοπικά συστήματα, ο αριθμός των καταστάσεων μέσα σε ένα ενεργειακό διάστημα, δ*E*, δίνεται από το

$$\Omega_{\rm N}\left(E\right) = C \ V^{\rm N} E^{3N/2} \ \delta E \tag{3.14}$$

και

$$\ln \left[\Omega_{\rm N}(E)\right] = \ln C' + N \ln V + (3N/2) \ln E \tag{3.15}$$

Από τις Εξ. (3.9), και (3.15) προκύπτει ότι

$$\beta \equiv \frac{\partial \ln \Omega(E)}{\partial E} = (3N/2)/E \tag{3.16}$$

και, σύμφωνα με την Εξ. (3.13),

$$kT = 1/\beta = E/(3N/2) \approx E/f$$
 (3.17)

όπου fοι βαθμοί ελευθερίας του συστήματος. Με άλλα λόγια, το kT είναι προσεγγιστικά ίσο με τη μέση ενέργεια ανά βαθμό ελευθερίας του συστήματος.

3.3 Εντροπία

3.3.1 Η έννοια της εντροπίας

Αντί του μεγέθους Ω (*E*), που μας δίνει τον αριθμό καταστάσεων ενός μακροσκοπικού συστήματος με ενέργεια *E* (στην πραγματικότητα μεταξύ *E* και *E* + δ*E*), εισάγουμε τώρα την έννοια της εντροπίας, που συμβολίζεται διεθνώς με το *S* και ορίζεται ως εξής:

Έστω ότι ένα σύστημα βρίσκεται σε μια συγκεκριμένη μακροκατάσταση (E, V, N), στην οποία αντιστοιχεί αριθμός μικροκαταστάσεων $\Omega(E)$. Ορίζουμε ως εντροπία του συστήματος το μέγεθος:

όπου k η σταθερά Boltzmann.

Η Εξ. (3.18) είναι ο ορισμός της εντροπίας σύμφωνα με τον Boltzmann (1877), και είναι γραμμένη πάνω στον τάφο του (Σχ. 3.3). Η μεγάλη σημασία της είναι ότι συνδέει την εντροπία, *S*, που είναι ένα θερμοδυναμικό μέγεθος παρατηρούμενο μακροσκοπικά (και είχε εισαχθεί μερικά χρόνια πριν από τον Clausius¹¹, όπως θα δούμε πιο κάτω), με τις μικροσκοπικές ιδιότητες ενός συστήματος.

Με την εισαγωγή της έννοιας της εντροπίας το αίτημα της Παραγρ. 3.2.1 μεταφράζεται στο ακόλουθο:

Κατά τις αυθόρμητες μεταβολές η εντροπία ενός απομονωμένου συστήματος αυζάνει πάντα. Στην κατάσταση ισορροπίας η εντροπία φθάνει τη μέγιστη δυνατή τιμή της.

Σχήμα 3.3 Ο τάφος του Ludwig Boltzmann στο Zentralfriedhof, στη Βιέννη, με την προτομή του και τον τύπο της εντροπίας από πάνω.

Η πρόταση αυτή αποτελεί μια έκφραση του Δεύτερου Νόμου της Θερμοδυναμικής¹², όπως διατυπώθηκε από τον Clausius. Πολλές μεταβολές, που δεν αντιβαίνουν στην αρχή της διατήρησης της ενέργειας, δεν μπορούν να συμβούν, γατί αντιβαίνουν στον δεύτερο νόμο της θερμοδυναμικής. Θα δούμε στο κεφάλαιο της Θερμοδυναμικής μια εναλλακτική διατύπωση του Δεύτερου Θερμοδυναμικού Νόμου, σύμφωνα με τον Kelvin, που έχει την εξής διατύπωση:

Δεν μπορεί να συμβεί καμία μεταβολή στην οποία όλη η θερμότητα να μετατρέπεται σε έργο.

Το παράδειγμα της Παραγρ. 2.5.4, και ιδιαιτέρως η Εξ. (2.16), μας δίνει μια θεωρητική εξήγηση για την αύξηση της εντροπίας κατά τις αυθόρμητες μεταβολές και αποτελεί, επομένως, μια μαθηματική απόδοση και ερμηνεία του δεύτερου θερμοδυναμικού νόμου.

Η εντροπία εκφράζει ένα μέτρο της τάξης μέσα στο σύστημα. Όσο μεγαλύτερος είναι ο αριθμός των μικροκαταστάσεών του (άρα και η εντροπία) τόσο λιγότερες πληροφορίες έχουμε για την ακριβή του κατάσταση, με άλλα λόγια τόσο μεγαλύτερη είναι η αταξία ή ακαταστασία που επικρατεί μέσα στο σύστημα. Για παράδειγμα, ενώ ένας κρύσταλλος έχει μεγάλο βαθμό τάξης, αφού τα άτομά του απλώς ταλαντώνονται γύρω από τις θέσεις ισορροπίας του μέσα στο πλέγμα χωρίς να μετατοπίζονται, όταν αυτός εξαχνωθεί θα φθάσει σε μια τελική κατάσταση, στην οποία τα άτομά του θα είναι τελείως τυχαία κατανεμημένα μέσα στον όγκο που καταλαμβάνει ο ατμός του.

Ο ορισμός (Εξ. 3.18) της εντροπίας ισχύει για οποιαδήποτε κατάσταση, είτε σε ισορροπία είτε όχι, σε αντίθεση με την έννοια της θερμοκρασίας που ορίζεται μόνο για

¹¹ Ο Clausius εισήγαγε την έννοια της εντροπίας το 1865, λέγοντας "Προτείνω να ονομάσουμε την ποσότητα S εντροπία ενός σώματος, από το Ελληνικό εν-τροπή, «περιεχόμενο στη μετατροπή» ("Verwandlungsinhalt")".

¹² Προσοχή: Όπως και στην περίπτωση του Πρώτου Νόμου, κι εδώ πρέπει να τονίσουμε ότι πρόκειται για Νόμο και όχι Αξίωμα). Ο Νόμος αυτός είναι απλώς μια συνέπεια του γεγονότος ότι τα μακροσκοπικά συστήματα αποτελούνται από πολύ μεγάλο αριθμό σωματιδίων και δεν πρόκειται για μια καινούργια αρχή.

καταστάσεις ισορροπίας. Ο ορισμός αυτός σημαίνει, εξάλλου, ότι **η εντροπία είναι μια ιδιότητα του συστήματος** και δεν εξαρτάται από τον τρόπο με τον οποίο το σύστημα έφθασε στην κατάσταση αυτή. Επομένως:

Η μεταβολή της εντροπίας ενός συστήματος, όταν μεταβαίνει από μία κατάσταση σε μία άλλη, είναι ανεξάρτητη από τη διαδικασία που ακολουθείται και εξαρτάται μόνο από την αρχική και την τελική κατάσταση, δοθέντος ότι καθορίζεται μόνον από τον αριθμό των μικροκαταστάσεων της αρχικής και της τελικής μακροκατάστασης.

Ένα κλασικό παράδειγμα εντροπίας είναι η περίπτωση μιας βιβλιοθήκης που περιέχει Nβιβλία. Όταν τα βιβλία είναι ταξινομημένα κατά απόλυτη αλφαβητική σειρά, επειδή υπάρχει μόνον ένας τρόπος για να επιτευχθεί αυτό, η εντροπία της βιβλιοθήκης είναι μηδενική. Όταν είναι κατανεμημένα τελείως στην τύχη, ο αριθμός των προσιτών καταστάσεων είναι N!, όσες δηλαδή και οι δυνατές μεταθέσεις των N βιβλίων, και η εντροπία έχει τη μέγιστη δυνατή τιμή της. Σε κάποια ενδιάμεση κατάσταση, τα βιβλία μπορεί π.χ. να είναι κατανεμημένα σύμφωνα με το πρώτο γράμμα του συγγραφέα τους, άρα όλα τα A μαζί, όλα τα B μαζί, κοκ, και ο συνολικός αριθμός καταστάσεων θα είναι $N_A! N_B! N_{\Gamma}! \dots N_{\Omega}! < (N_A+N_B+N_{\Gamma}+\dots+N_{\Omega})! = N!$, η εντροπία θα έχει επομένως κάποια ενδιάμεση τιμή.

Σύμφωνα με τον ορισμό της, η εντροπία ενός μη απομονωμένου συστήματος δεν είναι υποχρεωμένη να αυξάνει κατά τη διάρκεια μιας μεταβολής. Αντίθετα, μπορεί και να μειώνεται κατά την αλληλεπίδραση με άλλα συστήματα η εντροπία των οποίων επίσης μεταβάλλεται, αρκεί η συνολική μεταβολή της εντροπίας όλων των συστημάτων που αλληλεπιδρούν, μέσα σε ένα απομονωμένο συνολικό σύστημα, να είναι θετική ή μηδενική ή, αλλιώς:

$$dS = dS_1 + dS_2 + dS_3 + \dots \ge 0$$
 (3.19)

όπου το = ισχύει μόνο για τις αντιστρεπτές διαδικασίες, ενώ στις μη αντιστρεπτές η μεταβολή της εντροπίας είναι πάντα θετική.

Ένα πολύ παραστατικό παράδειγμα της μεταβολής της εντροπίας, που δείχνει τη διαφορά ανάμεσα σε ένα απομονωμένο και ένα μη απομονωμένο σύστημα, είναι η περίπτωση ενός έμβιου όντος, που αντιστοιχεί σε μια κατάσταση ελάχιστης εντροπίας (πλήρης τάξη), όσο είναι ζωντανό και βρίσκεται σε συνεχή αλληλεπίδραση με το περιβάλλον του. Αν το ον αυτό απομονωθεί τελείως από το περιβάλλον, θα πεθάνει, με αποτέλεσμα η εντροπία του να φθάσει κάποια στιγμή τη μέγιστη δυνατή τιμή της, μετά την πλήρη αποσύνθεσή του¹³. Σχετικά με την ισχύ του δεύτερου Νόμου της θερμοδυναμικής, αξίζει να προσθέσουμε το ακόλουθο απόσπασμα από το διαδίκτυο:

The most common errors in the application of thermodynamics concerns the 2nd law and is a failure to recognize that the principle of increasing entropy in a region applies only when that region is an isolated system with well-defined rigid boundaries. As an example, the idea has been presented that the evolution of life on earth introducing highly ordered organisms from simpler life forms is a violation of the Second Law, thereby implying divine intervention or some other non-scientific event in which the process could have taken place so that the conclusion is both bad science and bad theology¹⁴.

¹³ Σε έναν υγιή ζωντανό οργανισμό επικρατεί απόλυτη τάξη. Τα άτομα είναι συγκροτημένα σε συγκεκριμένα μικρά μόρια, τα μικρά μόρια σε μακρομόρια, τα μακρομόρια σε κύτταρα, τα κύτταρα σε ιστούς, οι ιστοί σε συγκεκριμένα όργανα κ.ο.κ. Αντίθετα, μετά την απομόνωση και την αποσύνθεσή του, ο οργανισμός μετατρέπεται τελικά σε έναν άτακτο σωρό από μικρά μόρια (άλατα P, Mg, Ca, K, καθώς και αέρια CO₂, H₂O, SO₂, CH₄, NH₃, H₂S κτλ.).

¹⁴ Το πιο συνηθισμένο λάθος στην εφαρμογή της Θερμοδυναμικής σχετίζεται με τον 2° Νόμο και είναι συγκεκριμένα η αδυναμία της κατανόησης ότι ο νόμος της αύξησης της εντροπίας σε μια περιοχή εφαρμόζεται

Ιστορικά, η έννοια της εντροπίας αναπτύχθηκε πρώτα από τον Clausius το 1865, ο οποίος εισήγαγε και την ονομασία της. Ο Clausius, γενικεύοντας το θεώρημα του Carnot, που θα εξετάσουμε αργότερα, βρήκε ότι, σε μια αντιστρεπτή μεταβολή, το ολοκλήρωμα του dQ/T κατά μήκος μιας διαδρομής, που παριστάνει μια αντιστρεπτή διαδικασία από μια κατάσταση A σε μια κατάσταση B, είναι ανεξάρτητη από τη διαδρομή που ακολουθείται. Έτσι όρισε μια συνάρτηση, S, τέτοια ώστε η μεταβολή της κατά τη διάρκεια μιας αντιστρεπτής διαδικασίας να εξαρτάται μόνο από την αρχική και την τελική κατάσταση και την ονόμασε εντροπία. Η εντροπία, λοιπόν, σύμφωνα με τον ορισμό του Clausius δίνεται από τις σχέσεις:

$$S_{\rm B} - S_{\rm A} = \int_{\rm A}^{\rm B} \frac{dQ}{T}$$
 $\dot{\eta} \ dS = \frac{dQ}{dT}$ (móno gia antistreptés metabolés) (3.20)

ενώ στις μη αντιστρεπτές έχουμε

$$\Delta S = S_{\rm B} - S_{\rm A} > \int_{\rm A}^{\rm B} \frac{dQ}{T} \quad (\mu\eta \text{ antistrepthand} \mu \text{ etaboly})$$
(3.20a)

Υπενθυμίζουμε ότι dQ είναι το απειροστό μεταφερόμενο ποσόν θερμότητας σε μια απειροστή μεταβολή (και όχι ολικό διαφορικό, όπως τονίσαμε στη Παράγρ. 2.5.2) και T η απόλυτη θερμοκρασία στην οποία συμβαίνει αυτή η μεταβολή. Σύμφωνα με τα παραπάνω, σε μια κυκλική μεταβολή, για την οποία έχουμε προφανώς $\Delta S = 0$, θα ισχύει η ανισότητα

$$\oint \frac{dQ}{T} \le 0 \tag{3.21}$$

η οποία ονομάζεται και *ανισότητα Clausius*. Και εδώ, προφανώς, το "ίσον" ισχύει μόνο για αντιστρεπτές μεταβολές. Πράγματι, η εντροπία, ως συνάρτηση της κατάστασης ενός συστήματος, εξαρτάται μόνον από την αρχική και την τελική κατάσταση, όταν επομένως το σύστημα επανέρχεται στην αρχική του κατάσταση (κυκλική διεργασία), η μεταβολή της εντροπίας πρέπει να είναι μηδενική ($\Delta S = 0$), ενώ οι ποσότητες έργου, *w*, και θερμότητας, *Q*, που προστίθενται στο σύστημα εξαρτώνται εν γένει από τη διαδρομή. Στη μη αντιστρεπτή περίπτωση, το ολοκλήρωμα της Εξ. (3.21) είναι μικρότερο από τη μεταβολή της εντροπίας, ΔS (Εξ. 3.20a). Και, εφόσον εδώ η μεταβολή είναι κυκλική, άρα $\Delta S = 0$, θα πρέπει το ολοκλήρωμα της Εξ. (3.21) να είναι μικρότερο του μηδενός.

Η σχέση ανάμεσα στην έκφραση της εντροπίας, όπως ορίστηκε από τον Clausius (Εξ. 3.20), και εκείνην του Boltzmann (Εξ. 3.18) εδραιώθηκε για πρώτη φορά από τον Boltzmann το 1877. Από τη στιγμή που η στατιστική προσέγγιση αναγνωρίστηκε ως πλέον θεμελιώδης, καθιερώθηκε πλέον η σχέση του Boltzmann αντί εκείνης του Clausius ως ορισμός της εντροπίας.

Μπορούμε εύκολα να αποδείξουμε ότι οι δύο ορισμοί συμπίπτουν στην περίπτωση όπου οι εξωτερικές παράμετροι, V και N, του συστήματος δεν μεταβάλλονται, δηλαδή σε μια θερμική αλληλεπίδραση. Έχουμε τότε:

μόνον όταν η περιοχή αυτή είναι ένα απομονωμένο σύστημα, με καλά καθορισμένα άκαμπτα όρια. Έχει παρουσιαστεί, για παράδειγμα, η άποψη ότι η εξέλιξη της ζωής πάνω στη γη, που προτείνει τη δημιουργία εξαιρετικά οργανωμένων οργανισμών από απλούστερες μορφές ζωής, αποτελεί μια παραβίαση του Δεύτερου Νόμου, υπονοώντας ως εκ τούτου θεϊκή παρέμβαση ή κάποια άλλη μη επιστημονική διαδικασία για την εξέλιξη, οπότε το συμπέρασμα είναι και κακή επιστήμη, αλλά και κακή θεολογία.

$$\left(\frac{\partial S}{\partial E}\right)_{V,N} = k \left(\frac{\mathrm{dln}\,\Omega}{\mathrm{d}E}\right)_{V,N} = k\beta = \frac{1}{T}$$
(3.22)

Όμως, σε μια θερμική αλληλεπίδραση, dE = dQ, οπότε από την Εξ. (3.22) προκύπτει

$$dS = \frac{dQ}{dT}$$
(3.23)

Προσοχή: Για την εξαγωγή της Εξ. (3.22) χρησιμοποιήσαμε τον ορισμό του β (Εξ. 3.9) που, όπως είπαμε, ισχύει μόνο σε κατάσταση ισορροπίας. Όμως κατάσταση ισορροπίας κατά τη διάρκεια μιας μεταβολής έχουμε μόνο στις αντιστρεπτές διαδικασίες. Επομένως η Εξ. (3.23) ισχύει μόνο για αντιστρεπτές μεταβολές, σε συμφωνία και με τον ορισμό του Clausius.

Θα αποδείξουμε αργότερα ότι οι δύο ορισμοί της εντροπίας συμπίπτουν, σε μια γενικότερη περίπτωση.

3.3.2 Προσθετότητα της εντροπίας - Εντατικές και εκτατικές μεταβλητές

Είδαμε ότι, για ένα σύνθετο σύστημα, $A^* = A + A'$ με $E^* = E + E'$, ισχύει

$$\Omega^*(E^*) = \Omega(E) \,\Omega'(E') \tag{3.3}$$

Σύμφωνα με τον ορισμό της εντροπίας (Εξ. 3.18), η σχέση αυτή δίνει

$$S^{*}(E) = S(E) + S'(E')$$
(3.24)

όπου S*, S και S' οι εντροπίες των συστημάτων A*, A και A' αντιστοίχως.

Βλέπουμε λοιπόν ότι η εντροπία του σύνθετου συστήματος είναι ίση με το άθροισμα των εντροπιών των δύο συστημάτων που το αποτελούν, ακριβώς όπως ισχύει για τα V, N και E. Μεταβλητές που έχουν αυτήν την προσθετική ιδιότητα ονομάζονται εκτατικές. Αντίθετα, ονομάζουμε εντατικές μεταβλητές εκείνες που είναι ανεξάρτητες από τις διαστάσεις του συστήματος, όπως η θερμοκρασία, T, η πίεση p, η πυκνότητα, ρ , η μαγνητική επιδεκτικότητα, χ , η ειδική θερμότητα, c_v και c_p (μεγέθη που θα συναντήσουμε αργότερα, Παράγρ. 3.5). Προφανώς, μια εκτατική μεταβλητή μετατρέπεται σε εντατική, αν διαιρεθεί με τον όγκο ή τη μάζα του συστήματος και αντιστρόφως.

3.4 Ισορροπία συστήματος σε θερμική δεξαμενή

3.4.1 Εισαγωγή

Τα συστήματα που συναντάμε συνήθως στην πράξη δεν είναι απομονωμένα, αλλά βρίσκονται σε θερμική επαφή με το περιβάλλον τους. Για να μελετήσουμε ένα τέτοιο σύστημα χρησιμοποιούμε το ακόλουθο τέχνασμα. Επειδή ένα συνηθισμένο μακροσκοπικό σύστημα είναι συνήθως μικρό σε σχέση με το υπόλοιπο περιβάλλον του, μπορούμε να υποθέσουμε ότι βρίσκεται σε θερμική επαφή με μια δεξαμενή θερμότητας. Στην πράξη θα έχουμε και πάλι να κάνουμε με ένα σύνθετο σύστημα, Α*, χωρισμένο σε δύο μακροσκοπικά υποσυστήματα, Α και Α΄, το ένα από τα οποία, το Α΄, είναι πολύ μεγαλύτερο από το άλλο. Το μεγάλο σύστημα το ονομάζουμε δεζαμενή θερμότητας, γιατί, παρ' όλο που ανταλλάσσεται ενέργεια ανάμεσα στα δύο υποσυστήματα, θεωρούμε ότι, εξαιτίας τού μεγάλου μεγέθους του,:

- α) η θερμοκρασία του, Τ, παραμένει σταθερή και
- β) η ενέργειά του, Ε΄, είναι πολύ καλά καθορισμένη.

Αντίθετα, στο μικρό σύστημα, Α, όταν αποκατασταθεί η θερμική ισορροπία, η μεν θερμοκρασία του θα είναι καλά καθορισμένη και ίση με εκείνην της δεξαμενής, η ενέργειά του όμως μπορεί να πάρει κατ' αρχήν οποιαδήποτε τιμή.

Το μικρό σύστημα θα μπορούσε να είναι ένα μακροσκοπικό σύστημα, για παράδειγμα,

ένα κομμάτι μέταλλο μέσα σε μια λίμνη, ή ένα μικροσκοπικό σύστημα, όπως ένα άτομο ή ένα μόριο μέσα σε κάποιο στερεό πλέγμα ή μέσα σε ένα δοχείο γεμάτο με αέριο από τα ίδια ή διαφορετικά άτομα ή μόρια. Στη συνέχεια θα διερευνήσουμε τις συνθήκες ισορροπίας τού σύνθετου συστήματος και θα προσπαθήσουμε να προσδιορίσουμε την πιθανότητα να πάρει το μικρό μας σύστημα μια συγκεκριμένη ενέργεια.

3.4.2 Κανονικό σύνολο - Η κανονική κατανομή

Για να μελετήσουμε ένα σύστημα σε θερμική επαφή με το περιβάλλον του, θεωρούμε και πάλι ένα στατιστικό σύνολο (ή συλλογή) από πανομοιότυπα συστήματα, βυθισμένα όλα στην ίδια θερμική δεξαμενή θερμοκρασίας Τ. Σύμφωνα με τον ορισμό του στατιστικού συνόλου, στο σύνολο αυτό θα αντιπροσωπεύονται όλες οι δυνατές καταστάσεις του συστήματος σε θερμική ισορροπία με τη δεξαμενή. Το σύνολο αυτό ονομάζεται κανονικό σύνολο, σε αντιδιαστολή με το μικροκανονικό που αποτελείται, όπως είδαμε, από συστήματα απομονωμένα από το περιβάλλον τους.

Έστω λοιπόν ότι το σύστημα Α μπορεί να πάρει τις καταστάσεις r = 1, 2, 3, ... με ενέργειες $E_1, E_2, E_3 ...$ Δεν είναι βέβαια απαραίτητο σε κάθε ενέργεια να αντιστοιχεί και διαφορετική κατάσταση. Όπως είδαμε, σε κάθε ενεργειακή στάθμη ή ενεργειακή περιοχή αντιστοιχεί συνήθως ένας ορισμένος αριθμός καταστάσεων, $\Omega(E)$, ή μια πυκνότητα καταστάσεων, g(E). Θα έχουμε, εν γένει, $E_1 < E_2 < E_3 <$

Το πρόβλημα που μας απασχολεί είναι το ακόλουθο: Στην κατάσταση ισορροπίας, ποια είναι η πιθανότητα να βρούμε το σύστημα, Α, σε μια οποιαδήποτε κατάσταση, r, με ενέργεια E_r ; Ή, αντιστοίχως, ποια είναι η πιθανότητα να βρούμε το σύστημα σε μια περιοχή καταστάσεων, $\Omega(E)$, με ενέργεια E;

Ο τρόπος που εργαζόμαστε είναι ο ακόλουθος. Θεωρούμε και πάλι το σύστημα $A^* = A + A'$. Όταν το A βρίσκεται σε μια κατάσταση, r, και έχει ενέργεια E_r έχουμε, σύμφωνα με τη διατήρηση της ενέργειας,

$$E_{\rm r} + E' = E^*$$
 (3.25)

οπότε η δεξαμενή έχει ενέργεια $E'=E^*-E_r$. Ο συνολικός αριθμός των καταστάσεων του σύνθετου συστήματος, όταν το Α βρίσκεται σε μία κατάσταση r, θα είναι ίσος με τον αριθμό των καταστάσεων της δεξαμενής, $\Omega'(E^*-E_r)$, που αντιστοιχούν στο Α΄ όταν η ενέργειά του βρίσκεται σε μια ενεργειακή περιοχή, δE', γύρω από την τιμή E^*-E_r . Πράγματι η Εξ. (3.3)

$$\Omega^{*}(E) = \Omega(E) \,\Omega'(E') = \Omega(E) \,\Omega'(E^{*}-E)$$
(3.3)

δίνει, για την περίπτωση όπου $\Omega(E) = 1$ (αφού ενδιαφερόμαστε μόνο για μία κατάσταση του A), $\Omega^*(E) = \Omega'(E^*-E_r)$. Η πιθανότητα λοιπόν να βρεθεί το σύστημα σε μία μόνο κατάσταση με ενέργεια E_r θα δίνεται, σύμφωνα και με την Εξ. (3.4), από το

$$P_r = C_I \, \mathcal{Q}' \left(\mathbf{E}^* - \mathbf{E}_r \right) \tag{3.26}$$

Η σταθερά C1 προσδιορίζεται από τη συνθήκη κανονικοποίησης του συστήματος

$$\sum_{r} P_r = 1 \tag{3.27}$$

όπου το άθροισμα περιλαμβάνει όλες τις δυνατές καταστάσεις του συστήματος, ανεξάρτητα από την ενέργειά τους, γιατί η πιθανότητα να βρίσκεται το σύστημα σε κάποια από τις καταστάσεις του είναι, προφανώς, ίση με τη μονάδα.

Σύμφωνα με τον ορισμό της θερμικής δεξαμενής, $E_r \ll E'$, επομένως μπορούμε να αναπτύξουμε τον λογάριθμο της P_r (Εξ. 3.26) σε σειρά κατά Taylor γύρω από τη θέση $E' = E^*$. Έχουμε λοιπόν:

$$\ln P_{\rm r} = \ln C_1 + \ln \Omega' \left(E^* - E_{\rm r} \right) = \ln C + \ln \Omega' \left(E^* \right) - \left(\frac{\partial \ln \Omega'}{\partial E'} \right) E_r \quad \dots \quad (3.28)$$

Αλλά, σύμφωνα με την Εξ. (3.9),

$$\left(\frac{\partial \ln \Omega'}{\partial E'}\right) = \beta' = 1/kT'$$
(3.29)

Η παράγωγος υπολογίζεται εδώ στη συγκεκριμένη τιμή $E' = E^*$ και είναι επομένως ανεξάρτητη από το E_r . Στην πραγματικότητα η Εξ. (3.29) δίνει τη θερμοκρασία της δεξαμενής, T', που είναι βεβαίως ίση με τη θερμοκρασία, T, του συστήματος A.

Σύμφωνα με τον ορισμό της θερμικής δεξαμενής, και πάλι, η θερμοκρασία της, T, άρα και το β της, δεν αλλάζει, επομένως η δεύτερη παράγωγος του $\ln\Omega'$ ως προς E', (δηλαδή η πρώτη παράγωγος του β' ως προς E'), καθώς και οι επόμενοι όροι της σειράς μπορούν να παραληφθούν. Έχουμε επομένως, και εφόσον $\beta = \beta'$,

$$\ln P_{\rm r} = \ln C_1 + \ln \Omega'(E^*) - \beta' E_{\rm r} = \ln C_1 + \ln \Omega'(E^*) - \beta E_{\rm r}$$
(3.30)

Και, επειδή η $\Omega'(E^*)$ είναι ανεξάρτητη του E_r , μπορεί να τεθεί ίση με μια σταθερά C_2 , και η Εξ. (3.30) να γραφεί

$$\ln P_{\rm r} = \ln C_1 + \ln C_2 - \beta E_{\rm r} \tag{3.31}$$

από την οποία προκύπτει

$$P_{\rm r} = C \,\mathrm{e}^{-\beta \,E_{\rm r}} \tag{3.32}$$

Σύμφωνα με τη συνθήκη κανονικοποίησης (Εξ. 3.27) έχουμε:

$$\frac{1}{C} = \sum_{r} e^{-\beta E_r}$$
(3.33)

άρα και

$$P_r = \frac{\mathrm{e}^{-\beta E_r}}{\sum_r \mathrm{e}^{-\beta E_r}} \tag{3.34}$$

όπου η άθροιση γίνεται για όλες τις δυνατές καταστάσεις (όχι στάθμες) του συστήματος.

Βλέπουμε λοιπόν ότι, όσο αυξάνει η ενέργεια μιας κατάστασης, τόσο ελαττώνεται η πιθανότητα να βρεθεί το σύστημα στην κατάσταση αυτή. Το γεγονός αυτό εξηγείται με τον ακόλουθο τρόπο: Αφού η ολική ενέργεια του A* είναι σταθερή, όσο αυξάνει η E_r τόσο ελαττώνεται η E'. Είδαμε όμως ότι ο αριθμός καταστάσεων $\Omega'(E')$ είναι, γενικώς, για ένα μακροσκοπικό σύστημα, μια έντονα αύξουσα συνάρτηση της ενέργειας. Όταν λοιπόν το E' ελαττώνεται, μειώνεται πάρα πολύ και ο αντίστοιχος αριθμός προσιτών καταστάσεων της δεξαμενής, άρα και η πιθανότητα, P_r , σύμφωνα με την Εξ. (3.26).

Η Εξ. (3.30), που εκφράζει την πιθανότητα να βρεθεί ένα σύστημα ενός κανονικού στατιστικού συνόλου σε μια κατάσταση με ενέργεια *E*_r, είναι μια πολύ βασική σχέση της Στατιστικής Μηχανικής. Ο παράγοντας e^{-βE} ονομάζεται παράγοντας Boltzmann και η κατανομή της Εξ. (3.30) είναι γνωστή ως κανονική κατανομή ή κατανομή Maxwell-Boltzmann. Θα δούμε αργότερα, στο Κεφάλαιο 8 (Κβαντική Στατιστική), έναν πολύ αυστηρότερο και κομψότερο τρόπο για την εξαγωγή της κατανομής Maxwell–Boltzmann.

Παράδειγμα

Το απλό παράδειγμα του Σχ. 3.4 είναι χρήσιμο για την κατανόηση των βασικών ιδεών που αναπτύξαμε πιο πάνω.

Θεωρούμε ένα μικρό σύστημα, Α, μερικές ενεργειακές στάθμες του οποίου έχουν σχεδιαστεί στο επάνω μέρος του σχήματος. Θεωρούμε επίσης το πολύ μεγαλύτερο σύστημα, Α΄, η ενεργειακή κλίμακα του οποίου υποδιαιρείται σε διαστήματα με μέγεθος $\delta E = 1$ μονάδα και του οποίου ο αριθμός καταστάσεων $\Omega(E')$ έχει σχεδιαστεί ως συνάρτηση της ενέργειάς του στο κάτω μέρος του σχήματος.

Ας υποθέσουμε ότι τα δύο συστήματα βρίσκονται σε θερμική ισορροπία και ότι η συνολική ενέργεια, E^* , του συστήματος $A^* = A + A'$ είναι ίση με 2050 μονάδες. Τότε, αν το σύστημα Α βρίσκεται στην κατάσταση r, με ενέργειά $E_r = 10$ μονάδες, η ενέργεια της δεξαμενής θα πρέπει να είναι E'= 2040, οπότε η δεξαμενή A' θα μπορεί να βρίσκεται σε οποιαδήποτε από τις 2×10^6 δυνατές καταστάσεις της. Σε ένα σύνολο από πολλά πανομοιότυπα απομονωμένα συστήματα, A^* , το πλήθος των περιπτώσεων όπου το σύστημα A' βρίσκεται στην κατάσταση r, θα είναι ανάλογο προς τον αριθμό 2×10^6 .

Έστω τώρα ότι το σύστημα Α βρίσκεται σε μια άλλη κατάσταση, s, με ενέργεια $E_s = 16$ μονάδες. Τότε η ενέργεια της δεξαμενής θα πρέπει να είναι E' = 2034, οπότε η δεξαμενή, A', θα μπορεί να βρίσκεται σε οποιαδήποτε από τις 10⁶ δυνατές καταστάσεις της. Σε ένα σύνολο από πολλά πανομοιότυπα απομονωμένα συστήματα A*, το πλήθος των περιπτώσεων όπου το σύστημα A βρίσκεται στην κατάσταση s, θα είναι ανάλογο προς τον αριθμό 10⁶. Με άλλα λόγια, η πιθανότητα να βρεθεί το A στην κατάσταση s είναι η μισή από ό,τι στην κατάσταση r.

Σχήμα 3.4 Σχηματική παράσταση που δείχνει τις προσιτές καταστάσεις ενός συστήματος Α και της (μάλλον μικρής) θερμικής δεξαμενής Α΄. Το επάνω διάγραμμα δείχνει τις ενεργειακές στάθμες που αντιστοιχούν σε λίγες διάκριτες καταστάσεις του Α. Το κάτω διάγραμμα δείχνει, για λίγες τιμές της ενέργειας Ε΄, τον αριθμό Ω'(E') των προσιτών καταστάσεων της δεξαμενής Α΄ ως συνάρτηση της ενέργειάς της Ε΄. Αν το Α βρίσκεται στην κατάσταση r, με ενέργειά E_r = 10, η ενέργεια της δεξαμενής θα πρέπει να είναι Ε΄ = 2040, οπότε η δεξαμενή Α΄ θα μπορεί να βρίσκεται σε οποιαδήποτε από τις 2×10^{6} δυνατές καταστάσεις της. Αν το A βρίσκεται σε μια άλλη κατάσταση, s, με ενέργεια E_s = 16, η ενέργεια της δεξαμενής θα πρέπει να είναι Ε΄= 2034, και η Α΄ θα μπορεί να βρίσκεται σε οποιαδήποτε από τις 10⁶ δυνατές καταστάσεις της. Βλέπουμε λοιπόν ότι η πιθανότητα να βρεθεί το Α στην κατάσταση s είναι εδώ η μισή από ό,τι στην κατάσταση r.

Η πιθανότητα να έχει το σύστημα Α ενέργεια μεταξύ E και $E + \delta E$ θα ισούται, σύμφωνα με τα παραπάνω, με

$$P(E) = \sum_{s} P_s(E) \tag{3.35}$$

όπου η άθροιση γίνεται μόνο για τις καταστάσεις που έχουν ενέργεια μέσα στην παραπάνω ενεργειακή περιοχή. Για τις καταστάσεις όμως αυτές έχουμε $P_r = C e^{-\beta E_r}$, για να βρούμε, επομένως, το P(E) αρκεί να πολλαπλασιάσουμε τον αριθμό των καταστάσεων με ενέργεια μεταξύ E και $E + \delta E$ επί την πιθανότητα κατάληψης κάθε τέτοιας κατάστασης. Με άλλα λόγια:

$$P(E) = C \ \Omega(E) \ \mathrm{e}^{-\beta E} \tag{3.36}$$

όπου το C δίνεται και πάλι από την Εξ. (3.33).

Αν το Α είναι επίσης ένα μακροσκοπικό σύστημα, τότε το $\Omega(E)$ αυξάνει πολύ γρήγορα με την ενέργεια. Επειδή όμως το $e^{-\beta E}$ ελαττώνεται πολύ γρήγορα με την ενέργεια, το γινόμενο τής Εξ. (3.36) θα εμφανίζει ένα πολύ οξύ μέγιστο, που θα γίνεται οξύτερο όσο μεγαλώνει το σύστημα Α. Αυτό σημαίνει ότι, όπως δείξαμε και στην Παράγρ. 3.2.2 (Εξ. 3.5, Σχ. 3.2), η ενέργεια ενός μακροσκοπικού συστήματος σε θερμική ισορροπία με θερμική δεξαμενή είναι πολύ καλά καθορισμένη.

Η κατάσταση είναι βέβαια τελείως διαφορετική αν το σύστημα είναι πάρα πολύ μικρό, αν π.χ. αποτελείται από ένα μόνο σωματίδιο. Μια εφαρμογή ενός τέτοιου συστήματος είναι η περίπτωση ενός συγκεκριμένου μορίου μέσα σε ένα δοχείο γεμάτο από μόρια του ίδιου αερίου. Το υπόλοιπο αέριο δρα ως θερμική δεξαμενή για το συγκεκριμένο αυτό μόριο, η ενέργεια τού οποίου υφίσταται έντονες διακυμάνσεις εξαιτίας των συγκρούσεών του με τα άλλα μόρια, ενώ η μέση ενέργεια ολόκληρου του αερίου του δοχείου παραμένει σταθερή και πολύ καλά καθορισμένη. Η κατανομή των ενεργειών για ένα υποσύστημα που αποτελείται από ένα μόνο σωματίδιο θα μας οδηγήσει στην κατανομή των ταχυτήτων κατά Maxwell, όπως θα δούμε στο Κεφάλαιο V.

3.4.3 Συνάρτηση διαμερισμού

Ορίζουμε ως συνάρτηση διαμερισμού (ή διαμέρισης ή επιμερισμού), Z, ενός κανονικού συνόλου το άθροισμα

$$Z = \sum_{r} e^{-\beta E_r}$$
(3.37)

όπου η άθροιση γίνεται για όλες τις καταστάσεις που αντιπροσωπεύονται μέσα στο σύστημα, ανεξάρτητα από την ενέργειά τους. Εισάγοντας τον αριθμό καταστάσεων, $\Omega(E)$, με ενέργεια μεταξύ E και $E + \delta E$, στην πιο πάνω εξίσωση, μπορούμε να γράψουμε τη συνάρτηση διαμερισμού και με τη μορφή

$$Z = \sum_{E_r} \Omega(E_r) e^{-\beta E_r}$$
(3.38)

όπου η άθροιση γίνεται τώρα για όλες τις δυνατές τιμές του E_r και όχι για όλες τις καταστάσεις, αφού ο αριθμός των καταστάσεων με την ίδια ενέργεια, E_r , περιέχεται μέσα στο $\Omega(E_r)$.

Θα δούμε ότι η συνάρτηση διαμερισμού ενός συστήματος περιέχει όλες τις δυνατές πληροφορίες για το σύστημα. Με άλλα λόγια, όταν γνωρίζουμε τη συνάρτηση διαμερισμού κάποιου συστήματος, μπορούμε να αντλήσουμε από αυτήν όλες τις δυνατές πληροφορίες (μέση ενέργεια, εντροπία, ελεύθερη ενέργεια, πιθανότητες, κτλ.) για το σύστημα αυτό¹⁵.

Με την αντικατάσταση της Εξ. (3.38) μέσα στην (3.36), έχουμε για την πιθανότητα να έχει το σύστημα ενέργεια μεταξύ E και $E + \delta E$

$$P(E) = \frac{1}{Z} \Omega(E) e^{-\beta E}$$
(3.39)

ενώ η πιθανότητα να βρίσκεται το σύστημα σε μία κατάσταση, r, με ενέργεια E_r θα δίνεται, σύμφωνα με την Εξ. (3.39) από το

$$P_r = \frac{1}{Z} e^{-\beta E_r}$$
(3.40)

3.4.4 Συνεχής κατανομή

Αν οι ενεργειακές στάθμες είναι τόσο κοντά μεταξύ τους ώστε να μπορούμε να θεωρήσουμε ότι έχουμε ένα συνεχές ενεργειακό φάσμα, τότε η προηγούμενη άθροιση

¹⁵ Στη Στατιστική Φυσική, η συνάρτηση διαμερισμού ενός μακροσκοπικού συστήματος παίζει, κατά κάποιον τρόπο, αντίστοιχο ρόλο με εκείνον που παίζει, στην Κβαντομηχανική, η κυματοσυνάρτηση, ψ, ενός κβαντικού συστήματος, δοθέντος ότι από την ψ μπορούμε πράγματι να αντλήσουμε όλες τις δυνατές πληροφορίες για ένα κβαντικό σύστημα.

μετατρέπεται σε ολοκλήρωμα και η συνάρτηση διαμερισμού γράφεται

$$Z = \int_{o}^{\infty} g(E) e^{-\beta E} dE$$
(3.41)

και η πιθανότητα να έχει το σύστημα ενέργεια μεταξύ E και E + dE θα δίνεται από το

$$P(E) dE = \frac{1}{Z} g(E) e^{-\beta E} dE$$
(3.42)

3.4.5 Υπολογισμός μέσων τιμών – Μέση τιμή της ενέργειας συστήματος σε θερμική δεξαμενή

Για να υπολογίσουμε τη μέση τιμή μιας μεταβλητής, y, θα πρέπει να γνωρίζουμε ποια τιμή, y_r, παίρνει η μεταβλητή αυτή σε κάθε κατάσταση r, αλλά και ποια είναι η πιθανότητα, P_r, να βρίσκεται το σύστημα σε αυτήν την κατάσταση, r. Σύμφωνα με όσα είπαμε στην Παράγρ. 1.4.3, Εξ. (1.7), η μέση τιμή της θα πρέπει να δίνεται από το άθροισμα

$$\overline{y} = \sum_{r} y_{r} P_{r} = \frac{1}{Z} \sum_{r} y_{r} e^{-\beta E_{r}}$$
 (3.43)

ή, για συνεχή κατανομή, από το ολοκλήρωμα

$$\overline{y} = \frac{1}{Z} \int_{0}^{\infty} y(E) g(E) e^{-\beta E} dE$$
(3.44)

Έτσι η μέση τιμή της ενέργειας ενός συστήματος σε θερμική ισορροπία με το περιβάλλον του δίνεται από τη σχέση

$$\overline{E} = \frac{1}{Z} \sum_{r} E_{r} e^{-\beta E_{r}}$$
(3.45)

Επειδή όμως

$$\sum_{r} E_{r} e^{-\beta E_{r}} = -\sum_{r} \frac{\partial e^{-\beta E_{r}}}{\partial \beta} = -\frac{\partial}{\partial \beta} \sum_{r} e^{-\beta E_{r}} = -\frac{\partial Z}{\partial \beta}$$
(3.46)

παίρνουμε τελικά

$$\overline{E} = -\frac{1}{Z} \frac{\partial Z}{\partial \beta} = -\frac{\partial \ln Z}{\partial \beta}$$
(3.47)

Kαι, επειδή d β /dT = $-1/(kT^2)$, η Εξ. (3.47) μπορεί να γραφεί και με τη μορφή

$$\overline{E} = kT^2 \frac{\partial \ln Z}{\partial T}$$
(3.48)

3.4.6 Εντροπία συστήματος σε θερμική δεξαμενή

Η σχέση

$$S \equiv k \ln \Omega \tag{3.18}$$

που πήραμε ως ορισμό της εντροπίας για ένα απομονωμένο σύστημα, δεν μπορεί να εφαρμοστεί σε ένα μακροσκοπικό σύστημα μέσα σε θερμική δεξαμενή, γιατί δεν έχουμε πάντα τρόπο να υπολογίσουμε το Ω, τον αριθμό δηλαδή των καταστάσεων που αντιστοιχούν σε μια ορισμένη μακροκατάσταση. Με τη χρήση των στατιστικών συνόλων μπορεί να αποδειχθεί ότι η πιο πάνω σχέση είναι ισοδύναμη με την

$$S = -k\sum_{r} P_r \ln P_r \tag{3.49}$$

Εύκολα βλέπει κανείς ότι, για ένα απομονωμένο σύστημα, η Εξ. (3.47) μεταπίπτει στην Εξ. (3.18). Πράγματι, σε ένα απομονωμένο σύστημα, με ενέργεια *E*, υπάρχουν $\Omega(E)$ μικροκαταστάσεις με πιθανότητα κατάληψης σταθερή και ίση με 1/Ω, σύμφωνα με το αίτημα των ίσων πιθανοτήτων. Με τις αντικαταστάσεις $P_r = 1/\Omega$ και $\sum_r P_r = 1$, η Εξ. (3.49)

μετατρέπεται στην

$$S = -k\sum_{r} P_r \ln \frac{1}{\Omega} = -k \ln \frac{1}{\Omega} \sum_{r} P_r = k \ln \Omega$$

που συμπίπτει πράγματι με την Εξ. (3.18).

3.4.7 Ελεύθερη ενέργεια συστήματος σε θερμική δεξαμενή

Σύμφωνα με την Εξ. (3.38), για ένα σύστημα σε θερμική δεξαμενή έχουμε,

$$\ln P_{\rm r} = -\ln Z - \beta E_{\rm r} \tag{3.50}$$

Αντικαθιστώντας την Εξ. (3.50) στην Εξ. (3.49) παίρνουμε

$$S = -k\sum_{r} P_r \ln P_r = -k\left(-\ln Z\sum_{r} P_r - \beta\sum_{r} P_r E_r\right) = k\ln Z + \frac{\overline{E}}{T}$$
(3.51)

εφόσον $\beta = 1/kT$ και $\sum_r P_r E_r = \overline{E}$.

Ορίζοντας τώρα την ελεύθερη ενέργεια, F, ενός συστήματος σε θερμική ισορροπία με δεξαμενή θερμοκρασίας T, με τη σχέση

$$F \equiv -kT \ln Z \tag{3.52}$$

παίρνουμε, με αντικατάσταση του k ln Z από την Εξ. (3.51), τη γνωστή σχέση της θερμοδυναμικής:

$$F \equiv E - T S \tag{3.53}$$

Με τη βοήθεια του Δεύτερου Θερμοδυναμικού Νόμου μπορεί εύκολα να αποδειχθεί (και δίνεται ως Άσκηση για τον σπουδαστή) ότι, σε ένα τέτοιο σύστημα, η κατάσταση ισορροπίας είναι εκείνη για την οποία η ελεύθερη ενέργεια έχει την ελάχιστη τιμή της, σε αντιδιαστολή με την περίπτωση του απομονωμένου συστήματος όπου, στην ισορροπία, η εντροπία παίρνει τη μέγιστη τιμή της. Έχουμε λοιπόν:

<u>Στην κατάσταση ισορροπίας</u>	
Σύστημα σε επαφή με θερμική δεξαμενή:	$F = \min$.
Σύστημα απομονωμένο από το περιβάλλον του:	$S = \max$.
	S = max

3.4.8 Μεταβολή της εντροπίας θερμικής δεξαμενής

Σύμφωνα με τον ορισμό της θερμικής δεξαμενής, η ποσότητα θερμότητας, Q', που απορροφά ή προσφέρει η δεξαμενή κατά τη διάρκεια μιας αλληλεπίδρασης, είναι πολύ μικρότερη από την ενέργειά της, E'. Αναπτύσσοντας τότε κατά Taylor τον λογάριθμο του $\Omega'(E'+Q')$ γύρω από την τιμή E', παίρνουμε

$$\ln \Omega'(E'+Q') = \ln \Omega'(E') + \frac{\partial \ln \Omega'(E')}{\partial E'}Q' + \dots \dots$$
(3.54)

Επομένως, ύστερα από την απορρόφηση μιας ποσότητας θερμότητας, $Q' \ll E'$, έχουμε

$$\Delta (\ln \Omega') = \ln \Omega'(E' + Q') - \ln \Omega'(E') \approx \beta' Q' + \dots \dots$$
(3.55)

όπου αντικαταστήσαμε το d[ln $\Omega'(E')$]/dE' με το β' , θεωρώντας ότι η δεξαμενή βρίσκεται σε ισορροπία σε όλη τη διάρκεια της μεταβολής.

Σύμφωνα πάντα με τον ορισμό της θερμικής δεξαμενής, η θερμοκρασία της, άρα και το β , παραμένουν ουσιαστικά σταθερά και είναι επομένως ανεξάρτητα του Q' και του E'. Έτσι η δεύτερη παράγωγος τού β ως προς E' παραλείπεται και η μεταβολή της εντροπίας της θερμικής δεξαμενής γράφεται ως

$$\Delta S = k \Delta(\ln Q') = k \beta Q' = Q'/T' \quad (Θερμική δεξαμενή)$$
(3.56)

Με ανάλογο τρόπο αποδεικνύει κανείς ότι, αν ένα σύστημα με μέση ενέργεια \overline{E} απορροφά, με τρόπο αντιστρεπτό, ένα απειροστό ποσόν θερμότητας, $dQ \ll \overline{E}$, έτσι ώστε η θερμοκρασία του να παραμένει σταθερή, η απειροστή μεταβολή της εντροπίας του δίνεται από το

dS = dQ/dT (Αντιστρεπτή μεταβολή) (3.57)

που συμφωνεί με τον ορισμό του Clausius (Εξ. 3.20) για την εντροπία.

Εδώ θεωρήσαμε και πάλι ότι οι εξωτερικές παράμετροι του συστήματος (V, N) παραμένουν σταθερές, άρα ότι έχουμε μόνο θερμική αλληλεπίδραση. Μπορεί πάντως να αποδειχθεί ότι οι δύο ορισμοί της εντροπίας είναι ισοδύναμοι και στη γενική περίπτωση.

Όταν η διαδικασία δεν είναι αντιστρεπτή, έχουμε πάντα

$$dS > dQ/dT$$
 (Μη αντιστρεπτή μεταβολή) (3.58)

Υπενθυμίζουμε ότι μια μεταβολή είναι αντιστρεπτή όταν, οποιαδήποτε στιγμή, μπορούμε να αντιστρέψουμε τη φορά της με μια απειροστή μεταβολή των εξωτερικών παραμέτρων (Παράγρ.2.5.3). Αυτό σημαίνει ότι το σύστημα θα πρέπει να βρίσκεται κάθε στιγμή στην κατάσταση ισορροπίας, κατά τη διάρκεια της μεταβολής. Μια αυθόρμητη μεταβολή είναι εν γένει μη αντιστρεπτή.

3.5 Θερμοχωρητικότητα και ειδική θερμότητα

Η θερμοχωρητικότητα ενός συστήματος ορίζεται από το λόγο

$$C_{y} = \left(\frac{\mathrm{d}Q}{\mathrm{d}T}\right)_{y} \tag{3.59}$$

και δίνει την ποσότητα της θερμότητας που πρέπει να προσλάβει το σύστημα ώστε να αυξηθεί η θερμοκρασία του κατά 1 βαθμό K, όταν η παράμετρος, y, διατηρείται σταθερή. Το C_y εξαρτάται φυσικά από το είδος του συστήματος, τη συγκεκριμένη μακροκατάσταση και την παράμετρο, y, που διατηρείται σταθερή, δηλαδή από τον τρόπο με τον οποίο θερμαίνεται το σύστημα.

Ειδική θερμότητα, c_y , (με c πεζό σε αντιδιαστολή με τη θερμοχωρητικότητα, που γράφεται με C κεφαλαίο) ενός συστήματος είναι η θερμοχωρητικότητα ανά μονάδα (μάζας, όγκου, κτλ) του συστήματος, εξαρτάται επομένως από τη μονάδα που θεωρούμε (1 g, 1 kg, 1 mol, 1 m³, 1 cm³ κτλ.). Ειδική θερμότητα ανά γραμμομόριο (ή μοριακή θερμότητα) είναι ο λόγος C_y/v , όπου v ο αριθμός γραμμομορίων του συστήματος, είναι ο λόγος C_y/m , όπου m η μάζα του συστήματος.

Η θερμοχωρητικότητα είναι εντατική μεταβλητή, ενώ η ειδική θερμότητα είναι εκτατική, όπως προκύπτει από τον ορισμό τους.

Σχετικά με τις ονομασίες "θερμοχωρητικότητα" και "ειδική θερμότητα", καλό είναι να

παραθέσουμε ένα άλλο απόσπασμα από την προηγούμενη ιστοσελίδα:

"Heat never exists within a system or within its surroundings and cannot be regarded as a property of matter. Some widespread but unfortunate terminology uses phrases such as "heat content", "specific heat" or "heat capacity" in referring to some properties of a system. This usage is so common that there is no way to change it, but the word "heat" should rigorously be reserved only for the definition given here (energy in transition between a system and its surroundings) and not to represent anything contained within a system or any property of it.¹⁶

Στα επόμενα κεφάλαια θα μελετήσουμε και θα υπολογίσουμε την ειδική θερμότητα συγκεκριμένων φυσικών συστημάτων, όπως ενός παραμαγνητικού υλικού και ενός τελείου ιδανικού αερίου, και θα δούμε ότι τα θεωρητικά αποτελέσματα της μελέτης αυτής, όχι μόνο συμπίπτουν, εν γένει, με τις κλασικές σχέσεις της Θερμοδυναμικής, αλλά, σε ορισμένες περιπτώσεις, ερμηνεύουν φαινόμενα (π.χ. ανωμαλία Schottky) που είχαν παρατηρηθεί πειραματικά, αλλά δεν μπορούσαν να εξηγηθούν με την κλασική Θερμοδυναμική.

¹⁶ Η θερμότητα δεν υπάρχει ποτέ μέσα σε ένα σύστημα ή στο περιβάλλον του και δεν μπορεί να θεωρηθεί ως μια ιδιότητα της ύλης. Μια πολύ διαδεδομένη αλλά άστοχη ορολογία χρησιμοποιεί φράσεις όπως "περιεχόμενο θερμότητας", "ειδική θερμότητα", ή "θερμοχωρητικότητα", αναφερόμενη σε συγκεκριμένες ιδιότητες ενός συστήματος. Η χρήση αυτή είναι τόσο συνηθισμένη, ώστε δεν υπάρχει τρόπος να την αλλάξουμε, πάντως η λέξη "θερμότητα" θα πρέπει να περιοριστεί αυστηρά μόνο στον ορισμό που δίνεται εδώ (ενέργεια μεταφερόμενη μεταξύ ενός συστήματος και του περιβάλλοντός του) και δεν μπορεί να παριστάνει οτιδήποτε περιέχεται μέσα σε ένα σύστημα ή κάποια ιδιότητά του.

ΚΕΦΑΛΑΙΟ ΙV

ΠΑΡΑΜΑΓΝΗΤΙΣΜΟΣ

"Λέγεται περί σωμάτων κατεχόντων εις ήσσονα βαθμόν τας μαγνητικάς ιδιότητας εν σχέσει προς τα ισχυρώς μαγνητικά σώματα, τα σιδηρομαγνητικά"

ΕΓΚΥΚΛΟΠΑΙΔΙΚΟΝ ΛΕΞΙΚΟΝ, ΕΚΔΟΤΙΚΟΣ ΟΙΚΟΣ «ΕΛΕΥΘΕΡΟΥΔΑΚΗΣ Α.Ε.», ΕΝ ΑΘΗΝΑΙΣ, 1930

4.1 Εισαγωγή

Ένα υλικό ονομάζεται παραμαγνητικό, όταν οι μαγνητικές του ιδιότητες οφείλονται στον προσανατολισμό των μαγνητικών ροπών των ατόμων του παρουσία ενός μαγνητικού πεδίου. Ένα παραμαγνητικό υλικό, τα άτομα του οποίου χαρακτηρίζονται από σπιν ¹/₂, αποτελεί την απλούστερη εφαρμογή συστήματος σε θερμική ισορροπία με το περιβάλλον του, γατί αποτελείται από δύο μόνο ενεργειακές στάθμες, όπως είδαμε στις Παραγρ. 1.2 και 1.3.

Στη συνέχεια, θα εξετάσουμε ένα παραμαγνητικό σύστημα που περιέχει N_0 άτομα ανά μονάδα όγκου με σπιν ½ και μαγνητική ροπή μ_0 καθένα, τοποθετημένα μέσα σε ομοιόμορφο μαγνητικό πεδίο μαγνητικής επαγωγής **B**, σε σταθερή απόλυτη θερμοκρασία, *T*. Υποθέτουμε ότι η αλληλεπίδραση μεταξύ των μαγνητικών ροπών των ατόμων είναι αμελητέα.

4.2 Ενεργειακή κατανομή

4.2.1 Μέση τιμή της ενέργειας

Όπως είχαμε δει στην Παράγρ. 1.2.4, κάθε τέτοιο παραμαγνητικό άτομο μπορεί να βρεθεί σε δύο καταστάσεις, την (+) με τη μαγνητική του ροπή, μ , παράλληλη στο μαγνητικό πεδίο, **B**, και την (-) με τη μαγνητική του ροπή αντιπαράλληλη. Στην κατάσταση (+) η ενέργειά τού κάθε ατόμου είναι $\epsilon_+ = -\mu B$, ενώ στην κατάσταση (-) η ενέργειά του είναι ϵ_- = + μB . Σύμφωνα με την κανονική κατανομή έχουμε, για κάθε ένα άτομο, τις ακόλουθες πιθανότητες

$$P_{+} = \frac{1}{Z} e^{-\beta \epsilon_{+}} = \frac{1}{Z} e^{\beta \mu B}$$

$$(4.1)$$

$$\boldsymbol{P}_{-} = \frac{1}{\boldsymbol{Z}} \boldsymbol{e}^{-\beta \in \mathbb{Z}} = \frac{1}{\boldsymbol{Z}} \boldsymbol{e}^{-\beta \mu \boldsymbol{B}}$$
(4.2)

όπου β ≡ 1/kT και Z η συνάρτηση διαμερισμού του συστήματος ενός ατόμου, ίση με

$$\mathbf{Z} = \mathbf{e}^{+\beta\mu\mathbf{B}} + \mathbf{e}^{-\beta\mu\mathbf{B}} = 2\cosh(\beta\mu\mathbf{B})$$
(4.3)

Η μέση μαγνητική ροπή κάθε ατόμου θα είναι ίση, σύμφωνα με τον ορισμό της μέσης τιμής, με

$$\overline{\mu} = \sum_{r} \mathbf{P}_{r} \mu_{r} = \mathbf{P}_{+} \mu + \mathbf{P}_{-} (-\mu) = \mu \frac{e^{\beta \mu B} - e^{-\beta \mu B}}{e^{\beta \mu B} + e^{-\beta \mu B}} = \mu \tanh(\beta \mu B)$$
(4.4)

Αντίστοιχα, η μέση ενέργεια κάθε ατόμου θα δίνεται από το

$$\overline{\epsilon} = -\mu \boldsymbol{B} \tanh\left(\beta \mu \boldsymbol{B}\right) \tag{4.5}$$

Η Εξ. (4.5) για τη μέση ενέργεια θα μπορούσε να υπολογιστεί και απ' ευθείας από την Εξ. (3.45)

$$\overline{E} = -\frac{1}{Z} \frac{\partial Z}{\partial \beta} = -\frac{\partial \ln Z}{\partial \beta}$$
(3.45)

Η συνάρτηση διαμερισμού για N άτομα θα δίνεται από το

51

$$Z_{\rm N} = Z^{\rm N} = [2 \cosh\left(\beta\mu B\right)]^{\rm N} \tag{4.6}$$

->

Εφόσον τα άτομα δεν αλληλεπιδρούν, η μέση μαγνητική ροπή του συστήματος των N_0 ατόμων, δηλαδή η μέση μαγνητική ροπή ανά μονάδα όγκου, που ορίζεται και ως μαγνήτιση του υλικού, M, θα ισούται με

$$\bar{\boldsymbol{M}} = N_o \bar{\boldsymbol{\mu}} = N_o \mu \tanh\left(\beta \mu \boldsymbol{B}\right) = N_o \mu \tanh\left(\frac{\mu \boldsymbol{B}}{kT}\right)$$
(4.7)

και η μέση ενέργεια ανά μονάδα όγκου

$$\overline{E} = -N_o \overline{\mu} B = -N_o \mu B \tanh\left(\beta \mu B\right) = -N_o \mu B \tanh\left(\frac{\mu B}{kT}\right)$$
(4.8)

4.2.2 Οριακές τιμές

Ας υπολογίσουμε τις οριακές τιμές της μέσης μαγνήτισης και της μέσης ενέργειας του συστήματος για πολύ χαμηλές και πολύ υψηλές θερμοκρασίες, ή για πολύ υψηλά και πολύ χαμηλά μαγνητικά πεδία.

α) Όταν $x \equiv \mu B/kT \rightarrow 0$, η υπερβολική εφαπτομένη τείνει στο όρισμά της¹⁷, και το cosh στη μονάδα, οπότε $P_+ = P_- = \frac{1}{2}$, ενώ η μέση μαγνήτιση γίνεται

$$\bar{\boldsymbol{M}} \approx N_0 \,\mu \left(\mu \, B/kT\right) = N_0 \,\mu^2 \, B/kT \to 0 \tag{4.9a}$$

β) Όταν $x \equiv \mu B/kT \rightarrow \infty$, η υπερβολική εφαπτομένη τείνει στη μονάδα¹⁸, και το cosh στο e^x οπότε $P_+ = 1$, $P_- = 0$, ενώ η μέση μαγνήτιση γίνεται

$$\bar{\boldsymbol{M}} \to N_0 \,\mu \,(1) = N_0 \,\mu \tag{4.9b}$$

Η μεταβολή των πιθανοτήτων P_+ και P_- , καθώς και της μέσης μαγνητικής ροπής, συναρτήσει του πηλίκου μ B/kT, δίνονται στα Σχ. 4.1 και 4.2, αντιστοίχως.

Σχήμα 4.1 Η εξάρτηση των πιθανοτήτων P_+ και P_- από την τιμή του $x = \mu B/kT$, για ένα σωματίδιο με σπιν ½ και μαγνητική ροπή μ μέσα σε μαγνητικό πεδίο εντάσεως B.

Σχήμα 4.2 Η εξάρτηση του πηλίκου *Μ*/*N*₀μ από την τιμή του *x* = μ*B*/*kT*, για ένα σύστημα από σωματίδια με σπιν ½ και μαγνητική ροπή μ το καθένα, μέσα σε μαγνητικό πεδίο εντάσεως *B*. *M* είναι η μέση τιμή της μαγνήτισης και *N*₀ ο αριθμός σωματιδίων ανά μονάδα όγκου του υλικού.

Καθώς το ($\mu B/kT$) \rightarrow 0, οι πιθανότητες κατάληψης των δύο σταθμών τείνουν στο $\frac{1}{2}$ (ίση πιθανότητα και για τις δύο στάθμες) με αποτέλεσμα οι μέσες τιμές της μαγνήτισης και της

¹⁷ Όταν $x \le 1$, τότε $e^x \approx 1 + x$ και $e^{-x} \approx 1 - x$, οπότε $Z = 2 \cosh x \approx 2 (1/2) [(1 + x) + (1 - x)] \approx 2$,

 $\Rightarrow P_+ = P_- = \frac{1}{2} \quad \text{kat} \quad \tanh x \approx (1/2)[(1+x) - (1-x)] = x.$

- ¹⁸ Όταν x >> 1, τότε $e^x >> e^{-x}$, οπότε $Z = 2 \cosh x \approx e^x + e^{-x} \approx e^x$
- $\Rightarrow P_+ \approx e^x / e^x = 1, P_- \approx e^{-x} / e^x = 0 \quad \kappa \alpha i \quad \tanh x \approx e^x / e^x = 1.$

μαγνητικής ενέργειας να τείνουν στο μηδέν. Βλέπουμε εξάλλου ότι, για πολύ χαμηλά πεδία ή για υψηλές θερμοκρασίες, τα παραμαγνητικά υλικά ακολουθούν γραμμική εξάρτηση από το *B*/*T* [Εξ. (4.9*a*), Σχ. 4.2], τον γνωστό εμπειρικό *νόμο Curie*.

Η μαγνητική επιδεκτικότητα του υλικού, χ, που ορίζεται από τον λόγο M/B, θα δίνεται στην περίπτωση αυτή από τη σχέση

$$\chi = \frac{\bar{M}}{B} = \frac{N_o \mu^2}{kT} \tag{4.10}$$

Αντίθετα, για πολύ υψηλά πεδία ή χαμηλές θερμοκρασίες (Εξ. 4.9*b*), η μαγνήτιση φθάνει μια τιμή κόρου, ίση με $N_0\mu$, όπου όλα τα σπιν βρίσκονται στη θεμελιώδη κατάσταση, με τη μαγνητική τους ροπή παράλληλη στο πεδίο, όπως φαίνεται στο Σχ. 4.2.

Ο λόγος $P_+/P_-=$ $e^{-\beta\mu B} = e^{-\beta\Delta E}$ δίνει την αναλογία μεταξύ των πληθυσμών δύο καταστάσεων. Βλέπουμε ότι η χαμηλότερη στάθμη είναι πάντα πιο "κατοικημένη" από την υψηλότερη κατά τον παράγοντα $e^{-\beta\Delta E}$, όπου ΔE η ενεργειακή διαφορά ανάμεσα στις δύο στάθμες.

4.2.3 Αριθμητικές τιμές

Στην περίπτωση όπου τα σωματίδιά μας είναι ηλεκτρόνια, η μαγνητόνη του Bohr, που δίνει τη μαγνητική ροπή, μ , του ηλεκτρονίου, είναι ίση με $\mu = 9.3 \times 10^{-21}$ A.m². Av B = 1 Tesla = 10⁴ Gauss, τότε $\mu B = 10^{-23}$ J. Για τη θερμοκρασία περιβάλλοντος, T = 300 K, έχουμε $kT = 4 \times 10^{-21}$ J, ενώ για τη θερμοκρασία 1 K βρίσκουμε $kT = 1.4 \times 10^{-23}$ J.

Περιμένουμε επομένως ότι, στη θερμοκρασία περιβάλλοντος, όπου $\mu B/kT \ll 0$, θα ισχύει ο νόμος του Curie, όπως και πράγματι συμβαίνει, ενώ κοντά στο απόλυτο μηδέν η προσέγγιση δεν ισχύει πια. Η θεωρία του παραμαγνητισμού επιβεβαιώνεται επομένως απολύτως από τα πειραματικά αποτελέσματα.

4.3 Ειδική θερμότητα και θερμοχωρητικότητα παραμαγνητικής ουσίας

Η ειδική θερμότητα ενός παραμαγνητικού συστήματος, υπό σταθερή ένταση μαγνητικού πεδίου, *B*, θα δίνεται, σύμφωνα με τον ορισμό (Εξ. 3.55), από το λόγο

$$C_B = \left(\frac{\mathrm{d}Q}{\mathrm{d}T}\right)_B \tag{4.11}$$

Έχουμε λοιπόν

$$C_{B} = \left(\frac{\mathrm{d}Q}{\mathrm{d}T}\right)_{B} = \left(\frac{\partial \bar{E}}{\partial T}\right)_{B} = -N_{o}B\frac{\partial \bar{M}_{o}}{\partial T} = N_{o}k\left(\frac{\mu B}{kT}\right)^{2}\operatorname{sec}h^{2}\left(\frac{\mu B}{kT}\right)$$
(4.12)

Η μεταβολή αυτή ως συνάρτηση του $kT/\mu B$ φαίνεται στο Σχ. 4.3, όπου παρατηρούμε ότι η μετάβαση, από την κατάσταση όπου όλα τα σπιν είναι παράλληλα στο πεδίο σε εκείνην όπου τα μισά είναι παράλληλα και τα άλλα μισά αντιπαράλληλα, συμβαίνει σε μια σχετικά περιορισμένη θερμοκρασιακή περιοχή γύρω από την τιμή $kT/\mu B = 1$, ή $kT = \mu B$.

Η θερμοχωρητικότητα αυξάνει γρήγορα, περνάει από ένα μέγιστο και ξαναμηδενίζεται αρκετά γρήγορα. Όταν παρατηρήθηκε για πρώτη φορά πειραματικά από τον Schottky ονομάστηκε *ανωμαλία Schottky*, γιατί τότε δεν μπορούσε να ερμηνευθεί. Τώρα γνωρίζουμε ότι η συμπεριφορά αυτή είναι λογικό να εμφανιστεί όταν έχουμε πεπερασμένες διάκριτες ενεργειακές στάθμες σε μεγάλες μεταξύ τους αποστάσεις, όπως δείχνει η θεωρία που αναπτύξαμε πιο πάνω. Η ολική ενέργεια που απαιτείται για τη μετάβαση αυτή (Σχ. 4.3) δίνεται από το εμβαδόν της καμπύλης. Ισούται επομένως με

$$\Delta \overline{E} = \int_{0}^{\infty} C_B \, \mathrm{d}T = \mu N_0 B \tag{4.13}$$

και αντιστοιχεί στη μετάβαση από τον πλήρη προσανατολισμό (όλα τα σπιν παράλληλα στο

πεδίο), όπου $\overline{E} = \mu N_0 B$, στη μεγαλύτερη δυνατή αταξία (μισά σπιν παράλληλα και μισά αντιπαράλληλα), όπου $\overline{E} = 0$.

Σχήμα 4.3 Η μαγνητική συνεισφορά στη θερμοχωρητικότητα, C_B, ως συνάρτηση του kT/μB. Παρατηρούμε ότι η C_B περνάει από ένα μέγιστο γύρω από την τιμή kT = μB. Η συμπεριφορά αυτή είναι γνωστή ως ανωμαλία Schottky και οφείλεται στο γεγονός ότι то σύστημά μας έχει διάκριτες πεπερασμένες, ενεργειακές στάθμες σε μεγάλες μεταξύ τους αποστάσεις.

4.4 Εντροπία παραμαγνητικής ουσίας

Σύμφωνα με την Εξ. (3.49), που δίνει την εντροπία συστήματος σε θερμική δεξαμενή, και τις Εξ. (4.6) και (4.8), που δίνουν τις εκφράσεις για τη συνάρτηση διαμερισμού, Z, και τη μέση ενέργεια, \overline{E} , του παραμαγνητικού υλικού, έχουμε για μια παραμαγνητική ουσία

$$S = k \ln Z + \frac{\overline{E}}{T} = N k \left[\ln 2 + \ln(\cosh x) - x \tanh x \right]$$
(4.14)

όπου $x ≡ \mu_0 B/kT$.

4.4.1 Οριακές τιμές της εντροπίας

<u>Για $x \ll 1$ (ή $x \rightarrow 0$)</u>, δηλαδή χαμηλά πεδία / υψηλές θερμοκρασίες, έχουμε

 $\tanh x \to x$ $\kappa \alpha \iota$ $\ln (\cosh x) \approx \ln (1 + x^2/2) \approx x^2/2$

οπότε

$$S \approx Nk (\ln 2 + x^2/2 - x^2) = Nk (\ln 2 - x^2/2)$$

ή ακόμη, επειδή $\ln 2 = 0.69 >> x^2$,

$$S = Nk \ln 2 = k \ln 2^N \tag{4.15}$$

Όμως 2^N είναι όλες οι δυνατές καταστάσεις του συστήματος. Επομένως, όταν το x τείνει στο μηδέν, η εντροπία παίρνει τη μέγιστη τιμή της· όλες οι δυνατές καταστάσεις του συστήματος είναι εξίσου πιθανές, ο προσανατολισμός των μαγνητικών ροπών είναι τελείως τυχαίος, με άλλα λόγια επικρατεί πλήρης αταξία.

<u>Για x >> 1 (ή $x \to \infty$)</u>, δηλαδή υψηλά πεδία / χαμηλές θερμοκρασίες, έχουμε

 $\cosh x \approx e^{x/2}, \qquad \tanh x \to 1,$

οπότε

$$S \approx Nk \left(\ln 2 + \ln \left[e^{x}/2 \right] - x \right) = Nk \left(\ln 2 - x - \ln 2 - x \right) = 0$$
(4.16)

από όπου προκύπτει ότι $\Omega = e^{S/k} = 1$. Άρα, στην περίπτωση αυτή υπάρχει μόνο μία μικροκατάσταση, εκείνη που αντιστοιχεί σε όλα τα σπιν παράλληλα στο πεδίο.

4.4.2 Γενική συμπεριφορά της εντροπίας

Αντίστοιχα υπάρχει μόνο μία μικροκατάσταση που αντιστοιχεί σε όλα τα σπιν αντιπαράλληλα στο πεδίο. Αυτή μπορεί να επιτευχθεί πειραματικά αν, αφού παραλληλίσουμε όλα τα σπιν στο πεδίο εφαρμόζοντας πολύ υψηλό πεδίο και πολύ χαμηλές θερμοκρασίες, αντιστρέψουμε απότομα τη φορά του πεδίου. Τότε, για ένα πολύ μικρό διάστημα, θα έχουμε αρχικά όλα τα σπιν αντιπαράλληλα αλλά, με την πάροδο του χρόνου, θα αρχίσουν να αποπροσανατολίζονται, ώσπου να φθάσουν στον πλήρη αποπροσανατολισμό και, τελικά, ενδεχομένως, στον πλήρη προσανατολισμό στη νέα κατεύθυνση.

Επομένως, ο αριθμός των μικροκαταστάσεων αυξάνει βαθμιαία από την τιμή 1 στην τιμή 2^N , ακριβώς με τον ίδιο τρόπο, είτε ξεκινάμε με όλα τα σπιν παράλληλα, είτε με όλα τα σπιν αντιπαράλληλα. Η καμπύλη $S = f(\overline{E})$ είναι επομένως συμμετρική ως προς την τιμή E = 0, που αντιστοιχεί στην πλήρη αταξία. Η μέγιστη τιμή της εντροπίας στη θέση αυτή είναι ίση με $S_{\text{max}} = k \ln 2^N = kN \ln 2$.

Η πλήρης εικόνα της μεταβολής της εντροπίας (άρα και του $\ln\Omega$) ως συνάρτηση της μέσης ενέργειας φαίνεται στο Σχ. 4.4.

Η Εο αντιστοιχεί στην τιμή -μΝΒ, όπου όλα τα σπιν είναι παράλληλα, ενώ η Emax αντιστοιχεί στην τιμή $+\mu NB$, όπου όλα τα σπιν είναι αντιπαράλληλα στο πεδίο, μια κατάσταση που δεν μπορεί να προκύψει αυθόρμητα. Ο αριθμός των προσιτών καταστάσεων του συστήματος αυξάνει από την τιμή 1, για $\overline{E} = -\mu N B$, περνάει από ένα μέγιστο ίσο με 2^N , που αντιστοιχεί στα μισά παράλληλα και τα μισά αντιπαράλληλα και ξαναφθάνει στην τιμή 1 για \overline{E} = +μNB. Η σκιασμένη περιοχή, όπου dS/dE < 0 άρα και $d\ln \Omega/dE < 0$, αντιστοιχεί, σύμφωνα με τον ορισμό της παραμέτρου β (Εξ. 3.9) σε $\beta < 0$, άρα σε αρνητικές θερμοκρασίες, Τ.

Σχήμα 4.4 Η εντροπία ως συνάρτηση της ενέργειας για ένα σύστημα που περνάει από την κατάσταση όπου όλα τα σπιν είναι αντιπαράλληλα στο πεδίο ($E_{max} =+ \mu NB$) σε εκείνην όπου όλα τα σπιν είναι παράλληλα ($E_o = - \mu NB$)). Στη θέση που αντιστοιχεί σε E = 0, όπου τα μισά σπιν είναι αντιπαράλληλα, έχουμε $T = \pm \infty$,. Η σκιασμένη περιοχή αντιστοιχεί σε αρνητικές θερμοκρασίες, T.

Με βάση την Εξ. (4.8), που δίνει την εξάρτηση της μέσης ενέργειας, \overline{E} , του παραμαγνητικού συστήματος των σπιν από το kT, μπορούμε να χαράξουμε τη μεταβολή τού \overline{E} ως συνάρτηση του T και του β , για θετικές και αρνητικές τιμές της θερμοκρασίας των σπιν. Η μεταβολή αυτή φαίνεται στα Σχ. 4.5 (a) και (b) αντιστοίχως.

Βλέπουμε ότι, ως προς την παράμετρο β , η \overline{E} δεν παρουσιάζει ασυνέχεια, ενώ ως προς τη θερμοκρασία παρουσιάζει ένα άλμα ίσο με $2N\mu B$ όταν T = 0. Η ασυνέχεια αυτή γίνεται πιο εμφανής, αν αντιστρέψουμε τους άξονες τού πιο πάνω σχήματος και παραστήσουμε την εξάρτηση του T και του β από τη μέση ενέργεια τού συστήματος \overline{E} (Σχ. 4.6 (*a*) και (*b*). Τα διαγράμματα αυτά μπορούν να προκύψουν και γραφικά από το Σχ. 4.4, αν λάβουμε υπόψη μας τη γνωστή σχέση (Εξ. 3.9) σε συνδυασμό με την Εξ. (3.18) για τον ορισμό της εντροπίας, ήτοι

$$\beta = \frac{\partial \ln \Omega}{\partial E} = \frac{1}{k} \frac{\partial S}{\partial E}$$
(4.17)

$$T = \frac{1}{k\beta} = \frac{1}{\partial S/\partial E}$$
(4.18)

οπότε και

Σχήμα 4.5 Η μέση μαγνητική ενέργεια, *Ε*, συστήματος *Ν* διπόλων με σπιν ½ και μαγνητική ροπή μ, μέσα σε μαγνητικό πεδίο *Β*, (*a*) ως συνάρτηση της θερμοκρασίας *Τ* και (*b*) ως συνάρτηση της παραμέτρου $\beta = 1/kT$. Παρατηρούμε ότι η *E* ως συνάρτηση του *Τ* παρουσιάζει ασυνέχεια από τις θετικές στις αρνητικές τιμές όταν η θερμοκρασία μηδενίζεται, ενώ ως συνάρτηση του *β* μεταβάλλεται μονότονα ανάμεσα στις δύο ακραίες τιμές της.

Βλέπουμε λοιπόν στο Σχ. 4.6 ότι, αν χαράξουμε τα *T* και β ως συνάρτηση του *E*, η μεν παράμετρος β δεν παρουσιάζει ασυνέχεια (Σχ. 4.6*b*), ενώ η θερμοκρασία, *T*, τείνει στο +∞ όταν το *E* τείνει στο μηδέν από τις αρνητικές τιμές, και στο -∞, όταν το *E* τείνει στο μηδέν από τις θετικές τιμές (Σχ. 4.6*a*).

Σχήμα 4.6 Η μεταβολή (*a*) της θερμοκρασίας των σπιν, *T*, και (*b*) του β = 1/kT, ως συνάρτηση της μέσης μαγνητικής ενέργειας, *E*, ενός συστήματος *N* διπόλων με σπιν ½ και μαγνητική ροπή μ, μέσα σε μαγνητικό πεδίο, *B*. Παρατηρούμε ότι η *T* εμφανίζει ένα άλμα απείρου ύψους για *E* = 0, ενώ το β μεταβάλλεται μονότονα από την τιμή +∞ στην τιμή -∞, όταν η μέση ενέργεια μεταβαίνει από την τιμή - *NμB* στην τιμή + *NμB*.

Η ιδιάζουσα αυτή συμπεριφορά των β και T οφείλεται στο γεγονός ότι η μαγνητική ενέργεια ενός συστήματος σπιν έχει ένα ανώτατο όριο (οι ενεργειακές στάθμες του είναι πεπερασμένες) και, γι' αυτό, ο αριθμός των προσιτών καταστάσεων, άρα και η εντροπία του, περνάνε από μια μέγιστη τιμή και μετά ξαναμειώνονται. Είναι προφανές ότι, αν ένα σύστημα δεν έχει ανώτατο όριο στην ενέργειά του, όπως συμβαίνει στις περισσότερες περιπτώσεις (π.χ. η κινητική ενέργεια που εξετάσαμε πριν και που θα δούμε στο αμέσως επόμενο Κεφάλαιο), δεν μπορεί ποτέ να φθάσει σε αρνητικές θερμοκρασίες.

Είναι ενδιαφέρον ότι οι αρνητικές θερμοκρασίες είναι, κατά κάποια έννοια, "θερμότερες" από τις θετικές. Είχαμε δει πράγματι ότι, σε μια αυθόρμητη μεταβολή, $d\beta/dE \leq 0$, οπότε η θερμότητα μεταφέρεται από το σύστημα με μικρότερο β στο σύστημα με μεγαλύτερο β . Αν επομένως δύο συστήματα, ένα με θετική και ένα με αρνητική θερμοκρασία έλθουν σε επαφή, η ενέργεια θα μεταφερθεί από το σύστημα που έχει αρνητική θερμοκρασία (- β), που έχει δηλαδή την πλειονότητα των σπιν αντιπαράλληλα στο πεδίο, πράγμα που είναι αναμενόμενο και απολύτως κατανοητό.

ΚΕΦΑΛΑΙΟ V

ΙΔΑΝΙΚΟ ΚΛΑΣΙΚΟ ΑΕΡΙΟ

"On appelle gaz parfait un gaz qui suivrait la loi de Mariotte et les lois simples de dilatation. Aucun gaz naturel ne suit rigoureusement ces lois. Il n'y a donc pas de gaz parfaits, mais beaucoup de gaz, éloignés des conditions de leur liquéfaction, suivent, a très peu prés, les lois des gaz parfaits".¹⁹

(Από το βιβλίο: «TRAITÉ ÉLÉMENTAIRE DE PHYSIQUE», par GANOT – MANEUVRIER, 21^e Édition, Hachette & Cie, Paris 1894)

5.1 Εισαγωγή

Ένα *ιδανικό κλασικό αέριο* αποτελείται από άτομα ή μόρια σε μεγάλη απόσταση μεταξύ τους. Πιο συγκεκριμένα:

- Ιδανικό ονομάζεται ένα αέριο όταν η δυναμική του ενέργεια, λόγω αλληλεπιδράσεων μεταξύ των μορίων του, είναι αμελητέα σε σχέση με την κινητική ενέργεια των μορίων αυτών
- Κλασικό ονομάζεται το αέριο όταν το κάθε μόριό του μπορεί να μελετηθεί χωριστά ως ανεξάρτητη οντότητα, παρ' όλο ότι τα μόρια δεν μπορούν να διακριθούν το ένα από το άλλο²⁰.

Η τελευταία αυτή συνθήκη ισχύει όταν ο αριθμός των καταστάσεων ανά μονάδα όγκου είναι πολύ μεγαλύτερος από τον αριθμό των μορίων ανά μονάδα όγκου, με αποτέλεσμα να είναι εξαιρετικά απίθανο να βρεθούν δύο μόρια στην ίδια κατάσταση. Στο τέλος του κεφαλαίου θα προσδιορίσουμε ένα κριτήριο για το πότε ένα "αέριο", με τη γενικότερη έννοια, συμπεριφέρεται ως κλασικό.

5.2 Συναρτήσεις κατανομής

5.2.1 Συνάρτηση διαμερισμού

Για να μελετήσουμε τη συμπεριφορά ενός ιδανικού κλασικού αερίου θεωρούμε κάθε μόριο σαν ένα σύστημα σε θερμική ισορροπία με δεξαμενή θερμότητας, η οποία αποτελείται από όλο το υπόλοιπο αέριο. Υποθέτουμε, σύμφωνα με τον ορισμό του αερίου ως ιδανικό, ότι η μοναδική ενέργεια κάθε μορίου είναι η κινητική του ενέργεια, p²/2m. Μπορούμε εξάλλου να υποθέσουμε ότι η κινητική ενέργεια ενός αερίου μέσα σε έναν όγκο, V, πολύ μεγάλο σε σχέση με τις διαστάσεις του μορίου, δεν είναι κβαντισμένη αλλά έχει συνεχές ενεργειακό φάσμα. Έτσι η συνάρτηση διαμερισμού του αερίου (Εξ. 3.39) γράφεται

$$Z = \int_0^\infty g(E) e^{-\beta E} dE$$
(5.1)

όπου το g(E) είναι η πυκνότητα καταστάσεων, ενώ το g(E)dE δίνει τον αριθμό καταστάσεων με ενέργεια μεταξύ E και E + dE.

¹⁹ Ονομάζουμε τέλειο αέριο ένα αέριο που ακολουθεί τον νόμο του Mariotte και τους απλούς νόμους της διαστολής. Κανένα φυσικό αέριο δεν ακολουθεί αυστηρά αυτούς τους νόμους. Δεν υπάρχουν επομένως τέλεια αέρια, αλλά πολλά αέρια, όταν βρίσκονται μακριά από τις συνθήκες υγροποίησης τους, ακολουθούν, με μεγάλη προσέγγιση, τους νόμους των τελείων αερίων.

²⁰ Σε αντίθεση με το παραμαγνητικό στερεό, που μελετήσαμε στο προηγούμενο κεφάλαιο όπου τα άτομα είχαν καθορισμένη θέση, τα μόρια του αερίου δεν είναι εντοπισμένα στο χώρο, άρα είναι όλα ισοδύναμα.

Στο Κεφάλαιο Ι, Παράγρ. 1.6.2, είχαμε βρει ότι, αν ένα σωματίδιο είναι κλεισμένο μέσα σε ένα τρισδιάστατο δοχείο με όγκο V, η πυκνότητα των καταστάσεών του δίνεται από την Εξ. (1.20)

$$g(E) = \frac{4\pi V (2m^3)^{1/2}}{h^3} \sqrt{E}$$
(5.2)

Αντικαθιστώντας την (5.2) στην (5.1) παίρνουμε για τη συνάρτηση διαμερισμού

$$Z = \frac{4\pi V (2m)^{1/2}}{h^3} \int_0^\infty \sqrt{E} e^{-\beta E} dE$$
 (5.3)

Και, επειδή μπορεί να δειχθεί (βλ. Πίνακες ορισμένων ολοκληρωμάτων) ότι

$$\int_{0}^{\infty} \sqrt{E} e^{-\beta E} dE = \frac{1}{2} \sqrt{\pi (kT)^{3}}$$
(5.4)

η (5.3) δίνει

$$Z = \frac{V(2\pi m kT)^{3/2}}{h}$$
(5.5)

που είναι η συνάρτηση διαμερισμού του ιδανικού αερίου για ένα μόνο σωματίδιο.

5.2.2 Μέση ενέργεια

Από τη σχέση που βρήκαμε στο Κεφάλαιο ΙΙΙ για τη μέση ενέργεια συστήματος σε ισορροπία μέσα σε θερμική δεξαμενή (Εξ. 3.45)

$$\overline{E} = -\frac{1}{Z} \frac{\partial Z}{\partial \beta} = -\frac{\partial \ln Z}{\partial \beta}$$
(3.45)

βρίσκουμε για τη μέση ενέργεια ενός μορίου του αερίου, με τη χρήση της Εξ. (5.5)

$$\overline{E} = -\frac{\partial}{\partial\beta} \left[\ln V + \frac{3}{2} (2\pi m k) + \ln T - 3\ln h \right] = -\frac{3}{2} \frac{\partial \ln T}{\partial T} \frac{\partial T}{\partial\beta} = -\frac{3}{2} \frac{1}{T} \left(-kT^2 \right)$$

ή, τέλος,
$$\overline{E} = \frac{3}{2} k T$$
(5.6)

Βλέπουμε λοιπόν ότι η μέση κινητική ενέργεια των μορίων ιδανικού αερίου, σε στατιστική ισορροπία με μια δεξαμενή θερμότητας, είναι ανάλογη της απόλυτης θερμοκρασίας του αερίου, *T*, και εξαρτάται μόνον από αυτήν.

Η ολική ενέργεια αερίου αποτελούμενου από Ν μόρια θα είναι προφανώς

$$\overline{E}_N = N\overline{E} = \frac{3}{2}NkT$$
(5.7)

Θυμίζουμε ότι η σχέση αυτή ισχύει μόνο για ιδανικά και κλασικά αέρια και μόνο για την κινητική τους ενέργεια. Αν έχουμε να κάνουμε με ένα γραμμομόριο, τότε το N είναι ίσο με τον *αριθμό Avogadro*, $N_{\rm A}$ = 6,022 × 10²³ mol⁻¹, και η μέση ενέργειά του θα είναι ίση με

$$\overline{E}_{\rm mol} = \frac{3}{2}RT \tag{5.7a}$$

όπου R η σταθερά των τελείων αερίων, $R = N_A k = 8,314$ J/ mol.K.

5.2.3 Ενεργειακή κατανομή

Η κατανομή των μορίων ως συνάρτηση της ενέργειάς τους, δηλαδή ο αριθμός μορίων ανά μοναδιαίο ενεργειακό διάστημα, θα δίνεται προφανώς από το

$$\frac{\mathrm{d}n}{\mathrm{d}E} = P(E)N = \frac{N}{Z}g(E)e^{-\beta E} = \frac{N}{Z}\frac{4\pi V(2m^3)^{1/2}}{h^3}\sqrt{E}e^{-\beta E}$$
(5.8)

όπου χρησιμοποιήσαμε την Εξ. (3.40) για το P(E) και την (5.2) για την πυκνότητα των καταστάσεων, g(E), του ιδανικού κλασικού αερίου. Με αντικατάσταση του Z από την Εξ. (5.5) παίρνουμε

$$\frac{\mathrm{d}n}{\mathrm{d}E} = \frac{2\pi N}{\left(\pi m k T\right)^{3/2}} \sqrt{E} e^{-\beta E} = \frac{2\pi N}{\left(\pi m k T\right)^{3/2}} \sqrt{E} e^{-E/kT}$$
(5.9)

Η Εξ. (5.9) είναι η γνωστή έκφραση του Maxwell για την ενεργειακή κατανομή των μορίων μέσα σε ένα ιδανικό κλασικό αέριο και η μορφή της εικονίζεται στο Σχ. 5.1, για το οξυγόνο, σε δύο διαφορετικές θερμοκρασίες. Η σχέση αυτή αποτελεί μία από τις πρώτες εφαρμογές των στατιστικών μεθόδων στη Φυσική και είχε βρεθεί αρχικά από τον Maxwell, γύρω στο 1857, με τη χρησιμοποίηση μιας διαφορετικής λογικής.

Σχήμα 5.1 Ενεργειακή κατανομή των μορίων ιδανικού κλασικού αερίου για δύο διαφορετικές θερμοκρασίες.

Σχήμα 5.2 Κατανομή ταχυτήτων των μορίων ιδανικού κλασικού αερίου για δύο διαφορετικές θερμοκρασίες.

5.2.4 Κατανομή ταχυτήτων

Για να βρούμε την κατανομή των ταχυτήτων, δηλαδή των αριθμό μορίων με ταχύτητα υ, μέσα στο μοναδιαίο διάστημα ταχυτήτων, πολλαπλασιάζουμε την Εξ. (5.9) με το dE/du. Έχουμε, πράγματι

$$\frac{\mathrm{d}n}{\mathrm{d}\upsilon} = \frac{\mathrm{d}n}{\mathrm{d}E}\frac{\mathrm{d}E}{\mathrm{d}\upsilon} = \frac{\mathrm{d}n}{\mathrm{d}E}m\upsilon \tag{5.10}$$

εφόσον $E = mv^2/2$. Με την αντικατάσταση της Εξ. (5.9) στην (5.10) παίρνουμε

$$\frac{\mathrm{d}n}{\mathrm{d}\upsilon} = 4\pi N \left(\frac{m}{2\pi kT}\right)^{3/2} \upsilon^2 e^{-m\upsilon^2/2kT}$$
(5.11)

που είναι η σχέση του Maxwell για την κατανομή των ταχυτήτων των μορίων ενός ιδανικού αερίου, και εικονίζεται στο Σχ. 5.2 για το οξυγόνο για δύο διαφορετικές θερμοκρασίες. Πολλαπλασιάζοντας την (5.11) επί dv, παίρνουμε

$$dn(\upsilon) = \frac{dn}{d\upsilon} d\upsilon = 4\pi N \left(\frac{m}{2\pi kT}\right)^{3/2} \upsilon^2 e^{-m\upsilon^2/2kT} d\upsilon$$
(5.12)

pou dívei ton ariθμό μορίων με ταχύτητα μεταξύ v και v + dv.

Οι Εξ. (5.9) και (5.11) έχουν επαληθευθεί πειραματικά σε πάρα πολλές περιπτώσεις και με διάφορους τρόπους. Στη συνέχεια περιγράφουμε δύο από αυτούς.

1. Ένας έμμεσος τρόπος είναι η ανάλυση της εξάρτησης της ταχύτητας χημικών αντιδράσεων από τη θερμοκρασία. Υποθέστε, πράγματι, ότι μια συγκεκριμένη αντίδραση συμβαίνει μόνο αν τα συγκρουόμενα μόρια έχουν μια ορισμένη ενέργεια μεγαλύτερη ή ίση κάποιου E_a (Σχ. 5.3). Η ταχύτητα της αντίδρασης σε μια συγκεκριμένη θερμοκρασία θα εξαρτάται από τον αριθμό των μορίων που έχουν ενέργεια μεγαλύτερη ή ίση του E_a.

Σχήμα 5.3 Ενεργειακή κατανομή των μορίων ιδανικού κλασικού αερίου στις θερμοκρασίες των 300 K και 500 K. Οι γραμμοσκιασμένες περιοχές αντιστοιχούν στα μόρια που έχουν ενέργεια μεγαλύτερη από *E*_α. Παρατηρούμε ότι, όσο αυξάνει η θερμοκρασία, αυξάνει και ο αριθμός των μορίων που έχουν ενέργεια μεγαλύτερη από *E*_α και που είναι, επομένως, σε θέση να αντιδράσουν

Στο Σχ. 5.3, τα μόρια που έχουν ενέργεια μεγαλύτερη από E_{α} αντιστοιχούν στις γραμμοσκιασμένες περιοχές. Από τη σύγκριση των δύο καμπυλών που αντιστοιχούν στις θερμοκρασίες των 300 και 500 K, βλέπουμε ότι, όσο αυξάνει η θερμοκρασία, αυξάνει και ο αριθμός των μορίων που είναι σε θέση να αντιδράσουν. Με κατάλληλους υπολογισμούς μπορούμε να προβλέψουμε θεωρητικά το αποτέλεσμα της αύξησης της θερμοκρασίας και να το συγκρίνουμε με τα πειραματικά αποτελέσματα. Η σύγκριση έδειξε ότι η θεωρία βρίσκεται σε εξαιρετικά καλή συμφωνία με το πείραμα.

2. Μια άμεση επαλήθευση της κατανομής Maxwell συνίσταται στη μέτρηση του αριθμού των σωματιδίων που βρίσκονται μέσα σε ένα ορισμένο διάστημα ταχυτήτων και έχει εφαρμοστεί στα αποκαλούμενα "θερμικά" νετρόνια. Τα νετρόνια που παράγονται μέσα σε έναν πυρηνικό αντιδραστήρα επιβραδύνονται με κατάλληλους επιβραδυντές (π.χ. παραφίνη, νερό), ωσότου φθάσουν σε θερμική ισορροπία στη θερμοκρασία του αντιδραστήρα. Συμπεριφέρονται τότε σαν ιδανικό αέριο και η ενεργειακή τους κατανομή υπακούει στην κατανομή Boltzmann. Με έναν κατάλληλο μηχανικό επιλογέα (chopper), στην έξοδο μιας διώρυγας του αντιδραστήρα, μπορεί κανείς να επιλέξει μια σχεδόν μονοενεργειακή δέσμη νετρονίων και να επαληθεύσει ότι οι ταχύτητές τους ακολουθούν την Εξ. (5.12). Ένας τέτοιος επιλογέας απεικονίζεται σχηματικά στο Σχ. 5.4.

Σχήμα 5.4. Μηχανικός επιλογέας μοριακών ταχυτήτων. Τη στιγμή που τα μόρια, που ξεκινούν από την πηγή (Source), φτάνουν στον δεύτερο περιστρεφόμενο δίσκο, θα μπορέσουν να περάσουν από τη σχισμή του, μόνον αν οι δίσκοι έχουν περιστραφεί κατά 360° (ή έναν ακέραιο αριθμό των 360°) μέσα στο χρόνο που χρειάζονται τα μόρια για να διανύσουν την απόσταση ανάμεσα στους δύο δίσκους (Disks), που απέχουν μεταξύ τους Οι αντλίες απόσταση S. (Pumps) χρησιμεύουν για την εκκένωση του χώρου από τον αέρα πριν την έναρξη του πειράματος, ώστε να αποφεύγονται οι συγκρούσεις των σωματιδίων με τα μόρια του αέρα.

Οι δύο δίσκοι, που απέχουν μεταξύ τους απόσταση s, περιστρέφονται με γωνιακή ταχύτητα ω και οι εγκοπές τους βρίσκονται η μία πίσω από την άλλη. Τα σωματίδια που καταφέρνουν να περάσουν και από τις δύο εγκοπές θα έχουν ταχύτητα $v = s\omega/2\pi$. Στην περίπτωση όπου οι δύο εγκοπές δεν βρίσκονται η μία πίσω από την άλλη αλλά σχηματίζουν μεταξύ τους γωνία θ , η ταχύτητα των διερχομένων σωματιδίων θα δίνεται από το $v = s\omega/\theta$. Στην πραγματικότητα, επειδή οι εγκοπές έχουν κάποιο πεπερασμένο πλάτος, τα διερχόμενα σωματίδια θα έχουν ταχύτητες μέσα σε ένα διάστημα, Δv , γύρω από τη συγκεκριμένη τιμή τού v. Με τη μεταβολή του ω (ή του θ), μπορεί να μεταβληθεί η ταχύτητα των διερχομένων σωματιδίων, τα οποία και καταμετρούνται με έναν ανιχνευτή (detector) στην έξοδο του επιλογέα. Επαληθεύεται έτσι η ισχύς των Εξ. (5.9) και (5.11) ή (5.12) και για τα θερμικά νετρόνια, αλλά και για οποιαδήποτε σωματίδια άλλου τύπου.

5.2.5 Μέση και πιθανότερη ταχύτητα και ενέργεια

Από τις πιο πάνω σχέσεις κατανομών μπορεί κανείς εύκολα να υπολογίσει την πιθανότερη ταχύτητα, \tilde{v} , τη μέση ταχύτητα ενός σωματιδίου, \bar{v} , την πιθανότερη ενέργεια, \tilde{E} , τη μέση τιμή της, \bar{E} , καθώς και την πιθανότερη τιμή του v^2 , κτλ. Οι υπολογισμοί δίνουν

$\widetilde{\upsilon} = \sqrt{\frac{2kT}{m}} $ (5.13)	$\widetilde{E} = \frac{1}{2}kT \qquad (5)$.14)
$\overline{\upsilon} = \sqrt{\frac{8kT}{\pi m}} = 1,13\widetilde{\upsilon} \qquad (5.15)$	$\overline{E} = \frac{3}{2}kT = 3\widetilde{E} \qquad (5)$.16)
$\left[\left(\upsilon^{2}\right)_{\pi\theta}\right]^{1/2} = \sqrt{\frac{kT}{m}} = \frac{\widetilde{\upsilon}}{\sqrt{2}} = 0,71\widetilde{\upsilon} (5.17)$	$E(\tilde{\upsilon}) = kT = 2\tilde{E} \qquad (5)$.18)
$^{1/2} = \sqrt{\frac{3kT}{m}} = 1,25\widetilde{\upsilon}$ (5.19)	$E(\overline{\upsilon}) = \frac{4kT}{\pi} = 1,27kT = 2,55\widetilde{E} \qquad (5)$.20)

5.3 Μέση πίεση ιδανικού αερίου

Για να υπολογίσουμε τη μέση πίεση, που ασκείται από ένα αέριο πάνω στα τοιχώματα του δοχείου που το περιέχει, σκεπτόμαστε ως εξής. Θεωρούμε τη δύναμη, F_r , δηλαδή τη δύναμη που ασκεί πάνω στο τοίχωμα κατά την κατεύθυνση x, ένα μόριο του αερίου όταν βρίσκεται σε μια συγκεκριμένη κβαντική κατάσταση r, με ενέργεια E_r . Κατά τη σύγκρουση, το τοίχωμα μετατοπίζεται προς τα δεξιά κατά dx, οπότε το έργο που προσφέρεται από το μόριο είναι F_r dx. Επειδή αυτό το έργο προσφέρεται από το σύστημα, το σύστημα θα χάνει ενέργεια, θα έχουμε επομένως

$$-dE_{\rm r} = F_{\rm r} \, \mathrm{d}x \tag{5.21}$$

από όπου προκύπτει ότι η στοιχειώδης δύναμη συνδέεται με την ενέργεια του συστήματος με τη σχέση

$$F_{\rm r} = -\,\mathrm{d}E_{\rm r}\,/\,\mathrm{d}x\tag{5.22}$$

για κάθε κβαντική κατάσταση του μορίου r.

Η μέση τιμή της δύναμης που ασκείται από ένα μόριο πάνω στο τοίχωμα θα δίνεται από το

$$\overline{F} = \sum_{r} P_{r} F_{r} = -\frac{1}{Z} \sum_{r} e^{-\beta E_{r}} \frac{\partial E_{r}}{\partial x} = -\frac{1}{Z} \left(-\frac{1}{\beta} \frac{\partial Z}{\partial x} \right)$$

που γράφεται και με τη μορφή

$$\overline{F} = -\left\langle \frac{\partial E}{\partial x} \right\rangle = \frac{1}{\beta} \frac{\partial \ln Z}{\partial x}$$
(5.23)

Η μέση πίεση θα δίνεται από το πηλίκον της μέσης δύναμης δια της επιφάνειας πάνω στην οποία ασκείται αυτή η δύναμη. Αφού η δύναμη ασκείται κατά τη διεύθυνση x, η επιφάνεια θα δίνεται από το γινόμενο yz. Άρα

$$\overline{p} = \frac{\overline{F}}{yz} = \frac{1}{\beta yz} \frac{\partial \ln Z}{\partial x} = \frac{1}{\beta} \frac{\partial \ln Z}{yz \partial x} = \frac{1}{\beta} \frac{\partial \ln Z}{\partial V}$$
(5.24)

εφόσον η μεταβολή του όγκου, dV, δίνεται από το dV = xy dz.

Αν ο ολικός αριθμός μορίων είναι N, η ολική μέση πίεση, $\langle p_{0\lambda} \rangle$, θα δίνεται από το Np. Αντικαθιστώντας στην Εξ. (5.24) την Z του ιδανικού κλασικού αερίου από την Εξ. (5.5), παίρνουμε για την ολική πίεση

$$\langle p_{o\lambda} \rangle = N\overline{p} = \frac{N}{\beta} \frac{\partial}{\partial V} \left[\ln V + \frac{3}{2} \ln(2\pi mk) + \frac{3}{2} \ln T - 3\ln h \right] = \frac{N}{\beta} \frac{\partial \ln V}{\partial V} = \frac{N}{\beta V}$$
(5.25)

από όπου προκύπτει τελικά η γνωστή και ως καταστατική εξίσωση των ιδανικών αερίων

$$p V = N k T \tag{5.26}$$

Για ένα γραμμομόριο, η Εξ. (5.26) παίρνει τη μορφή

$$pV = R T \tag{5.27}$$

Υπενθυμίζουμε ότι

$$R = N_{\rm A} k = 8,314 \, \text{J/mol.K}$$
 (5.28)

είναι η σταθερά των αερίων και N_A είναι ο αριθμός του Avogadro, δηλαδή ο αριθμός μορίων ανά γραμμομόριο, ίσος με 6,022 × 10²³ μόρια/mol.

5.4 Μακροσκοπικό έργο

Από την Εξ. (5.23) έχουμε, για το στοιχειώδες μακροσκοπικό έργο που παράγει η δύναμη $\langle F \rangle$ κατά τη μετακίνηση του τοιχώματος κατά dx,

$$dw = -\overline{F}dx = +\left\langle\frac{\partial E}{\partial x}\right\rangle dx = -\frac{1}{\beta}\frac{\partial \ln Z}{\partial x}dx$$
(5.29)

όπου το αρνητικό πρόσημο σημαίνει ότι το έργο προσφέρεται από το σύστημα.

Με τη χρήση της Εξ. (5.24) το στοιχειώδες μακροσκοπικό έργο γράφεται επίσης

$$dw = -\overline{F}dx = -\frac{\overline{F}}{yz}yzdx = -\frac{1}{\beta}\frac{\partial \ln Z}{\partial V}dV$$
(5.30)

Από την Εξ. (5.24) προκύπτουν εξάλλου και οι σχέσεις

$$\overline{p} = \frac{\overline{F}}{yz} = -\frac{1}{yz} \left\langle \frac{\partial E}{\partial x} \right\rangle = -\left\langle \frac{\partial E}{\partial V} \right\rangle$$
(5.31)

$$\mathbf{d}w = -p \, \mathrm{d}V = -\left\langle \frac{\partial E}{\partial V} \right\rangle \mathrm{d}V \tag{5.32}$$

5.5 Ειδική θερμότητα ιδανικού αερίου

και

Όπως είδαμε στην Παράγρ. 3.5, ειδική θερμότητα ενός συστήματος είναι η θερμοχωρητικότητα ανά μονάδα (μάζας, όγκου, κτλ) του συστήματος, εξαρτάται επομένως από τη μονάδα που θεωρούμε, αλλά και από τον τρόπο με τον οποίο έγινε η μεταβολή.

Σε μια μεταβολή αερίου υπό σταθερό όγκο, που ονομάζεται *ισόχωρη μεταβολή*, η ειδική θερμότητα ανά γραμμομόριο, που συμβολίζεται με cv, ισούται με

$$c_{\rm V} = \left(\frac{dQ}{dT}\right)_{\rm V} = \left(\frac{dE + dW}{dT}\right)_{\rm V} = \left(\frac{dE + pdV}{dT}\right)_{\rm V} = \left(\frac{\partial E}{\partial T}\right)_{\rm V} = \frac{3}{2}R \tag{5.33}$$

όπου χρησιμοποιήσαμε τον πρώτο θερμοδυναμικό νόμο για dw = 0 (εφόσον ο όγκος είναι σταθερός, δεν παράγεται ούτε καταναλίσκεται έργο), την Εξ. (5.7α) για τη μέση ενέργεια ιδανικού αερίου με $N = N_A$.

Σε μια μεταβολή υπό σταθερή πίεση, που ονομάζεται *ισοβαρής μεταβολή*, η ειδική θερμότητα ανά γραμμομόριο, που συμβολίζεται με *c*_p, ισούται με

$$c_{\rm p} = \left(\frac{d\,Q}{d\,T}\right)_p = \left(\frac{d\,E + dW}{d\,T}\right)_p = \left(\frac{d\,E + pdV}{d\,T}\right)_p = \left(\frac{\partial\,E}{\partial\,T}\right)_p + p\frac{d\,V}{d\,T} = c_V + R = \frac{5}{2}\,R \qquad (5.34)$$

όπου χρησιμοποιήσαμε τον πρώτο θερμοδυναμικό νόμο και την καταστατική εξίσωση των αερίων (Εξ. 5.27α) για 1 γραμμομόριο ιδανικού αερίου.

Στο Σχ. 5.5 απεικονίζεται η συσκευή την οποία επινόησε ο M.G. Maneuvrier, το 1896, για τον προσδιορισμό του λόγου c_p/c_V ενός αερίου.

Σχ. 5.5 Συσκευή για τον προσδιορισμό του λόγου c_p/c_V ενός αερίου. (Από το βιβλίο: TRAITÉ ÉLÉMENTAIRE DE PHYSIQUE, par GANOT-MANEUVRIER, 21° Edition, Hachette & Cie, Paris 1894).

Στην πραγματικότητα, η συσκευή αυτή μετράει απ' ευθείας το λόγο $\Delta V/V$ και τον αντίστοιχο λόγο $\Delta p/p$, όπου V και p ο όγκος και η πίεση του αερίου, αντιστοίχως, κατά τη διάρκεια μιας αδιαβατικής μεταβολής. Το αέριο περιέχεται μέσα στο γυάλινο σφαιρικό δοχείο Β, όπου καταλαμβάνει όγκο $V+\Delta V$, υπό πίεση, p, σε θερμοκρασία T. Με τη βοήθεια ενός μανομέτρου, καταμετράται η μεταβολή της πίεσης, Δp , όταν ο όγκος μειώνεται κατά ΔV , με τρόπο αδιαβατικό. Ο λόγος $c_p/c_{\rm V}$ προσδιορίζεται από τη σχέση:

$$\frac{c_P}{c_V} = -\frac{\Delta p}{p} \left/ \frac{\Delta V}{V} \right.$$

Η μέθοδος αυτή, αλλά και η συσκευή, αποτελούν το αντικείμενο της διδακτορικής διατριβής του G.F. Maneuvrier, με τίτλο Nouvelles déterminations de c_p/c_V pour l'air et d'autres gaz, (Thèse de doctorat, Gauthier-Villard, 1895). (Νέοι προσδιορισμοί του c_p/c_V για τον αέρα και για άλλα αέρια)

63

Είναι λογικό να έχουμε $c_p > c_v$ γιατί, όταν η μεταβολή είναι ισοβαρής, θα πρέπει να προσφέρουμε περισσότερη θερμότητα για να αυξηθεί η θερμοκρασία κατά ένα βαθμό, αφού ένα μέρος της προσφερόμενης θερμότητας πρέπει να καταναλωθεί για την παραγωγή του έργου dw = pdV. Αντίθετα, στην ισόχωρη μεταβολή, V = σταθ, dw = pdV = 0, και όλη η απορροφούμενη θερμότητα καταναλίσκεται για την αύξηση της θερμοκρασίας του συστήματος.

Ορίζοντας την ενθαλπία ενός αερίου με τη σχέση

$$H \equiv E + p V \tag{5.35}$$

μπορούμε να γράψουμε τη c_p και με τη μορφή

$$c_p = \left(\frac{\partial H}{\partial T}\right)_p \tag{5.36}$$

<u>Πρώτη παρατήρηση</u>

Για την εξαγωγή της τιμής του *c*_v, που υπολογίσαμε στην Εξ. (5.33), λάβαμε υπόψη μας μόνο την κινητική ενέργεια του αερίου, θεωρήσαμε δηλαδή ότι οι μόνοι βαθμοί ελευθερίας του κάθε μορίου είναι οι τρεις τής κινητικής του ενέργειας. Οι σχέσεις λοιπόν

$$c_{\rm v} = 3R/2$$
 kai $c_{\rm p} = 5R/2$ (5.37)

ισχύουν μόνο για μονοατομικά αέρια, όπου η μοναδική ενέργεια των μορίων τους είναι η κινητική. Για τα διατομικά και πολυατομικά εν γένει, όπου προστίθεται και η δυναμική ενέργεια λόγω της περιστροφής (και των ταλαντώσεων) των μορίων, οι Εξ. (5.37) δεν ισχύουν.

Ο λόγος $c_{\rm p}/c_{\rm V}$ συμβολίζεται διεθνώς με το με γ και η τιμή του εξαρτάται από το αν το αέριο είναι μονοατομικό, διατομικό, κτλ. Για το μονοατομικό αέριο έχουμε προφανώς

$$\gamma = c_{\rm p}/c_{\rm v} = (5R/2)/(3R/2) = 5/3$$
 (5.38)

ενώ για το διατομικό, που έχουμε δύο βαθμούς ελευθερίας παραπάνω, $\gamma = 7/5$.

<u>Δεύτερη παρατήρηση</u>

Με τη βοήθεια της Εξ. (1.7), που δίνει τη μέση τιμή οποιασδήποτε μεταβλητής, και με τη χρήση της Εξ. (5.7), που δίνει τη μέση ενέργεια ιδανικού κλασικού αερίου αποτελούμενου από N μόρια, μπορούμε να υπολογίσουμε τη μέση τιμή της διασποράς του \overline{E} , με άλλα λόγια την τάξη μεγέθους του εύρους της κατανομής της μέσης τιμής της ενέργειας αυτής.

Βρίσκουμε λοιπόν ότι²¹

$$<\!\!(\Delta E)^2\!\!> = <\!\!E^2\!\!> - <\!\!E\!\!>^2 = \left(-\frac{\partial \overline{E}}{\partial \beta} + \overline{E}^2\right) - \overline{E}^2 = -\frac{\partial \overline{E}}{\partial \beta} = -\frac{dT}{d\beta}\frac{\partial \overline{E}}{\partial T} = kT^2c_{\rm V} \qquad (5.39)$$

Kαι, χρησιμοποιώντας τις σχέσεις $\langle E \rangle = \overline{E} = (3/2)NkT$ και $c_v = (3/2)Nk$, παίρνουμε, για το σχετικό εύρος της κατανομής, $\Delta E/E$,

$$\frac{\Delta E}{\overline{E}} = \frac{1}{\sqrt{\frac{3N}{2}}} = \sqrt{\frac{2}{3N}}$$
(5.40)

όπου το ΔE δίνεται, προφανώς, από την τετραγωνική ρίζα τού <(ΔE)²> (Εξ. 5.39). Το 3N/2

²¹ Η σχέση: $\langle E^2 \rangle = -(\partial \langle E \rangle / \partial \beta) + \langle E \rangle^2$ μπορεί εύκολα να αποδειχθεί και δίνεται ως άσκηση για τον σπουδαστή.
αντιπροσωπεύει τους βαθμούς ελευθερίας του αερίου, όταν η μοναδική του ενέργεια είναι η κινητική. Στη γενική περίπτωση, αντικαθιστούμε το 3N/2 με τον αριθμό βαθμών ελευθερίας του συστήματος, f, οπότε παίρνουμε τη γενική σχέση

$$\frac{\Delta E}{\overline{E}} = \frac{1}{\sqrt{f}} \tag{5.40a}$$

που είχαμε αναφέρει στο Κεφάλαιο ΙΙΙ (Παράγρ. 3.2.2) και που δείχνει ότι το σχετικό εύρος της κατανομής της ολικής ενέργειας ενός μακροσκοπικού συστήματος ($N \approx 10^{23}$) είναι εξαιρετικά μικρό (Σχ. 3.2). Μπορούμε επομένως να θεωρήσουμε ότι η ενέργεια μακροσκοπικού συστήματος, σε θερμική ισορροπία με δεξαμενή θερμότητας, είναι πολύ καλά καθορισμένη και ταυτίζεται ουσιαστικά με τη μέση του ενέργεια, που συμπίπτει και με την πιθανότερη ενέργεια, εν αντιθέσει με την ενέργεια του κάθε μορίου, που μπορεί να πάρει οποιαδήποτε τιμή και που η μέση του ενέργεια διαφέρει σημαντικά από την πιθανότερη τιμή της (βλ. Σχ. 5.1 και Εξ. 5.14 και 5.16).

Το ίδιο αποτέλεσμα μπορεί να προκύψει και από τη σχέση που μας δίνει την πιθανότητα κατανομής P(E), όπου E είναι η ενέργεια ενός συνόλου N σωματιδίων. Αντικαθιστώντας στην (3.40) το g(E) από την Εξ. (1.26), βρίσκουμε ότι

$$P(E) dE = A e^{-\beta E} E^{3N/2} dE$$
(5.41)

όπου το A είναι ένας συντελεστής που εξαρτάται από τη θερμοκρασία, T, και τον αριθμό των σωματιδίων, N, [βλ. και αντίστοιχο συντελεστή του $e^{-\beta E} E^{1/2}$ της Εξ. (5.9)]. Ο όρος $e^{-\beta E}$ ελαττώνεται πολύ γρήγορα με την ενέργεια, ενώ ο $E^{3N/2}$ αυξάνεται πάρα πολύ γρήγορα, δοθέντος ότι το N είναι ένας εξαιρετικά μεγάλος αριθμός, με αποτέλεσμα το γινόμενό τους να εμφανίζει ένα οξύτατο μέγιστο ως συνάρτηση της ενέργειας (Σχ. 5.6). Αν αναζητήσουμε τη σχετική διασπορά της ολικής ενέργειας με τη χρήση της Εξ. (5.41), θα βρούμε και πάλι την Εξ. (5.40), όπως είναι φυσικό.

Σχήμα 5.6 Το σχήμα αυτό είναι επανάληψη του Σχ. 3.2 του Κεφ. ΙΙΙ και δείχνει ότι, για ένα μακροσκοπικό σύστημα σε θερμική ισορροπία με το περιβάλλον του, η πιθανότητα να έχει ολόκληρο το σύστημα συνολική ενέργεια *Ε* εμφανίζει ένα πολύ οξύ μέγιστο γύρω από την πιθανότερη τιμή της, που είναι επομένως στην πράξη ίση με τη μέση τιμή της, *Ε*, (ή <*E*>).

Προσοχή: Η διαφορά ανάμεσα στις Εξ. (5.9) και (5.41) έγκειται στο γεγονός ότι η μεν (5.9) αναφέρεται στην ενεργειακή κατανομή για ένα μόριο από το σύνολο των Ν μορίων, ενώ η (5.41) αναφέρεται στην ενεργειακή κατανομή του συνόλου των Ν μορίων. Στην πρώτη περίπτωση η κατανομή είναι πλατειά (Σχ. 5.1) ενώ στη δεύτερη περίπτωση η κατανομή είναι πολύ οζεία (Σχ. 5.5).

5.6 Εντροπία ιδανικού κλασικού αερίου

Για τον υπολογισμό της εντροπίας του ιδανικού κλασικού αερίου θα χρησιμοποιήσουμε την Εξ. (3.49), που συνδέει την εντροπία συστήματος σε θερμική δεξαμενή με τη συνάρτηση διαμερισμού του, Ζ. Για τον σκοπό όμως αυτό θα πρέπει πρώτα να

αναζητήσουμε τη συνάρτηση Z για ένα αέριο αποτελούμενο από N σωματίδια, κλεισμένα μέσα σε όγκο V, σε θερμοκρασία Τ. Ο τρόπος που σκεπτόμαστε είναι ο ακόλουθος.

Μια μικροκατάσταση, i, του αερίου θα ορίζεται από τον αριθμό των μορίων ανά κβαντική κατάσταση r, δηλαδή: n_1 μόρια στην κατάσταση 1, n_2 μόρια στην κατάσταση 2, ... nr μόρια στην κατάσταση r, (όπου 1, 2, r είναι οι κβαντικές καταστάσεις ανά μόριο: single particle states).

Η ενέργεια του αερίου σε κάθε τέτοια μικροκατάσταση θα είναι ίση με

$$E_{i}(n_{1}, n_{2}, ..., n_{r}...) = \sum_{r} n_{r} E_{r}$$

$$N - \sum n$$
(5.42)

και, φυσικά,

$$N = \sum_{r} n_{r}$$

Για κάθε μόριο χωριστά έχουμε

$$Z_1(T,V) = Z_1(T,V,1) = \sum_r e^{-\beta E_r}$$
(5.43)

Θα μπορούσαμε επομένως να πούμε ότι

$$Z_{\rm N}(T,V) = Z_{\rm L}(T,V,N) = \left(\sum_{r} e^{-\beta E_r}\right)^N$$
(5.44)

που θα ήταν όμως λάθος γιατί, όπως θα εξηγήσουμε αμέσως πάρα κάτω, με τον τρόπο αυτόν έχουμε μετρήσεις πολύ περισσότερες καταστάσεις από τις πραγματικές.

Πράγματι, αφού όλες οι καταστάσεις κάθε μορίου μπορούν να συνδυαστούν με όλες τις καταστάσεις των υπολοίπων μορίων, θα είχαμε για δύο μόρια:

$$\sum_{r} e^{-\beta E_{r}} \cdot \sum_{s} e^{-\beta E_{s}} = \sum_{r} e^{-2\beta E_{r}} + \sum_{r} \sum_{s} e^{-\beta (E_{s} + E_{s})}$$

Ο πρώτος όρος αντιστοιχεί σε όλους τους όρους του αθροίσματος για τους οποίους r = s, δηλαδή για τα δύο μόρια στην ίδια κατάσταση, ενώ ο δεύτερος όρος αντιστοιχεί σε $r \neq s$. Όμως με τον τρόπο αυτόν μετρήσαμε κάθε κατάσταση δύο φορές. Π.χ. μετρήσαμε χωριστά στην r = 1, s = 2 και την r = 2, s = 1. Αφού όμως τα μόρια δεν διακρίνονται μεταξύ τους (σε αντίθεση με τα παραμαγνητικά άτομα μέσα στο πλέγμα), οι δύο αυτοί συνδυασμοί (1,2) και (2,1) αντιστοιχούν στην ίδια μικροκατάσταση. Άρα ο δεύτερος όρος πρέπει να διαιρεθεί με το 2!, τον αριθμό των μεταθέσεων των δύο μορίων μεταξύ τους. Θα έχουμε επομένως

$$Z_2(T,V) = \sum_r e^{-2\beta E_r} + \frac{1}{2!} \sum_r \sum_s e^{-\beta (E_s + E_s)}$$
(5.45)

Για Ν μόρια θα έχουμε αντιστοίχως

$$Z_{\rm N}(T,V) = \sum_{r} e^{-N\beta E_{r}} + \dots + \frac{1}{N!} \sum_{r_{\rm l}} \dots \sum_{r_{\rm N}} e^{-\beta (E_{r_{\rm l}} + \dots + E_{r_{\rm N}})}$$
(5.46)

όπου ο πρώτος όρος αντιστοιχεί σε όλα τα μόρια στην ίδια κατάσταση και ο τελευταίος σε όλα τα μόρια σε διαφορετικές καταστάσεις, ενώ οι ενδιάμεσοι όροι αντιστοιχούν σε μερικά μόρια στην ίδια και μερικά σε διαφορετική κβαντική κατάσταση, r.

Επειδή στο κλασικό όριο του ιδανικού αερίου ο αριθμός των καταστάσεων ανά μονάδα όγκου είναι πολύ μεγαλύτερος από τον αριθμό των μορίων ανά μονάδα όγκου, θα είναι εξαιρετικά απίθανο να βρεθούν δύο μόρια στην ίδια κατάσταση, όπως αναφέρθηκε στην εισαγωγή αυτού του κεφαλαίου (Παρ. 5.1) και όπως θα δείξουμε στην Παράγραφο 5.6. Επομένως, στην Εξ. (5.46), μόνον ο τελευταίος όρος είναι σημαντικός, ενώ όλοι οι άλλοι μπορούν να παραληφθούν. Έχουμε λοιπόν

$$Z(T,V,N) = Z_{N}(T,V) = \frac{1}{N!} \left(\sum_{r} e^{-\beta E_{r}} \right)^{N} = \frac{1}{N!} \left[Z_{1}(T,V) \right]^{N}$$
$$\dot{\eta} \ Z(T,V,N) = \frac{1}{N!} V^{N} \frac{\left(2\pi m k T\right)^{3N/2}}{h^{3N}}$$
(5.47)

όπου αντικαταστήσαμε την Z_1 από την έκφρασή της για ένα μόριο ιδανικού αερίου (Εξ. 5.5).

Αντικαθιστώντας την Εξ. (5.47) στην Εξ. (3.49), που δίνει τη σχέση μεταξύ της εντροπίας συστήματος σε θερμική ισορροπία μέσα σε θερμική δεξαμενή και της συνάρτησης διαμερισμού της, παίρνουμε, για την εντροπία ιδανικού αερίου αποτελούμενου από N μόρια, την έκφραση

$$S_{\rm N} = k \ln \frac{Z^{\rm N}}{N!} + \frac{\overline{E}}{T} = \frac{5}{2} k N + k N \ln \frac{V (2\pi m k T)}{h^3 N}^{3/2}$$
(5.48)

Για την παραγωγή της (5.48) χρησιμοποιήσουμε την προσέγγιση Stirling, σύμφωνα με την οποία, για N >> 1, ισχύει log $N! \approx N \log N - N$, με πολύ καλή προσέγγιση. Η Εξ. (5.48) είναι γνωστή ως τύπος των Sackur και Tetrode και δίνει τη σωστή έκφραση για την εντροπία ιδανικού αερίου.

Αν είχαμε χρησιμοποιήσει την Εξ. (5.44) για τον υπολογισμό της εντροπίας του συστήματος N μορίων, θα βρίσκαμε

 $S_{\rm N} = \frac{3}{2} k N + k N \ln \frac{V (2\pi m k T)^{3/2}}{h^3}$ (5.49)

που όμως δεν είναι αθροιστικός γιατί περιλαμβάνει τον όγκο, V, του αερίου μέσα στο λογάριθμο. Αν προσθέταμε δηλαδή τις εντροπίες δύο όμοιων συστημάτων με αριθμούς μορίων N_1 και N_2 αντιστοίχως, δεν θα βρίσκαμε, με βάση αυτόν τον τύπο, $S_{o\lambda} = S_1 + S_2$. Το ανορθόδοξο αυτό αποτέλεσμα ήταν γνωστό ως παράδοξο του Gibbs, γιατί ο Gibbs ήταν εκείνος που ανακάλυψε ότι η Εξ. (5.49) έδινε λανθασμένα αποτελέσματα.

Η Εξ. (5.48), αντιθέτως, έχει μέσα στον λογάριθμο το πηλίκον V/N, που είναι μια εντατική μεταβλητή, είναι επομένως ανεξάρτητη από τον όγκο του κάθε συστήματος. Εύκολα βλέπουμε ότι, αν προσθέσουμε τις εντροπίες δύο όμοιων συστημάτων με αριθμούς μορίων N_1 και N_2 αντιστοίχως, θα βρούμε πράγματι, με βάση την Εξ. (5.48), ότι:

$$S_{\mathrm{o}\lambda} = S_1 + S_2.$$

5.7 Κριτήριο για την ισχύ της κλασικής προσέγγισης

Είδαμε στην αρχή αυτού του κεφαλαίου ότι, για να ισχύει η κλασική προσέγγιση, θα πρέπει ο αριθμός καταστάσεων του συστήματος να είναι πολύ μεγαλύτερος από τον αριθμό των σωματιδίων του, με άλλα λόγια θα πρέπει, αν *n*_r είναι ο αριθμός σωματιδίων ανά κατάσταση, *r*, με ενέργεια *E*_r, να ισχύει

$$n_{\rm r} << 1$$

Ο αριθμός μορίων, n_r , ανά κατάσταση δίνεται από το γινόμενο του συνολικού αριθμού μορίων, N, επί την πιθανότητα, P_r , να είναι κατειλημμένη η κατάσταση αυτή, ήτοι:

$$n_{\rm r} = N P_{\rm r} = (N/Z) e^{-\beta E r}$$
 (5.50)

Για να είναι λοιπόν το $n_r \ll 1$, θα πρέπει, αν αντικαταστήσουμε το Z με την έκφρασή του από τη Εξ. (5.5), να έχουμε

$$n_{\rm r} = \left[\frac{N}{V} \left(\frac{h^2}{2\pi m kT}\right)^{3/2}\right] e^{-\beta E_r} << 1$$
(5.51)

Για να ισχύει όμως η (5.51) για όλα τα r, ανεξάρτητα από την τιμή τού E_r , θα πρέπει ο συντελεστής του $e^{-\beta Er}$ να είναι πολύ μικρότερος από τη μονάδα, θα πρέπει δηλαδή

$$\frac{N}{V} \left(\frac{h^2}{2\pi m k T}\right)^{3/2} \ll 1 \tag{5.52}$$

που αποτελεί και το κριτήριο για την ισχύ της κλασικής προσέγγισης.

Σύμφωνα τώρα με την Κβαντική Μηχανική, το μήκος κύματος κατά de Broglie δίνεται από τη σχέση

$$\lambda = h/p = h/(2m\overline{E})^{1/2}$$
(5.53)

Αντικαθιστώντας την \overline{E} από την έκφραση που δίνει τη μέση ενέργεια ιδανικού αερίου (Εξ. 5.6), παίρνουμε την

$$\overline{\lambda} = \frac{h}{\sqrt{3mkT}} = \left(\frac{2\pi}{3}\right)^{1/2} \left(\frac{h^2}{2\pi mkT}\right)^{1/2}$$
(5.54)

η οποία γράφεται και με τη μορφή

$$\left(\frac{h^2}{2\pi m k T}\right)^{3/2} = \lambda^3 \left(\frac{3}{2\pi}\right)^{3/2}$$
(5.55)

Εισάγοντας την έκφραση (5.55) στην (5.52) έχουμε, για το κριτήριο ισχύος της κλασικής προσέγγισης,

$$\frac{N}{V}\lambda^3 \left(\frac{3}{2\pi}\right)^{3/2} \ll 1 \tag{5.56}$$

Με την εισαγωγή του μεγέθους $l = (V/N)^{1/3}$, που αντιπροσωπεύει τη μέση απόσταση μεταξύ μορίων, και παραλείποντας το $(3/2\pi)^{3/2}$ που είναι της τάξης της μονάδας, έχουμε τελικά

$$λ^3 << l^3$$
 που γράφεται και ως $λ << l$ (5.57)

Το ίδιο αποτέλεσμα θα βρίσκαμε αν αναζητούσαμε τη συνθήκη $\Phi(E) >> N$

Το νόημα της Εξ. (5.57) είναι ότι το μήκος κύματος του κυματοπακέττου που αντιστοιχεί σε κάθε σωματίδιο πρέπει να είναι πολύ μικρότερο από τη μέση απόσταση μεταξύ σωματιδίων, με άλλα λόγια δεν θα πρέπει να υπάρχει αλληλοεπικάλυψη μεταξύ των κυματοσυναρτήσεων δύο ή περισσότερων σωματιδίων, έτσι ώστε το κάθε ένα από αυτά να μπορεί να θεωρηθεί ως ξεχωριστή οντότητα.

Η Εξ. (5.57) γράφεται και με τη μορφή $h/p \ll l$, ή αλλιώς

$$l p \gg h \tag{5.58}$$

Συγκρίνοντας την σχέση αυτή με την αρχή της αβεβαιότητας του Heisenberg

$$\Delta x \cdot \Delta p \ge h/4\pi$$

βλέπουμε ότι, όταν ισχύει η κλασική προσέγγιση, η αρχή της αβεβαιότητας δεν μας απασχολεί, επομένως τα κβαντικά φαινόμενα έχουν αμελητέα σημασία Υπό κανονικές συνθήκες πίεσης και θερμοκρασίας, έχουμε $l = 2 \times 10^{-7}$ cm, ενώ $\lambda = 0.8 \times 10^{-8}$ cm, επομένως το κριτήριο ισχύει. Παύει να ισχύει μόνο σε θερμοκρασίες πολύ χαμηλές, στις οποίες όμως όλα τα αέρια έχουν υγροποιηθεί ή στερεοποιηθεί. Μπορούμε λοιπόν να θεωρήσουμε με πολύ καλή προσέγγιση ότι όλα τα αέρια, και κάτω από οποιεσδήποτε συνθήκες, συμπεριφέρονται ως κλασικά.

5.8 Η ισοκατανομή της ενέργειας

5.8.1 Το θεώρημα ισοκατανομής της ενέργειας

Θεωρούμε ένα μακροσκοπικό σύστημα που περιγράφεται με τη βοήθεια 2n συντεταγμένων, x_i και y_i , $i = 1, 2, 3 \dots n$ (π.χ. θέσης, q, και ορμής, p). Η ενέργειά του, E, είναι προφανώς συνάρτηση αυτών των 2n μεταβλητών, δηλαδή $E = f(x_1, \dots, y_n)$. Υποθέτουμε ότι το σύστημα βρίσκεται σε θερμική ισορροπία με το περιβάλλον του (π.χ. με μια δεξαμενή θερμότητας) σε απόλυτη θερμοκρασία T, και εξετάζουμε την περίπτωση όπου η έκφραση της ενέργειάς του έχει τη μορφή:

$$E = \varepsilon_{i}(y_{i}) + E'(x_{1} \dots y_{n})$$
(5.59)

όπου το ε_i είναι συνάρτηση μόνο της συγκεκριμένης y_i , ενώ το E' μπορεί να εξαρτάται από όλες τις άλλες συντεταγμένες²² εκτός από αυτή τη συγκεκριμένη y_i . Θα αναζητήσουμε τη μέση τιμή της $\varepsilon_i(y_i)$ της Εξ. (5.59).

Εφόσον το σύστημα βρίσκεται σε θερμική ισορροπία με το περιβάλλον του, η πιθανότητα να έχει κάποια στιγμή το σύστημα κάποιες συντεταγμένες $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ δίνεται από την κανονική κατανομή (Εξ. 3.30)

$$P(x_1, \dots x_n, y_1, \dots y_n) = C e^{-\beta E_r}$$
(5.60)

όπου C = 1/Z, και Z η συνάρτηση διαμερισμού του συστήματος (βλ. Εξ. 3.31). Για να βρούμε τη μέση τιμή του $\varepsilon_i(y_i)$, θα πρέπει να πάρουμε το ολοκλήρωμα ως προς όλες τις δυνατές τιμές όλων των συντεταγμένων $(x_1, \ldots x_n, y_1, \ldots y_n)$, θα έχουμε δηλαδή, λαμβάνοντας υπόψη και την Εξ. (5.59),

$$\overline{\varepsilon}_{i}(y_{i}) = \frac{\int e^{-\beta(\varepsilon_{i}+E')}\varepsilon_{i} dx_{i} \dots dy_{f}}{\int e^{-\beta(\varepsilon_{i}+E')} dx_{i} \dots dy_{f}} = \frac{\int e^{-\beta(\varepsilon_{i})}\varepsilon_{i} dy_{i} \int e^{-\beta(E')} dx_{i} \dots dy_{f}}{\int e^{-\beta(\varepsilon_{i})} dy_{i} \int e^{-\beta(E')} dx_{i} \dots dy_{f}}$$
(5.61)

Οι τόνοι, ΄΄, στο δεύτερο ολοκλήρωμα δείχνουν ότι το ολοκλήρωμα αυτό εκτείνεται σε όλες τις συντεταγμένες x και y, εκτός από τη συγκεκριμένη y_i. Τα δύο τονούμενα ολοκληρώματα στον αριθμητή και τον παρονομαστή είναι ίδια και απλοποιούνται. Έχουμε έτσι την απλή σχέση

$$\bar{\varepsilon}_{i} = \frac{\int e^{-\beta(\varepsilon_{i})} \varepsilon_{i} \, \mathrm{d}y_{i}}{\int e^{-\beta(\varepsilon_{i})} \mathrm{d}y_{i}}.$$
(5.62)

Επομένως όλες οι υπόλοιπες μεταβλητές δεν υπεισέρχονται στον υπολογισμό της μέσης τιμής του ε_i(y_i).

Η Εξ. (5.62) μπορεί ακόμη να γραφεί ως

²² Ένα απλό παράδειγμα είναι η ενέργεια ενός αρμονικού ταλαντωτή, η ενέργεια του οποίου δίνεται, ως γνωστόν, από το $\frac{1}{2}(kx^2 + p^2/m)$

$$\bar{\varepsilon}_{i} = \frac{-\frac{\partial}{\partial\beta} \int e^{-\beta\varepsilon_{i}} \,\mathrm{d}y_{i}}{\int e^{-\beta\varepsilon_{i}} \,\mathrm{d}y_{i}}.$$
(5.63)

ή

Εάν υποθέσουμε ότι η ε_i(y_i) είναι μια τετραγωνική συνάρτηση του y_i, ότι είναι δηλαδή της μορφής

 $\overline{\varepsilon}_i = -\frac{\partial}{\partial \beta} \ln \int e^{-\beta \varepsilon_i} \, \mathrm{d} y_i$

$$\varepsilon_{i}(y_{i}) = by_{i}^{2} \tag{5.65}$$

(5.64)

όπου b μια σταθερά, το ολοκλήρωμα της Εξ. (5.64), από ∞ ως + ∞ , γίνεται

$$\int_{-\infty}^{+\infty} e^{-\beta\varepsilon_i} \, \mathrm{d}y_i = \int_{-\infty}^{+\infty} e^{-\beta b y_i^2} \, \mathrm{d}y_i = \beta^{-1/2} \int_{-\infty}^{+\infty} e^{-b y_i^2} \, \mathrm{d}y_i$$
(5.66)

με τη βοήθεια της νέας μεταβλητής, $z \equiv \beta^{1/2} y_i$. Έτσι η Εξ. (5.64), με ολοκλήρωση από ∞ ως + ∞ , γίνεται

$$\overline{\varepsilon}_{i} = -\frac{\partial}{\partial\beta} \ln\left(\int_{-\infty}^{+\infty} e^{-\beta\varepsilon_{i}} \,\mathrm{d}y_{i}\right) = -\frac{\partial}{\partial\beta} \left[\left(-\frac{1}{2}\right) \ln\beta + \ln\int_{-\infty}^{+\infty} e^{-bz^{2}} \,\mathrm{d}z \right]$$
(5.67)

Και επειδή το ολοκλήρωμα του δεξιού μέλους δεν περιέχει το β , η παραγώγιση ως προς β στην Εξ. (5.67) δίνει απλώς

$$\bar{\varepsilon}_{i} = -\frac{\partial}{\partial\beta} \left[\left(-\frac{1}{2} \right) \ln\beta \right] = \frac{1}{2\beta} = \frac{1}{2}kT$$
(5.68)

Η y_i μπορεί να είναι μια οποιαδήποτε μεταβλητή, που εμφανίζεται στη σχέση τής ενέργειας με τετραγωνική μορφή, π.χ. θέση (q), ορμή (p), ταχύτητα (v), γωνία (θ). Καταλήγουμε έτσι στη γενική πρόταση, που είναι γνωστή ως Θεώρημα της ισοκατανομής της ενέργειας.

Αν ένα σύστημα, που περιγράφεται με τη βοήθεια της κλασικής κατανομής, βρίσκεται σε κατάσταση ισορροπίας στη θερμοκρασία Τ, τότε κάθε ανεξάρτητος τετραγωνικός όρος της ενέργειάς του έχει μέση τιμή ίση με kT/2).

5.8.2 Εφαρμογές του θεωρήματος ισοκατανομής της ενέργειας

5.8.2.1 Κινητική ενέργεια και μοριακή θερμότητα ιδανικού αερίου

Η κινητική ενέργεια είναι η μόνη ενέργεια ενός μορίου μονοατομικού αερίου και, όπως γνωρίζουμε, είναι ίση με

$$\varepsilon = \frac{1}{2m} \left(p_x^2 + p_y^2 + p_z^2 \right)$$
(5.69)

Σύμφωνα με το θεώρημα ισοκατανομής, η μέση τιμή αυτής της ενέργειας θα ισούται με

$$\bar{\varepsilon} = \frac{3}{2}kT \tag{5.70}$$

Οπότε, η μέση ενέργεια ενός συστήματος Ν τέτοιων μορίων θα είναι ίση με

$$\overline{E} = \frac{3}{2}NkT \tag{5.71}$$

Αν το σύστημά μας είναι ένα γραμμομόριο, το N θα είναι ίσο με τον αριθμό του Avogadro, οπότε η μέση ενέργεια ενός γραμμομορίου μονοατομικού ιδανικού αερίου θα είναι

$$\overline{E}_{\rm mol} = \frac{3}{2}NkT = \frac{3}{2}RT \tag{5.72}$$

που είναι η Εξ. (5.7α), την οποία υπολογίσαμε στην Παράγρ. 5.2.2.

Η ειδική θερμότητα ανά γραμμομόριο, ή *μοριακή θερμότητα*, υπό σταθερό όγκο, θα είναι, σύμφωνα με τον ορισμό της (βλ. Παράγρ. 5.5), ίση με

$$c_{\rm v} = \left(\frac{\partial \overline{E}}{\partial T}\right)_{\rm v} = \frac{3}{2}R \tag{5.73}$$

που είναι, φυσικά, η ίδια με την Εξ. (5.33).

Αν το αέριο δεν είναι μονοατομικό και ιδανικό, οπότε στην ενέργεια επεμβαίνουν και άλλοι όροι, όπως περιστροφής, δόνησης, κτλ., μπορούμε εύκολα να αποδείξουμε ότι η μέση τιμή της κινητικής του ενέργειας είναι και πάλι ίση με $\frac{1}{2}kT$ ανά μόριο και $\frac{1}{2}RT$ ανά γραμμομόριο. Φυσικά, η μέση τιμή των τετραγώνων των συνιστωσών της ταχύτητας θα είναι πάντα:

$$\langle v_{\rm x}^2 \rangle = \langle v_{\rm y}^2 \rangle = \langle v_{\rm z}^2 \rangle = kT/m$$
 (5.74)

Η Εξ. (5.74) ισχύει και για την κίνηση Brown, την άτακτη δηλαδή κίνηση των μορίων ενός αερίου ή υγρού γύρω από τη θέση ισορροπίας τους. Επειδή τα $\langle v_x \rangle$, $\langle v_y \rangle$, $\langle v_z \rangle$ είναι ίσα με το μηδέν για λόγους συμμετρίας, η Εξ. (5.74) δίνει απ' ευθείας τη διασπορά των συνιστωσών της ταχύτητας. Η μάζα, *m*, ενός μακροσκοπικού σωματιδίου είναι πολύ μεγαλύτερη από το *kT*²³, οπότε από την Εξ. (5.74) καταλαβαίνουμε ότι οι διακυμάνσεις της ταχύτητάς του, ($\langle v_x^2 \rangle$)^{1/2}, είναι τόσο μικρές, ώστε να μη γίνονται αντιληπτές.

5.8.2.2 Μέση ενέργεια αρμονικού ταλαντωτή και περιστροφέα

Η ενέργεια ενός σωματιδίου που εκτελεί απλές αρμονικές ταλαντώσεις, γύρω από τη θέση ισορροπίας του, σε μία διάσταση, δίνεται, όπως γνωρίζουμε, από τη σχέση:

$$E = (1/2m) p^2 + (\alpha/2m) x^2$$
(5.75)

που είναι το άθροισμα της κινητικής και της δυναμικής του ενέργειας. Το α είναι μια σταθερά, που εξαρτάται από τη δύναμη επαναφοράς του σωματιδίου (στην περίπτωση ελατηρίου, η α είναι η σταθερά του ελατηρίου).

Αν το σύστημα βρίσκεται σε θερμική ισορροπία με το περιβάλλον του, σε μια θερμοκρασία *T*, σύμφωνα με το θεώρημα ισοκατανομής η μέση του ενέργεια θα ισούται με

$$E = \frac{1}{2} kT + \frac{1}{2} kT = kT$$
 (5.76)

²³ Ένας πρόχειρος υπολογισμός δείχνει ότι, στη θερμοκρασία περιβάλλοντος, 300 K, για ένα σωματίδιο με μάζα 1 mgr, οι διακυμάνσεις της ταχύτητάς του, που οφείλονται στην κίνηση Brown, είναι της τάξης του 10⁻⁷ m/s, άρα αμελητέες, με την έννοια ότι είναι αδύνατον να παρατηρηθούν ή να μετρηθούν.

Η ίδια ακριβώς σχέση ισχύει και για την ενέργεια περιστροφής ενός ευθύγραμμου (οπότε και οποιουδήποτε διατομικού) μορίου, δοθέντος ότι σε ένα γραμμικό μόριο ενεργοποιούνται μόνον οι δύο βαθμοί ελευθερίας της περιστροφής (Σχ. 5.7).

Σχήμα 5.7 Η μοριακή θερμότητα υπό σταθερό όγκο, *c*_v, για ένα διατομικό αέριο, σύμφωνα με το θεώρημα της ισοκατανομής. Παρατηρήστε ότι η κλίμακα της θερμοκρασίας είναι λογαριθμική. Κάτω από τους 100 K, μόνον οι 3 βαθμοί ελευθερίας της μεταφορικής κίνησης είναι ενεργοί. Γύρω στη θερμοκρασία περιβάλλοντος, (300 K) έχουν ενεργοποιηθεί και οι δύο βαθμοί ελευθερίας της περιστροφής. Πάνω από τους 1000K αρχίζουν να ενεργοποιούνται και οι δύο βαθμοί ελευθερίας της ταλάντωσης. Σε ατμοσφαιρική πίεση, τα περισσότερα διατομικά αέρια διίστανται στα επιμέρους άτομά τους πριν ενεργοποιηθούν πλήρως οι βαθμοί ελευθερίας της ταλάντωσης, οπότε το τελευταίο οριζόντιο τμήμα της καμπύλης δεν μπορεί να παρατηρηθεί πειραματικά. Επιπλέον, σχεδόν όλα έχουν υγροποιηθεί κάτω από τους 20 K. Το μόριο του υδρογόνου διίσταται στους 2000 K και υγροποιείται στους 20K.

Ένα πολυατομικό μόριο έχει προφανώς περισσότερους βαθμούς ελευθερίας ταλάντωσης και περιστροφής. Αν το *f* εκφράζει τους βαθμούς ελευθερίας του (εκτός από τους τρεις της μεταφορικής κινητικής του ενέργειας) τότε, σύμφωνα με τα παραπάνω, η ολική μέση ενέργεια ενός γραμμομορίου του πολυατομικού αερίου θα δίνεται από το

$$\overline{E} = (3+f) \times \frac{1}{2} RT = \frac{1}{2} (3+f) RT$$
(5.77)

οπότε και

$$c_{\rm v} = \frac{1}{2} \left(3 + f\right) RT \tag{5.78}$$

άρα και

$$c_{\rm p} = \frac{1}{2} (5+f) RT \tag{5.79}$$

εφόσον $c_{\rm p} = c_{\rm v} + R$ (βλ. Εξ. 5.37), οπότε

$$\gamma = \frac{c_p}{c_V} = \frac{5+f}{3+f}$$
(5.80)

Προφανώς, όλα τα παραπάνω ισχύουν για υψηλές θερμοκρασίες, τέτοιες ώστε οι αποστάσεις μεταξύ των ενεργειακών σταθμών να είναι πολύ μικρότερες από kT. Σε πολύ χαμηλές θερμοκρασίες υπεισέρχονται τα κβαντικά φαινόμενα και το θεώρημα της ισοκατανομής παύει να ισχύει. Πράγματι, όπως θα δούμε και στην Παράγρ. 7.1.4, στο απόλυτο μηδέν η ειδική θερμότητα των αερίων θα πρέπει να τείνει στο μηδέν (Τρίτος Νόμος της Θερμοδυναμικής). Επειδή όμως όλα τα αέρια έχουν υγροποιηθεί ή στερεοποιηθεί κοντά στο απόλυτο μηδέν, δεν υπάρχει περίπτωση να παρατηρηθεί κάτι τέτοιο πειραματικά.

5.8.2.3 Μοριακή θερμότητα των στερεών

Αν ένα κρυσταλλικό στερεό (π.χ. χαλκός, χρυσός, αργίλιο, διαμάντι, ζιρκόνιο) αποτελείται από N άτομα, μπορούμε να θεωρήσουμε τα άτομα αυτά ως N τρισδιάστατους αρμονικούς ταλαντωτές, ο καθένας από τους οποίους έχει 3 βαθμούς ελευθερίας (p_x , p_y , p_z) ως προς την κινητική του ενέργεια και άλλους τρεις (x, y, z) ως προς τη δυναμική του ενέργεια (βλ. Παράγρ. 3.5.2.2). Σύμφωνα με το θεώρημα της ισοκατανομής, η μέση ενέργεια ταλάντωσης αυτού του στερεού, θα είναι

$$\overline{E} = 3NkT \tag{5.81}$$

Η μοριακή του θερμότητα υπό σταθερό όγκο θα δίνεται, σύμφωνα με τα παραπάνω, από το

$$c_{v} = \left(\frac{\partial \overline{E}}{\partial T}\right)_{v} = 3R = 25 \text{ J.mol}^{-1}.\text{K}^{-1} \approx 6 \text{ cal. mol}^{-1}.\text{K}^{-1}$$
(5.82)

Το αποτέλεσμα αυτό είναι τελείως ανεξάρτητο από τη μάζα των ατόμων και από τη σταθερά επαναφοράς, a, των ταλαντωτών. Αρκεί βέβαια, και πάλι, η θερμοκρασία να είναι αρκετά υψηλή ώστε να ισχύει η κλασική προσέγγιση, συγκεκριμένα θα πρέπει kT >> hv, με άλλα λόγια η απόσταση μεταξύ των ενεργειακών σταθμών των ταλαντωτών να είναι πολύ μικρότερη από το kT. Από τα παραπάνω προκύπτει ότι

Σε αρκετά υψηλές θερμοκρασίες όλα τα στερεά έχουν την ίδια μοριακή θερμότητα, c_v, ίση με 3R και ανεξάρτητη από τη θερμοκρασία.

Η πιο πάνω έκφραση, γνωστή ως εμπειρικός *Νόμος Dulong-Petit*²⁴, είχε πρώτα βρεθεί πειραματικά από δύο Γάλλους επιστήμονες, τον χημικό Pierre-Louis Dulong και τον φυσικό Alexis-Thérèse Petit Dulong, το 1819. Η θερμοκρασία πάνω από την οποία ισχύει, που ονομάζεται και θερμοκρασία Debye, θ_D , εξαρτάται από το υλικό. Η θερμοκρασία περιβάλλοντος είναι αρκετά υψηλή, ώστε να ισχύει κατά προσέγγιση ο Νόμος Dulong-Petit για όλα τα στερεά, εκτός από το πυρίτιο και, κυρίως, το διαμάντι, στα οποία τα κβαντικά φαινόμενα είναι πολύ σημαντικά, ακόμη και στη θερμοκρασία των 300 Κ. Πράγματι, στο διαμάντι, η συχνότητα ταλάντωσης είναι τόσο υψηλή, ώστε στη θερμοκρασία περιβάλλοντος δεν ισχύει η ανισότητα kT >> hv, άρα ούτε και η κλασική προσέγγιση. Το αποτέλεσμα είναι ότι η μοριακή του θερμότητα στη θερμοκρασία περιβάλλοντος είναι στο Σχ. 5.7. Στο Κεφ. 8, Παράγρ. 8.4.1.2, θα μελετήσουμε αναλυτικά το θέμα της μοριακής θερμότητας των κρυσταλλικών στερεών, σύμφωνα με τη θεωρία Debye.

²⁴ Στο Παράρτημα ΙV δίνεται ένα απόσπασμα από το βιβλίο ΠΕΙΡΑΜΑΤΙΚΗ ΦΥΣΙΚΗ (1892) του Τιμολέοντος Αργυρόπουλου, που αναφέρεται στον Νόμο Dulong-Petit.

ΚΕΦΑΛΑΙΟ VI

ΘΕΡΜΟΤΗΤΑ, ΕΡΓΟ ΚΑΙ ΕΝΤΡΟΠΙΑ

"Personne n'ignore que la chaleur peut être la cause du mouvement, qu'elle possède même une grande puissance motrice: les machines à vapeur, aujourd'hui si répandues, en sont une preuve parlante à tous les yeux".²⁵

Aπό το βιβλίο του Sadi Carnot «REFLECTIONS SUR LA PUISSANCE MOTRICE DU FEU» CHEZ BACHELIEU, LIBRAIRE, A PARIS, 1824

6.1 Απειροστές αντιστρεπτές μεταβολές

Έστω ότι ένα σύστημα σε στατιστική ισορροπία υφίσταται μια απειροστή μεταβολή εξαιτίας της αλληλεπίδρασης με το περιβάλλον του. Κατά την αλληλεπίδραση μεταβάλλονται, εν γένει, τα ύψη των ενεργειακών σταθμών, E_i , αλλά και οι πιθανότητες κατάληψης, P_i (ή οι πληθυσμοί, $n_i = N P_i$) της κάθε κατάστασης με ενέργεια E_i . Εφόσον

$$\overline{E} = \sum_{i} E_{i} P_{i} \tag{6.1}$$

θα έχουμε, κατά την απειροστή μεταβολή:

$$dE = \sum_{i} E_{i} dP_{i} + \sum_{i} P_{i} dE_{i}$$
(6.2)

Η εξίσωση ισχύει ανεξάρτητα από το αν η διαδικασία είναι ή όχι αντιστρεπτή. Στην Εξ. (6.2) το πρώτο άθροισμα αντιστοιχεί σε μια μεταβολή της ενέργειας εξαιτίας της ανακατανομής των μορίων στις προσιτές τους καταστάσεις, ενώ το δεύτερο άθροισμα αντιστοιχεί σε μια μεταβολή της ενέργειας εξαιτίας της μεταβολής των ενεργειακών σταθμών.

Ας υποθέσουμε όμως ότι η διαδικασία είναι **αντιστρεπτή**, έτσι ώστε το σύστημα να βρίσκεται κάθε στιγμή στην πιθανότερη κατανομή του ή, αλλιώς, στην κατάσταση ισορροπίας του. Όταν το σύστημα βρίσκεται σε θερμική ισορροπία στη θερμοκρασία *T*, θα ισχύει (βλ. Παράγρ. 3.4.3, Εξ. 3.38):

$$P_i = \frac{1}{Z} e^{-\beta E_i} \tag{6.3}$$

από την οποία προκύπτει:

$$E_i = -\frac{1}{\beta} \left(\ln Z + \ln P_i \right) \tag{6.4}$$

Θα πρέπει εδώ να θυμίσουμε ότι οι ενεργειακές στάθμες, E_i , δεν εξαρτώνται από το T (ή το β), αλλά μόνον από τις εξωτερικές παραμέτρους· στην περίπτωσή μας από τον όγκο, V. Αντίθετα, οι πιθανότητες, P_i , εξαρτώνται από το β και, στη γενική περίπτωση, και από το E_i , άρα και από τον όγκο, V.

Έχουμε λοιπόν:

$$\sum_{i} E_{i} dP_{i} = -\frac{1}{\beta} \left(\ln Z \sum_{i} dP_{i} + \sum_{i} \ln P_{i} dP_{i} \right) = \frac{1}{\beta} \sum_{i} \ln P_{i} dP_{i}$$
(6.5)

²⁵ Κανείς δεν αγνοεί ότι η θερμότητα μπορεί να είναι το αίτιο της κίνησης, ότι μάλιστα διαθέτει μια μεγάλη κινητήρια δύναμη: οι ατμομηχανές, σήμερα τόσο διαδεδομένες, αποτελούν μια απόδειξη που «μιλάει σε όλα τα μάτια».

εφόσον

$$\sum_{i} dP_{i} = d\sum_{i} P_{i} = d(1) = 0$$
(6.6)

Από τη σχέση, όμως, για την εντροπία ενός συστήματος (Εξ. 3.47)

$$S = -k\sum_{i} P_{i} \ln P_{i}$$
(6.7)

παίρνουμε:

$$dS = -k \left(\sum_{i} \ln P_i \, dP_i + \sum_{i} P_i \frac{dP_i}{P_i} \right) = -k \sum_{i} \ln P_i \, dP_i \tag{6.8}$$

Από τον συνδυασμό των πιο πάνω εξισώσεων (6.5) και (6.8) προκύπτει ότι, για μια αντιστρεπτή μεταβολή (εφόσον χρησιμοποιήσαμε την Εξ. (6.3) για το P_i που ισχύει μόνο σε περίπτωση ισορροπίας), η μεταβολή της μέσης ενέργειας του συστήματος που οφείλεται στην ανακατανομή των πιθανοτήτων (ή των πληθυσμών) στις διάφορες καταστάσεις, συνδέεται με τη μεταβολή της εντροπίας του συστήματος με τη σχέση:

$$\sum_{i} E_{i} dP_{i} = T dS$$
(6.9)

Αφού όμως, σε μια αντιστρεπτή μεταβολή, έχουμε T dS = dQ (βλ. Εξ. 3.20, έπεται ότι:

$$\sum_{i} E_{i} \, \mathrm{d}P_{i} = \, \mathrm{d}Q \tag{6.10}$$

Άρα: Σε μια <u>αντιστρεπτή διαδικασία</u>, η μεταβολή της μέσης ενέργειας του συστήματος που οφείλεται στην ανακατανομή των πιθανοτήτων (ή των πληθυσμών) στις διάφορες καταστάσεις, ισούται με το ποσό της θερμότητας που απορροφά ή χάνει το σύστημα.

Από τον πρώτο θερμοδυναμικό νόμο, Εξ. (2.8)²⁶,

$$\mathrm{d}E = \mathrm{d}w + \mathrm{d}Q \,, \tag{2.8}$$

και την Εξ. (6.10) προκύπτει ότι ο δεύτερος όρος της Εξ. (6.2) θα ισούται με το στοιχειώδες έργο που παράγεται ή καταναλίσκεται από το σύστημα, δηλαδή

$$\sum_{i} P_i \, dE_i = \mathbf{d}w \tag{6.11}$$

Άρα: Σε μια αντιστρεπτή διαδικασία, η μεταβολή των εξωτερικών παραμέτρων του συστήματος, που ισοδυναμεί με την παραγωγή ή κατανάλωση έργου από το σύστημα, έχει ως αποτέλεσμα μόνο τη μεταβολή των ενεργειών των καταστάσεών του και όχι την ανακατανομή των πληθυσμών των καταστάσεων αυτών.

Με άλλα λόγια, σε μια αντιστρεπτή διαδικασία, η μεταβολή των εξωτερικών παραμέτρων δεν μεταβάλλει την πιθανότητα κατάληψης της κάθε στάθμης αλλά μόνο το ύψος της. Αντίθετα, η μεταφορά θερμότητας αντιστοιχεί μόνο στην ανακατανομή των μορίων στις προσιτές τους καταστάσεις. Η πρόταση αυτή ισχύει μόνο για αντιστρεπτές μεταβολές. Σε μη αντιστρεπτές, μια μεταβολή των εξωτερικών παραμέτρων ενός συστήματος συνεπάγεται, εν γένει, αλλαγή των ενεργειών των καταστάσεων του συστήματος, αλλά και ανακατανομή των σωματιδίων του στις διάφορες αυτές καταστάσεις.

Σε μια αδιαβατική μεταβολή dQ = 0. Αν η μεταβολή είναι και αντιστρεπτή, τότε και T dS = 0 ή dS = 0 (Εξ. 3.20), ή ακόμη:

²⁶Υπενθυμίζουμε ότι τα dw και dQ, δεν είναι ολικά διαφορικά (δηλ στοιχειώδεις μεταβολές), αλλά στοιχειώδεις ποσότητες έργου και θερμότητας, αντιστοίχως.

$$\sum_{i} E_i \,\mathrm{d}P_i = 0 \tag{6.12}$$

Αυτό δείχνει ότι, σε μια αδιαβατική αντιστρεπτή μεταβολή, οι πιθανότητες κατάληψης των διαφόρων καταστάσεων του συστήματος δεν μεταβάλλονται, παρόλο που το ύψος της κάθε στάθμης αλλάζει. Για να συμβεί όμως αυτό, θα πρέπει:

$$P_i = \frac{1}{Z} e^{-\frac{E_i}{kT}} = const$$
(6.13)

ή, αλλιώς, $E_i/kT = \sigma \tau \alpha \theta$.

Με άλλα λόγια, σε μια αντιστρεπτή αδιαβατική μεταβολή, η θερμοκρασία προσαρμόζεται έτσι, ώστε η "τάξη" του συστήματος, (δηλαδή το E_{v}/kT) να διατηρηθεί σταθερή, παρόλο που η μέση ενέργεια μεταβάλλεται. Αν τα E_i αυξάνονται (π.χ. ελάττωση του όγκου, V) η θερμοκρασία θα πρέπει να αυξηθεί. Αν τα E_i μειώνονται (π.χ. αύξηση του όγκου, V) η θερμοκρασία θα πρέπει να μειωθεί. Αυτή είναι και η αρχή της αδιαβατικής ψύξης. Η εντροπία όμως του συστήματος θα παραμείνει σταθερή, εφόσον η τάξη (δηλαδή τα P_i) δεν μεταβάλλεται.

Η Εξ. (6.11) μπορεί να γραφεί και ως

$$dw = \sum_{i} P_{i} \frac{dE_{i}}{dV} dV$$
(6.14)

Αν θυμηθούμε τώρα ότι η πίεση, *p*_i, που ασκείται από ένα σωματίδιο που βρίσκεται στην κατάσταση *i*, πάνω σε μια επιφάνεια εμβαδού *A*, δίνεται από το

$$p_i = \frac{F_i}{A} = -\frac{1}{A} \frac{\mathrm{d}E_i}{\mathrm{d}x} = -\frac{\mathrm{d}E_i}{\mathrm{d}V}$$
(6.15)

έχουμε:

$$dw = \sum_{i} P_{i} \frac{dE_{i}}{dV} dV = \sum_{i} P_{i} p_{i} dV = -\overline{p} dV$$
(6.16)

όπου \overline{p} η μέση πίεση του αερίου.

Στην περίπτωση λοιπόν μιας **αντιστρεπτής μεταβολής**, ο πρώτος νόμος της Θερμοδυναμικής, για ένα αέριο, γράφεται και ως:

$$dE = T dS - p dV$$
 (αντιστρεπτή μεταβολή) (6.17)

Αν η μεταβολή δεν είναι αντιστρεπτή, τότε

$$TdS > dQ$$
 kai $dw > -p dV_{(150p)}$ (6.18)

6.2 Ισόθερμη μεταβολή

Στην ισόθερμη μεταβολή έχουμε T = σταθ, οπότε, από την καταστατική εξίσωση των τελείων αερίων pV = NkT, όπου N ο αριθμός των μορίων του αερίου, προκύπτει pV = σταθ. Οι αντίστοιχες καμπύλες στο διάγραμμα p-V (Σχ. 6.1) ονομάζονται **ισόθερμες.** **Σχήμα 6.1** Διάγραμμα *p-V* ισόθερμης διεργασίας σε ένα ιδανικό κλασικό αέριο, από αρχικό όγκο, V_A , σε τελικό όγκο, V_B . Αν η διεργασία είναι εκτόνωση, διεξάγεται δηλαδή κατά τη φορά Α—Β, τότε παράγεται έργο $W_{A\to B}$, ίσο με το εμβαδόν κάτω από την καμπύλη. Αν είναι συμπίεση, αν δηλαδή η διαδικασία διεξάγεται κατά τη φορά B—A, τότε καταναλίσκεται έργο $W_B \rightarrow A$, ίσο αριθμητικά με το $W_{A\to B}$. Εφόσον $\Delta T = 0$, θα έχουμε και $\Delta E = 0$, οπότε το έργο θα είναι ίσο με την εκλυόμενη (ή απορροφούμενη για την αντίστροφη φορά) θερμότητα, Q, θα έχουμε δηλαδή παραγόμενο έργο (βλ. Παράγρ. 6.3.1):

$$w = Q = NkT \ln \left(\frac{V_B}{V_A}\right)$$

για τη φορά $A \to B,$ και καταναλισκόμενο ίσο έργο για τη φορά $~B \to A.$

6.3 Αδιαβατική μεταβολή

Σε μια αδιαβατική μεταβολή dQ = 0 οπότε, από τον πρώτο θερμοδυναμικό νόμο, και την Εξ. (5.33), παίρνουμε:

$$dE + p \, dV = C_V \, dT + p \, dV = 0 \tag{6.19}$$

Από την καταστατική εξίσωση των αερίων, pV = RT, έχουμε, για ένα γραμμομόριο,

$$p \,\mathrm{d}V + V \,\mathrm{d}p = R \,\mathrm{d}T \tag{6.20}$$

Λύνοντας τη δεύτερη εξίσωση ως προς dT και αντικαθιστώντας στην πρώτη παίρνουμε:

$$dQ = \frac{C_V}{R} \left(p \, \mathrm{d}V + V \, \mathrm{d}p \right) + p \, \mathrm{d}V = \left(\frac{C_V}{R} + 1\right) p \, \mathrm{d}V + \frac{C_V}{R} V \, \mathrm{d}p = 0 \tag{6.21}$$

Και, αν λάβουμε υπόψη ότι, για τα μονοατομικά ιδανικά κλασικά αέρια, (Εξ. 5.37), $C_p = (C_v + R)$, παίρνουμε από την Εξ. (6.21)

$$(C_{v} + R) p \, \mathrm{d}V + C_{v} V \, \mathrm{d}p = C_{p} p \, \mathrm{d}V + C_{v} V \, \mathrm{d}p = 0 \tag{6.22}$$

ή, ακόμη

$$\gamma \frac{\mathrm{d}V}{R} + \frac{\mathrm{d}P}{P} = 0 \tag{6.23}$$

με $\gamma = C_p / C_v$ (Εξ. 5.38). Επειδή το C_p είναι πρακτικά ανεξάρτητο της θερμοκρασίας στα ιδανικά κλασικά αέρια, το γ θα είναι επίσης ανεξάρτητο της θερμοκρασίας.

Ολοκληρώνοντας λοιπόν την προηγούμενη εξίσωση έχουμε:

$$\gamma \ln V + \ln p = \sigma \tau \alpha \theta$$

$$p V' = \sigma \tau \alpha \theta \qquad (6.24)$$

άρα και

Επειδή $\gamma > 1$, η πίεση, p, στην αδιαβατική μεταβολή θα μεταβάλλεται με τον όγκο, V, πιο γρήγορα από ό,τι στην ισόθερμη, όπως βλέπουμε στο Σχ. 6.3, όπου έχουν χαραχθεί τα διαγράμματα p-V για τέσσερις διαφορετικές περιπτώσεις.

Από την Εξ. (6.24) και την καταστατική εξίσωση των τελείων αερίων, pV = NkT, προκύπτουν για την αδιαβατική μεταβολή και οι σχέσεις:

$$T V^{\gamma-1} = \operatorname{sta\theta} \quad \operatorname{kal} T^{\gamma} p^{\gamma-1} = \operatorname{sta\theta}$$
(6.25a, b)

6.4 Υπολογισμός έργου σε διάφορες διεργασίες

6.4.1 Αντιστρεπτή ισόθερμη εκτόνωση ή συμπίεση

Έστω ότι συμπιέζουμε ένα ιδανικό αέριο πολύ αργά, περιμένοντας δηλαδή να αποκατασταθεί η ισορροπία σε κάθε στάδιο της μεταβολής. Θα ισχύει τότε, κάθε στιγμή, για ένα γραμμομόριο:

$$pV = RT$$

Το στοιχειώδες έργο θα δίνεται επομένως από το (βλ. Σχ. 6.1)

$$dw = -p dV = -(RT/V) dV$$
 (6.26)

Το αρνητικό πρόσημο προκύπτει από το γεγονός ότι, όταν ο όγκος αυξάνει, το αέριο παράγει έργο, άρα η μέση του ενέργεια ελαττώνεται ενώ, όταν ο όγκος μειώνεται, το αέριο κερδίζει έργο (προσφέρουμε έργο στο σύστημα) και επομένως η ενέργειά του αυξάνεται. Ολοκληρώνοντας την προηγούμενη σχέση βρίσκουμε:

$$w = -\int_{V_1}^{V_2} p dV = RT \ln \frac{V_1}{V_2}$$
(6.27)

Αν $V_1 > V_2$, το αέριο συμπιέζεται και το *w* είναι θετικό. Αν, αντίθετα, $V_1 < V_2$, το αέριο εκτονώνεται και το *w* είναι αρνητικό. Επειδή η μεταβολή είναι ισόθερμη, η μέση ενέργεια του αερίου δεν μεταβάλλεται και, σύμφωνα με τον πρώτο θερμοδυναμικό νόμο, έχουμε:

$$v = -Q$$

Αν η μεταβολή δεν είναι αντιστρεπτή, η Εξ. (6.26) δεν ισχύει, γιατί δεν ισχύει ούτε το pV = RT, αφού το σύστημα δεν είναι σε ισορροπία κατά τη διάρκεια της μεταβολής. Στην περίπτωση αυτή το έργο εξαρτάται από τον τρόπο με τον οποίο έγινε η μεταβολή.

6.4.2 Αντιστρεπτή αδιαβατική εκτόνωση ή συμπίεση

Σε μια αδιαβατική αντιστρεπτή μεταβολή, Q = 0, έχουμε επομένως $w = \Delta E$. Εφόσον η μέση ενέργεια ενός αερίου συστήματος N μορίων, \overline{E}_N , εξαρτάται από τη θερμοκρασία, T, σύμφωνα με τη σχέση

$$\overline{E}_N = N\overline{E} = \frac{3}{2}NkT$$
(5.7)

όπου k η σταθερά Boltzmann, το παραγόμενο έργο θα είναι ίσο με (βλ. Σχ. 6.3)

$$w = (E_2 - E_1) = \frac{3}{2} N k (T_2 - T_1) = \frac{3}{2} (p_2 V_2 - p_1 V_1) = \frac{3}{2} \Delta(pV)$$
(6.28)

όπου T_1 και T_2 η αρχική και η τελική θερμοκρασία της διαδικασίας, αντιστοίχως. Στο ίδιο αποτέλεσμα θα καταλήγαμε και από την Εξ. (6.19), σύμφωνα με την οποία, σε μια αδιαβατική μεταβολή $dw = pdV = c_v dT$. Ολοκληρώνοντας το dw από T_1 ως T_2 και λαμβάνοντας υπόψη ότι, στα τέλεια αέρια, $c_v = (3/2)R$, για ένα γραμμομόριο αερίου (Εξ. 5.33), βρίσκουμε και πάλι $w = (E_2 - E_1) = (3/2) R (T_2 - T_1)$.

6.4.3 Ισοβαρής μεταβολή

Μια ισοβαρής μεταβολή ($p = p_0 =$ σταθ, βλ. Σχ. 6.3) αποκλείεται να είναι αντιστρεπτή, γιατί κατά τη διάρκειά της δεν ισχύει pV = RT). Θα έχουμε, πράγματι, ανάλογα με την περίπτωση, pV > RT (ισοβαρής συμπίεση) ή pV < RT (ισοβαρής εκτόνωση). Σε κάθε περίπτωση ισχύει:

$$w = -\int_{V_1}^{V_2} p_0 dV = p_0 \left(V_2 - V_1 \right)$$
(6.29)

Ας δούμε μερικά παραδείγματα ισοβαρών μεταβολών

6.4.3.1 Απότομη συμπίεση

Έστω ότι το έμβολο ενός δοχείου με αέριο είναι στερεωμένο σε κάποια θέση και φέρει από πάνω του ένα βάρος, τέτοιο ώστε, όταν το έμβολο ελευθερωθεί, να ασκηθεί στο αέριο μια πίεση, p₀, οφειλόμενη στο βάρος. Η πίεση p₀ είναι, προφανώς, μεγαλύτερη από την p_{ισορ}. Ο όγκος μειώνεται, άρα το dV είναι αρνητικό. Το στοιχειώδες έργο που προσφέρεται στο αέριο, κατά τη διάρκεια της συμπίεσης, είναι ίσο με

 $dw = -p_0 dV > -p_{isor} dV$ (eqúson dV < 0 kai $p_0 > p_{isor}$)

οπότε και $dw = -p_0 \Delta V$.

Αν η μεταβολή είναι και <u>αδιαβατική</u>, τότε Q = 0 και (εφόσον $\Delta V < 0$), έχουμε:

 $\Delta E = -p_0 \Delta V > 0$, οπότε η μέση ενέργεια του συστήματος αυξάνει.

Αν είναι <u>ισόθερμη</u>, τότε $\Delta E = 0$ και (εφόσον $\Delta V < 0$) $Q = p_0 \Delta V < 0$, πράγμα που σημαίνει ότι όλο το έργο μετατρέπεται σε θερμότητα, η οποία αποβάλλεται από το σύστημα προς τη δεξαμενή.

6.4.3.2 Απότομη εκτόνωση

Αν τραβήξουμε απότομα το έμβολο, τότε δημιουργείται μια υποπίεση, p_0 , πίσω από το έμβολο, με αποτέλεσμα $p_0 < p_{1 \text{σορ.}}$ Τότε

$$dw = -p_0 dV > -p_{i\sigma o \rho} dV$$
 (eqúsov $dV > 0$)

Αν η μεταβολή είναι και αδιαβατική (Q = 0), τότε, στο τέλος της διαδικασίας θα έχουμε $\Delta E = -p_0 \Delta V < 0$ (εφόσον $\Delta V > 0$), οπότε η μέση ενέργεια του συστήματος ελαττώνεται.

6.4.3.3 Εκτόνωση στο κενό

Στην περίπτωση αυτή (Σχ. 6.2) έχουμε p = 0, οπότε $dw = 0 > -p_{isop} dV$ (εφόσον dV > 0), και το σύστημα δεν παράγει έργο. Αν η μεταβολή είναι επιπλέον και αδιαβατική, τότε: Q = 0 και $\Delta E = 0$. Επομένως:

Σε μια αδιαβατική εκτόνωση στο κενό η μέση ενέργεια ενός ιδανικού δεν μεταβάλλεται, ενώ, όπως γνωρίζουμε και θα δούμε και αργότερα, η εντροπία του αυζάνει.

Σχήμα 6.2 Αδιαβατική εκτόνωση στο κενό. Όταν ανοίξει η βαλβίδα, Β, το αέριο διαχέεται σε όλο το χώρο χωρίς να παράγει κανένα έργο, $P \, \mathrm{d}V$, γιατί η πίεση, P, είναι ίση με μηδέν. Επιπλέον Q = 0, άρα και $\Delta E = 0$. Η εντροπία του συστήματος αυξάνει, γιατί η διαδικασία αυτή δεν είναι αντιστρεπτή.

Στο Σχ. 6.3 έχουν χαραχθεί τα διαγράμματα p-V για τέσσερις διαφορετικές περιπτώσεις: (a) ισοβαρή (p = σταθ), (b) ισόθερμη (T = σταθ), (c) αδιαβατική (Q = 0) και (d) ισόχωρη (V = σταθ). **Σχήμα 6.3** Διαγράμματα *p-V* για τέσσερις διαφορετικές διεργασίες σε ένα ιδανικό κλασικό αέριο:

- (*a*) ισοβαρής (p = σταθ), $w = p \Delta V$,
- (b) ισόθερμη (T = σταθ), w= $Q = RT \ln (V_1/V_2)$
- (c) αδιαβατική (Q = 0), $w = \Delta E = (3/2) \Delta(pV)$
- (d) ισόχωρη (V = σταθ), w = 0

Στην περίπτωση (a), όπου η πίεση, p, παραμένει σταθερή, το έργο, w, είναι ίσο με $p \Delta V$, ενώ στην περίπτωση (d), όπου ο όγκος, V, μένει σταθερός, το έργο είναι ίσο με μηδέν.

Στην περίπτωση (b), όπου η θερμοκρασία, T, παραμένει σταθερή, έχουμε:

 $w = -Q = RT \ln (V_1/V_2)$ [βλ. Εξ. (6.27), Παράγρ. 6.4.1] και, τέλος, στην περίπτωση (*c*), όπου Q = 0, έχουμε: $w = \Delta E = (3/2) \Delta(pV)$ [βλ. Εξ. (6.28), Παράγρ. 6.4.2]

6.5 Υπολογισμός μεταβολής της εντροπίας σε διάφορες διεργασίες

Υπενθυμίζουμε ότι, σύμφωνα με τον δεύτερο νόμο της θερμοδυναμικής, για οποιαδήποτε μεταβολή σε απομονωμένο σύστημα από μια κατάσταση 1 σε μια κατάσταση 2, έχουμε την ανισότητα Clausius:

$$\Delta S \equiv S_1 - S_2 \ge 0 \tag{6.30}$$

όπου η ισότητα στο \geq ισχύει μόνο για αντιστρεπτές μεταβολές. Με άλλα λόγια, η εντροπία είναι μια συνάρτηση της κατάστασης ενός συστήματος άρα, σε οποιαδήποτε μεταβολή, το ΔS είναι ανεξάρτητο του τρόπου με τον οποίο έγινε η μεταβολή, αλλά εξαρτάται μόνο από την αρχική και την τελική κατάσταση.

6.5.1 Θέρμανση ουσίας υπό σταθερό όγκο – Αντιστρεπτή μεταβολή

Έχουμε
$$\Delta S = S_2 - S_1 = \int_1^2 \frac{dQ}{T} = \int_1^2 C_V \frac{dT}{T} = C_V \ln \frac{T_2}{T_1}$$
(6.31)

όπου C_v η θερμοχωρητικότητα της ουσίας υπό σταθερό όγκο:

$$C_{V} = \left(\frac{d\overline{E}}{dT}\right)_{V}$$
(6.32)

6.5.2 Μεταβολή φάσης - Αντιστρεπτή και ισόθερμη μεταβολή

Αν για μια μεταβολή φάσης, π.χ. τήξη (ή πήξη) του πάγου, απορροφάται (ή εκλύεται) θερμότητα *Q*, επειδή η διαδικασία είναι αντιστρεπτή²⁷ και ισόθερμη, θα ισχύει

$$\Delta S = Q / T \tag{6.33}$$

όπου T η θερμοκρασία στην οποία γίνεται η μεταβολή της φάσης (π.χ. 273 K για την τήξη του πάγου).

6.5.3 Ισόθερμη συμπίεση ιδανικού αερίου

Ισχύει: dT = 0, άρα dE = 0 και, επίσης, $V_1 > V_2$. Διακρίνουμε τις ακόλουθες περιπτώσεις:

²⁷ Υπενθυμίζουμε ότι οι ισόθερμες αλλαγές φάσης είναι αντιστρεπτές μεταβολές (βλ. και Παράγρ. 2.5.5)

6.5.3.1 Αντιστρεπτή ισόθερμη συμπίεση

Από τον ορισμό της εντροπίας έχουμε dQ = T dS. Αλλά, αφού dE = 0 (dT = 0), θα ισχύει:

$$dQ = -dw = p \, dV = T \, dS \tag{6.34}$$

άρα dS =
$$(p dV)/T$$
 (6.35)

Ολοκληρώνοντας την Εξ. (6.35) μεταξύ των καταστάσεων 1 και 2, παίρνουμε

$$\Delta S = \frac{1}{T} \int_{V_1}^{V_2} p dV = R \ln \frac{V_2}{V_1} < 0$$
(6.36)

που συμφωνεί και με το αποτέλεσμα της Παράγρ. 6.4.1.

Κατά τη συμπίεση η αταξία μειώνεται, εφόσον μειώνεται ο όγκος, άρα και ο αριθμός των καταστάσεων, Ω . Θυμόμαστε, πράγματι, ότι $\Omega_2/\Omega_1 = (V_2/V_1)^N$ (βλ. Εξ. 2.12), όπου N ο αριθμός των σωματιδίων. Από τον ορισμό της εντροπίας, $S = k \ln \Omega$, έχουμε προφανώς ότι $\Delta S = k \ln (\Omega_2/\Omega_1)$ από όπου προκύπτει και πάλι

$$\Delta S = kN \ln(V_2/V_1)$$
 για ένα αέριο N σωματιδίων ή
$$\Delta S = R \ln (V_2/V_1)$$
 για ένα mol

που συμπίπτει, όπως αναμένεται, με την Εξ. (6.36).

6.5.3.2 Μη αντιστρεπτή ισόθερμη συμπίεση

Εφόσον η μεταβολή της εντροπίας δεν εξαρτάται από τον τρόπο με τον οποίο έγινε η μεταβολή, αλλά από την αρχική και την τελική κατάσταση, από τη στιγμή που γνωρίζουμε τον αρχικό και τον τελικό όγκο, υπολογίζουμε το ΔS χρησιμοποιώντας την προηγούμενη σχέση που ισχύει για την αντιστρεπτή μεταβολή.

6.5.4 Ισόθερμη εκτόνωση ιδανικού αερίου

Η σχέση που μας δίνει τη μεταβολή της εντροπίας είναι βέβαια η ίδια με την προηγούμενη και το ΔS είναι, στην περίπτωση αυτή, θετικό, εφόσον $V_2 > V_1$.

$$\Delta S = \frac{1}{T} \int_{V_1}^{V_2} p \, \mathrm{d}V = R \ln \frac{V_2}{V_1} > 0 \tag{6.37}$$

Κατά την εκτόνωση αυξάνει ο όγκος, V, επομένως και ο αριθμός των προσιτών καταστάσεων, Ω, άρα και η εντροπία, S, σύμφωνα με τον συλλογισμό της Παραγρ. 6.5.3. Εννοείται ότι, σύμφωνα με τον συλλογισμό της προηγούμενης παραγράφου (Παράγρ. 6.5.3.2), η Εξ. (6.37) ισχύει και για αντιστρεπτή και για μη αντιστρεπτή ισόθερμη εκτόνωση.

6.5.5 Αδιαβατική αντιστρεπτή μεταβολή

Κατά την αδιαβατική μεταβολή έχουμε dQ = 0, άρα και dS = 0, εφόσον η μεταβολή είναι και αντιστρεπτή, παρόλο που ο όγκος μεταβάλλεται. Αυτό συμβαίνει γιατί ο αριθμός των καταστάσεων παραμένει σταθερός, πράγμα που αποδεικνύεται με τον ακόλουθο συλλογισμό. Από τη μελέτη της πυκνότητας των καταστάσεων στο τρισδιάστατο πηγάδι δυναμικού άπειρου ύψους γνωρίζουμε ότι ο αριθμός των καταστάσεων, Ω (*E*), δίνεται από το

$$\Omega(E) \sim E^{3N/2} V^N \tag{6.38}$$

Αλλά οι ενεργειακές στάθμες, E_n , στο πηγάδι δυναμικού εξαρτώνται από τον όγκο σύμφωνα με τη σχέση

$$E_{\rm n} \sim n^2 / V^{2/3}$$
 (n = 1, 2, 3.....) (6.39)

επομένως η τιμή τους μειώνεται όταν ο όγκος αυξάνει. Από τις δύο τελευταίες σχέσεις προκύπτει ότι

$$\Omega \sim V^N / V^N = \sigma \tau \alpha \theta$$

άρα και η εντροπία μένει σταθερή. Επειδή, επιπλέον, η μεταβολή είναι αντιστρεπτή, ο πληθυσμός της κάθε στάθμης μένει αμετάβλητος, με αποτέλεσμα η μέση ενέργεια τού συστήματος να μειώνεται, άρα και η θερμοκρασία του.

Θα περίμενε κανείς κατ' αρχήν ότι, αφού μεταβάλλονται οι στάθμες με τη μεταβολή του όγκου, θα έπρεπε να μεταβάλλονται και οι πιθανότητες κατάληψής τους, αφού η πιθανότητα κατάληψης μιας κατάστασης δίνεται από το $p_r = \exp(-E_n/kT)$. Όμως μεταβάλλεται ταυτόχρονα και η θερμοκρασία, έτσι ώστε το πηλίκον ($-E_n/kT$) (με άλλα λόγια η "τάξη" του συστήματος άρα και η εντροπία) να διατηρείται σταθερό (βλ και Παράγρ. 6.1). Έτσι, λοιπόν, όταν ο όγκος μειώνεται με τρόπο αδιαβατικό και αντιστρεπτό (αδιαβατική αντιστρεπτή εκτόνωση) επιφέρει ψύξη του συστήματος. Αυτή είναι και η αρχή της αδιαβατικής ψύξης.

6.5.6 Αδιαβατική εκτόνωση στο κενό

Όπως είδαμε και πριν [Παράγρ. 6.3.2 (γ)], μια τέτοια εκτόνωση δεν μπορεί να είναι αντιστρεπτή, γιατί κατά την εκτόνωση το σύστημα δεν βρίσκεται σε κατάσταση ισορροπίας. Η πίεση που αντιτίθεται στην εκτόνωση είναι μηδενική, επομένως δεν παράγεται κανένα έργο. Εφόσον δε είναι και αδιαβατική, δεν μεταφέρεται κανένα ποσόν θερμότητας άρα, σύμφωνα με τον πρώτο θερμοδυναμικό νόμο, η μέση ενέργεια του συστήματος, άρα και η θερμοκρασία, δεν μεταβάλλονται.

Θα υπολογίσουμε τη μεταβολή της εντροπίας θεωρώντας ότι η μεταβολή έγινε με τρόπο αντιστρεπτό, εφόσον γνωρίζουμε την αρχική και την τελική κατάσταση και η θερμοκρασία παραμένει σταθερή κατά τη διάρκεια της μεταβολής. Θα χρησιμοποιήσουμε δηλαδή τη σχέση που βρήκαμε για την ισόθερμη εκτόνωση του αερίου [Εξ. (6.37)]

$$\Delta S = \frac{1}{T} \int_{V_1}^{V_2} p \, \mathrm{d}V = R \ln \frac{V_2}{V_1} > 0 \tag{6.40}$$

Το ίδιο αποτέλεσμα θα παίρναμε, θεωρώντας τη μεταβολή του αριθμού των καταστάσεων. Πράγματι, εφόσον $\Omega \sim V^N$ και $S = k \ln \Omega$, έχουμε

$$\Delta S = k \ln \left(\frac{\Omega_2}{\Omega_1}\right) = k \ln \left(\frac{V_2}{V_1}\right)^N = R \ln \left(\frac{V_2}{V_1}\right)$$
(6.41)

για ένα γραμμομόριο αερίου.

Εδώ, παρ' όλο που οι στάθμες μεταβάλλονται αφού μεταβάλλεται και ο όγκος, γίνεται τέτοια ανακατανομή των μορίων στις στάθμες (μη αντιστρεπτή μεταβολή) ώστε η μέση ενέργεια τού συστήματος να διατηρηθεί σταθερή. Πιο συγκεκριμένα, όταν αυξάνεται ο όγκος, οι στάθμες κατεβαίνουν και, αφού η θερμοκρασία μένει σταθερή, τα σωματίδια ανεβαίνουν προς υψηλότερες στάθμες σύμφωνα με τον παράγοντα Boltzmann, έτσι ώστε η μέση ενέργεια να μείνει σταθερή.

6.5.7 Γενική μεταβολή της εντροπίας

Εφόσον η μεταβολή της εντροπίας δεν εξαρτάται από τον τρόπο με τον οποίο έγινε η μεταβολή αλλά μόνο από την αρχική και την τελική κατάσταση, μπορούμε πάντα να την υπολογίσουμε (αρκεί να γνωρίζουμε τα χαρακτηριστικά μεγέθη V και T των καταστάσεων αυτών), θεωρώντας ότι η μεταβολή έγινε με τρόπο αντιστρεπτό. Έχουμε πράγματι για μια αντιστρεπτή διαδικασία, σύμφωνα με τον πρώτο θερμοδυναμικό νόμο:

$$dS = \frac{dQ}{T} = \frac{dE}{T} + \frac{p \, dV}{T} = C_V \left(T\right) \frac{dT}{T} + R \frac{dV}{V}$$
(6.42)

για ένα γραμμομόριο αερίου, λαμβάνοντας υπόψη την καταστατική εξίσωση των τελείων αερίων, pV = RT. Αν το C_v , όπως συμβαίνει στα τέλεια αέρια, είναι ανεξάρτητο της θερμοκρασίας, τότε η μεταβολή της εντροπίας, όταν μεταβαίνουμε από μια κατάσταση, V_1 , T_1 , σε μια άλλη, V_2 , T_2 , είναι ίση με

$$\Delta S = S_2 - S_1 = C_v \ln \frac{T_2}{T_1} + R \ln \frac{V_2}{V_1}$$
(6.43)

Η σχέση αυτή μας δίνει τη δυνατότητα να υπολογίσουμε την εντροπία, S, για οποιαδήποτε μακροκατάσταση (T,V) αν γνωρίζουμε την εντροπία, S_0 , μιας γνωστής μακροκατάστασης (T_0,V_0) .

ΚΕΦΑΛΑΙΟ VII

ΘΕΡΜΟΔΥΝΑΜΙΚΗ: ΝΟΜΟΙ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

"Thermodynamics made no sense to me before I learned statistical mechanics, and it is befitting that his (Boltzmann) most elegant equation for the entropy of a system graces the memorial at his grave site".²⁸

HENNING DEKANT (2013)

7.1 Νόμοι της Θερμοδυναμικής

Υπενθυμίζουμε τους τρεις νόμους της Θερμοδυναμικής, τους οποίους αναλύσαμε στα προηγούμενα κεφάλαια.

7.1.1 Μηδενικός Νόμος

Αν δύο περισσότερα συστήματα βρίσκονται σε κατάσταση ισορροπίας με ένα τρίτο σύστημα, τότε θα βρίσκονται και σε θερμική ισορροπία μεταξύ τους, θα έχουν επομένως την ίδια θερμοκρασία.

7.1.2 Πρώτος Νόμος (Διατήρηση της ενέργειας)

Η μακροκατάσταση ισορροπίας ενός συστήματος μπορεί να χαρακτηριστεί από μια ποσότητα \overline{E} , που ονομάζεται εσωτερική ή μέση ενέργεια και έχει την ιδιότητα, για ένα απομονωμένο σύστημα: $\overline{E} =$ σταθ.

Αν το σύστημα αλληλεπιδρά με το περιβάλλον του, μεταβαίνοντας από μια μακροκατάσταση σε μια άλλη, η μεταβολή της εσωτερικής του ενέργειας, \overline{E} , υπακούει στη σχέση

$$\Delta \overline{E} = Q + w \quad \text{i}, \text{ gia mia aperiostimmation metaboly}, \quad \mathrm{d} \ \overline{E} = \ \mathrm{d} w + \ \mathrm{d} Q \qquad (7.1)$$

όπου Q είναι η θερμότητα που απορροφά το σύστημα, ενώ w είναι το μακροσκοπικό έργο που προσφέρεται στο σύστημα (επομένως κερδίζει το σύστημα) ως αποτέλεσμα της μεταβολής των εξωτερικών παραμέτρων του. Επαναλαμβάνουμε εδώ ότι τα dw και dQσυμβολίζουν απειροστές ποσότητες θερμότητας και έργου αντιστοίχως, και όχι απειροστές μεταβολές. Υπενθυμίζουμε ότι ο Πρώτος Νόμος της Θερμοδυναμικής είναι απλώς η συνέπεια του αξιώματος της διατηρήσεως της ενέργειας και δεν πρόκειται για μια καινούργια αρχή ή αξίωμα.

7.1.3 Δεύτερος Νόμος

Η κατάσταση ισορροπίας ενός συστήματος μπορεί να χαρακτηριστεί από μια ποσότητα S, την εντροπία, που ορίζεται ως

$$S \equiv k \ln \Omega = -k \sum_{r} P_r \ln P_r$$
(7.2)

όπου Ω ο αριθμός των μικροκαταστάσεων του συστήματος που αντιστοιχούν στη συγκεκριμένη μακροκατάσταση, ενώ P_r είναι η πιθανότητα να βρίσκεται το σύστημα σε μια συγκεκριμένη μικροκατάσταση, r. Η εντροπία έχει τις ακόλουθες ιδιότητες:

 Όταν ένα απομονωμένο σύστημα μεταβαίνει από μια κατάσταση σε μια άλλη, η εντροπία του μένει σταθερή ή αυξάνει

$$\Delta S \ge 0 \tag{7.3}$$

²⁸ Η θερμοδυναμική δεν είχε για μένα κανένα νόημα πριν μάθω στατιστική μηχανική, και είναι θαυμάσιο το ότι η πιο κομψή εξίσωσή του (Boltzmann) για την εντροπία ενός συστήματος στολίζει το μνημείο τού τάφου του.

Αν το σύστημα δεν είναι απομονωμένο και υφίσταται μια αντιστρεπτή (ή στατικότροπη) απειροστή μεταβολή, κατά την οποία απορροφά μια απειροστή ποσότητα θερμότητας, dQ, τότε

$$dS = dQ/T$$
 (αντιστρεπτή μεταβολή) (7.4)

Η απόλυτη θερμοκρασία Τ είναι μια ποσότητα που χαρακτηρίζει τη μακροκατάσταση του συστήματος και ορίζεται μόνο στην κατάσταση ισορροπίας.

Η τελευταία σχέση είναι ο ορισμός της εντροπίας κατά Clausius (1865) ενώ η

$$S \equiv k \ln \Omega \tag{7.5}$$

είναι ο *ορισμός του Boltzmann* (1877).

Αν η μεταβολή δεν είναι αντιστρεπτή, τότε

$$dS > dQ/T$$
 (μη αντιστρεπτή μεταβολή) (7.6)

Υπενθυμίζουμε κι εδώ ότι ο Δεύτερος Νόμος της Θερμοδυναμικής είναι απλώς μια άμεση συνέπεια του γεγονότος ότι τα μακροσκοπικά συστήματα αποτελούνται από πολύ μεγάλο αριθμό σωματιδίων και δεν πρόκειται για μια καινούργια αρχή.

7.1.4 Τρίτος Νόμος

Η εντροπία ενός συστήματος έχει την ιδιότητα

$$S \rightarrow S_{o}$$
 ótav $T \rightarrow 0$

όπου το S_0 είναι μια σταθερά (εν γένει ίση με το 0), ανεξάρτητη από όλες τις μακροσκοπικές παραμέτρους του συστήματος.

Ο τρίτος νόμος είναι συνέπεια του γεγονότος ότι όταν η θερμοκρασία μηδενίζεται, το σύστημα βρίσκεται στη θεμελιώδη του στάθμη, η οποία δεν είναι εκφυλισμένη.

Πράγματι

$$\lim_{T \to 0} S = k \ln g_1 \tag{7.7}$$

όπου g₁ ο εκφυλισμός (αριθμός καταστάσεων) της θεμελιώδους στάθμης. Και επειδή, σύμφωνα με τη σημερινή μας γνώση, σε όλα τα (γνωστά) συστήματα η θεμελιώδης στάθμη δεν είναι εκφυλισμένη, έχουμε g₁ = 1 και, επομένως,

$$\lim_{T \to 0} S = 0 \tag{7.8}$$

ή, αλλιώς:

$$S \to 0 \quad \text{órav} \quad T \to 0 \tag{7.9}$$

Μία από τις συνέπειες του τρίτου θερμοδυναμικού νόμου είναι ότι η ειδική θερμότητα c_v (ή η θερμοχωρητικότητα C_v) μηδενίζεται στο T = 0. Πράγματι, για μεταβολές υπό σταθερό όγκο έχουμε:

$$S(T_2, V) = S(T_1, V) + \int_{1}^{2} C_V \frac{dT}{T}$$
(7.10)

Όταν $T_1 \rightarrow 0$, τότε και $S(T_1, V) \rightarrow 0$. Για να είναι όμως το προηγούμενο ολοκλήρωμα πεπερασμένο, θα πρέπει και $C_V \rightarrow 0$ όταν $T_1 \rightarrow 0$.

Μπορεί εξάλλου να αποδειχθεί ότι, για $T \to 0$, έχουμε και $C_p - C_v \to 0$, και μάλιστα ταχύτερα από το ίδιο το C_v , από όπου προκύπτει ότι και η C_p μηδενίζεται στο T = 0.

Τα παραπάνω δεν έρχονται σε αντίθεση με το αποτέλεσμα που βρήκαμε για τα ιδανικά κλασικά αέρια, $C_P - C_V = R$. Ο λόγος είναι ότι, όταν $T \rightarrow 0$, τα κβαντομηχανικά αποτελέσματα γίνονται αισθητά, το σύστημα βρίσκεται στη θεμελιώδη του κατάσταση και η καταστατική εξίσωση των αερίων, pV = RT, δεν ισχύει πια, ακόμη κι αν οι αλληλεπιδράσεις μεταξύ των μορίων είναι αμελητέες.

7.2 Εξισώσεις του Maxwell

Ξεκινώντας από τη θεμελιώδη θερμοδυναμική σχέση που ισχύει για αντιστρεπτές μεταβολές:

$$dE = T dS - p dV$$
 (αντιστρεπτή μεταβολή) (7.11)

και, ανάλογα με ποιο ζευγάρι μεταβλητών θα πάρουμε ως ανεξάρτητες μεταβλητές (S, V), (S, p), (T, V), ή (T, P), καταλήγουμε στις εξισώσεις του Maxwell, που συνδέουν μεταξύ τους τα ζευγάρια των μεταβλητών. Οι εξισώσεις αυτές είναι οι ακόλουθες:

$$\left(\frac{\partial T}{\partial V}\right)_{S} = - \left(\frac{\partial p}{\partial S}\right)_{V} \quad \left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p} \quad \left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial p}{\partial T}\right)_{V} \quad \left(\frac{\partial S}{\partial p}\right)_{T} = - \left(\frac{\partial V}{\partial T}\right)_{p} \quad (7.12)$$

και προκύπτουν απ' ευθείας, ως συνέπεια του γεγονότος ότι οι μεταβλητές *T*, *S*, *p* και *V* δεν είναι τελείως ανεξάρτητες μεταξύ τους, αλλά συνδέονται με την αρχική θεμελιώδη θερμοδυναμική σχέση (dE = T dS - p dV). Η μία εξίσωση μπορεί να προκύψει από την άλλη με μια απλή μεταβολή των ανεξάρτητων μεταβλητών. Ο βασικός λόγος για την ύπαρξη αυτών των σχέσεων είναι ο ακόλουθος: Μπορεί να δοθεί μια πλήρης μακροσκοπική περιγραφή ενός συστήματος, αν είναι γνωστός ο αριθμός των καταστάσεων, Ω , που είναι προσιτές στο σύστημα (ή, ισοδύναμα, η εντροπία του, $S = k \ln \Omega$) ως συνάρτηση της ενέργειάς του και της εξωτερικής παραμέτρου του, *V*. Όμως η θερμοκρασία και η μέση πίεση του συστήματος μπορούν να εκφραστούν ως συναρτήσεις του Ω ή του *S*. Έχουμε πράγματι βρει ότι:

$$\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_{V} = k \left(\frac{\partial \ln \Omega}{\partial E}\right) \quad \kappa \alpha i \qquad p = T \left(\frac{\partial S}{\partial V}\right)_{E} = \frac{1}{\beta} \frac{\partial \ln \Omega}{\partial V}$$
(7.13)

Ισχύει επομένως:

$$dS = \left(\frac{\partial S}{\partial E}\right)_{V} dE + \left(\frac{\partial S}{\partial V}\right)_{E} dV = \frac{1}{T} dE + \frac{p}{T} dV$$
(7.14)

που είναι η γνωστή μας θεμελιώδης θερμοδυναμική σχέση:

$$dE = T dS - p dV$$
 (αντιστρεπτή μεταβολή) (7.11)

Το ζευγάρι *Τ*, *S* αποτελείται από τις μεταβλητές που περιγράφουν την πυκνότητα των προσιτών καταστάσεων του συστήματος, ενώ το ζευγάρι *p*, *V* περιέχει την εξωτερική παράμετρο και την αντίστοιχη γενικευμένη δύναμή της. Το βασικό περιεχόμενο των σχέσεων του Maxwell είναι η ύπαρξη σχέσεων μεταξύ των διασταυρουμένων παραγώγων αυτών των δύο τύπων μεταβλητών.

7.3 Θερμοδυναμικές συναρτήσεις

Για λόγους πληρότητας δίνουμε στη συνέχεια τις κυριότερες θερμοδυναμικές συναρτήσεις, μαζί με τις ανεξάρτητες μεταβλητές που χρησιμοποιούνται συνήθως, σε συνδυασμό με κάθε μία από τις συναρτήσεις αυτές.

Μέση Ενέργεια	Ε	E = E(S, V)
Ενθαλπία	H = E + pV	$H = H\left(S,p\right)$
Ελεύθερη Ενέργεια κατά Helmholtz	$F \equiv E - TS$	F = F(T, V)
Ελεύθερη Ενέργεια κατά Gibbs	$G \equiv E - TS + pV$	G = G(T,p)

Ο όρος "Ελεύθερη Ενέργεια" υπονοεί ότι πρόκειται για την ενέργεια που είναι διαθέσιμη για την παραγωγή χρήσιμου έργου (εκτός από το έργο διαστολής). Και η μεν F αναφέρεται σε διεργασίες υπό σταθερά V και T, ενώ η G αναφέρεται σε διεργασίες υπό σταθερά P και T. Με άλλα λόγια, η ελεύθερη ενέργεια κατά Gibbs (που εκφράζεται συνήθως σε μονάδες J/mol) είναι η μέγιστη ποσότητα έργου που μπορεί να προσφερθεί από ένα κλειστό σύστημα²⁹, υπό σταθερή πίεση και σταθερή θερμοκρασία. Αντιστοίχως, η ελεύθερη ενέργεια κατά Helmholtz (που εκφράζεται βέβαια στις ίδιες μονάδες) είναι η μέγιστη ποσότητα έργου που μπορεί να προσφερθεί από σταθερή θερμοκρασία. Σημειώνουμε ότι το μέγιστο αυτό επιτυγχάνεται μόνο σε αντιστρεπτές μεταβολές.

Η ελεύθερη ενέργεια κατά Gibbs χρησιμοποιείται συνήθως στη Χημεία, γιατί οι χημικές αντιδράσεις διεξάγονται εν γένει υπό σταθερή πίεση και όχι υπό σταθερό όγκο. (Όταν ένας χημικός μιλάει για ελεύθερη ενέργεια υπονοεί συνήθως το G, ενώ για έναν φυσικό ελεύθερη ενέργεια είναι σχεδόν πάντα το F). Το G λοιπόν είναι η μέγιστη ποσότητα έργου που μπορεί να κερδηθεί όταν μια χημική αντίδραση διεξάγεται με τρόπο αντιστρεπτό (π.χ. παραγωγή ηλεκτρικού έργου σε μια κυψελίδα). Από την τιμή του ΔG μιας χημικής αντίδρασης μπορεί να προβλεφθεί η κατεύθυνσή της υπό σταθερή πίεση και θερμοκρασία. Αν το ΔG είναι θετικό, θα πρέπει να προσφέρουμε έργο για να πραγματοποιηθεί η αντίδραση ενώ, αν το ΔG είναι αρνητικό, η αντίδραση είναι αυθόρμητη και, φυσικά, αποδίδεται ενέργεια στο περιβάλλον.

Σύμφωνα με τα παραπάνω, αλλά και με όσα είδαμε στη Παράγρ. 4.3.7 για την F, θα πρέπει να ισχύει ότι (και δίνεται ως Άσκηση για τον σπουδαστή), για ένα σύστημα σε σταθερή θερμοκρασία και πίεση, η ελεύθερη ενέργεια κατά Gibbs, G, του συστήματος ελαχιστοποιείται στην κατάσταση ισορροπίας.

Συνοψίζουμε, τέλος, τις σχέσεις που ικανοποιούν τα διαφορικά των πιο πάνω θερμοδυναμικών συναρτήσεων:

 $dE = TdS - pdV \tag{7.15}$

$$dH = TdS + Vdp \tag{7.16}$$

$$\mathrm{d}F = -S\mathrm{d}T - p\mathrm{d}V\tag{7.17}$$

$$\mathrm{d}G = -S\mathrm{d}T + Vdp \tag{7.18}$$

7.4 Θερμικές και ψυκτικές μηχανές

7.4.1 Θερμικές μηχανές

Οι θερμικές μηχανές μετατρέπουν θερμότητα σε μηχανικό ή ηλεκτρικό έργο. Η αντίστροφη διαδικασία, δηλαδή η μετατροπή μηχανικού ή ηλεκτρικού έργου σε θερμότητα, δεν παρουσιάζει καμία δυσκολία και το αποτέλεσμα μιας τέτοιας διεργασίας είναι η αύξηση της θερμοκρασίας της δεξαμενής ή του περιβάλλοντος γενικά. Παραδείγματα μετατροπής μηχανικού ή ηλεκτρικού έργου σε θερμότητα έχουμε στο Σχ. 7.1.

²⁹ Στη Θερμοδυναμική ως κλειστό σύστημα ορίζεται ένα σύστημα το οποίο δεν μπορεί να ανταλλάξει ύλη (μάζα) με το περιβάλλον του, μπορεί όμως να ανταλλάξει ενέργεια (με τη μορφή θερμότητας ή έργου).

Σχήμα 7.1 Παραδείγματα μετατροπής μηχανικού (*a*) και ηλεκτρικού (*b*) έργου σε θερμότητα. Στο (*a*) έχουμε μια σειρά από πτερύγια που περιστρέφονται μέσα σε ένα ρευστό, ενώ στο (*b*) έχουμε μια αντίσταση που διαρρέεται από ηλεκτρικό ρεύμα. Στην πρώτη περίπτωση η κινητική ενέργεια των πτερυγίων μετατρέπεται σε θερμότητα λόγω της τριβής τους με το ρευστό. Στη δεύτερη, η αντίσταση θερμαίνεται επειδή διαρρέεται από ηλεκτρικό ρεύμα.

Η μετατροπή όμως θερμικής ενέργειας σε έργο είναι μια δυσκολότερη διαδικασία. Ο λόγος είναι ότι δεν μπορούμε να αφαιρούμε συνέχεια θερμική ενέργεια και να την μετατρέπουμε σε έργο, γιατί θα πρέπει η μηχανή μας να επιστρέφει κάθε φορά στην αρχική της μακροκατάσταση, ώστε να μπορεί να ξαναρχίσει από την αρχή τον επόμενο κύκλο. Το παραγόμενο έργο θα πρέπει να μεταβάλλει μια εξωτερική παράμετρο (ανύψωση βάρους, περιστροφή κινητήρα) χωρίς να μεταβάλλει άλλους βαθμούς ελευθερίας του συστήματος.

ιδανική θερμική μηχανή, Μια М, εικονίζεται στο διπλανό σχήμα. Όταν κλείσει ο κύκλος, η μηχανή Μ θα πρέπει να έχει επιστρέψει στην αρχική της κατάσταση, πράγμα που σημαίνει ότι θα πρέπει $\Delta E = 0$ και $\Delta S = 0$. Σύμφωνα με τον πρώτο νόμο της θερμοδυναμικής, θα ισχύει τότε w = Q. Όμως η σχέση ΔS = 0 δεν θα ισχύει γιατί, όπως γνωρίζουμε, η μετατροπή έργου σε θερμότητα είναι, εν γένει, μία μη αντιστρεπτή διαδικασία, στην οποία η κατανομή του συστήματος στις προσιτές του καταστάσεις γίνεται τυχαία, με αποτέλεσμα την αύξηση της εντροπίας του.

Σχήμα 7.2 Ιδανική θερμική μηχανή

Δεν μπορούμε επομένως να μετατρέψουμε πλήρως τη μεταβολή της εσωτερικής ενέργειας, που είναι τυχαία κατανεμημένη σε πολλούς βαθμούς ελευθερίας, στη συστηματική μεταβολή ενός μόνο βαθμού ελευθερίας ή μιας παραμέτρου. Για τη μετακίνηση ενός εμβόλου, για παράδειγμα, θα έπρεπε όλα τα μόρια να κινηθούν μαζί προς μία μοναδική κατεύθυνση. Είναι προφανές ότι είναι, πράγματι, εξαιρετικά απίθανο να συμβεί κάτι τέτοιο.

Μπορούμε εξάλλου να δείξουμε ότι μια τέτοια μηχανή θα ερχόταν σε αντίθεση με τον δεύτερο νόμο της Θερμοδυναμικής. Σύμφωνα με τον νόμο αυτόν, θα πρέπει η συνολική μεταβολή της εντροπίας, σε κάθε κύκλο, να ικανοποιεί τη σχέση $\Delta S \ge 0$. Όμως η μόνη

μεταβολή της εντροπίας στην περίπτωσή μας οφείλεται στη μεταφορά θερμότητας από τη δεξαμενή, αφού η μηχανή θα πρέπει να επανέρχεται στην αρχική της μακροκατάσταση. Θα πρέπει λοιπόν να έχουμε, σύμφωνα με τον δεύτερο νόμο:

Μεταβολή της εντροπίας της δεξαμενής: $\Delta S = -(Q / T_l) \ge 0$ (7.19)

$$ή, ακόμη,$$
 $(Q / T_l) = (w / T_l) ≤ 0$
(7.20)

Εμείς όμως θέλουμε το w να είναι θετικό, πράγμα που έρχεται σε αντίθεση με την τελευταία σχέση. Από τα παραπάνω προκύπτει η διατύπωση του δεύτερου θερμοδυναμικού νόμου κατά Kelvin.:

Είναι αδύνατον να κατασκευαστεί η τέλεια θερμοδυναμική μηχανή, που θα μετατρέπει πλήρως τη θερμότητα σε έργο.

Για τη μετατροπή επομένως της θερμότητας σε έργο απαιτείται η σύμπραξη ενός βοηθητικού συστήματος, η εντροπία του οποίου θα αυξάνει, ώστε να αντισταθμίζεται η μείωση της εντροπίας της δεξαμενής. Το απλούστερο βοηθητικό σύστημα είναι μια δεύτερη δεξαμενή θερμότητας σε θερμοκρασία $T_2 < T_1$. Την πιο απλή μηχανή αυτού του τύπου επινόησε ο Carnot (1924), γι' αυτό και ονομάζεται μηχανή του Carnot.

Η (μη τέλεια) αυτή μηχανή θα απορροφά θερμότητα Q_1 από τη δεξαμενή θερμοκρασίας T_1 , θα παράγει έργο w και συγχρόνως θα προσφέρει θερμότητα Q_2 στη δεξαμενή θερμοκρασίας $T_2 < T_1$. Έχουμε επομένως:

<u>A' Nóµoc</u>: $Q_1 = w + Q_2$

<u>B' Nóµo</u> ζ : $\Delta S = -(Q_1 / T_1) + (Q_2 / T_2) \ge 0$

Από τις δύο αυτές σχέσεις προκύπτει:

$$-(Q_1 / T_1) + (Q_1 - w) / T_2 \ge 0$$

ή, ακόμη: $\frac{w}{T_2} \le Q_1 \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$

ή, τέλος,

Θερμική μηχανή
$$\eta \equiv \frac{w}{Q_1} \le \left(\frac{T_1 - T_2}{T_1}\right)$$
(7.21)

μηχανή Carnot

όπου το η ορίζεται ως συντελεστής απόδοσης της μηχανής.

Για μια ιδανική μηχανή θα είχαμε $\eta = 1$, ενώ, όπως βλέπουμε, για μια πραγματική μηχανή $\eta < 1$, εφόσον ένα μέρος της θερμότητας δεν μετατρέπεται σε έργο αλλά αποβάλλεται στη δεύτερη δεξαμενή. Στην πιο πάνω σχέση, η ισότητα ισχύει για αντιστρεπτές μεταβολές, άρα το $(T_1 - T_2) / T_1$ είναι η μεγαλύτερη δυνατή απόδοση μιας μηχανής που λειτουργεί μεταξύ δύο δεξαμενών με θερμοκρασίες T_1 και T_2 αντιστοίχως.

Μηχανή Carnot. Στο σχήμα που ακολουθεί (Σχ. 7.4) παραθέτουμε την αρχή λειτουργίας της Μηχανής Carnot. Ο πλήρης κύκλος αποτελείται από μια ισόθερμη εκτόνωση ενός αερίου, που ακολουθείται από μια αδιαβατική εκτόνωση, μια ισόθερμη συμπίεση και, τέλος, μια αδιαβατική συμπίεση, που επαναφέρει το αέριο στην αρχική του κατάσταση.

Σχήμα 7.3 Πραγματική θερμική μηχανή ή

Σχήμα 7.4 Αρχή λειτουργίας της μηχανής του Carnot. Ο κύκλος αποτελείται από μια ισόθερμη εκτόνωση στη θερμοκρασία Τ1 μια αδιαβατική και $(A \rightarrow B)$ εκτόνωση μέχρι τη θερμοκρασία $T_2 < T_1 \ (B \rightarrow C), \text{ tou akolou-}$ θούνται από μια ισόθερμη συμπίεση στη θερμοκρασία T_2 ($C \rightarrow$ D) και, τέλος, μια αδιαβατική συμπίεση $(D \rightarrow A)$, TOU επαναφέρει το αέριο στην αρχική του κατάσταση

Για την καλύτερη κατανόηση των διαδικασιών του κύκλου του Carnot, στα επόμενα σχήματα απεικονίζεται ο κύκλος αυτός σε διάγραμμα *p*-*V* (Σχ. 7.5) και σε διάγραμμα *T*-*S* (Σχ. 7.6).

Σχήμα 7.5 Ο κύκλος Carnot σε διάγραμμα *p-V*. Ο κύκλος διαγράφεται κατά τη φορά των δεικτών του ρολογιού, όπως δείχνουν τα βέλη. Το παραγόμενο έργο ισούται με το (γραμμοσκιασμένο) εμβαδόν του κύκλου, που βρίσκεται ίσο με $Q_1 - |Q_2|$.

Το συνολικό έργο, που παράγεται κατά τη διάρκεια ενός κύκλου, δίνεται από το άθροισμα των ολοκληρωμάτων:

$$w = \int_{a}^{b} p \mathrm{d}V + \int_{b}^{c} p \mathrm{d}V + \int_{c}^{d} p \mathrm{d}V + \int_{d}^{a} p \mathrm{d}V$$
(7.22)

που αντιστοιχεί στο εμβαδόν που περικλείεται μέσα στον κύκλο και μπορεί εύκολα να δειχθεί ότι είναι ίσο με $Q_1 - |Q_2|$ ή $Q_1 - Q_2$, αν πάρουμε ως Q_2 την <u>αριθμητική τιμή</u> της εκλυόμενης θερμότητας.

Σε διάγραμμα S-T, ο κύκλος Carnot παριστάνεται, στο Σχ. 7.6, από το ορθογώνιο abcd, όπου $a \rightarrow b$ και $c \rightarrow d$ είναι οι ισόθερμες μεταβολές και $b \rightarrow c$, $d \rightarrow a$ οι αδιαβατικές – αντιστρεπτές ή *ισεντροπικές* μεταβολές. Ο κύκλος διαγράφεται κατά τη φορά των δεικτών του ρολογιού, όπως υποδεικνύεται από τα βέλη. Συμβολίζουμε και πάλι τις θερμοκρασίες των δύο ισόθερμων μεταβολών με T_1 και T_2 , με $T_1 > T_2$. Κατά την ισόθερμη μεταβολή $a \rightarrow b$ στην υψηλότερη θερμοκρασία, T_1 , η εντροπία αυξάνεται και το σύστημα απορροφά θερμότητα Q_1 . Κατά την ισόθερμη μεταβολή $c \rightarrow d$ στη χαμηλότερη θερμοκρασία, T_2 , η εντροπία μειώνεται και το σύστημα αποβάλλει θερμότητα Q_2 . Κατά τις δύο αδιαβατικές μεταβολές η εντροπία παραμένει σταθερή και δεν ανταλλάσσεται καμία θερμότητα με το περιβάλλον.

Οι μεταβολές της εντροπίας είναι επομένως οι ακόλουθες:

 $\Delta S_{ab} = Q_1/T_1$, ισόθερμη, απορροφάται θερμότητα, παράγεται έργο αριθμητικά ίσο με Q_1

 $\Delta S_{bc} = 0$, αδιαβατική

 $\Delta S_{cd} = -Q_2/T_2$, εκλύεται θερμότητα, καταναλίσκεται έργο αριθμητικά ίσο με Q_2

 $\Delta S_{da} = 0$, αδιαβατική

Η ολική μεταβολή της εντροπίας στο σύνολο του κύκλου είναι βέβαια μηδέν (κυκλική μεταβολή), επομένως:

$$\Delta S_{\rm krither} = O_1/T_1 - O_2/T_2 = 0$$
 ápa $O_1/T_1 = O_2/T_2$

Σχήμα 7.6 Ο κύκλος Carnot σε διάγραμμα *T-S*. Εφόσον η μεταβολή είναι κυκλική, η ολική μεταβολή της εντροπίας πρέπει να είναι μηδενική. Το έργο που παράγεται κατά τη διάρκεια της κυκλικής αυτής μεταβολής είναι ίσο με το εμβαδόν του ορθογωνίου *abcd*.

Το παραγόμενο έργο δίνεται και πάλι από το εμβαδόν του κύκλου, που εύκολα βλέπουμε ότι είναι ίσο με $\Delta S_{ab}(T_1 - T_2) = Q_1 - Q_2$, σύμφωνα με τις πιο πάνω σχέσεις³⁰.

Απόδοση μιας μηχανής που λειτουργεί σύμφωνα με τον κύκλο Carnot

Εφόσον το συνολικά παραγόμενο έργο, w, είναι ίσο με $Q_1 - Q_2$, η μέγιστη απόδοση (για αντιστρεπτή μεταβολή) του κύκλου Carnot είναι:

$$\eta = \frac{w}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = \frac{T_1 - T_2}{T_1}$$
(7.23)

σε συμφωνία με την προηγούμενη σχέση (Εξ. 7.21).

7.4.2 Ψυκτικές μηχανές

Μια ψυκτική μηχανή αφαιρεί θερμότητα από μια δεξαμενή χαμηλότερης θερμοκρασίας, T_2 (ψυκτικός θάλαμος), και τη διοχετεύει σε δεξαμενή υψηλότερης θερμοκρασίας, T_1 (περιβάλλον), αντιστοιχεί επομένως σε αντιστροφή της προηγούμενης διαδικασίας. Στην περίπτωση αυτή (βλ. Σχ. 7.7) έχουμε:

1°ς Νόμος:

$$w + Q_2 = Q_1 \tag{7.24}$$

³⁰ Στο τέλος του Κεφαλαίου δίνονται δύο πολύ παραστατικές απεικονίσεις του κύκλου Carnot.

<u>2°ς Νόμος</u>:

$$\Delta S = (Q_1/T_1) - (Q_2/T_2) \ge 0 \tag{7.25}$$

ή

$$Q_1/Q_2 \le T_2/T_1 \tag{7.26}$$

Αν θέλουμε επομένως να έχουμε $T_2 < T_1$, θα πρέπει $Q_2 < Q_1$ και

$$w = Q_1 - Q_2 > 0 \tag{7.27}$$

Ένα ιδανικό ψυγείο (βλ. Σχ. 7.8) θα αντιστοιχούσε σε w = 0, δηλαδή $Q_1 = Q_2$, ή ακόμη σε

$$\boldsymbol{\mathcal{Q}}\left(\frac{1}{\boldsymbol{T}_{1}}-\frac{1}{\boldsymbol{T}_{2}}\right)\geq0\tag{7.28}$$

Η σχέση αυτή σημαίνει ότι, για να ισχύουν οι δύο πρώτοι νόμοι της θερμοδυναμικής, θα πρέπει $Q \ge 0$ και $T_2 > T_1$, να μεταφέρουμε δηλαδή θερμότητα από τη θερμότερη στην ψυχρότερη δεξαμενή και όχι από την ψυχρή στη θερμή, όπως απαιτείται σε μια ψυκτική μηχανή.

Σχήμα 7.7 Ένα πραγματικό ψυγείο: Για να μεταφερθεί θερμότητα από την ψυχρή (T₂) στη θερμή (T₁) δεξαμενή, θα πρέπει να προσφερθεί έργο, w, στην ψυκτική μηχανή, M.

Σχήμα 7.8 Ένα ιδανικό ψυγείο: Θα απαιτούσε μεταφορά ενέργειας από την ψυχρή (*T*₂) στη θερμή (*T*₁) δεξαμενή, χωρίς κατανάλωση έργου από την ψυκτική μηχανή, Μ, πράγμα που αντιβαίνει στον δεύτερο θερμοδυναμικό νόμο.

Σε διάγραμμα p-V ή T-S, η ψυκτική μηχανή περιγράφεται από κύκλους αντίστοιχους με εκείνους των Σχ. 7.5 και 7.6, που διαγράφονται όμως κατά την αντίστροφη φορά: $a \rightarrow d \rightarrow c \rightarrow b \rightarrow a$. Αντί, δηλαδή να παράγουμε έργο, προσφέρουμε τώρα έργο, w, στο σύστημα, αφαιρώντας θερμότητα Q_2 από μια (μικρή εν γένει) δεξαμενή θερμότητας με χαμηλότερη θερμοκρασία, T_2 , και προσφέροντας θερμότητα Q_1 στη (μεγαλύτερη) δεξαμενή υψηλότερης θερμοκρασίας, T_1 . Το προσφερόμενο έργο είναι συνήθως ηλεκτρικό. Στην περίπτωση του ψυγείου, για παράδειγμα, ο ψυκτικός θάλαμος ψύχεται και το περιβάλλον θερμαίνεται. Ο συντελεστής αποδόσεως, στην περίπτωση αυτή, δίνεται από το αντίστροφο του συντελεστή της θερμικής μηχανής, είναι δηλαδή ίσος με

Ψυκτική μηχανή
$$\eta = \frac{Q_2}{w} = \frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2}$$
 (7.29)

που μετράει την αφαιρούμενη θερμότητα για ορισμένο προσφερόμενο έργο, w, και είναι, προφανώς, τόσο μεγαλύτερος όσο μικρότερη είναι η διαφορά $T_1 - T_2$, όσο πιο ψυχρό, επομένως, είναι το περιβάλλον. Για ηλεκτρικό ψυγείο οικιακής χρήσεως, με $T_1 = 300$ K και $T_2 = 270$ K, έχουμε $\eta = 9$, περίπου.

Η αντλία θερμότητας λειτουργεί με την ίδια αρχή όπως και το ψυγείο, ο σκοπός όμως είναι τώρα να θερμάνουμε μια δεξαμενή υψηλότερης θερμοκρασίας, T_1 , (για παράδειγμα το σπίτι μας), προσφέροντας θερμότητα Q_1 στη δεξαμενή αυτή και αφαιρώντας συγχρόνως θερμότητα Q_2 από μια, πολύ μεγαλύτερη συνήθως, δεξαμενή χαμηλότερης θερμοκρασίας, T_2 (για παράδειγμα το περιβάλλον). Ο συντελεστής αποδόσεως στην περίπτωση αυτή ορίζεται από σχέση

$$\underline{Av\tau\lambda i\alpha \ \theta \varepsilon \rho \mu \delta \tau \eta \tau \alpha \varsigma} \qquad \eta = \frac{Q_1}{w} = \frac{Q_1}{Q_1 - Q_2} = \frac{T_1}{T_1 - T_2}$$
(7.30)

και μετράει την προσφερόμενη θερμότητα για ορισμένο προσφερόμενο έργο. Όπως είναι φυσικό, σε όλες τις περιπτώσεις (θερμική μηχανή, ψυκτική μηχανή, αντλία θερμότητας), όσο μικρότερη είναι η διαφορά των δύο θερμοκρασιών, τόσο μεγαλύτερος είναι ο συντελεστής αποδόσεως. Στην αρχή λειτουργίας της αντλίας θερμότητας βασίζονται οι κλιματιστικές συσκευές. (Για την αρχή λειτουργίας μιας αντλίας θερμότητας, βλ. τα πολύ παραστατικά video: <u>How Does a Heat Pump Work? - YouTube</u> και <u>How heat pumps work - YouTube</u>)

7.5 Αδιαβατική ψύξη

Η παραγωγή πολύ χαμηλών θερμοκρασιών αποτελεί μια ενδιαφέρουσα εφαρμογή της Θερμοδυναμικής. Σύμφωνα με όσα είπαμε στην Παράγρ. 4.4.5, κατά τη διάρκεια μιας αδιαβατικής αντιστρεπτής διαδικασίας, η εντροπία του συστήματος παραμένει σταθερή, ή αλλιώς

$$S(T, \alpha) = \operatorname{stat}.$$
 (7.31)

όπου T η θερμοκρασία και α η εξωτερική παράμετρος, π.χ. όγκος, V, μαγνητική επαγωγή, B. Αν επομένως μεταβάλλουμε την παράμετρο α κατά τη σωστή κατεύθυνση (όπως αύξηση του όγκου, V, ή μείωση της πίεσης, P, σε ένα αέριο, ή μείωση του μαγνητικού πεδίου, B, σε ένα παραμαγνητικό υλικό), θα πρέπει να μειωθεί η θερμοκρασία, T, ώστε να διατηρηθεί ή εντροπία, S, ή αλλιώς η τάξη του συστήματος σταθερή.

Είδαμε πράγματι ότι, για να διατηρηθεί η τάξη σταθερή, θα πρέπει να διατηρηθεί σταθερός ο παράγων Boltzmann, $\exp(-E_i/kT)$, ή, με άλλα λόγια, το πηλίκο E_i/kT . Όταν όμως αυξάνει ο όγκος του αερίου (ή μειώνεται το μαγνητικό πεδίο σε ένα παραμαγνητικό υλικό), οι ενέργειες, E_i , που αντιστοιχούν στις ενεργειακές στάθμες, μειώνονται και, για να διατηρηθεί σταθερό το πιο πάνω πηλίκο, θα πρέπει να μειωθεί και η θερμοκρασία. Αυτό αποτελεί την αρχή της αδιαβατικής ψύξης, όπως είπαμε και πριν. Θα δούμε ακολούθως δύο κλασικά παραδείγματα.

7.5.1 Αδιαβατική εκτόνωση

Τα στάδια της διαδικασίας της αδιαβατικής εκτόνωσης φαίνονται στο Σχ. 7.9. Εδώ, ως παράμετρο α θεωρούμε την πίεση, P, του αερίου. Κατά το πρώτο στάδιο, το αέριο βρίσκεται σε επαφή με θερμική δεξαμενή θερμοκρασίας T_1 και συμπιέζεται ισόθερμα από την πίεση P_1 στην πίεση P_2 , όπου $P_2 > P_1$ (γραμμή $A \to B$).

Σχήμα 7.9 Διάγραμμα εντροπίας-θερμοκρασίας για την ψύξη αερίου με αδιαβατική εκτόνωση. Κατά την ισόθερμη συμπίεση (A→B) η εντροπία μειώνεται (αυξάνεται η τάξη). Κατά την αδιαβατική εκτόνωση (B→C) η εντροπία διατηρείται σταθερή και η θερμοκρασία μειώνεται, για να διατηρηθεί η τάξη.

Ακολούθως αφαιρείται η θερμική δεξαμενή, το αέριο απομονώνεται θερμικά και ακολουθεί μια αδιαβατική αντιστρεπτή (αργή) εκτόνωση από την πίεση P_2 στην πίεση P_1 . Η εντροπία διατηρείται σταθερή και, για να συμβεί αυτό, το αέριο ψύχεται έως τη θερμοκρασία T_2 (γραμμή $B \rightarrow C$). Η διαδικασία συνεχίζεται και το αέριο ψύχεται διαδοχικά σε όλο και χαμηλότερες θερμοκρασίες.

Η αρχή αυτή της αδιαβατικής εκτόνωσης αποτελεί και τη βάση της μεθόδου Claude για την υγροποίηση των αερίων.

7.5.2 Αδιαβατική απομαγνήτιση

Στην περίπτωση της αδιαβατικής απομαγνήτισης μιας παραμαγνητικής ουσίας, ως εξωτερική παράμετρος α θεωρείται η μαγνητική επαγωγή, *B*, του εξωτερικού μαγνητικού πεδίου. Το διάγραμμα της διαδικασίας φαίνεται στα Σχ. 7.10 και 7.11.

Σχήμα 7.10 Το διάγραμμα S, T παραμαγνητικού υλικού. Το B₀ αντιστοιχεί στο εσωτερικό πεδίο της παραμαγνητικής ουσίας ενώ το B₁ στο εξωτερικά εφαρμοζόμενο ισχυρό μαγνητικό πεδίο. Έχουμε B₀ << B₁.

Σχήμα 7.11 Οι ενεργειακές στάθμες και οι πληθυσμοί τους (σε μαύρο χρώμα) κατά την αδιαβατική απομαγνήτιση ενός παραμαγνητικού υλικού με σπιν ½. Τα *a*, *b*, *c* αντιστοιχούν στα σημεία A, B και C του Σχ. 7.10.

Κατά το πρώτο στάδιο, το παραμαγνητικό υλικό βρίσκεται σε επαφή με θερμική δεξαμενή θερμοκρασίας $T_1 = 1$ K, υπό την επίδραση πολύ ασθενούς μαγνητικού πεδίου, B_0 (Σχ. 7.10). Ακολούθως το παραμαγνητικό υλικό μαγνητίζεται ισόθερμα με την εφαρμογή ισχυρού μαγνητικού πεδίου, B_1 , Κατά το στάδιο αυτό, που απεικονίζεται από τη γραμμή A-B στο σχήμα, οι ενεργειακές στάθμες απομακρύνονται πολύ μεταξύ τους και, για να διατηρηθεί η θερμοκρασία, T_1 , σταθερή (ισόθερμη διεργασία), θα πρέπει να μεταβληθούν σημαντικά οι πληθυσμοί τους, όπως φαίνεται στο Σχ. 7.11b. Συγχρόνως μεταφέρεται θερμότητα, $Q_1 = T_1 \Delta S$, στη δεξαμενή. Ακολούθως το δείγμα απομονώνεται θερμικά και το μαγνητικό πεδίο μειώνεται, με τρόπο αντιστρεπτό και αδιαβατικό, έως την αρχική του τιμή, B_0 . Η διαδικασία αυτή, που απεικονίζεται από τη γραμμή $B \rightarrow C$, θα πρέπει να είναι αρκετά αργή, στην πράξη να διαρκεί μερικά δευτερόλεπτα, ώστε να είναι αντιστρεπτή. Για να διατηρηθεί η εντροπία, S, σταθερή (ισεντροπική μεταβολή), καθώς απομαγνητίζεται το υλικό, θα πρέπει να μειωθεί η θερμοκρασία του μέχρι μια τιμή T_2 . Πράγματι, μείωση της μαγνητικής επαγωγής σημαίνει μείωση της μαγνητικής ενέργειας, άρα και της απόστασης ανάμεσα στις ενεργειακές στάθμες, όπως φαίνεται στο Σχ. 7.11c. Για να διατηρηθεί η σχέση των πληθυσμών ανάμεσα στις στάθμες σταθερή, θα πρέπει να μειωθεί η θερμοκρασία του συστήματος. Ποσοτικά, για να μείνει η τάξη (δηλ. ο πληθυσμός των ενεργειακών σταθμών, άρα και η εντροπία) αμετάβλητη, θα πρέπει να μείνει σταθερός ο παράγοντας μ B/kT^{31} . Θα πρέπει επομένως

$$T_2 = T_1 \left(B_0 / B_1 \right) \tag{7.32}$$

Η τιμή τού B_0 αντιστοιχεί στο εσωτερικό πεδίο της παραμαγνητικής ουσίας, που δεν μπορεί να είναι μηδενικό, αλλά είναι της τάξης των 100 G ή, αλλιώς, 10⁻² Tesla. Αν υποθέσουμε ότι το εξωτερικό πεδίο, B_1 , είναι γύρω στο 1 Tesla, τότε $B_0/B_1 = 10^{-2}$. Αν τώρα ξεκινάμε από μια θερμοκρασία $T_1 = 1$ K, η τελική θερμοκρασία που μπορούμε να επιτύχουμε είναι περίπου $T_2 = 10^{-2}$ K, σύμφωνα με την Εξ. (7.32).

Av η ίδια μέθοδος εφαρμοστεί στις πυρηνικές μαγνητικές ροπές, η τιμή των οποίων είναι πολύ χαμηλότερη από εκείνην ενός παραμαγνητικού υλικού, μπορεί κανείς να φθάσει σε T_2 = 10⁻⁶ K. Δυστυχώς, οι μικρότερες τιμές των πυρηνικών μαγνητικών ροπών έχουν ως συνέπεια και τη μεγαλύτερη δυσκολία προσανατολισμού τους από το εξωτερικό μαγνητικό πεδίο, B_1 . Απαιτείται επομένως μεγαλύτερη ένταση του B_1 από ό,τι στην περίπτωση τής αδιαβατικής απομαγνήτισης, μέχρι την τιμή των 3 T περίπου. Επειδή είναι δύσκολο να δημιουργηθούν μαγνητικά πεδία μεγαλύτερα των 2 T με τη χρήση μόνιμων μαγνητών³², κατασκευάζονται για τις περιπτώσεις αυτές υπεραγώγιμοι μαγνήτες (βλ. <u>superconducting</u> magnet). Επιπλέον, η αρχική θερμοκρασία της δεξαμενής πρέπει να είναι πολύ χαμηλότερη από την προηγούμενη περίπτωση (10 – 100 mK), γι' αυτό και γίνεται συνήθως μια προκαταρκτική ψύξη της δεξαμενής με τη βοήθεια κάποιου παραμαγνητικού άλατος.

Η στατιστική ανάλυση της διαδικασίας της αδιαβατικής απομαγνήτισης έχει ιδιαίτερο ενδιαφέρον (Σχ. 7.11). Για την πολύ μικρή τιμή τού B_0 , άρα και της μαγνητικής ενέργειας, $2\mu B_0$, έχουμε $2\mu B_0 << kT_1$, οπότε οι πληθυσμοί των δύο σταθμών είναι σχεδόν ίσοι (a). Μετά την ισόθερμη μαγνήτιση αυξάνει σημαντικά ο ενεργειακός διαχωρισμός ανάμεσα στις δύο στάθμες, $\mu B_1 >> kT_1$ και οι πληθυσμοί των δύο σταθμών είναι τώρα πολύ διαφορετικοί μεταξύ τους (b), οπότε η αταξία, άρα και η εντροπία, μειώνεται σημαντικά. Τέλος, μετά την αδιαβατική ισόθερμη απομαγνήτιση (c), οι πληθυσμοί των δύο σταθμών παραμένουν οι ίδιοι, ώστε να διατηρηθεί η τάξη, άρα και η εντροπία, του συστήματος (ισεντροπική μεταβολή) σταθερή, ενώ η απόστασή τους μειώνεται και πάλι στην αρχική της τιμή, με αποτέλεσμα να μειωθεί η θερμοκρασία.

³¹ Η εντροπία, S, μιας παραμαγνητικής ουσίας δίνεται από τη σχέση [βλ. Κεφ. ΙV, Παράγρ. 4, Εξ. (4.14)]:

 $S = k \ln Z + \overline{E}/T = Nk [\ln 2 + \ln(\cosh x) - x \tanh x], \text{ or } x \equiv \mu B / kT.$

Για να μείνει η S σταθερή, θα πρέπει να μείνει σταθερό το x, άρα και το B/T.

³² Για να έχουμε μια ιδέα για το μέγεθος ενός μαγνητικού πεδίου αυτής της τάξης, διευκρινίζουμε ότι 1 Τ είναι περίπου 10⁴ φορές μεγαλύτερο από το μαγνητικό πεδίο της γης: (βλ. <u>Γήινο μαγνητικό πεδίο - Βικιπαίδεια</u>)

Στην πράξη η μέθοδος της αδιαβατικής απομαγνήτισης εφαρμόζεται ως εξής (βλ Σχ. 7.12). Αρχικά, με τη μέθοδο της αδιαβατικής εκτόνωσης, που περιγράψαμε πιο πριν, υγροποιούμε το αέριο ήλιο. Η θερμοκρασία του υγρού ηλίου είναι 4 Κ. Ακολούθως αντλούμε δημιουργώντας κενό πάνω από το υγρό ήλιο, οπότε, επειδή όπως είναι γνωστό η θερμοκρασία ζέσεως μειώνεται όταν μειώνεται η πίεση, η θερμοκρασία του υγρού ηλίου μπορεί να φθάσει τον 1 Κ. Το παραμαγνητικό υλικό Ρ περιβάλλεται αρχικά από αέριο ήλιο, βρίσκεται επομένως σε θερμική επαφή με το υγρό ήλιο, το οποίο δρα ως θερμική δεξαμενή θερμοκρασίας 1 Κ. Στη θερμοκρασία αυτή εφαρμόζουμε το μαγνητικό πεδίο (ισόθερμη μαγνήτιση), με τη βοήθεια του ηλεκτρομαγνήτη, στο εσωτερικό του οποίου βρίσκεται το δοχείο. Δημιουργούμε ακολούθως κενό στον χώρο G γύρω από το παραμαγνητικό υλικό, απομονώνοντάς το έτσι θερμικά από τη θερμική δεξαμενή, και σβήνουμε αργά το μαγνητικό πεδίο (αντιστρεπτή αδιαβατική απομαγνήτιση), οπότε η θερμοκρασία μειώνεται έως την τελική της τιμή, *T*₂.

Σχήμα 7.12 Σχηματική πειραματική διάταξη της αδιαβατικής απομαγνήτισης. Το παραμαγνητικό υλικό Ρ βρίσκεται σε θερμική επαφή με το υγρό ήλιο (σε πολύ χαμηλή πίεση), το οποίο δρα ως θερμική δεξαμενή θερμοκρασίας 1 Κ.

Όπως φαίνεται από την πιο πάνω περιγραφή, η διαδικασία αυτή μπορεί να γίνει μόνο μία φορά. Δεν υπάρχει η δυνατότητα να επαναληφθεί, εφόσον δεν υφίσταται, ούτε και δημιουργείται, με τη διαδικασία που περιγράψαμε, θερμική δεξαμενή στη θερμοκρασία *T*₂.

Είναι προφανές από τα διαγράμματα (S,T) του Σχ. 7.13 ότι, λόγω του 3^{ου} Νόμου της Θερμοδυναμικής, *είναι αδύνατον να φθάσουμε τη θερμοκρασία του απολύτου μηδενός*. Αυτό άλλωστε αποτελεί και μια εναλλακτική διατύπωση του τρίτου νόμου.

Σχήμα 7.13 Η εντροπία ως συνάρτηση της θερμοκρασίας για δύο διαφορετικές τιμές της παραμέτρου *α*. Η περίπτωση (*b*) αντιστοιχεί στην πραγματικότητα, ενώ η (*a*) είναι πλασματική, γιατί αντιβαίνει στον τρίτο Νόμο της Θερμοδυναμικής.

Πράγματι, αν η εντροπία ακολουθούσε τη μεταβολή που φαίνεται στην περίπτωση (a) του Σχ. 7.13, θα μπορούσαμε με διαδοχικές διαδικασίες να φθάσουμε στο απόλυτο μηδέν, ανεξάρτητα από το μέγεθος που αντιστοιχεί στην παράμετρο α. Επειδή όμως, λόγω του τρίτου νόμου, η εντροπία ακολουθεί τη μεταβολή που εικονίζεται στην περίπτωση (b), βλέπουμε ότι δεν υπάρχει η δυνατότητα με καμία διαδικασία να φθάσουμε στη θερμοκρασία T = 0 K.

Σχήμα 7.14 Ο κύκλος αποτελείται από μια ισόθερμη εκτόνωση στη θερμοκρασία T_1 ($A \rightarrow B$), κατά την οποία απορροφάται θερμότητα Q_1 , και μια αδιαβατική εκτόνωση μέχρι τη θερμοκρασία $T_2 < T_1$ ($B \rightarrow C$), που ακολουθούνται από μια ισόθερμη συμπίεση στη θερμοκρασία T_2 ($C \rightarrow D$), κατά την οποία αποβάλλεται θερμότητα Q_2 ($<< Q_1$), και, τέλος, μια αδιαβατική συμπίεση ($D \rightarrow A$), που επαναφέρει το αέριο στην αρχική του κατάσταση. Στο τέλος του κύκλου αποδίδεται έργο, w, που ισούται με $Q_1 - Q_2$.

ΚΕΦΑΛΑΙΟ VIII

ΚΒΑΝΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

"In classical mechanics particles can be distinguished, at least in principle, by attaching some label to each of them and following their individual trajectories. Due to Heisenberg's uncertainty principle this is no longer possible for quantum particles, at least if the average distance between them is smaller than the spread of the single-particle wave functions. This indistinguishability has important consequences for the statistical description of a quantum many-particle system."³³

http://physics.unifr.ch/admin/dbproxy.php?table=fuman_filepool&column=content&id=1209

8.1 Οι τρεις τύποι στατιστικής

Θεωρούμε ένα σύστημα αποτελούμενο από N συνολικά σωματίδια μέσα σε όγκο V. Τα σωματίδια δεν αλληλεπιδρούν, οπότε η συνολική ενέργεια, E, του συστήματος ισούται με το άθροισμα των ενεργειών των N σωματιδίων. Αν n_i είναι ο αριθμός σωματιδίων με ενέργεια ε_i , τότε:

$$E = \sum_{i=1}^{N} n_i \varepsilon_i$$
(8.1)

Η πιθανότητα το σύστημά μας να βρίσκεται σε μια κατανομή $(n_1, n_2, ..., n_s...)$, δηλαδή με n_1 σωματίδια με ενέργεια ε_1 , n_2 σωματίδια με ενέργεια ε_2 , ..., n_s σωματίδια με ενέργεια ε_s κ.ο.κ., $P(n_1, n_2, ..., n_s...)$ θα είναι, όπως γνωρίζουμε, ανάλογη του αριθμού των μικροκαταστάσεων $\Omega(n_1, n_2, ..., n_s....)$ που αντιστοιχούν στην κατανομή αυτή, και η πιθανότερη κατανομή θα είναι προφανώς εκείνη που αντιστοιχεί στον μεγαλύτερο αριθμό μικροκαταστάσεων. Ας αναζητήσουμε αυτήν την πιο πιθανή κατανομή για τις ακόλουθες περιπτώσεις:

- (Α) Πανομοιότυπα αλλά διακρίσιμα σωματίδια
- (B) Πανομοιότυπα και μη διακρίσιμα σωματίδια με ημιπεριττό σπιν
- (Γ) Πανομοιότυπα και μη διακρίσιμα σωματίδια με ακέραιο σπιν.

Θα μελετήσουμε τις τρεις περιπτώσεις χωριστά:

(A) Η πρώτη περίπτωση αντιστοιχεί σε εντοπισμένα σωματίδια, αλλά και σε σωματίδια τόσο αραιά μεταξύ τους, ώστε το καθένα από αυτά να περιγράφεται με μια ξεχωριστή κυματοσυνάρτηση και να είναι επομένως πάρα πολύ απίθανο να βρεθούν δύο σωματίδια στην ίδια κατάσταση (κλασικό αέριο). Η συνολική κυματοσυνάρτηση του συστήματος είναι το γινόμενο των επιμέρους κυματοσυναρτήσεων των σωματίδιων που το αποτελούν. Για δύο σωματίδια (1, 2) και δύο κβαντικές καταστάσεις (a, b) η συνολική κυματοσυνάρτηση μπορεί να πάρει μία από τις 4 ακόλουθες μορφές:

(A):
$$u(1,2) = u_a(1)u_a(2)$$
 $u_a(1)u_b(2)$ $u_a(2)u_b(1)$ $u_b(1)u_b(2)$ (8.2)

(B) Η δεύτερη περίπτωση αντιστοιχεί σε σωματίδια με ημιπεριττό σπιν, δηλαδή ηλεκτρόνια, πρωτόνια, νετρόνια, άτομα υδρογόνου, He³, κτλ. Τα σωματίδια αυτά υπακούουν στην

³³ Στην κλασική μηχανική μπορούμε να διακρίνουμε τα σωματίδια μεταξύ τους, τουλάχιστον κατ' αρχήν, προσαρτώντας μια ετικέτα σε καθένα από αυτά και ακολουθώντας τις επιμέρους τροχιές τους. Εξαιτίας της αρχής της αβεβαιότητας του Heisenberg, κάτι τέτοιο είναι αδύνατον για τα κβαντικά σωματίδια, τουλάχιστον όταν η μεταξύ τους απόσταση είναι μικρότερη από το εύρος της κυματοσυνάρτησης του κάθε σωματιδίου. Αυτή η μη διακριτότητα έχει σημαντικές συνέπειες για τη στατιστική περιγραφή ενός κβαντικού συστήματος πολλών σωματιδίων.

απαγορευτική αρχή του Pauli, σύμφωνα με την οποία δεν μπορούν δύο (ή περισσότερα) σωματίδια να βρίσκονται στην ίδια κβαντική κατάσταση. Αυτό προκύπτει από το γεγονός ότι η συνολική κυματοσυνάρτηση του συστήματος πρέπει να είναι αντισυμμετρική (να αλλάζει δηλαδή πρόσημο) ως προς την ανταλλαγή δύο σωματιδίων 1 και 2. Για δύο σωματίδια μπορούμε να κατασκευάσουμε μόνο μία αντισυμμετρική κυματοσυνάρτηση, που είναι η εξής:

(B):
$$u(1,2) = (1/\sqrt{2}) [u_a(1)u_b(2) - u_a(2)u_b(1)]$$
 (8.3)

Εύκολα βλέπουμε ότι μια τέτοια κυματοσυνάρτηση μηδενίζεται αν και τα δύο σωματίδια αντιπροσωπεύονται από την ίδια κυματοσυνάρτηση.

(Γ) Η τρίτη περίπτωση αντιστοιχεί σε σωματίδια με ακέραιο σπιν, δηλαδή φωτόνια, φωνόνια, μόρια υδρογόνου, He⁴. Για τα σωματίδια αυτά δεν ισχύει η απαγορευτική αρχή του Pauli και, επομένως, μπορούν να βρίσκονται στην ίδια κβαντική κατάσταση, και ως εκ τούτου να αντιπροσωπεύονται από την ίδια κυματοσυνάρτηση, περισσότερα από ένα σωματίδια. Σύμφωνα με τις γνώσεις μας από την κβαντομηχανική, η συνολική κυματοσυνάρτηση ενός τέτοιου συστήματος πρέπει να είναι συμμετρική ως προς την ανταλλαγή δύο σωματιδίων, μπορεί επομένως να πάρει τις ακόλουθες εκφράσεις:

(Г):
$$u(1,2) = u_a(1)u_a(2)$$
, $(1/\sqrt{2}) [u_a(1)u_b(2) + u_a(2)u_b(1)]$, $u_b(1)u_b(2)$ (8.4)

Το Σχ. 8.1 απεικονίζει τις τρεις αυτές περιπτώσεις για δύο σωματίδια, 1 και 2, και δύο κβαντικές καταστάσεις, a και b.

Σχήμα 8.1 Οι διαφορετικές διατάξεις και οι αντίστοιχες ιδιοσυναρτήσεις δύο σωματιδίων (1, 2) και δύο κβαντικές ιδιοκαταστάσεις (a, b) του συστήματος, για (A) Πανομοιότυπα αλλά διακρίσιμα σωματίδια, (B) Πανομοιότυπα και μη διακρίσιμα σωματίδια με ημιπεριττό σπιν και (Γ) Πανομοιότυπα και μη διακρίσιμα σωματίδια με ακέραιο σπιν.

Βλέπουμε ότι ο συνολικός αριθμός πιθανών κατανομών και, αντιστοίχως, και κυματοσυναρτήσεων, εξαρτάται από τον τύπο των σωματιδίων, και είναι 4 για την περίπτωση (A), 1 για την περίπτωση (B) και 3 για την περίπτωση (Γ). Για πολύ μεγάλο
αριθμό σωματιδίων, η διαφορά είναι προφανώς πολύ πιο έντονη, με αποτέλεσμα να έχουμε διαφορετικό τύπο κατανομής για την κάθε περίπτωση.

Θα αναζητήσουμε ακολούθως τον αριθμό των δυνατών μικροκαταστάσεων που αντιστοιχούν στην ίδια μακροκατάσταση, Ω(n₁, n₂,n_s.....), για τους τρεις βασικούς τύπους συστήματος σωματιδίων.

8.2 Υπολογισμός του αριθμού μικροκαταστάσεων Ω(n₁, n₂,...n_s...) για τις τρεις περιπτώσεις

8.2.1 Περίπτωση (Α) : Πανομοιότυπα αλλά διακρίσιμα σωματίδια

Αναζητούμε πρώτα από όλα τους τρόπους με τους οποίους μπορούμε να τοποθετήσουμε n_1 από τα συνολικά N σωματίδια στη στάθμη με ενέργεια ε_1 , αδιαφορώντας για τον τρόπο με τον οποίον κατανέμονται αυτά στις διάφορες καταστάσεις της ίδιας στάθμης (ή του ίδιου ενεργειακού διαστήματος Δε). Ο αριθμός που αναζητούμε θα δίνεται προφανώς από το συνδυασμό των N πανομοιότυπων πραγμάτων ανά n_i , δηλαδή

$$\frac{N!}{n_1!(N-n_1)!}$$

Αν η στάθμη έχει εκφυλισμό g_1 , τότε το κάθε σωματίδιο μπορεί να πάει σε οποιαδήποτε από αυτές τις g_1 καταστάσεις, ο συνολικός επομένως αριθμός διακριτών μικροσκοπικών διευθετήσεων των n_1 σωματιδίων στις g_1 καταστάσεις είναι $g_1^{n_1}$. [Η επεξεργασία που ακολουθεί ισχύει εξίσου καλά και για την εύρεση του αριθμού των σωματιδίων, $n(\varepsilon)$, ανά μονάδα ενεργειακού διαστήματος, δε, που έχει πυκνότητα καταστάσεων $g(\varepsilon)$]. Έχουμε επομένως, για τον αριθμό των συνολικών μικροκαταστάσεων με n_1 σωματίδια στη στάθμη 1:

$$\Omega_1 = \frac{N! g_1^{n_1}}{n_1! (N - n_1)!}$$
(8.5)

Ο αριθμός διακριτών μικροσκοπικών διευθετήσεων των υπόλοιπων $N - n_1$ σωματιδίων στη στάθμη ε_2 είναι, αντιστοίχως,

$$\Omega_2 = \frac{(N - n_1)! g_2^{n_2}}{n_2! (N - n_1 - n_2)!}$$
(8.6)

Ο συνολικός αριθμός διακριτών μικροσκοπικών διευθετήσεων έτσι ώστε να έχουμε n_1 σωματίδια με ενέργεια ε_1 , n_2 σωματίδια με ενέργεια ε_2 , n_s σωματίδια με ενέργεια ε_s κ.ο.κ., $\Omega(n_1, n_2, ..., n_s...)$ θα είναι το γινόμενο $\Omega_1 \Omega_2....,$ θα είναι επομένως ίσος με

$$\Omega(n_{s}) = \Omega(n_{1}, n_{2}, \dots, n_{s}...) = \Omega_{1} \Omega_{2}... \Omega_{s}... =$$

$$= \boxed{N! \prod_{s=1}^{\infty} \frac{g_{s}^{n_{s}}}{n_{s}!} \qquad \Pi \epsilon \rho i \pi \tau \omega \sigma \eta(\mathbf{A})}$$
(8.7)

8.2.2 Περίπτωση (Γ) : Πανομοιότυπα μη διακρίσιμα σωματίδια με ακέραιο σπιν

Εφόσον τα σωματίδια δεν είναι διακρίσιμα, δεν μπορούμε να ξέρουμε ποιο σωματίδιο καταλαμβάνει ποια κατάσταση. Δεν υπάρχει όμως κανένας περιορισμός ως προς τον αριθμό των σωματιδίων που μπορούν να τοποθετηθούν στην ίδια κβαντική κατάσταση. Στην κβαντομηχανική γλώσσα, μπορούν να έχουν την ίδια κυματοσυνάρτηση περισσότερα του ενός σωματιδίου. Για να βρούμε τον αριθμό των διακριτών διατάξεων n_s σωματιδίων στις g_s καταστάσεις της στάθμης s, χρησιμοποιούμε το ακόλουθο γραφικό τέχνασμα, που φαίνεται στο Σχ. 82. Κάθε κυκλάκι παριστάνει ένα σωματίδιο και κάθε κάθετη γραμμή ένα χώρισμα.

Κάθε διάστημα μεταξύ δύο γειτονικών χωρισμάτων, όπως και μεταξύ των δύο ακραίων χωρισμάτων και των τοιχωμάτων, παριστάνει μία κατάσταση. Στις g_s καταστάσεις αντιστοιχούν $g_s - 1$ τοιχώματα. Ο συνολικός αριθμός των μικρών κύκλων στη στάθμη είναι n_s , και αντιστοιχεί στο συνολικό αριθμό σωματιδίων στην αντίστοιχη στάθμη.

Σχήμα 8.2 Ένα παράδειγμα κατανομής 14 σωματιδίων σε 8 καταστάσεις

Στο παράδειγμα του σχήματος, $g_s = 8$ και $n_s = 14$. Αν οι 14 μικροί κύκλοι και οι 7 (g_{s-1}) κάθετες γραμμές ήταν όλα διακρίσιμα αντικείμενα, τότε ο αριθμός των διακριτών διευθετήσεων των μικρών κύκλων και των κάθετων γραμμών θα ήταν ίσος με τον αριθμό των μεταθέσεων των ($n_s + g_s - 1$), δηλαδή ($n_s + g_s - 1$)! Επειδή όμως όλα τα χωρίσματα και όλα τα σωματίδια, αντιστοίχως, είναι όμοια, και επομένως δεν μπορούν να διακριθούν μεταξύ τους, θα πρέπει να διαιρέσουμε την έκφραση αυτή με τον αριθμό όλων των δυνατών μεταθέσεων των χωρισμάτων ($g_s - 1$)! και των σωματιδίων n_s ! Έτσι ο αριθμός των διακρίσιμων διακρίσιμων διατάξεων γίνεται ίσος με:

$$\Omega_{\rm s} = \frac{(n_{\rm s} + g_{\rm s} - 1)!}{n_{\rm s}!(g_{\rm s} - 1)!}$$
(8.8)

Οπότε και ο αριθμός των διακρίσιμων διατάξεων με n_1 σωματίδια στη στάθμη 1, n_2 σωματίδια στη στάθμη 2, κοκ είναι:

$$\Omega(n_{s}) = \Omega(n_{1}, n_{2}, \dots, n_{s} \dots) = \Omega_{1} \Omega_{2} \dots \Omega_{s} \dots =$$

$$= \prod_{s=1}^{\infty} \frac{(n_{s} + g_{s} - 1)!}{n_{s}!(g_{s} - 1)!} \qquad \Pi \epsilon \rho i \pi \tau \omega \sigma \eta(\Gamma)$$
(8.9)

8.2.3 Περίπτωση (B) : Πανομοιότυπα μη διακρίσιμα σωματίδια με ημιπεριττό σπιν

Όπως και στην προηγούμενη περίπτωση, εξαιτίας της μη διακριτότητας των σωματιδίων, δεν μπορούμε να πούμε ποιο σωματίδιο βρίσκεται σε ποια κατάσταση ή στάθμη. Επιπλέον, εξαιτίας της απαγορευτικής αρχής του Pauli, δεν μπορούμε να βάλουμε περισσότερα από ένα σωματίδιο στην ίδια κατάσταση. Έτσι, το μόνο που μπορούμε να πούμε είναι αν μια κατάσταση είναι ή όχι κατειλημμένη. Ας υποθέσουμε αρχικά ότι τα σωματίδια είναι διακρίσιμα. Υπάρχουν g_s τρόποι να βάλουμε το πρώτο σωματίδιο στη στάθμη s με ενέργεια $ε_s$ (με εκφυλισμό g_s). Το δεύτερο σωματίδιο μπορεί να τοποθετηθεί σε οποιαδήποτε από τις υπόλοιπες ($g_s - 1$) καταστάσεις, κ.ο.κ. και έτσι τελικά έχουμε

$$g_{s}(g_{s}-1)....(g_{s}-n_{s}+1), \qquad g_{s} \ge n_{s}$$

συνολικές διατάξεις των n_s σωματιδίων στη στάθμη s. Επειδή τα σωματίδια δεν είναι διακρίσιμα, θα πρέπει να διαιρέσουμε την πιο πάνω έκφραση με n_s!, που αντιστοιχεί στον αριθμό των μεταθέσεων μεταξύ των σωματιδίων, που δεν οδηγούν σε νέες διακριτές διατάξεις, εφ' όσον αντιστοιχούν στην ίδια κυματοσυνάρτηση. Έτσι, ο συνολικός αριθμός διακριτών μικροσκοπικών διατάξεων με n_s σωματίδια σε κάθε στάθμη s είναι:

$$\Omega_{\rm s} = \frac{g_{\rm s}(g_{\rm s}-1)(g_{\rm s}-2)\dots(g_{\rm s}-n_{\rm s}+1)}{n_{\rm s}!} = \frac{g_{\rm s}!}{(g_{\rm s}-n_{\rm s})!n_{\rm s}!}$$
(8.10)

Ο συνολικός αριθμός διακριτών μικροσκοπικών διατάξεων με *n*₁ σωματίδια στη στάθμη 1, *n*₂ σωματίδια στη στάθμη 2, κοκ είναι:

$$\Omega(n_{s}) = \Omega(n_{1}, n_{2}, \dots, n_{s} \dots) = \Omega_{1} \Omega_{2} \dots \Omega_{s} \dots =$$

$$= \boxed{\prod_{s=1}^{\infty} \frac{g_{s}!}{(g_{s} - n_{s})! n_{s}!} \qquad \Pi \epsilon \rho i \pi \tau \omega \sigma \eta(\mathbf{B})}$$
(8.11)

8.3 Κατανομές Maxwel-Boltzmann, Bose Einstein και Fermi-Dirac

Στις προηγούμενες παραγράφους υπολογίσαμε τον αριθμό των δυνατών διακριτών διατάξεων για τις τρεις διαφορετικές περιπτώσεις συστημάτων σωματιδίων. Η πιθανότερη κατάσταση ή, αλλιώς, η κατάσταση ισορροπίας, θα αντιστοιχεί προφανώς στη μακροκατάσταση εκείνη που αντιστοιχεί στο μεγαλύτερο αριθμό μικροκαταστάσεων ή διευθετήσεων, στον μεγαλύτερο δηλαδή αριθμό $\Omega(n_s)$.

Θα πρέπει λοιπόν τώρα να βρούμε, για την κάθε περίπτωση, την κατανομή εκείνη για την οποία το Ω (n_s) είναι μέγιστο, και συγχρόνως να πληρούνται οι συμπληρωματικές συνθήκες:

$$\sum_{s=1}^{\infty} n_s = N = \sigma \tau \alpha \theta. \tag{8.12}$$

$$\sum_{s=1}^{\infty} n_s \varepsilon_s = E = \sigma \tau \alpha \theta. \tag{8.13}$$

που αντιπροσωπεύουν τη διατήρηση του ολικού αριθμού των σωματιδίων και της ολικής ενέργειας, αντιστοίχως.

Είναι βολικότερο, όπως κάνουμε πάντα, να μεγιστοποιήσουμε το $\ln\Omega$, αντί για το ίδιο το Ω . Τα n_s , όμως, που εμφανίζονται μέσα στη σχέση του $\Omega(n_s)$ δεν είναι όλα ανεξάρτητα μεταξύ τους, αλλά συνδέονται με τις δύο τελευταίες σχέσεις (8.12) και (8.13), τις οποίες θα πρέπει να λάβουμε επίσης υπ' όψιν όταν μεγιστοποιούμε το $\ln\Omega(n_s)$.

Το πρόβλημα αυτό λύνεται με τη μέθοδο των πολλαπλασιαστών του Lagrange, που συνίσταται στο εξής. Πολλαπλασιάζουμε την (8.12) επί $-\alpha$ και την (8.13) επί $-\beta$ και προσθέτουμε και τις δύο στο ln Ω (n_s). Προκύπτει τότε η έκφραση

$$F(n_1, n_2, \dots, n_s, \dots, \alpha, \beta) = \ln \Omega(n_1, n_2, \dots, n_s, \dots) - \alpha \left(\sum_s n_s - N\right) - \beta \left(\sum_s \varepsilon_s n_s - E\right)$$
(8.14)

Εφόσον θέλουμε το $\ln \Omega$ να είναι μέγιστο και τα E και N σταθερά, η κατάσταση που αναζητούμε είναι εκείνη για την οποία ισχύει:

$$\mathrm{d}F = 0 \tag{8.15}$$

Εφαρμόζουμε τώρα τη μέθοδο των πολλαπλασιαστών Lagrange στις τρεις πιο πάνω περιπτώσεις.

8.3.1 Περίπτωση (Α) : Πανομοιότυπα αλλά διακρίσιμα σωματίδια

Εφαρμόζοντας τη μέθοδο των πολλαπλασιαστών Lagrange στην περίπτωση (A) έχουμε:

$$F = \ln\left(N!\prod_{s=1}^{\infty} \frac{g_s^{n_s}}{n_s!}\right) - \alpha\left[\left(\sum_{s=1}^{\infty} n_s\right) - N\right] - \beta\left[\left(\sum_{s=1}^{\infty} \varepsilon_s n_s\right) - E\right] = \\ = \ln N! + \sum_{s=1}^{\infty} (n_s \ln g_s - \ln n_s!) - \alpha\left[\left(\sum_{s=1}^{\infty} n_s\right) - N\right] - \beta\left[\left(\sum_{s=1}^{\infty} \varepsilon_s n_s\right) - E\right]$$

Kαι με τη χρησιμοποίηση της προσέγγισης Stirling: ln $n! \approx n$ ln n - n, (για n >> 1) παίρνουμε, για το διαφορικό τού *F* ως προς τη μεταβλητή n_s , τη σχέση:

$$dF == d\left(N\ln N - N + \sum_{s=1}^{\infty} n_{s}\ln g_{s} - n_{s}\ln n_{s} + n_{s}\right) - \alpha \sum_{s=1}^{\infty} dn_{s} - \beta \sum_{s=1}^{\infty} \varepsilon_{s} dn_{s} =$$
$$= \sum_{s=1}^{\infty} \left(\ln g_{s}dn_{s} - n_{s}\frac{dn_{s}}{n_{s}} - \ln n_{s} dn_{s} + dn_{s}\right) - \alpha \sum_{s=1}^{\infty} dn_{s} - \beta \sum_{s=1}^{\infty} \varepsilon_{s} dn_{s} =$$
$$= \sum_{s=1}^{\infty} \left(\ln g_{s} - \ln n_{s} - \alpha - \beta \varepsilon_{s}\right) dn_{s} = 0$$

Για να ισχύει η πιο πάνω σχέση, dF = 0, ανεξάρτητα από την τιμή του *s*, θα πρέπει τα α και β να επιλεγούν έτσι, ώστε ο συντελεστής του dn_s να μηδενίζεται για όλες τις τιμές του *s*, έχουμε επομένως

$$\ln g_{\rm s} - \ln n_{\rm s} - \alpha - \beta = 0$$

από όπου προκύπτει ότι

$$n_{\rm s} = \frac{g_{\rm s}}{{\rm e}^{\alpha + \beta \varepsilon_{\rm s}}} \tag{8.16}$$

που μας δίνει τον πληθυσμό «ισορροπίας», με άλλα λόγια την πιθανότερη δυνατή κατανομή των σωματιδίων, στις ενεργειακές στάθμες ε_s , που έχουν εκφυλισμούς g_s [ή, αντιστοίχως, την πιθανότερη κατανομή $n(\varepsilon)$ ανά μονάδα ενεργειακού διαστήματος, δ ε , με πυκνότητα καταστάσεων $g(\varepsilon)$]. Η παράμετρος α υπολογίζεται από το γεγονός ότι το άθροισμα όλων των n_s πρέπει να είναι ίσο με τον συνολικό αριθμό σωματιδίων N, από όπου προκύπτει

$$\sum_{s} \frac{g_{s}}{e^{\alpha} e^{\beta \varepsilon_{s}}} = N \qquad \qquad \acute{\eta} \qquad \qquad e^{\alpha} = \frac{1}{N} \sum_{s} g_{s} e^{-\beta \varepsilon_{s}} = \frac{Z}{N} \qquad (8.17)$$

Άρα το $e^{-\alpha}$ είναι απλώς το N/Z, όπου Z η συνάρτηση διαμερισμού του συστήματος, σύμφωνα με τον ορισμό της (Εξ. 3.35). Διαιρώντας την προηγούμενη έκφραση με το N παίρνουμε την πιθανότητα καταλήψεως μιας στάθμης με ενέργεια ε_s , $P(\varepsilon_s)$, που σύμφωνα με τα παραπάνω είναι ίση με

$$P(\varepsilon_{\rm s}) = \frac{g_{\rm s} e^{-\beta \varepsilon_{\rm s}}}{Z} \tag{8.18}$$

Βλέπουμε επομένως ότι η κατανομή (A) που βρήκαμε δεν είναι άλλη από την κλασική κατανομή ή κατανομή Maxwell-Boltzmann (MB), αρκεί η παράμετρος β να τεθεί ίση με 1/kT. Η κατανομή αυτή εφαρμόζεται καταρχήν σε συστήματα διακρίσιμων σωματιδίων (π.χ. ένα σύστημα από σπιν σε σταθερές θέσεις), αλλά και σε συστήματα μη διακρίσιμων σωματιδίων τόσο όμως αραιά, ώστε να είναι εξαιρετικά απίθανο να βρεθούν δύο σωματίδια στην ίδια κατάσταση, και επομένως το γεγονός ότι δεν είναι διακρίσιμα δεν έχει καμία επίδραση στην τελική τους κατανομή.

Θα δούμε ότι και οι άλλες δύο περιπτώσεις (B) και (Γ) καταλήγουν στην (A) όταν τα συστήματα γίνονται πολύ αραιά, όταν δηλαδή ο αριθμός των καταστάσεων υπερβαίνει σημαντικά τον αριθμό των σωματιδίων.

8.3.2 Περίπτωση (Γ) : Πανομοιότυπα μη διακρίσιμα σωματίδια με ακέραιο σπιν - Μποζόνια

Εφαρμόζοντας τη μέθοδο των πολλαπλασιαστών Lagrange στην περίπτωση (Γ) (Εξ. 8.9), παίρνουμε:

$$dF = d\sum_{s=1}^{\infty} \left[\ln(n_s + g_s) - \ln n_s - \ln(g_s - 1) \right] - \alpha \sum_{s=1}^{\infty} dn_s - \beta \sum_{s=1}^{\infty} \varepsilon_s dn_s$$

Επειδή n_s , $g_s >> 1$ και $g_s - 1 \approx g_s$, εφαρμόζοντας την προσέγγιση Stirling, έχουμε:

$$dF = d\left(N\ln N - N + \sum_{s=1}^{\infty} n_s \ln g_s - n_s \ln n_s + n_s\right) - \alpha \sum_{s=1}^{\infty} dn_s - \beta \sum_{s=1}^{\infty} \varepsilon_s dn_s =$$

$$= \sum_{s=1}^{\infty} \left(\ln g_s dn_s - n_s \frac{dn_s}{n_s} - \ln n_s dn_s + dn_s\right) - \alpha \sum_{s=1}^{\infty} dn_s - \beta \sum_{s=1}^{\infty} \varepsilon_s dn_s =$$

$$= \sum_{s=1}^{\infty} \left(\ln g_s - \ln n_s - \alpha - \beta \varepsilon_s\right) dn_s = 0$$

Για να ισχύει όμως dF = 0, ανεξάρτητα από την τιμή τού *s*, θα πρέπει και πάλι ο συντελεστής του d n_s να μηδενίζεται για κάθε *s*, από όπου προκύπτει

$$n_s = \frac{g_s}{\mathrm{e}^{\alpha + \beta \varepsilon_s} - 1} \tag{8.19}$$

που, για συνεχή κατανομή, γράφεται με τη μορφή

$$n(E) = \frac{g(E)}{e^{\alpha + \beta \varepsilon} - 1}$$
(8.19a)

γνωστή και ως *κατανομή Bose Einstein* (BE).

Η παράμετρος α υπολογίζεται και πάλι από τις συνθήκες κανονικοποίησης, και είναι πάντα θετική ενώ, όπως μπορεί να αποδειχθεί από την εφαρμογή της μεθόδου των πολλαπλασιαστών Lagrange σε συστήματα με περισσότερα από ενός είδους συστατικά, η παράμετρος β είναι η ίδια και στους τρεις τύπους κατανομών, και ίση πάντα με 1/kT.

8.3.3 Περίπτωση (B) : Πανομοιότυπα μη διακρίσιμα σωματίδια με ημιπεριττό σπιν – Φερμιόνια

Ακολουθώντας την ίδια τεχνική με αυτήν που οδήγησε στην κατανομή Bose-Einstein, φθάνουμε στο αποτέλεσμα:

$$\ln (g_{\rm s} - n_{\rm s}) - \ln n_{\rm s} - \alpha - \beta \varepsilon_{\rm s} = 0$$

από όπου προκύπτει η σχέση:

$$n(E) = \frac{g(E)}{e^{\alpha + \beta \varepsilon} + 1}$$
(8.20)

γνωστή και ως κατανομή Fermi-Dirac (FD). Η παράμετρος α υπολογίζεται και πάλι από τις συνθήκες κανονικοποίησης, και μπορεί να είναι θετική ή αρνητική, ενώ η παράμετρος β είναι πάντα ίση με 1/kT.

8.4 Εφαρμογές της κβαντικής στατιστικής

8.4.1 Εφαρμογές της στατιστικής κατανομής Bose – Einstein

8.4.1.1 Ακτινοβολία μέλανος σώματος

Η σημαντικότερη ίσως εφαρμογή της κατανομής Bose – Einstein (BE) είναι η μελέτη της ηλεκτρομαγνητικής ακτινοβολίας που βρίσκεται σε θερμική ισορροπία με τα τοιχώματα μιας κοιλότητας, στο εσωτερικό της οποίας είναι παγιδευμένη. Η ακτινοβολία αυτή αποκαλείται ακτινοβολία μέλανος σώματος. Τα τοιχώματα της κοιλότητας συνεχώς απορροφούν και εκπέμπουν ακτινοβολία, ώσπου να αποκατασταθεί η ισορροπία, στην οποία η ηλεκτρομαγνητική ακτινοβολία εμφανίζει μια πολύ καλά καθορισμένη ενεργειακή κατανομή.

Στην περίπτωση αυτή ως «σωματίδια» θεωρούμε τα φωτόνια, με μηδενική μάζα ηρεμίας, «σπιν» s = 1 και κβαντικό αριθμό του σπιν, $m_s = \pm 1$. Οι κβαντικοί αριθμοί $m_s = \pm 1$ περιγράφουν τις δύο καταστάσεις πόλωσης του φωτονίου (δεξιόστροφη και αριστερόστροφη), τις συσχετισμένες με μια δεδομένη κατεύθυνση διαδόσεως. Εφόσον τα φωτόνια είναι μη διακρίσιμα και έχουν σπιν ακέραιο, θα υπακούουν στη στατιστική Bose-Einstein.

Από την άλλη μεριά, ειδικά για τα φωτόνια η συνθήκη $\Sigma n_s =$ σταθ. δεν ισχύει, αφού τα φωτόνια μπορούν να δημιουργούνται και να απορροφούνται χωρίς περιορισμό, όταν αυξάνει ή μειώνεται η διέγερση του συστήματος, ενώ η συνολική ενέργεια του συστήματος διατηρείται σταθερή. Αυτό σημαίνει ότι η Εξ. (8.12), που αντιπροσωπεύει τη διατήρηση του ολικού αριθμού των σωματιδίων, δεν λαμβάνεται υπόψη στους υπολογισμούς, με άλλα λόγια η παράμετρος α πρέπει να τεθεί ίση με μηδέν. Έτσι η συνάρτηση κατανομής γράφεται, ειδικά για τα φωτόνια:

$$n(E) = \frac{g(E)}{e^{\frac{h\nu}{kT}} - 1}$$
(8.21)

Η πυκνότητα καταστάσεων για τα φωτόνια μπορεί εύκολα να υπολογιστεί, σύμφωνα με τη συλλογιστική του πρώτου κεφαλαίου, αν ληφθεί υπόψη ότι η σχέση που συνδέει την ενέργεια, *E*, με την ορμή, *p*, του φωτονίου είναι

E = pc

όπου c η ταχύτητα του φωτός. Βρίσκεται έτσι ότι ο αριθμός καταστάσεων για φωτόνια με συχνότητα μεταξύ v και v + dv είναι ίσος με³⁴

$$g(\nu)\mathrm{d}\nu = \frac{8\pi\nu^2}{c^3}V\mathrm{d}\nu \tag{8.22}$$

Για την εξαγωγή αυτής της σχέσης έχουν ληφθεί υπόψη οι δύο καταστάσεις πόλωσης του φωτονίου. *V* είναι ο όγκος της κοιλότητας που περιέχει τα φωτόνια.

Επομένως ο αριθμός φωτονίων με ενέργεια μεταξύ E και E + dE, ή αλλιώς με συχνότητα μεταξύ v και v + dv, θα δίνεται από την έκφραση

 $n(v) = \frac{8\pi v^2 V}{c^3 \left(e^{\frac{hv}{kT}} - 1\right)} dv$ (8.23)

Αν πολλαπλασιάσουμε τη σχέση αυτή με την ενέργεια ανά φωτόνιο, ίση με hv, και διαιρέσουμε με τον όγκο, V, της κοιλότητας μέσα στην οποία θεωρούμε ότι βρίσκεται το σύνολο των φωτονίων, βρίσκουμε την ενεργειακή πυκνότητα της ακτινοβολίας "μέλανος σώματος" που αντιστοιχεί σε συχνότητες μεταξύ v και v + dv:

$$\rho(v) dv = \frac{8\pi h v^3}{c^3 \left(e^{\frac{hv}{kT}} - 1\right)} dv$$
(8.24)

που συμφωνεί με το πείραμα και είναι γνωστή ως σχέση ή *νόμος του Planck*.

Ολοκληρώνοντας αυτή τη σχέση για όλες τις συχνότητες από 0 έως ∞, βρίσκουμε την έκφραση για την ολική ακτινοβολούμενη ενέργεια:

$$U(T) = \frac{8\pi^5 (kT)^4}{15h^3 c^3}$$
(8.25)

 $^{^{34}\,{\}rm H}$ απόδειξη αυτής της σχέσης δίνεται ως άσκηση για τον σπουδαστή.

που δείχνει ότι η ακτινοβολούμενη ενέργεια, U(T), είναι ανάλογη της τέταρτης δύναμης της θερμοκρασίας, τον γνωστό *Νόμο Stefan-Boltzmann*, ενώ, παραγωγίζοντάς την ως προς ν και θέτοντας την παράγωγο ίση με μηδέν, βρίσκουμε ότι η συχνότητα, v_{max} , για την οποία η ακτινοβολούμενη ενέργεια είναι μέγιστη, μεταβάλλεται με τη θερμοκρασία σύμφωνα με τη σχέση

$$v_{\rm max} = 2,8214 \,\frac{kT}{h}$$
 (8.26)

που αποτελεί το γνωστό Νόμο μετατοπίσεως του Wien.

Στο Σχ. 8.3 απεικονίζεται η ακτινοβολούμενη ισχύς ανά μονάδα επιφανείας του μέλανος σώματος, στο διάστημα μηκών κύματος μεταξύ λ και λ + d λ .

Σχήμα 8.3. Η φασματική κατανομή της ακτινοβολούμενης ισχύος από ένα ιδανικό μέλαν σώμα. Το ολικό εμβαδόν της επιφάνειας κάτω από την καμπύλη αντιπροσωπεύει, σε κάθε θερμοκρασία, την ολική ακτινοβολούμενη ισχύ ανά μονάδα επιφάνειας. Δίνονται οι καμπύλες σε τρεις διαφορετικές θερμοκρασίες. Οι κατακόρυφες ευθείες τέμνουν τον άξονα των στις θέσεις λ_{max} , που αντιστοιχούν στο v_{max} της Εξ. (8.25) για κάθε θερμοκρασία (με $\lambda_{max} = c/v_{max}$).

Παρατηρούμε ότι, καθώς αυξάνει η θερμοκρασία, η κορυφή γίνεται υψηλότερη και μετατοπίζεται προς μικρότερα μήκη κύματος (μεγαλύτερες συχνότητες), σύμφωνα με τον νόμο μετατοπίσεως του Wien. Εξάλλου, το ολικό εμβαδόν κάτω από την καμπύλη είναι ανάλογο του *T*⁴, σύμφωνα με τον νόμο Stefan-Boltzmann.

8.4.1.2 Ειδική θερμότητα των στερεών

Με την εφαρμογή της στατιστικής Bose-Einstein στα «φωνόνια», στους συλλογικούς τρόπους ταλάντωσης δηλαδή των ατόμων μέσα στα στερεά, μπορούμε να υπολογίσουμε τον αριθμό φωνονίων με ενέργεια E = hv μέσα στο διάστημα συχνοτήτων μεταξύ v και v + dv, σε θερμική ισορροπία με το πλέγμα του στερεού σε θερμοκρασία T:

$$n(v) dv = \frac{g(v)dv}{e^{\frac{hv}{kT}} - 1} = \frac{9N}{v_o^3} \frac{v^2 dv}{e^{\frac{hv}{kT}} - 1}$$
(8.27)

$$E = \int_{0}^{v_{o}} h v n(v) dv = \frac{9Nh}{v_{o}^{3}} \int_{0}^{v_{o}} \frac{v^{3} dv}{e^{hv/kT} - 1}$$
(8.28)

όπου ν₀ η συχνότητα αποκοπής των ταλαντώσεων μέσα στο κρυσταλλικό πλέγμα. Από την κατανομή αυτή μπορούμε, πολλαπλασιάζοντας επί *hv*, να υπολογίσουμε την ενεργειακή κατανομή μέσα στο ίδιο διάστημα συχνοτήτων και, ολοκληρώνοντας για όλες τις δυνατές συχνότητες, να βρούμε τη συνολική μέση ενέργεια ταλάντωσης ενός στερεού:

Παραγωγίζοντας την πιο πάνω σχέση ως προς τη θερμοκρασία, βρίσκουμε την ειδική θερμότητα του στερεού υπό σταθερό όγκο, c_V , που παριστάνεται στο Σχ. 8.4, στο οποίο έχουν σημειωθεί και οι πειραματικές τιμές της για διάφορα στερεά. Όπως βλέπουμε, η συμφωνία είναι εξαιρετική. Η θερμοκρασία $\Theta_D \equiv hv_0/k$ ονομάζεται "θερμοκρασία Debye". Από το σχήμα φαίνεται ότι, για $T >> \Theta_D$, η μοριακή (γραμμομοριακή ειδική) θερμότητα για όλα τα στερεά που απεικονίζονται στο διάγραμμα φτάνει την τιμή 3R (Nóμoς Dulong-Petit), σε συμφωνία και με το θεώρημα ισοκατανομής.

Σχήμα 8.4. Το πηλίκον *c*_V/*R*, όπου *c*_V η γραμμομοριακή ειδική θερμότητα κρυσταλλικού πλέγματος, ως συνάρτηση της θερμοκρασίας. Στο διάγραμμα έχουν σημειωθεί και οι πειραματικές τιμές τής *c*_V για διάφορα στερεά. *Θ*_D είναι η θερμοκρασία Debye, διαφορετική για κάθε στερεό.

Πράγματι, σύμφωνα με το θεώρημα της ισοκατανομής (βλ. Παράγρ. 5.8):

Αν ένα σύστημα, που περιγράφεται με τη βοήθεια της κλασικής Στατιστικής Μηχανικής, βρίσκεται σε κατάσταση ισορροπίας στην απόλυτη θερμοκρασία Τ, τότε κάθε ανεξάρτητος τετραγωνικός όρος της ενέργειάς του έχει μέση τιμή ίση με ½kT.

Στα στερεά υπάρχουν τρεις τύποι ταλαντώσεων, ένας διαμήκης και δύο κάθετοι. Σε κάθε τύπο ταλάντωσης αντιστοιχούν δύο βαθμοί ελευθερίας ή, αλλιώς, δύο τετραγωνικοί ενεργειακοί όροι, ένας για τη δυναμική (1/2 kx^2) και ένας για την κινητική (1/2 mv^2) ενέργεια. Προκύπτουν επομένως 6 βαθμοί ελευθερίας, για τους 3 άξονες ταλάντωσης. Εφόσον έχουμε 6 βαθμούς ελευθερίας, για $kT >> kO_D$ θα πρέπει, σύμφωνα με το θεώρημα της ισοκατανομής, η μέση ενέργεια λόγω ταλάντωσης να περιέχει 6 όρους ίσους με 1/2kT. Για ένα γραμμομόριο θα έχουμε λοιπόν

$$E = 6 \times (\frac{1}{2})RT = 3RT$$
 άρα και $c_V = 3R$

σε πλήρη συμφωνία με τον Νόμο των Dulong και Petit. Οι θερμοκρασίες Debye για τα διάφορα στερεά βρίσκονται μεταξύ 150 K (Na) και 2200 K (διαμάντι). Πράγματι, όπως αναφέραμε και στην Παράγρ. 5.8.2.3, στο διαμάντι, η συχνότητα ταλάντωσης, v_0 , είναι τόσο υψηλή, ώστε στη θερμοκρασία περιβάλλοντος δεν ισχύει η ανισότητα $kT >> k\Theta_D \equiv hv_0$, άρα ούτε και η κλασική προσέγγιση.

Σχήμα 8.5 Πειραματικές τιμές της μοριακής θερμότητας, *c*_v, για τον μόλυβδο, το αργίλιο, το πυρίτιο και το διαμάντι. Παρατηρούμε ότι στο πυρίτιο και, κυρίως, στο διαμάντι, η τιμή τής *c*_v στη θερμοκρασία περιβάλλοντος (300 K) είναι πολύ χαμηλότερη από την προβλεπόμενη από τον Nόμο Dulong-Petit. (Από <u>http://miniphysics.blogspot.com</u>).

. Αν θελήσουμε να εφαρμόσουμε τον ίδιο υπολογισμό στις ταλαντώσεις των ελεύθερων ηλεκτρονίων των μετάλλων, θα πρέπει να λάβουμε υπόψη μας ότι το θεώρημα ισοκατανομής ισχύει μόνο για $kT >> E_F$ (βλ. Παράγρ. 8.4.2.3). Επειδή η θερμοκρασία Fermi, $\Theta_F \equiv E_F/T$, είναι εν γένει πολύ υψηλή, ανώτερη της θερμοκρασίας τήξης των μετάλλων, οι ταλαντώσεις των ηλεκτρονίων ελάχιστα συνεισφέρουν στην ειδική θερμότητα των στερεών στις συνήθεις θερμοκρασίες.

8.4.2 Εφαρμογές της στατιστικής κατανομής Fermi-Dirac

Το πιο χαρακτηριστικό σύστημα φερμιονίων είναι εκείνο των ελεύθερων ηλεκτρονίων μέσα σε ένα μέταλλο. Τα ηλεκτρόνια αυτά ακολουθούν τη στατιστική Fermi-Dirac (FD), δοθέντος ότι έχουν σπιν ½ και υπακούουν στην απαγορευτική αρχή του Pauli και, επιπλέον, η πυκνότητά τους είναι τόσο μεγάλη, ώστε δεν μπορεί να χρησιμοποιηθεί η κλασική στατιστική για τη μελέτη τους.

Πράγματι, οι ιδιαίτερες ιδιότητες των μετάλλων (υψηλή ηλεκτρική και θερμική αγωγιμότητα) μπορούν να ερμηνευτούν με την υπόθεση ότι αυτά περιέχουν έναν μεγάλο αριθμό ελεύθερων ηλεκτρονίων που, λίγο-πολύ, αντιστοιχούν στα ηλεκτρόνια σθένους που "περισσεύουν" κατά το σχηματισμό του μεταλλικού πλέγματος. Η εφαρμογή της στατιστικής Maxwell-Boltzmann (MB) στα ελεύθερα ηλεκτρόνια μπορούσε πράγματι να ερμηνεύσει ορισμένες ιδιότητές τους, αλλά οδηγούσε και σε μερικά πολύ λανθασμένα συμπεράσματα σε άλλες περιπτώσεις. Για παράδειγμα, σύμφωνα με αυτήν την υπόθεση, η ειδική θερμότητα των μετάλλων θα έπρεπε να είναι κατά 50% μεγαλύτερη εκείνης των μονωτών, ενώ το πείραμα δείχνει ότι το τμήμα της ειδικής θερμότητας που συνδέεται με τα ελεύθερα ηλεκτρόνια είναι, όπως θα δούμε και πιο κάτω, πολύ μικρό. Αυτή η ασυμφωνία, όπως και αρκετές άλλες, οφείλεται στο γεγονός ότι τα ηλεκτρόνια, που έχουν σπιν ¹/₂, υπακούουν στη στατιστική FD.

8.4.2.1 Πυκνότητα καταστάσεων των ηλεκτρονίων

Υπενθυμίζουμε ότι, σε ένα αέριο, η πυκνότητα καταστάσεων g(E) στο χώρο των ενεργειών δίνεται από την έκφραση [βλ. Κεφ. Ι (Εξ. 1.20) και Κεφ. V (Εξ. 5.2)]:

$$g(E) = \frac{4\pi Vm (2m)^{1/2}}{h^3} E^{1/2}$$

όπου V είναι ο όγκος μέσα στον οποίο είναι εγκλεισμένο το αέριο. Αν τα σωματίδια έχουν σπιν s, τότε σε κάθε κατάσταση του χώρου των ενεργειών θα υπάρχουν 2s + 1 καταστάσεις του σπιν, οπότε ο συνολικός αριθμός θα δίνεται από το (2s+1)g(E) και, επειδή για το ηλεκτρόνιο το σπιν είναι ίσο με ¹/₂, θα έχουμε δύο ηλεκτρονικές καταστάσεις σε κάθε μοναδιαίο κύβο του χώρου των ορμών. Οπότε ο αριθμός των ηλεκτρονίων με ενέργεια μεταξύ E και E + dE θα δίνεται από την έκφραση (βλ. Εξ. 8.19):

$$n(E) dE = 2 \times n(E) = 2 \times f(E)g(E) dE = \frac{1}{e^{(E-E_{\rm F})/kT} + 1} \frac{8\pi Vm (2m)^{1/2}}{h^3} E^{1/2} dE$$
(8.30)

όπου συμβολίσαμε με f(E) την έκφραση $\frac{1}{e^{(E-E_{\rm F})/kT}+1}$ της Εξ. (8.19), δηλαδή την πιθανότητα να είναι κατειλημμένη μία κατάσταση με ενέργεια *E*. Η συνάρτηση f(E) ονομάζεται και συνάρτηση Fermi. Εδώ, όπως έχει καθιερωθεί, έχουμε αντικαταστήσει στην Εξ. (8.19) την παράμετρο α με τη χρησιμοποίηση της έκφρασης:

$$E_{\rm F} \equiv -\alpha kT \tag{8.31}$$

Η $E_{\rm F}$ ονομάζεται ενέργεια Fermi ή χημικό δυναμικό και συμβολίζεται και με το μ_0 ή $\mu(0)$.

8.4.2.2 Ενεργειακή κατανομή, Ενέργεια Fermi, μέση ενέργεια και ειδική θερμότητα

Για να μελετήσουμε την ενεργειακή κατανομή, διακρίνουμε δύο διαφορετικές περιοχές θερμοκρασίας:

A) T = 0

Εύκολα μπορούμε να δούμε ότι, στο απόλυτο μηδέν, η συνάρτηση Fermi έχει την ιδιότητα:

$$f(E)=1$$
 για $E < E_{
m F}$ και
 $f(E)=0$ για $E > E_{
m F}$

πράγμα που σημαίνει ότι, στο απόλυτο μηδέν, όλες οι καταστάσεις κάτω από την ενέργεια Fermi είναι κατειλημμένες, ενώ όλες οι ανώτερες είναι άδειες, όπως δείχνει και το Σχ. 8.6 που ακολουθεί. Την τιμή της $E_{\rm F}$ στο απόλυτο μηδέν μπορούμε να την υπολογίσουμε από τη συνάρτηση κανονικοποίησης:

$$\int_{0}^{\infty} f(E)g(E)dE = N$$
(8.32)

από όπου προκύπτει ότι

$$E_{\rm F_0} = \frac{h^2}{2m} \left(\frac{3n}{8\pi}\right)^{2/3}$$
(8.33)

όπου n = N/V, δηλαδή ο αριθμός ηλεκτρονίων ανά μονάδα όγκου. Στον Πίνακα 8.1, που δίνει τιμές της ενέργειας Fermi για διάφορα μέταλλα, βλέπουμε ότι η $E_{\rm F}$ είναι της τάξης μερικών eV. Αυτή είναι μια πρώτη σημαντική διαφορά ανάμεσα στη στατιστική Fermi και στην κλασική στατιστική. Σύμφωνα με τη δεύτερη, το αέριο των ηλεκτρόνιων στο απόλυτο μηδέν θα είχε μηδενική ενέργεια. Η **θερμοκρασία Fermi**, $\Theta_{\rm F}$, ορίζεται ως $\Theta_{\rm F} \equiv E_{\rm F}/k$.

Πίνακας 8.1 Ενέργεια Fermi, *E*_F, και θερμοκρασία Fermi, *Θ*_F, για διάφορα μέταλλα

Μέταλλο	$E_{ m F}$	$\varTheta_{ m F}$
	(eV)	(K)
Li	4,72	$5,5 \times 10^{4}$
Na	3,12	$3,7 \times 10^{4}$
K	2,14	$2,4 \times 10^{4}$
Cu	7,04	$8,2 \times 10^{4}$
Ag	5,51	6.4×10^{4}
Au	5,54	$6,4 \times 10^{4}$

Η μέση κινητική ενέργεια των ηλεκτρονίων στο απόλυτο μηδέν μπορεί εύκολα να υπολογιστεί και βρίσκεται ίση με

$$\overline{E}_{0} = \frac{1}{N} \int_{0}^{E_{\rm F}} Eg(E) dE = \frac{3}{5} E_{\rm F_{0}}$$
(8.34)

B) T > 0 allá $\mu \varepsilon kT \ll E_F$

Μπορεί κανείς να δείξει ότι η πιο πάνω ανισότητα ισχύει για όλες τις θερμοκρασίες τις χαμηλότερες από τη θερμοκρασία τήξης των μετάλλων. Από τον ορισμό της ενέργειας Fermi βλέπουμε ότι, για $E = E_F$, f(E) = 1/2. Άρα, στην ενέργεια Fermi, η πιθανότητα κατάληψης είναι ίση με $\frac{1}{2}$, όπως φαίνεται και στο Σχ. 8.5. Για ενέργειες χαμηλότερες από E_F , τέτοιες ώστε $E_F - E >> kT$, η τιμή του f(E)είναι πρακτικά ίση με τη μονάδα, όπως και για την περίπτωση T = 0. Μόνο κοντά στη γειτονιά του E_F μείον μερικά kT η κατανομή πέφτει κάτω από τη μονάδα.

Για ενέργειες μεγαλύτερες από $E_{\rm F}$, τέτοιες ώστε $E - E_{\rm F} >> kT$, μπορούμε να

αμελήσουμε τη μονάδα στον παρανομαστή, οπότε παίρνουμε

$$f(E) \approx C e^{-(E-E_{\rm F})/kT}$$

που είναι πανομοιότυπη με την κατανομή M.B. Για το λόγο αυτό, το τμήμα αυτό της κατανομής Fermi ονομάζεται και *ουρά Boltzmann*.

Στο Σχ. 8.6 φαίνεται η μορφή της συνάρτησης Fermi, f(E), σε διάφορες θερμοκρασίες, ενώ το Σχ. 8.7 δείχνει την πυκνότητα των καταστάσεων, g(E), και το f(E)g(E) ως συνάρτηση της ενέργειας. Η εστιγμένη γραμμή δείχνει την πυκνότητα των κατειλημμένων καταστάσεων για μια θερμοκρασία τέτοια ώστε $kT \ll E_{\rm F}$.

Η στάθμη Fermi και η μέση κινητική ενέργεια των ηλεκτρονίων στην περίπτωση αυτή προσδιορίζονται από τα ολοκληρώματα

$$N = \int_{0}^{\infty} g(E) \frac{dE}{e^{(E-E_{\rm F})/kT} + 1}$$
(8.35)

$$\overline{E} = \frac{1}{N} \int_{0}^{\infty} g(E) \frac{E dE}{e^{(E-E_{\rm F})/kT} + 1}$$
(8.36)

Σχήμα 8.6 Η μορφή της συνάρτησης Fermi, *f* (*E*), σε διάφορες θερμοκρασίες.

Σχήμα 8.7 Η πυκνότητα των καταστάσεων, g (*E*), και το f (*E*) g (*E*), ως συνάρτηση της ενέργειας, για $kT \ll E_{\rm F}$. Το μ (0) συμβολίζει εδώ την ενέργεια Fermi, $E_{\rm F}$.

Ο προσεγγιστικός υπολογισμός αυτών των ολοκληρωμάτων, με $kT \ll E_{\rm F}$, μπορεί να γίνει με τη χρήση πινάκων και τα αποτελέσματα έχουν ως εξής:

$$E_{F} = E_{F_{0}} \left[1 - \frac{\pi^{2}}{12} \left(\frac{kT}{E_{F_{0}}} \right)^{2} \right]$$
(8.37)

και

και

$$\overline{E} = \overline{E}_o \left[1 + \frac{5\pi^2}{12} \left(\frac{kT}{E_{F_0}} \right)^2 \right]$$
(8.38)

Παρατηρούμε ότι, όταν η θερμοκρασία, *T*, αυξάνει, η ενέργεια Fermi, *E*_F, μειώνεται ενώ η μέση ενέργεια, \overline{E} , αυξάνει, αλλά κατά πολύ λίγο και στις δύο περιπτώσεις. Πράγματι, για $E_{F_0} \approx 5 \text{ eV}$, ο διορθωτικός παράγων είναι 2×10^{-5} στη θερμοκρασία δωματίου. Για το λόγο αυτό, η ενέργεια Fermi μπορεί να θεωρηθεί σταθερή στις περισσότερες περιπτώσεις.

8.4.2.3 Ειδική θερμότητα των ηλεκτρονίων

Παραγωγίζοντας τη μέση ενέργεια ως προς τη θερμοκρασία παίρνουμε την ειδική

θερμότητα των ελεύθερων ηλεκτρονίων ανά μονάδα όγκου του μετάλλου, που βρίσκεται ίση με

$$c = \frac{\pi^2}{2} \left(\frac{N}{V}\right) k \frac{kT}{E_{\rm F}} \tag{8.39}$$

Ποιοτικά το αποτέλεσμα αυτό εξηγείται ως εξής: Ο πληθυσμός της κάθε κατάστασης ισούται με τη μονάδα μέχρι ενέργειες της τάξης του $E_{\rm F} - kT$ και μηδενίζεται για ενέργειες μεγαλύτερες του $E_{\rm F} + kT$. Μόνον επομένως τα ηλεκτρόνια που βρίσκονται μέσα στην περιοχή $E_{\rm F} - kT$ μπορούν να προσλάβουν θερμική ενέργεια ίση με kT και να ανέβουν στην περιοχή $E_{\rm F} + kT$. Το ποσοστό αυτών των ηλεκτρονίων είναι της τάξης του $kT/E_{\rm F}$. Εξάλλου, η μέση ενέργεια που κερδίζει κάθε ηλεκτρόνιο από αυτά είναι της τάξης του (3/2)kT. Επομένως, η συνολική αύξηση ενεργείας ανά ηλεκτρόνιο θα είναι της τάξης τού $(3/2)(kT)^2/E_{\rm F}$ και η ειδική θερμότητα της τάξης τού $(3/2)k^2T/E_{\rm F}$ ανά ηλεκτρόνιο ή $(N/V)k^2T/E_{\rm F}$ ανά μονάδα όγκου, που συμφωνεί ποιοτικά με την πιο πάνω σχέση.

Για $E_{\rm F} \approx 5 {\rm eV}$ το $(\pi^2/2)(kT/E_{\rm F})$ είναι περίπου ίσο με 1/40. Άρα η συνεισφορά των ηλεκτρονίων στην ειδική θερμότητα βρίσκεται της τάξης του (1/40)k, σε ποιοτική συμφωνία με το πείραμα, ενώ σύμφωνα με τη στατιστική MB η συνεισφορά αυτή θα βρισκόταν ίση με (3/2)k και θα ήταν ανεξάρτητη από τη θερμοκρασία.

Άλλες εφαρμογές της στατιστικής FD στα ελεύθερα ηλεκτρόνια περιλαμβάνουν την ερμηνεία του φωτοηλεκτρικού φαινομένου, του δυναμικού επαφής μεταξύ δύο μετάλλων, του παραμαγνητισμού των ηλεκτρονίων, της θερμιονικής και της ψυχρής εκπομπής ηλεκτρονίων από τα μέταλλα.

8.5 Σύγκριση των τριών στατιστικών

Όλα τα σωματίδια οφείλουν να υπακούουν είτε στη στατιστική BE είτε στην FD. Γι' αυτό και θα έπρεπε όλα τα συστήματα να αναλύονται με βάση μία από τις δύο στατιστικές. Θα δούμε όμως ότι στις περισσότερες περιπτώσεις, αυτό δεν είναι απαραίτητο. Πράγματι, οι τρεις στατιστικές που αναπτύξαμε πιο πάνω μπορούν να γραφούν με τη συλλογική μορφή:

$$\frac{g_{\rm i}}{n_{\rm i}} + \delta = {\rm e}^{\alpha + E_{\rm i}/kT}$$
(8.40)

όπου $\delta = 0$ για τη στατιστική MB, -1 για την FD και +1 για την BE. Βλέπουμε εύκολα ότι, αν $g_i/n_i >>1$, δηλαδή για πολύ αραιά συστήματα, οι τρεις στατιστικές δίνουν πρακτικώς τα ίδια αποτελέσματα. Αυτό πράγματι ισχύει για τα αέρια στις συνηθισμένες θερμοκρασίες και γι' αυτό, εκτός από την περίπτωση των πολύ χαμηλών θερμοκρασιών, μπορούμε να αμελήσουμε τα κβαντικά φαινόμενα στη μελέτη των αερίων. Έτσι δικαιολογείται η χρήση της κλασικής στατιστικής στα αέρια στις περισσότερες περιπτώσεις.

Σύμφωνα με τη Στατιστική ΒΕ, μια συστηματική μελέτη δείχνει ότι η ενέργεια ενός αερίου είναι κατώτερη από (3/2)kT και η πίεση κατώτερη από kT/V. Για την ακρίβεια, οι πιο πάνω εκφράσεις θα πρέπει να πολλαπλασιαστούν επί έναν διορθωτικό παράγοντα ίσο με

$$\left(1 - \frac{1}{2^{5/2}} \frac{N}{Z} - \dots\right)$$

Η απόκλιση του κβαντικού ιδανικού αερίου από εκείνην του κλασικού ονομάζεται "εκφυλισμός" (που δεν έχει καμία σχέση με τον εκφυλισμό των κβαντικών καταστάσεων). Εφ' όσον το N/Z είναι ανάλογο του $(N/V)T^{3/2}$, ο εκφυλισμός ενός αερίου γίνεται σημαντικότερος σε χαμηλές θερμοκρασίες και μεγάλες πυκνότητες. Για τα περισσότερα αέρια, σε συνηθισμένες συνθήκες θερμοκρασίας και πίεσης, το N/Z είναι της τάξης του 10^{-5} και, γι' αυτόν το λόγο, ο εκφυλισμός του αερίου είναι αμελητέος και μπορεί να εφαρμοστεί η στατιστική MB σε αυτά χωρίς κανένα πρόβλημα.

Μόνο για τα δύο ελαφρότερα αέρια, το H₂ και το He (που είναι και τα δύο μποζόνια), μπορούμε να παρατηρήσουμε κβαντικά φαινόμενα σε χαμηλές θερμοκρασίες. Για το υδρογόνο, στο σημείο ζέσης του που είναι 20,4 K, η τιμή του N/Z είναι 0,84 × 10⁻² και για το ήλιο στους 4,2 K είναι 0,139. Πράγματι, το He εμφανίζει κβαντικά φαινόμενα στη συμπυκνωμένη του φάση, μεταξύ των οποίων και το φαινόμενο της υπερρευστότητας.

Αντίστοιχα φαινόμενα εμφανίζονται και σε αέρια που ακολουθούν την κατανομή FD. Η σημαντικότερη απόκλιση μεταξύ στατιστικής MB και FD είναι ότι η πίεση ενός αερίου που ακολουθεί τη δεύτερη στατιστική δεν μηδενίζεται στο απόλυτο μηδέν, αλλά πλησιάζει την τιμή

$$p_{\rm lim} = -\left(\frac{\partial E}{\partial V}\right)_{\rm S} = -\frac{3}{5}N\frac{\partial E_{\rm F}}{\partial V}$$
(8.41)

Kαι επειδή $E_{\rm F} = -(2/3)\ln V + C$, έχουμε για την πίεση ενός αερίου Fermi στο απόλυτο μηδέν:

$$p_{\rm lim} = (2/5)NE_{\rm F}/V$$
 (8.42)

Στα Σχ. 8.8 και 8.9, που ακολουθούν, απεικονίζεται η σύγκριση των τριών στατιστικών.

Σχήμα 8.8 Σύγκριση των τριών συναρτήσεων κατανομής για τα τέλεια αέρια, σύμφωνα με τους τρεις τύπους στατιστικής: Maxwell-Boltzmann (M.B.), Fermi-Dirac (F.D.) και Bose-Einstein (B.E.), στους 5000 K.. Στη θερμοκρασία αυτή έχουμε kT = 0.43 eV, που είναι μεν μικρότερο από το E_F (2 eV), αλλά της ίδιας περίπου τάξης μεγέθους. Παρατηρούμε ότι, για μεγάλες τιμές της Ε, όλες οι συναρτήσεις κατανομής φθίνουν με το exp (-E/kT). Για μικρές τιμές της Ε, η πιθανότητα κατάληψης για την FD τείνει προς τη μονάδα, για την MB αυξάνει μεν αλλά τείνει προς μια πεπερασμένη τιμή, ενώ για την ΒΕ τείνει στο άπειρο, πράγμα που σημαίνει ότι, σε πολύ χαμηλές θερμοκρασίες, τα περισσότερα σωματίδια που υπακούουν στην κατανομή ΒΕ μεταβαίνουν στη θεμελιώδη κατάσταση. Αντιθέτως, τα φερμιόνια (κατανομή FD) δεν μπορούν να βρεθούν στην ίδια κατάσταση, λόγω της απαγορευτικής αρχής του Pauli, άρα η μεγαλύτερη πιθανότητα κατάληψης μιας οποιαδήποτε κατάστασης δεν μπορεί να είναι μεγαλύτερη από τη μονάδα. Πράγματι, για E << E_F, ο εκθετικός παράγοντας της συνάρτησης Fermi, f (E) (Εξ. 8.28), τείνει στη μονάδα.

Σχήμα 8.9 Σύγκριση των τριών συναρτήσεων κατανομής για τα τέλεια αέρια, σύμφωνα με τους τρεις τύπους στατιστικής: Maxwell-Boltzmann (M.B.), Fermi-Dirac (F.D.) και Bose Einstein (B.E.), σε θερμοκρασία γειτονική του μηδενός. Τα διαγράμματα δίνουν την πιθανότητα κατάληψης μιας κατάστασης με ενέργεια *Ε*, για μια θερμοκρασία *T* > 0, τέτοια ώστε *kT* << *E*_F, όπου *E*_F η ενέργεια Fermi. Η αρχή των αξόνων δεν πρέπει να αντιστοιχεί ακριβώς στο μηδέν για τον άξονα της ενέργειας, αλλά σε κάποια *E* > 0. (Για *E* = 0 θα είχαμε προφανώς *f*(*E*) = ∞ για την κατανομή B.E.).

Θα ήθελα να τελειώσω με τα ακόλουθα λόγια του Sadi Carnot (1796 – 1832), τα οποία προέρχονται από το προσωπικό του ημερολόγιο:

"Point de discours inutiles. Parler peu de ce qu'on sait et point du tout de ce qu'on ne sait pas. Pourquoi ne pas dire plus souvent : je ne sais pas ?"³⁵

³⁵ Όχι άχρηστες αγορεύσεις. Να μιλάμε λίγο για πράγματα που γνωρίζουμε και καθόλου για ό,τι δεν γνωρίζουμε. Γιατί να μην λέμε πιο συχνά: «δεν ξέρω»; (Από τη βιβλιογρ. αναφορά 9)

ПАРАРТНМА І

ΠΡΟΛΕΓΟΜΕΝΑ

Από το βιβλίο του Εμμανουήλ Ψύχα (1807 -1891): ΣΤΟΙΧΕΙΑ ΤΗΣ ΠΕΙΡΑΜΑΤΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΤΗΣ ΜΕΤΕΩΡΟΛΟΓΙΑΣ (βλ. το βιβλίο επόμενη σελίδα)

ПРОЛЕГОМЕНА.

Η φυσική ένασχολουμένη περί τὰς γενικὰς ἰδιότητας τῶν σωμάτων καὶ τὰ φαινόμενα τῶν ἀβαρῶν ῥευστῶν, οἶον τοῦ θερμογόνου, τοῦ ἡλεκτρισμοῦ, τοῦ μαγνητισμοῦ καὶ τοῦ gωτός, εἶναι ἡ φιλοσοφία τοῦ ὑλικοῦ κόσμου καὶ ἡ βάσις ὅλων τῶν gυσικῶν ἐπιστημῶν. ὅθεν διὰ νὰ δώσωμεν πληρεστέραν καὶ ἀκριδεστέραν ἰδέαν τοῦ σκοποῦ καὶ τῆς ὡφελείας αὐτῆς, νομίζομεν ὡφέλιμον, πρὶν ὁμιλήσωμεν ἰδίως περὶ τῆς ἑπιστήμης ταύτης, νὰ ἐκθέσωμεν ἐν συντόμῷ τὴν γενικὴν διαίρεσιν τῶν φυσικῶν ἐπιστημῶν, καὶ νὰ εἴπωμεν ὀλίγα τινὰ περὶ τῆς ὡφελείας αὐτῶν εἰς τὴν βιομηγανίαν καὶ εἰς τὰς τέγνας.

Περί τῶν φυσικῶν ἐπιστημῶν. — Αί φυσικαὶ ἐπιστῆμαι κεῖνται μεταξύ τῶν μαθηματικῶν καὶ μεταφυσικῶν ἐπιστημῶν. ὅθεν ἄρχονται ἀπὸ τὰ ἀνεπίδεκτα ἀκριβοῦς μετρήσεως φαινόμενα, καὶ λήγουσιν εἰς τὰς θεωρίας περί τῶν ἐνεργειῶν τοῦ νοὸς καὶ τῆς δυνάμεως αὐτῶν ἐπὶ τῆς βουλήσεώς μας.

Καὶ αἰ μὲν μαθηματιχαὶ ἐπιστῆμαι, ἀφοῦ ἀπὸ τὰ ἀφηρημένα χατέλθωσιν εἰς τὰ συγκεκριμένα, προσδιορίζουσι καὶ μετροῦσι μὲ ἀκρίβειαν φαινόμενα τινὰ, τὰ ὁποῖα παραδεχόμεναι ὡς ἀξιώματα, καὶ θεμελιούμεναι ἐπ' αὐτῶν, προοδεύουσι διὰ μόνου τοῦ ὑπολογισμοῦ, τὰ ὅρια τοῦ ὁποίου εἶναι καὶ τῆς ἐπιστήμης ὅρια.

Αί δὲ ήθικαὶ καὶ μεταφυσικαὶ ἐπιστῆμαι ἐρευνῶσαι τὰ ήθικὰ καὶ ψυχικὰ πάθη, μεταδαλλόμενα διηνεκῶς ἀπὸ τὴν ἀκατανόητον ἐλαστικότητα τῆς ψυχῆς, δὲν δύνανται νὰ ἔχωσι κανόνας σταθεροὺς καὶ ὅρια προσδιωρισμένα.

Η ακρίδεια των μαθηματικών έπιστημών είναι σχεδόν ανεξάρτητος από την παρατήρησιν αί φυσικαί έπιστήμαι όμως έκτείνουσιν έπι πλέον

ΣΤΟΙΧΕΙΑ

THY

ΠΕΙΡΑΜΑΤΙΚΗΣ ΦΥΣΙΚΗΣ

KAI THY

ΜΕΤΕΩΡΟΛΟΓΙΑΣ.

Υπό

ΕΜΜΑΝΟΥΗΛ ΨΥΧΑ.

<image><section-header><section-header><section-header><section-header>

Σύμφωνα με το σύγγραμμα του ιστορικού, πολιτικού και καθηγητή Πανεπιστημίου, Παύλου Καρολίδη (1849 – 1930) «Σύγχρονος Ιστορία των Ελλήνων», ο Εμμανουήλ Ψύχας, καταγόμενος από τη Χίο, υπήρξε ο πρώτος καθηγητής των Φυσικών Επιστημών, Φυσικής και Χημείας, του πρώτου (εκτός από εκείνο της Αίγινας) Γυμνασίου και Ελληνικού Σχολείου που ιδρύθηκε στο Ναύπλιο το 1833.

ΠΑΡΑΡΤΗΜΑ ΙΙ περί του Θερμογονού

Από το ίδιο βιβλίο του Εμμανουήλ Ψύχα:

ΜΕΡΟΣ ΔΕΥΤΕΡΟΝ.

BIBAION ΠΡΩΤΟΝ. ΠΕΡΙ ΤΟΥ ΘΕΡΜΟΓΟΝΟΥ.

ΚΕΦΑΛΑΙΟΝ Α. Γενιχαί ιδιότητες.

Τὰ σώματα προξενοῦσιν εἰς τὰ αἰσθητήριά μας αἴσθημά τι ίδιαίτερον, τό όποῖον ἀνομάζομεν θερμότητα. Η ἐνέργεια δὲ αῦτη γίνεται εἰς ἡμᾶς, λ διὰ τῆς ἀμέσου ἐπαφῆς τῶν σωμάτων, ἡ καὶ μακρόθεν. είναι δὲ τοιαύτης ούσεως, ώστε δεν δυνάμεθα να την αποδώσωμεν είς αύτην την ύλην των σωμάτων. Όταν φέρωμεν την χειρα επί της έστίας του πυρός, εύθύς αξσθανόμεθα, ότι δεν είναι ή του άνθρακος ύλη, ήτις αοράτως μας εγγίζει καί μας θερμαίνει. όταν δεχώμεθα τὰς ήλιακὰς ἀκτῖνας, κρίνομεν ὁμοίως, ότι ή τοῦ ήλίου βαρεῖα ῦλη δὲν προξενεῖ εἰς την ὅρασίν μας την ἐντύπωσιν τοῦ φωτός, καὶ εἰς ὅλα τὰ αἰσθητικὰ μέρη τοῦ ὀργανισμοῦ μας τὴν ἐντύπωσιν της θερμότητος. Υπάρχει λοιπόν ένεργόν τι, διάφορον της χυρίως ούσίας τῶν σωμάτων, τὸ ὁποῖον ἐξερχόμενον ἀπὸ τὴν μάζαν αὐτῶν διαπερά τὰς μεγαλητέρας ἀποστάσεις, και ἀποτελεῖ συνεχή συγκοινωνίαν με. ταξύ ήμῶν καὶ ἐκείνων. Τοῦτο δὲ τὸ ἐνεργοῦν, τὸ ὁποῖον εἶναι ἡ αἰτία τοῦ γινομένου αίσθήματος, ώνομάζετο διαφόρως μέχρι της μεταρρυθμίσεως της χημικής όνοματολογίας, ήτις έγινε παρά των Κ.Κ. Λαβοϊζιέρου, Βερθολέτου, Μορθώ και Φουρκροά, οίτινες έκ συμφώνου το ώνόμασαν θερμογόνον, η θερμαντικόν (Calorique).

Σημειωτέον δε, ότι αύτοι οι όρισμοι δεν φυλάττονται άκριδως. διότι πολλάκις μεταχειριζόμεθα το όνομα θερμότης δια να όνομάσωμεν αύτο το ένεργοῦν, το όποιον είναι ή αιτία των φαινομένων.

Τὸ θερμογόνον ἐνεργεῖ ἐφ' ὅλων ἐν γένει τῶν σωμάτων, ὅργανικῶν καὶ μὴ ὀργανικῶν. Γνωρίζομεν δὲ, ὅτι ἡ αἰτία τῆς τήξεως τοῦ πάγου, τῆς βράσεως τοῦ ὕδατος, τῆς χωνεύσεως τῶν μετάλλων καὶ ὅλων τῶν ἀλλων φαινομένων τοῦ αὐτοῦ είδους, εἶναι τὸ θερμογόνον. Τοῦτο δὲ, ἐλεύθερον sipiσχόμενον, εἶναι ῥευστὸν καὶ κινεῖται ὡς τὸ φῶς εἰς σχῆμα ἀπτίνων είναι λεπτότατον, ἀόρατον, ἐλαστικώτατον καὶ ἀβαρές: ζητεῖ τὴν ἰσοῥροπίαν εἰς τὰ σώματα, διαπερặ αὐτὰ μὲ πλειοτέραν ἡ ὀλιγωτέραν εὐκολίαν, τὰ διαστέλλει, τὰ ἀναλύει, φέρει αὐτὰ ἀπὸ στερεῶς εἰς ὑγρὰν κατάστασιν, κοι

ΠΑΡΑΡΤΗΜΑ ΙΙΙ ΜΗΧΑΝΙΚΟ ΙΣΟΔΥΝΑΜΟ ΤΗΣ ΘΕΡΜΟΤΗΤΑΣ

Σύμφωνα με τη θεωρία που αναπτύξαμε, το έργο και η θερμότητα είναι δύο ποσότητες που μπορούν να μετατραπούν η μία στην άλλη και, επομένως, μια δεδομένη ποσότητα έργου θα πρέπει να προσφέρει πάντα την ίδια ποσότητα θερμότητας, αρκεί όλο το έργο που καταναλίσκεται να μετατρέπεται σε θερμότητα. Η μονάδα μετρήσεως της θερμότητας είναι η θερμίδα (cal), που αντιστοιχεί στην ενέργεια που απαιτείται για να ανυψωθεί η μονάδα της μάζας του νερού κατά έναν βαθμό Κελσίου (1 ⁰C). Το μηχανικό ισοδύναμο της θερμότητας είναι λοιπόν ο συντελεστής, *J*, μετατροπής της μονάδας του έργου (J ή erg) στη μονάδα της θερμικής ενέργειας, δηλαδή τη θερμίδα. Οι πρώτες προσπάθειες για τον προσδιορισμό της έγιναν από τον Benjamin Thomson το 1797. Ακολούθησαν οι Marc Séguin (1839), Robert Mayer (1842), Ludwig Colding (1843), James Joule (1843 - 1849), Carl Holtzmann (1845), και Gustave-Adolphe Hirn (1856). Η ακριβέστερη τιμή βρέθηκε από τον Joule, ο οποίος χρησιμοποίησε τη συσκευή που φαίνεται στο ακόλουθο σχήμα.

Η συσκευή που χρησιμοποίησε ο James Prescott Joule το 1843 για τον προσδιορισμό του μηχανικού ισοδύναμου της θερμότητας, *J*. Τα βάρη που πέφτουν είναι συνδεδεμένα, με τη βοήθεια ενός σκοινιού, με έναν ξύλινο άξονα ο οποίος φέρει πτερύγια και είναι βυθισμένος μέσα σε ένα θερμιδόμετρο γεμάτο με νερό. Όταν τα βάρη πέφτουν, τα πτερύγια περιστρέφονται, αναταράζοντας το νερό και αυξάνοντας, επομένως, τη θερυοκρασία του.

Μετρώντας, με τη βοήθεια του κανόνα, το ύψος από το οποίο πέφτουν τα βάρη και, με τη βοήθεια του θερμομέτρου, την αύξηση της θερμοκρασίας του νερού, εύκολα υπολογίζει κανείς το *J*, θεωρώντας, βέβαια, ότι όλη η δυναμική ενέργεια των βαρών μετατρέπεται σε θερμότητα μέσα στο νερό. Βλ. και Video:

<u>Understand the Mechanical Equivalent of Heat -</u> <u>YouTube</u>

Η εικόνα της επόμενης σελίδας περιγράφει μια συσκευή προσδιορισμού του μηχανικού ισοδύναμου της θερμότητας, *J*, από το δεύτερο μέρος: «ΘΕΡΜΑΝΤΙΚΟΝ – ΟΠΤΙΚΗ» του βιβλίου «ΠΕΙΡΑΜΑΤΙΚΗ ΦΥΣΙΚΗ» του Τιμ. Α. Αργυρόπουλου, το οποίο εκδόθηκε στην Αθήνα το 1891 και απεικονίζεται στη σελίδα 120.

Ο Τιμολέων Αργυρόπουλος (1847 – 1912) γεννήθηκε στην Αθήνα. Φοίτησε στο Πανεπιστήμιο Αθηνών, απ' όπου αποφοίτησε με πτυχίο και διδακτορικό Φυσικής, και συνέχισε τις σπουδές του στη Σορβόννη. Επέστρεψε και πάλι στην Ελλάδα, και το 1884 εκλέχτηκε καθηγητής της Πειραματικής Φυσικής στο Πανεπιστήμιο Αθηνών, όπου και διετέλεσε και κοσμήτωρ της Σχολής Θετικών Επιστημών (1909 – 1910). Ήταν ο ιδρυτής του πρώτου εργαστηρίου Πειραματικής Φυσικής στο Πανεπιστήμιο Αθηνών και εισήγαγε τη νεότερη ηλεκτρολογία στην Ελλάδα.

6'.) Θερμογονόμετρον Β πλήρες ὕδατος ή ὑδραργύρου ἐμπεριέχει πτερωτόν τροχόν κινητόν περὶ τὸν ἄξονα ΑΒ (σχ. 87). Ὁ τροχός οὐτος στρέφεται διὰ διπλοῦ σχοινίου, ὅπερ διέρχεται ἐπὶ τῶν δύο τροχαλιῶν Γ καὶ Δ' αὐται κινοῦνται διὰ τῶν βαρῶν Ε καὶ Θ, ἅτινα πίπτουσιν ἐξ ῦψους προσδιοριζομένου διὰ τῶν κανόνων Ζ καὶ Η. Ἐπαναλαμβάνομεν εἰκοσάκις τὴν ἐργασίαν ταύτην καὶ παρα-

Σχ. 87.

τηροῦμεν ὅτι τὸ ἔργον τῶν πιπτόντων βαρῶν ἀπορροφᾶται ὀλόκληρον ὑπὸ τῶν ἀντιστἀσεων τῶν ἐκ τῆς τριδῆς παραγομένων, οὕτω δὲ τὸ ῦδωρ τοῦ θερμογονομέτρου Β θερμαίνεται.

Η παραγομένη θερμότης χαταμετρείται διά τῶν συνήθων θερμογονομετριχῶν μεθόδων. Τὸ δὲ δαπανώμενον ἔργον ἐχ τῆς ἀντιστάσεως τοῦ ὑγροῦ ἰσοῦται τῷ ὅλιχῷ ἔργῷ Ρη, ὅπερ λαμβάνομεν πολυπλασιάζοντες τὰ δύο βάοη ἐπὶ τὸ ὕψος, ὅπερ διατρέχουσιν ἡλαττωμένον κατὰ τὸ ἔργον ρη' τὸ ἔργον τοῦτο ἀπόλλυται ἕνεκα τῶν τριδῶν τῆς συσκευῆς, προσδιορίζομεν δ' αὐτὸ ἐνοῦντες τὰς τροχαλίας Γ καὶ Δ διὰ τοῦ σχοινίου ΓΔ, χωρἰς νὰ τὸ περιστρέψωμεν περὶ τὸν κύλινδρον Α καὶ ἀναζητοῦντες τὸ ἀπαιτούμενον βάρος ρ, ἕνα μεταδώση εἰς τὰς τροχαλίας κίνησιν ἰσοταχῆ. Τὸ πείραμα τοῦτο παρέ-

Η τιμή που προσδιόρισε ο James Joule για το θερμικό ισοδύναμο της θερμότητας ήταν: J = 772,24 foot pound force, δηλαδή 4,155 J·cal⁻¹, που δεν απέχει πολύ από εκείνην που εδραιώθηκε το 1920, ίση με 4,186 J·cal⁻¹. Η τιμή αυτή αντιστοιχεί, προφανώς, στην ειδική θερμότητα του νερού, η οποία εξαρτάται από τη θερμοκρασία του και κυμαίνεται μεταξύ των τιμών 4,17 και 4,22 J·g^{-1.°}C⁻¹.

ΠΑΡΑΡΤΗΜΑ ΙV

Η διατύπωση του Νόμου Dulong-Petit, από το βιβλίο ΠΕΙΡΑΜΑΤΙΚΗ ΦΥΣΙΚΗ ΤΟΥ ΤΙΜ. Α. ΑΡΓΥΡΟΠΟΥΛΟΥ, ΑΘΗΝΑ 1891

Νόμος τοῦ Dulong καὶ Petit t. O Dulong καὶ ὁ Petit ἐρευνῶντες τὴν εἰδικὴν θερμότητα τῶν σωμάτων ἀνεῦρον τὸν ἐπόμενον νόμον ὅτι τὸ γινόμενον τῆς εἰδικῆς θερμότητος οἰουδήποτε ἀπλοῦ σώματος ἐν στερεῷ κατασ κάσει ἐπὶ τὸ ἀτομικὸν αὐτοῦβἀρος εἶνε σταθερὸς ἀριθμός. Ὁ ἀριθμὸς οὐτος ἐκφράζει τὸ ποσὸν τῆς θερμότητος, ὅπερ δύναται νὰ θερμάνη κατὰ ἕνα βαθμὸν ἐν ἄτομον οἰουδήποτε χημικοῦ στοιχείου καὶ καλεῖται ἀτομικὴ θερμότητο. Ὅστε ὁ ἀνω τέρω νόμος διατυποῦται ἀπλούστερον οῦτω πως. Πάντα τὰ χημικὰ

ΠΑΡΑΡΤΗΜΑ V

ΔΗΜΗΤΡΙΟΣ ΧΟΝΔΡΟΣ

Στη σελίδα iv έχουμε αντιγράψει ένα απόσπασμα από τον Πρόλογο του βιβλίου «ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ» του Δημητρίου Χόνδρου, ο οποίος γράφτηκε το 1923. Το βιβλίο απεικονίζεται αμέσως πιο κάτω.

Ο Δημήτριος Χόνδρος (1882 – 1962) γεννήθηκε στις Σέρρες και φοίτησε στη Σχολή Φυσικών Επιστημών του Πανεπιστημίου Αθηνών (1900 – 1905), από όπου αποφοίτησε με βαθμό άριστα. Συνέχισε τις σπουδές του στα Πανεπιστήμια του Göttingen και του Μονάχου (1906 – 1908), παίρνοντας το δίπλωμα τού διδάκτορα της φιλοσοφίας. Υπηρέτησε ως τακτικός καθηγητής της Φυσικής στο Πανεπιστήμιο Αθηνών (1912 – 1952), όπου και διετέλεσε κοσμήτωρ της Σχολής Θετικών Επιστημών (1917 – 1918). Ήταν επίσης Πρόεδρος της Γεωδαιτικής και Γεωφυσικής Επιτροπής του Κράτους και Πρόεδρος του Τηλεπικοινωνιακού Συμβουλίου και του Γνωμοδοτικού Τεχνικού Συμβουλίου ραδιοφωνίας.

Περισσότερα για τον Δ. Χόνδρο στο http://jupiter.chem.uoa.gr/~thanost/Pioneers/IV.pdf

XONAPOY TAKTIKOY KAOHPHTOY THE OYEIKHE EN TE 1941 MAGHMA ΦΥΣΙΚΗΣ ΠΡΟΣ ΧΡΗΣΙΝ ΤΩΝ ΠΡΩΤΟΕΤΩΝ ΦΟΙΤΗΤΩΝ ΤΩΝ ΦΥΣΙΚΩΝ ΚΑΙ ΜΑΘΗΜΑΤΙΚΩΝ EHIETHMON KAI THE IATPIKHE ΤΟΜΟΣ ΠΡΩΤΟΣ ΓΕΝΙΚΗ ΜΗΧΑΝΙΚΗ-ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΥΛΗΣ ΑΚΟΥΣΤΙΚΗ-ΘΕΡΜΟΤΗΣ ('Ανατύπωσις) EN OTIKON N. TZAK ΔΕΛΑΓ TIKA & EIA 1939

ΠΑΡΑΡΤΗΜΑ VI

Στη σελίδα 57 αντιγράψαμε τον ορισμό του τελείου αερίου από το βιβλίο TRAITÉ ÉLÉMENTAIRE DE PHYSIQUE, των Adolphe Ganot και Georges Maneuvrier. Η πρώτη έκδοση του βιβλίου από τον Adolphe Ganot (1804 – 1887) κυκλοφόρησε στις Βρυξέλλες το 1858. Το βιβλίο επανεκδόθηκε 12 φορές μέχρι το 1882 και μεταφράστηκε στα Γερμανικά, Ολλανδικά, Ισπανικά, Ρωσικά, και Αγγλικά. Μετά τον θάνατο τού Α. Ganot, τον εκσυγχρονισμό και την επανέκδοση του βιβλίου ανέλαβε ο G.F. Maneuvrier (1849-1933), και το βιβλίο εξακολούθησε να εκδίδεται μέχρι το 1931. Εδώ παρουσιάζεται η 25^η Έκδοση, Παρίσι 1913.

ΠΑΡΑΡΤΗΜΑ VII

ΟΛΙΚΑ ΚΑΙ ΜΗ ΟΛΙΚΑ ΔΙΑΦΟΡΙΚΑ

Έστω ότι μια συνάρτηση F(x, y) εξαρτάται μόνο από τις τιμές x, y. Τότε, αν τα x και y μεταβληθούν κατά απειροστές ποσότητες, αν δηλαδή

 $x \rightarrow x + dx$ $\kappa \alpha i \quad y \rightarrow y + dy$

έχουμε εξ ορισμού,

$$dF \equiv F (x + dx, y + dy) - F (x.y)$$

Το dF όμως μπορεί να γραφεί και με τη μορφή

$$dF = A(x,y) dx + B(x,y) dy$$

όπου

$$A(x,y) = \frac{\partial F}{\partial x}$$
 $\kappa \alpha B(x,y) = \frac{\partial F}{\partial y}$

Λέμε τότε ότι το dF είναι ολικό διαφορικό, που σημαίνει ότι υπάρχει μια ποσότητα F(x, y) τέτοια ώστε το dF να είναι το διαφορικό της.

Σύμφωνα με τα παραπάνω, όταν μεταβαίνουμε από μια αρχική θέση $(x,y)_i$ σε μια τελική $(x,y)_f$, το επικαμπύλιο ολοκλήρωμα κατά μήκος της διαδρομής της μεταβολής από την αρχική στην τελική θέση θα γράφεται με τη μορφή

$$\int_{i}^{f} A \, \mathrm{d}x + B \, \mathrm{d}y = \int_{i}^{f} \mathrm{d}F = F_{f} - F_{i} = \Delta F$$

όπου το ΔF εξαρτάται μόνο από την αρχική και την τελική θέση και όχι από την πορεία της μεταβολής.

Αν, αντίστροφα, θεωρήσουμε μια γενική απειροστή ποσότητα

$$\mathrm{d}G = A'(x,y)\,\mathrm{d}x + B'(x,y)\,\mathrm{d}y$$

δεν ισχύει πάντα ότι το dG είναι ολικό διαφορικό. Δεν σημαίνει δηλαδή ότι υπάρχει πάντα μια ποσότητα G(x,y), τέτοια ώστε η τιμή της να εξαρτάται μόνο από τα x και y, έτσι ώστε να έχουμε

$$dG \equiv G (x + dx, y + dy) - G (x.y)$$

Οπότε δεν ισχύει πάντα ότι το επικαμπύλιο ολοκλήρωμα

$$\int_{i}^{j} dG = \int_{i}^{j} A' \, dx + B' \, dy$$

είναι ανεξάρτητο του δρόμου.

Όταν το dG δεν είναι ολικό διαφορικό, το συμβολίζουμε συνήθως με d G (ή dG), αντικαθιστούμε δηλαδή το d με d (ή d).

Παράδειγμα Είναι εύκολο να δει κανείς ότι το $d G = adx + \beta(x/y)dy$ δεν είναι ολικό διαφορικό, γιατί δεν μπορούμε να το ολοκληρώσουμε, αν δεν γνωρίζουμε τη συνάρτηση που συνδέει μεταξύ τους τα x και y, άρα τον δρόμο που ακολούθησε η μεταβολή. Το αποτέλεσμα της ολοκλήρωσης εξαρτάται, επομένως, από τη διαδρομή και όχι μόνον από την αρχική και την τελική θέση.

Ενώ το dF = d G/x είναι ολικό διαφορικό, όπως εύκολα μπορούμε να αποδείξουμε.

ΒΙΒΛΙΟΓΡΑΦΙΑ

Το κείμενο βασίστηκε κατά ένα μεγάλο μέρος στα ακόλουθα τρία βιβλία, από τα οποία προέρχονται και πολλά από τα σχήματα που το συνοδεύουν:

- F. Reif,, Statistical Physics, Berkeley Physics Course, Volume 5. Ελληνική μετάφραση: Στατιστική Φυσική, Μαθήματα Φυσικής Πανεπιστημίου Berkeley, Τόμος 5, Εργαστήρια Φυσικής ΕΜΠ, Αθήνα, 1978.
- M. Alonso and E.J. Finn, *Quantum and Statistical Physics*, Fundamental University Physics, Vol. 3, Addison-Wesley Publ. Co, 1968. (<u>http://www.slideshare.net/PedroPrez19/alonso-finn-university-physics-vol3-fundamental-quantum-and-statistical-physics</u>)
- F. Mandl, *Statistical* Physics, The Manchester Physics Series, John Wiley and Sons Ltd. Ελληνική μετάφραση: Στατιστική Φυσική, Γ.Α. Πνευματικός, Αθήνα, 1990.

Από την πληθώρα των πανεπιστημιακών βιβλίων Στατιστικής Φυσικής που κυκλοφορούν, προτείνουμε ακόμη τα ακόλουθα:

- 4. D.V. Schroeder, An Introduction to Thermal Physics, Addison Wesley Longman, 2000.
- 5. F. Reif, *Fundamentals of Statistical and Thermal Physics*, McGraw-Hill, Kogakusha Ltd. 1965.
- 6. D. Kondepudi and I. Prigogine, *Modern Thermodynamics*, J. Wiley and Sons, 1998.
- 7. D. Tong, Statistical Physics, 2012. <u>http://www.damtp.cam.ac.uk/user/tong/statphys.html</u> (Είναι εξαιρετικό και πολύ εύχρηστο, σε μορφή pdf. Περιέχει και προβλήματα)
- 8. C. Kittel, *Elementary Statistical Physics*, J. Wiley and Sons, New York, 1958, 1986.
- 9. Patrice Remaud, *Sadi Carnot*, http://blogs.univ-poitiers.fr/p-remaud/files/2012/03/Sadi-Carnot.pdf

(Ένα θαυμάσιο σύγγραμμα, για τη γέννηση της Θερμοδυναμικής, ξεκινώντας από τον Sadi Carnot (1796–1832) και φθάνοντας μέχρι τον William Thomson (1824–1907), περνώντας από τους Emile Clapeyron (1799–1864), Rudolf Clausius (1822–1888) και James Joule (1818–1889).

Για λόγους ιστορικούς, θα πρέπει να αναφέρουμε και τα εξής κλασικά συγγράμματα:

- 10. R.C. Tollman, The Principles of Statistical Mechanics, Clarendon Press, Oxford, 1938.
- 11. E. Schrödinger, *Statistical Thermodynamics*, 2^d Edition, Cambridge University Press, 1952.
- 12. L.D. Landau and E.M. Lifschitz, Theoretical Physics, Vol. 5, Statistical Physics,
 - a. Early version: L.D. Landau (1938). Statistical Physics, Clarendon Press.
 - b. L.D. Landau, E.M. Lifschitz, Statistical Physics, Vol. 5, 1st ed. (1951)
 - c. L.D. Landau, E.M. Lifschitz, Statistical Physics. Vol. 5, 2nd ed. (1968)
 - d. L.D. Landau, E.M. Lifschitz, Statistical Physics. Vol. 5, 3rd ed. (1980) Butterworth-Heinemann.

http://ip144.qb.fcen.uba.ar/libroslfp/deThierryMora/Statistical Physics -Part 1_Vol.V_-L.D. Landau_E.M. Lifschitz.pdf Δίνουμε, τέλος, έναν σύντομο κατάλογο βιβλιογραφικών αναφορών Κβαντικής Φυσικής, για την υπενθύμιση ορισμένων θεμάτων Κβαντικής.

- H.D. Young, University Physics, Volume B, 8th edition, Addison-Wesley Publishing Company. Ελληνική μετάφραση: Πανεπιστημιακή Φυσική, Τόμος Β΄, Ηλεκτρομαγνητισμός, Οπτική, Σύγχρονη Φυσική, Εκδόσεις Παπαζήση, σελ. 1162 – 1211.
- 14. Σ. Τραχανά, Στοιχειώδης Κβαντική Φυσική, Πανεπιστημιακές Εκδόσεις Κρήτης, 2012.
- 15. E.H. Wichmann, Quantum Physics, Berkeley Physics Course, Volume 4. Ελληνική μετάφραση: Κβαντική Φυσική, Μαθήματα Φυσικής Πανεπιστημίου Berkeley, Τόμος 4, Εργαστήρια Φυσικής ΕΜΠ, Αθήνα, 1978.
- F. Mandl, *Quantum Mechanics*, 2^d Edition, Butterworth Scientific Publications, London, 1957.
- 17. A. Yariv, An Introduction to Theory and Applications of Quantum Mechanics, Dover Books on Physics, NY, 2013.

EYPETHPIO

Avogadro, αριθμός (Avogadro's number), N, 58, 62, 71 Boltzmann, 36, 38, 40, 43, 60, 79, 83, 85, 86, 94, 99 - 100, 103, 104, 107 - 113 Boltzmann, ορισμός εντροπίας κατά (Boltzmann, entropy definition), 38, 40, 86 Boltzmann, παράγοντας (Boltzmann factor), 43, 83, 94 Boltzmann, $\sigma \tau \alpha \theta \epsilon \rho \dot{\alpha}$ (Boltzmann constant), k 36, 38, 79 Bose-Einstein, στατιστική κατανομή (Bose-Einstein distribution), 100 - 101, 101 - 104, 107 - 109 Carnot, 40, 74, 90 - 92, 98, 114 Carnot, Κύκλος ή Μηγανή του (Carnot cycle, Carnot engine), 90 - 92, 98 Clausius, 38, 40, 41, 48, 81, 86, 124 Clausius, ορισμός εντροπίας κατά (Clausius entropy definition), 38, 40, 41, 48, 86 Clausius, ανισότητα (Clausius inequality), 40, 81 Curie, νόμος (Curie law), 53 Debye, θερμοκρασία (Debye temperature), 73, 107, 108 Dulong-Petit, νόμος των (Dulong-Petit law), 70, 103, 104, 116 Feynman, 1 Fermi, 103, 105, 109, 110, 111, 112, 113 Fermi-Dirac, στατιστική κατανομή (Fermi-Dirac distribution), 103, 105, 109 – 112, 113 Fermi, ενέργεια, 109, 110 Fermi, θερμοκρασία, 109 Ganot, 57, 63, 122 Gibbs, 5, 10, 67, 88 Gibbs, ελεύθερη ενέργεια κατά (Gibbs free energy), 83, 84 Gibbs, παράδοξο του (Gibbs paradox), 67 Helmholz, ελεύθερη ενέργεια κατά (Helmholz free energy), 88 k, σταθερά Boltzmann, (Boltzmann constant), 36, 38, 79 Maneuvrier, 57, 63, 122 Maxwell, 43, 45, 59, 60, 87, 103, 104, 109, 111 – 113 Maxwell, εξισώσεις (Maxwell equations), 87 Maxwell, κατανομή ταχυτήτων κατά (Maxwell, distribution of speeds), 48, 59-60 Maxwell-Boltzmann, στατιστική κατανομή (Maxwell-Boltzmann distribution), 43, 104, 109, 112, 113 Pauli, απαγορευτική αρχή του (Pauli exclusion principle), 100, 103, 109, 113 Prigogine, 3, 124 R, Σταθερά των αερίων (Gas constant), 62, 64, 71 – 73, 78, 84, 86, 87, 107, 108 Sackur - Tetrode, τύπος, 67 Schottky, ανωμαλία (Schottky anomaly), 49, 53, 54 Stefan-Boltzmann, νόμος (Stefan-Boltzmann law), 107 Stirling, $\pi \rho \sigma \sigma \epsilon \gamma \gamma \sigma \tau \sigma \tau$ (Stirling approximation), 67, 103, 105 Αδιαβατική (Adiabatic), 25 – 27, 63, 76 – 82, 90 – 92, 96 – 98 αλληλεπίδραση (interaction), 25 - 27, 63, 76 - 82, 90 - 92, 96 - 98 αντιστρεπτή μεταβολή, 82, 83 απομαγνήτιση (demagnetization), 96-97εκτόνωση (expansion), 79 – 81, 90 – 95, 98 μεταβολή (change), 25, 63, 76 - 82, 90 - 95, 98 συμπίεση (compression), 79 - 81, 90 - 95, 98 ψύξη (cooling), 94 Aίτημα ίσων πιθανοτήτων (Postulate of equal a priori probabilities), 12, 23, 47 Ακτινοβολία μέλανος σώματος (Black body radiation), 2, 105 – 107 Αλληλεπίδραση συστημάτων (Systems interaction), 23 - 32

αδιαβατική (adiabatic), 25 - 27, 63, 76 - 82, 90 - 92, 96 - 98 γενική (general), 27 – 28 $\theta \epsilon \rho \mu \kappa \eta$ (thermal), 23 – 24, 33 – 49 Αντιστρεπτή διαδικασία (Reversible process), 28 – 32, 39 - 41, 48, 75 – 89, 94 – 97 Αντλία θερμότητας (Heat pump), 94 Aνωμαλία Schottky (Schottky anomaly), 49, 53, 54 Απαγορευτική αρχή του Pauli (Pauli exclusion principle), 100, 103, 109, 113 Απειροστή μεταβολή (Infinitesimal change), 28, 32, 40, 48, 75 – 77, 85, 86 Aπ δ δ σ σ η μηγανής (Engine efficiency), 90 - 92Απόλυτο μηδέν (Absolute zero), 53, 72, 98, 110, 113 Αρμονικός ταλαντωτής (Harmonic oscillator), 6, 19 - 20, 71 - 73Aταξία (Disorder), 38, 54, 55, 82, 96 Βαθμοί ελευθερίας (Degrees of freedom), 5, 7, 9, 35, 37, 64, 65, 72, 73, 89, 108 Βαθμός εκφυλισμού (Degree of degeneration), 6 – 9, 14, 86, 101 - 104, 112 Γενική αλληλεπίδραση (General interaction), 27 - 28Δεξαμενή θερμότητας (Thermal reservoir, Thermal bath), 41 - 48, 54, 57, 58, 65, 69, 80, 88, 90 -97 Δεύτερος νόμος της θερμοδυναμικής (Second law of thermodynamics), 38 - 40, 47, 77, 85 – 86, 89, 90,93 Ειδική θερμότητα (Specific heat), 2, 41, 48 - 49, 53 - 54, 63 - 65, 70 - 73, 86, 107 - 112ηλεκτρονίων (of electrons), 109 - 112ιδανικού αερίου (of ideal gas), 63 - 65, 71, 72 παραμαγνητικής ουσίας (of paramagnetic substance), 53 - 54στερεών (of solids), 73, 107 - 108 Εκτατική μεταβλητή (Extensive property), **41**, 48 Εκφυλισμός, Εκφυλισμένες στάθμες (Degeneration, Degenerated states), 6 - 9, 14, 86, 101 - 104, 112 Ελεύθερη ενέργεια κατά Gibbs (Gibbs free energy), 88 Ελεύθερη ενέργεια κατά Helmholtz (Helmholtz free energy), 88 Ενεργειακές στάθμες (Energy levels), 6-9, 11, 14-16, 20, 23-27, 33, 42-45, 53-56, 69, 75-77, 83, 86, 94 - 96, 101 - 104, 111 Ενεργειακή κατανομή (Energy distribution), 51 – 53, 58 – 59, 65, 105 – 107, 110 ελεύθερων ηλεκτρονίων (of free electrons), 110, ακτινοβολίας μέλανος σώματος (of black body irradiation), 105 - 107σε παραμαγνητικό υλικό (in paramagnetic substance), 51 - 53σε ιδανικό αέριο (in ideal gas), 58 - 59Ενθαλπία (Enthalpy), 1, **64**, 88 Εντατική μεταβλητή (Intensive property), 41, 48, 67 Εντροπία (Entropy), **37 – 41**, 45, 47 – 48, 54 – 56, 65 – 67, 76, 80 – 98 ιδανικού αερίου (of ideal gas), 65 - 67θερμικής δεξαμενής (of heat bath), 47 – 48, 90 μεταβολή της σε διάφορες διεργασίες, 81 – 84 παραμαγνητικής ουσίας (of paramagnetic substance), 54 - 56, 96 συστήματος σε θερμική δεξαμενή (of a system in heat bath), 46 - 47ορισμός κατά Boltzmann (Boltzmann definition), 38, 40, 86 ορισμός κατά Clausius (Clausius definition), 39, 40, 86 Εξισώσεις Maxwell (Maxwell equations), 87 Έργο (Work), 25 – 31, 38, 40, 61 – 64, 76, 78 – 81, 83, 85, 88 – 94, 98, 118 Εσωτερική ενέργεια (Internal energy), 1, 2, 85, 89 Θερμική αλληλεπίδραση (Thermal interaction), 23 - 25, 33 - 49Θερμική δεξαμενή (Thermal reservoir, Thermal bath), 41 - 48, 54, 58, 65, 67, 94 - 97 Θερμική ενέργεια (Thermal energy), 23 -25, 32, 35, 37, 89, 112, 118 Θερμική / Θερμοδυναμική ισορροπία (Thermal / thermodynamic equilibrium), 3, 5, 33 - 37, 46, 47, 51, 57, 60 - 69, 71, 75, 85, 105, 107, 108 Θερμική μηχανή (Heat engine), 89 - 94Θερμογόνον (Caloric), 23, 117 Θερμοδυναμική (Thermodynamics), 1, 27, 38 – 40, 47, 49, 72, 77, 81, 84, 85 – 97, 124 Θερμοκρασία (Temperature), 1, 5, 11, 15, 23, 24, 28, 33, **35 – 41**, 42 – 48, 51 – 58, 60 – 75, 77 – 98, 107 - 113, 118, 119 Θερμοκρασία Debye (Debye temperature), 73, 107, 108 Θερμότητα (Heat), 23 - 28, 32, 38, 40, 47, 56, 64, 76 78, 80 - 88, 94 - 98, 118 Θεομογωρητικότητα (Thermal capacity, Heat capacity), 48, 53, 54, 63, 81, 86, (βλ. και ειδική θερμότητα) Θεώρημα ισοκατανομής (της ενέργειας) (Equipartition theorem), 69 - 73, 107 - 109Ιδανικό κλασικό αέριο (Ideal classical gas), 49, 57 – 69, 70, 71, 78, 79 – 84, 86, 112 Ισόθερμη μεταβολή (Isothermal change), 77 - 82, 83, 90 - 91, 94 - 96Ισορροπία (Equilibrium), 2, 3, 5, 9 – 13, 25, 29 – 51, 57 – 60, 67 – 71, 75, 79, 83 – 88, 103 – 108 Ισχύς κλασικής προσέγγισης (Validity of classical approximation), 67 – 69, 73, 108 Kανονική κατανομή (Canonical distribution), 42-45, 53, 69 Kανονικό σύνολο (Canonical ensemble), 42-45 Κανονικοποίηση (Normalization), 42, 43, 105, 110 Κατανομή ενεργειών κατά Maxwell (Maxwell, energy distribution), 59 Kατανομή ταχυτήτων κατά Maxwell (Maxwell, distribution of speeds), 45, 59, 60 Κλασική προσέγγιση, Ισχύς της (Validity of classical approximation), 67 – 69, 73, 108 Κλειστό σύστημα (Closed system), 88 Κυκλική μεταβολή (διαδικασία) (Cyclic process), 28 – 30, 40, 92 Kύκλος Carnot (Carnot cycle), 90 – 92, 98 Μακροκατάσταση (Macrostate), 9, 10, 13, 23, 27, 31 – 39, 46, 48, 84 – 86, 89 – 90, 101, 103 Mέλαν σώμα (Black body), 2, 105 – 107 Μεταβολές της εντροπίας (Entropy changes), 81 - 84Μεταβολή απειροστή (Infinitesimal change), 28, 32, 40, 48, 75 - 77, 85, 86 Mη αντιστρεπτή διαδικασία (Irreversible process), 29 – 32, 39, 40, 48, 76, 82, 83, 86, 89 Mηχανή Carnot (Carnot engine), 90 – 92, 98 Μηχανικό ισοδύναμο της θερμότητας (Mechanical equivalent of heat), 118 – 119 Μικροκανονικό σύνολο (Microcanonical ensemble), 11 – 13, 23, 42 Μικροκατάσταση (Microstate) 9 – 14, 23, 31, 35, 38, 39, 47, 54, 55, 66, 85, 99, 101 Μοριακή θερμότητα, 48, 70 – 73, 107 – 108, βλ. και Ειδική θερμότητα Μποζόνιο (Boson), 104, 113 Νόμοι της θερμοδυναμικής (Laws of Thermodynamics), 1, 27, 28, 37, 38, 39, 47, 63, 76 - 79, 81, 83 - 85, 86, 89, 90, 93 πρώτος νόμος (first law), 27 – 28, 38, 63, 76 – 79, 83 – 85, 89, 93 δεύτερος νόμος (second law), 38 - 40, 47, 77, 85 - 86, 89, 90, 93 τρίτος νόμος (third law), 72, 86, 97, 98 Nόμος Curie (Curie law), 53 Nόμος Dulong-Petit (Dulong-Petit law), 70, 103, 104, 116 Nόμος Stefan-Boltzmann (Stefan-Boltzmann law), 107 Ολικά και μη ολικά διαφορικά (Total and non total differentials), 28, 40, 123 Παράδοξο του Gibbs (Gibbs paradox), 67 Παραμαγνητισμός (Paramagnetism), 51 - 56, 112Προσιτές καταστάσεις (Accessible states), 9 - 13, 30 - 35, 39, 42, 43, 44, 55, 56, 75, 82, 87, 89 Πρώτος νόμος της θερμοδυναμικής νόμος (First law of thermodynamics), 27 - 28, 38, 63, 76 - 79, 83 - 85, 89, 93 Πυκνότητα καταστάσεων (Density of states), **14 – 18**, 42, 57 – 59, 82, 87, 101, 104, 106, 109 – 111 $\Sigma \pi i v$ (Spin), 1, 7 – 13, 25 – 26, 51 – 56, 95, 99 – 109 Σταθερά των αερίων R (Gas constant, R), **62**, 64, 71 – 73, 78, 84, 86, 87, 107, 108 Σταθερά Boltzmann k (Boltzmann constant, k), 36, 38, 79

Στατιστικές κατανομές (Statistical distributions)

Στατιστική κατανομή Bose-Einstein (Bose-Einstein statistical distribution), 103, 105 – 107, 112 – 113

Στατιστική κατανομή Fermi-Dirac (Fermi-Dirac statistical distribution), 103, 105, 109 – 113, 107 – 109, 112 – 113

Στατιστική κατανομή Maxwell-Boltzmann (Maxwell-Boltzmann statistical distribution), 43, 104, 109, 112, 113

Στατιστικό σύνολο (Ensemble), **10 – 12**, 23, 34, 42, 43

Συνάρτηση διαμερισμού (διαμέρισης, επιμερισμού) (Partition function), 45 - 46, 51, 54, 57 - 58, 66, 67, 69, 104

ιδανικού αερίου, 57 - 58 παραμαγνητικού υλικού 51 - 54

Τρίτος νόμος της θερμοδυναμικής (Third law of thermodynamics), 72, 86, 97, 98

Φερμιόνιο (Fermion), 105, 113

Χόνδρος, Δημήτριος, iv, 121

Χώρος των φάσεων (Phase space), 18 - 21

Ψύχας Εμμανουήλ, 24, 115 – 117

Ψυκτική μηχανή - ψυγείο (Refrigeration system), 92 - 94