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Some aspects of flavor mixing allow to regard flavor oscillations as a
sort of dissipative process.

The QFT of flavor states leads to a vacuum flavor state for the
mixed fields, which is orthogonal to the vacuum state for the fields
with definite masses.

Its use allows to define correctly flavor states as eigenstates of the
flavor charges.

It is a generalized SU(2) coherent state. Moreover it is an entangled
state of massive neutrinos and anti-neutrinos.

However, Lorentz invariance is broken, since the flavor vacuum is
explicitly time-dependent.

ASs a consequence, flavor states cannot be interpreted in terms of
irreducible representations of the Poincaré group. A possible way to
2



recover Lorentz invariance for mixed fields has been explored with
relation to nonlinear realizations of the Poincaré group®.

The relation of neutrino masses and mixing with the violation of the
Lorentz and CPT symmetries has been the subject of many efforts’.

A related research line concerns the use of neutrino mixing and os-
cillations as a probe for quantum dgravity effects, as quantum gravity
iInduced decoherence is expected to affect neutrino oscillations?.

Such effects have also been connected to the non trivial structure of
the flavor vacuums.
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A non-Abelian gauge structure appears naturally in connection with
flavor mixing: a possible account for the violation of Lorentz invari-
ance.



Consider the Lagrangian in the flavor basis
L(xz) = vp(x) (@ §— M) vi(x),

, With me = mqcos?26 + mosin?6 ,
melu m'u

v = (ve,vp)! and M = (
my = m1Sin20 +mpcos?6 , mey = (Mo —my)Sinfcosd.

The field equations are

a;, 1t =1,2,3 and g are the Dirac matrices. We choose the represen-

tation
o 0 0; . I O

o; are the Pauli matrices and 1 the 2 x 2 identity matrix. In a compact
form:

iDoyf — (—i()é -V —|— ﬁMd)I/f,



v = (ve,vu)! is the flavor doublet and M,; = diag(m.,m,) is a diagonal
mass matrix.

Note that the mixing term, proportional to me,, Is taken into account
by the (non-Abelian) covariant derivative:

Do =00+ itmeyBoi,

where me, = 5 tan206m, and ém = my — me.

We thus see that flavor mixing can be seen as an interaction of the
flavor fields with an SU(2) constant gauge field:

1
A, = EAZO'G = nuém% c su(?2), n* = (1,0,0,0)",

I.e., having only the temporal component in spacetime and only the
first component in su(2) space. The covariant derivative can be writ-
ten in the form:

D/,L:au+igﬁf4ua



where we have defined g = tan20 as the coupling constant for the
Mmixing interaction. The Lagrangian is thus written as

L=vi(@y"Dy— Mg)vy.

In the case of maximal mixing (8 = = /4), the coupling constant grows
to infinity while ém goes to zero. Since the gauge connection is a
constant, with just one non-zero component in group space, its field
strength vanishes identically:

Fi, =e"APAS =0, abec=1,23.

Despite Fj,,, vanishes identically, the gauge field has physical effects,
this leads to an analogy with the Aharonov—Bohm effect.

The energy momentum tensor associated with the flavor neutrino
fields in interaction with the external gauge field is:

Tpa = vyivpDovy — /r]po'ljf(?:/y)\D)\ — Mg)vy.



npe = diag(+1,—1,—1,-1) is the Minkowskian metric tensor. T,, is to
be compared with the ‘“canonical” energy momentum tensor:
Too = vypivpDovy — npgﬁf(’w)‘D)\ — Md)z/f + NpoMepl fo1V 5.

The difference between the two is just the presence of the interaction
terms in the 00 component, i.e. Tog — Tog = Mmep(Tevy + Duve), While we

have Ty; = Tp;, Ty = Ty,

The tensor TW IS not conserved on-shell since [v,, Dg] # O:
8pfpi = 0O; apfpo = 0.

Without the mixing term in the covariant derivative it would have
been conserved

3MTMV == gFlL”/a]éL — O,



The 4-momentum P* = [ d3xTO* gives a conserved 3—momentum
Pt = i/d‘o’xu}(‘?iyf
— i/d3x V;r@ive —I—i/d3X V):J@iyu
= Pi(xo) + Fj(=0), i=1,23 (1)
and a non conserved Hamiltonian operator:
PO(zg) = H(wg) = /d3X vy (ivoDo — iy Dy + Mg) vy
= /d3X V;r (—ta -V 4 Bme) ve + /d3x I/L (—ta-V + Bmy) vy

= He(wo) + Hu(xo). (2)

The Hamiltonian and the momentum operators split in a contribution
involving only the electron neutrino field and in another with only the
muon neutrino field.

Note that the Lorentz generators 1\7/\/)(:1;0) can also be defined.



We remark that the tilde Hamiltonian is not the generator of time
translations. This role competes to the complete Hamiltonian H =
[ d3x 7199,

We now show that it is possible to define flavor neutrino states which
are simultaneous eigenstates of the 4—momentum operators above
constructed and of the flavor charges. Such a nontrivial request re-
quires a redefinition of the flavor vacuum. To this end, we expand
the flavor neutrino field operators in a different mass basis:
d3k 1k-x

vo(@) = [ 5373 2 [tk (20)ak o (w0) + 004 o (@0)B) (w0
with uk (xg) = uk Ge_mkaxo v"y (xg) = 0" "o ko0, The new spinors
are defined as the solutions of the equatlons

(—C\{ ’ k _I_ mUﬁ)uﬂ’g — wk,auﬂ,o'
(—Oz -k + maﬁ)vzk,a — _wk,avik,a’

where wy , = \/k2 +m2 and o = e, .



where wy , = \/k2 +m2 and o = e, .

The tilde flavor operators are connected to the previous ones by a
Bogoliubov transformation:

&ia(xO) 1 aﬂa(xO)
AT 7 — J r 7 J 9
( B_Tkﬂ(xO) ) (z0) ( B_]Lk,g(xO) (zo)
with generator:

I(wo) = [Texp{i 3= €, [of, (208", (20) + " o 20Dtk o (20)] |
k,r (0.5)

with (o,5) = (e, 1), (1,2), and €5 . = (xo — x;)/2 and x, = arctan(me/|k|),
x; = arctan(m;/|k[). The new flavor vacuum is given by

|6(33O)>6,u — _1(:EO)|O(:CO)>€,U,-

The (non-conserved) flavor charges (associated to the flavor La-



The tilde flavor operators are connected to the previous ones by a
Bogoliubov transformation:

ap (zo) \ oy ,(20)
(ﬁ (o >)“] (‘”0)(57“1,0<xo>)‘]<w0)’

with generator:

I(wo) = [Texp{i 3= €, o, (208", (20) + B o 20Dtk o (20)] |
k,r (0,5)

with (0,7) = (e,1),(1,2), and €5 = (xo — x;)/2 and x, = arctan(mq/|k|),
x; = arctan(m;/|k[). The new flavor vacuum is given by

0(x0))en = J 1 (20)[0(x0))en



Structure of the annihilation operators for |0(t))e ;-

aﬂ,e(t) = cos 6 Oéﬁ,l + siné (Uf;(t) ai,Q—I—erVk(t) ﬁﬁkQ)

aj ,(t) = cosfaj 5, —sind (Uk(t) ay 1—¢ Vi (t) ﬁﬁk,l)
By (t) = cos0 87y 1 +sin0 (U (1) By o~ Vic(t) o)
B (1) = €OsO 8"y 5 —sind (Uie(t) BTy 1 +€ Vie(t) o)

Mixing transformation = Rotation (cosé, sinf) 4+ Bogoliubov trans-
formation (Uy, Vy).

ae(D)]0(t))eu = Gy (D), Gy(t) Gy (£)]0), , = 0.
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Recall that

G(t; 0, m1,mo) = B~ 1(t; m1,mo) R(t; 0) B(t; m1,m»),

and the expansion of G(0) at t=0

d3k
G(0) = eXD{9 27;/ (om)? [Uk (Oék 10% o+ B3 187 aﬂfzaﬂ,l — 8" 28" 1
T
+e Vi (ak 1/3 — Bl 10k + O‘Ezﬁﬁkg - Bik,zaﬁ;) ] } )
where

Uy = cos(©k o — Ok 1), Vk = sin(©g 2 — Oy 1)-



The (non-conserved) flavor charges (associated to the flavor La-
grangian) describing the phenomenon of neutrino oscillations are

Qo(wo) = [dPxv}@) va(a) , o =c,p
with Qc(xg) + Qu(zo) = Q. Explicitly:
Qe(zp) = co0s?6 Q1+ sin20 Qo + sin 9cos@/d3x [VI(QU)VQ(x) -+ V%(w)ul(x)} :
Qu(zo) = sin20 Qq + cos28 Qs — sin 9c059/d3x (@) + vh@)n (@) .
with Q;, j = 1,2, two conserved (Noether) charges :

Q= [ Pxvl@ v, =12

and Q = Q1 + @». Contributions in Qs(xg), 0 = e,u, that cannot be
written in terms of @, are related to the non-trivial structure of the
flavor Hilbert space. The above Bogoliubov transformations leave
invariant the Q,(z0): Qs = Qo, With:

Qo(w0) = 3 [ Pk (&} (20)afs (w0) — BT, (20) BT 1 (20)) -



In terms of the tilde flavor ladder operators, the (tilde-) Hamiltonian
and momentum operators read:

Polao) = 3 [ akk (aif, Go)af, (w0 + A, w0) ., (v0)).

ﬁa(fb’o)

S [ dker, (a1, (20) a4 (20) — B o (20) Bl (20)) - (5)

Since these operators are diagonal, we can define commmon eigen-
states:

7 o (20)) = G (20)10(w0))ep

and similar ones for the antiparticles, and

ﬁa(mO) _ [ Yk,o
( Py (o) > Mo (0)) = ( ) 7k 5 (20)),

making explicit the 4—vector structure.



The flavor charges commute with the tilde Hamiltonian operator:
[Qo(20), H(xp)] = 0, since

[Qo (x0), Hyr(x0)] = O, g,0" = e, p.

This is of course a consequence of the fact that the flavor non-
conservation is entirely due to the interaction term, which is absent
in H.

This fact ensures the existence of a common set of eigenstates of
these operators. Indeed the flavor states (6) are seen to be also
eigenstates of the flavor charges:

Qo (x0)|7 ,(20)) = |7 ,(20)),
which confirming that these are precisely the states we were looking
for.

Note that the above construction and the consequent Poincaré in-
variance, holds at a given time zgy. Thus, for each different time, we
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have a different Poincaré structure. This reminds of the quantization
iIn the curved space-time and of quantum dissipation.

Flavor neutrino fields behave (locally in time) as ordinary on-shell
fields with definite masses m. and m,, rather than those of the mass
eigenstates of the standard approach, m; and mo».



T he Hamiltonian operator H does not take into account the interac-
tion energy, i.e. the energy associated with mixing.

H appears as the sum of the kinetic energies of the flavor neutri-
nos, or equivalently as the energy which can be extracted from flavor
neutrinos by scattering processes, the mixing energy being ‘“frozen”
(there’s no way to turn off the mixing!).

This suggests the interpretation of such a quantity as a “free” energy
F = H, so that we can write:

H—-F=TS,

which defines an entropy associated with flavor mixing. It is natural
to identify the “temperature” 7T with the coupling constant g = tan 26,
thus leading to:

1



The appearance of an entropy confirms that each of the two flavor
neutrinos can be considered as an “open system” which presents some
kKind of (cyclic) dissipation.

These thermodynamical considerations well fit with the interpretation
of the gauge field as a reservoir.



The gauge field structure in the neutrino evolution (one neutrino evo-
lution intrinsically dependent on the other neutrino evolution) signals
that an entanglement is present in the QF T neutrino mixing vacuum.

I will shortly summarize the QFT vacuum structure for mixed neu-
trinos. The case of two neutrinos is considered, but extension to
three neutrinos has been worked out (extension also Majorana neu-
trino, boson mixing, neutral mixing particle is also reported in the
literature).



Condensate structure of |0)c, (use ¢ = (—1)" )

0)e, = y [(1 —sin? 0 |Vi|?) — € sin@ cosd |Vi| (ozglﬁfer -+ on:Qﬁik’l)
T

+ ¢ sin? 0 [Viel Uil (o)1 87 1 — ap o870 0) + sin 0 [Vi2 ol 870 sop 87 1] 10),

- 4 Kinds of particle-antiparticle pairs with zero momentum and spin.



Structure of the annihilation operators for |0(t))e ;-

aﬂ,e(t) = cos 6 Oéﬁ,l + siné (Uf;(t) ai,Q—I—erVk(t) ﬁﬁkQ)

aj ,(t) = cosfaj 5, —sind (Uk(t) ay 1—¢ Vi (t) ﬁﬁk,l)
By (t) = cos0 87y 1 +sin0 (U (1) By o~ Vic(t) o)
B (1) = €OsO 8"y 5 —sind (Uie(t) BTy 1 +€ Vie(t) o)

Mixing transformation = Rotation (cosé, sinf) 4+ Bogoliubov trans-
formation (Uy, Vy).

ae(D)]0(t))eu = Gy (D), Gy(t) Gy (£)]0), , = 0.
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The linear correlation coefficient J(ng,n;) provides a measure of the
particle entanglement in |0)c ,

cov(ng, ny)

J’;:La,’ﬁ — )
(P T0) = AR 22 ()22

(¥+) denotes expectation value in |O)c,, na, 7 NUMber operators, the
variance ((An)2) = ((7 — (7))?) = (7?) — ()2, the covariance cov(7ig, i) =
(ngny) — (na) (np). FoOr non-correlated modes (ngn;) = (ng) (ny), and
cov(ng,ny) 1S zero. On the contrary, the (a,b)-pair correlation is due to
the coherent condensate structure of the vacuum |0)., denerated by
the Bogoliubov transformations.

J(naﬂ,i’naﬂ,j) =0 = J(nﬁik,i’nﬁik,j)’ for any k, :%=j and 4,5 = 1,2
as expected from inspection of the vacuum structure and of the op-

erator transformations, these particles are involved together only by
the rotation part of the transformation.



Instead,

~ ~ . 1 —q 2 > . .
J(naﬂ,i’nﬁik,j) = TrtanZooE ~ 1 —tan<0|U|<, i # j.

Considering that |U|?2 < 1, and using tan26 = 0.44 (sin®20 = 0.846 +
0.021) we have a sensible entanglement value (> 0.5) for o . — 6[kj,

i« = j, particles. Finally, a much lower value is obtained for o . — 8", .,
1 =1, 2,

I (ay g, ) = tan29|U|2(1 — tan20|U|?) < J(ﬁai’i,ﬁﬂik’j)h;&j,



Hilbert space for mixed neutrinos

Mixing relations can be written as*®

vi(z) = Gpt(t) v¥(x) Gy(t)

v, ()
with generator given by:.

Gy(t) = exp[f (S4+(t) — 5-(1) )]

Gyt (1) v () Gp(t)

SL(t) = / Bxvi(@),(z) ,  S_(t) = / Bx vl (), (z)

*M.Blasone and G.Vitiello, Annals Phys. (1995)
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Introducing:

Sz = %/dg‘x (I/I(x)l/l (z) — I/;f(x)l/Q(x))

So = %/dg‘x (z/if(az)l/l (z) + I/;f(az)l/z(az))

the su(2) algebra is closed:

[S+(8), S-()] =253 , [S3, S+(H)] = £5+(F)

Verify above eqgs. For v, we get

d2
a2 T
with the initial conditions
(0% (0% d (6% (0%
]/ _ pr— 1/ . —Ve pr— 1/
e 10=0 1 de 0 2
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v; (i =1,2) are free Dirac field operators:
zkx

v; () —Z \/—[Ukz(t)akz + v kz(t)ﬁ ]

with uﬂ,i(t) = ¢ Whkit Ul ; s Ul?;,z'(t) = kil Vs and wy; = \/kz + m?.

Anticommutation relations:
{12 (@), v W) ey = 83 (x — y)aagaz-j

S .
Orthonormality and completeness relatlons
rf.s _ . TT.s __ T s - ok rcu* .
Uk Yk — Yk ,iYk,i — Ors U Vi =0 Z(“k i ’“k i TV k) —k z) Oaf -

— Fock space for v, v,:

7_(12 { 1276127| >12}'
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e The vacuum |0), , is not invariant under the action of the generator
Go(t):
0())eu = Gy (1) [0); , = e S+ O=5-W) 0y

The vacuum |0(t))e,, is @ SU(2) dgeneralized coherent state*.

e Relation between [0), , and [0(¢))e,u: orthogonality! (for V — oo)

V[ -2k 0 (1-sin2 0 Vi |2)?
lim ; 5(0|0(t))e,u = lIMm e J Gomy3 I (1=sin=0 ()

V—oo ™ V—o0

=0
with
1
2 _ 2 2
VPP =X 1o i P 0< WP <3

r,s

*A. Perelomov, Generalized Coherent States and Their Applications, (Springer V., 1986)
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Condensate structure of |0)c, (use ¢ = (—1)" )

0)e, = y (1=sin?0[W?) — €"sind cos 0|V (af 187 5 + el L87 1)
T

+¢"sin? 0 [Viel[U| (o 1 874 1 — o587 o) + sin 02 ol 871 serd,87 1 ]10): 5

- 4 Kinds of particle-antiparticle pairs with zero momentum and spin.

- Time dependence:

0)e,n = 10(0)) e, = e_th|O(t)>e,u

- Condensation density:

e (O |agl af, 110(t))e,u = sin? 0 [Vi |

vanishing for m,; = m, and/or § = 0 (in both cases no mixing). Same
result for o,, 3, B,.
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The flavor fields can be expanded as:

1k-x

ve(z) = kzﬁ [l 1 (8) o (1) + 041 (8) BT (D)
ez'k-x
@) = 3 [uka(®) o, () OV A O]

k,r

Bogoliubov coefficients:

(4 ' — t : — T J t
Uk(t) = uplpuf, ; e/ r2mns) ' Vie(t) = € w07y 5 e h2teonn)

>
U |? + [Vi]? = 1

k2 [(wr2 +m,) — (w1 + ml)f

4 wi 1wy 2 (W1 +m, ) (wr2 +m,)

> _ 2 _
Vi|* = Z|U2k,1ui€<,2| =

r,s

16



Condensation density for mixed fermions

0.5

Vil?

I I
1 10 100 1000

Log k|

Solid line: m;1 =1, m>» = 100; Dashed line: mi1 = 10, m»> = 100.

- Vx = 0 when m; =m, and/or 6 = 0.

(m2—m1)2
mqymy

- Max. at k= ,/m;m, with Vi, — 5 for

RN
- V4|2 ~ (m24k?§1) for k> /m;m,.
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We have described flavor oscillations as a consequence of the inter-
action with the gauge field. This may be described as acting as a
sort of refractive medium.

An interesting analogy is the one of some scenarios in which, for the
case of photons, the vacuum has been thought to act as a refractive
medium in consequence of quantum gravity fluctuations®.

For simplicity, let us use the Pontecorvo formalism. Our argument
does not depend on such a simplification. To start, assume degener-
acy wi = wr (m1 = mo) and that, in obvious notation, time evolution
In the vacuum” is given by

< ‘Ve(t» ) . <€iwt 0 > < |Ve(0)> )
v (t)) 0 et v(0)) )
Let w = 27v, and the propagation speed in the vacuum vg = Av.

Suppose then that the propagation occurs in a medium presenting
*J.R.Ellis, N.E.Mavromatos and D.V.Nanopoulos, Phys. Lett. (2008)



different refraction indexes, n; and n, for v. and v,, respectively, i.e.
the propagation over a given path of length L occurs in different
times, ¢t and t,, respectively:

L — Lny L Lny

t1 = — = =titnq , tr = — = =tno ,
U1 vo v2 vo

with v; and v, the propagation speeds in the medium, respectively,

and t = L.
vQ

Time evolution is then described by the phase factors e Wil = g1l

and e wi2 = ¢~w2t for the two particles, respectively, where wt; =
w%ni = 2rvtn; =27yt = w;t, i = 1,2, has been used, together with
ANV = v, \jv; = vg and n; = 0 = %, Thus,

(% 1

<|ue<t>>>:e—w1t cos e~(w2mwn)tsin g <|ue>> (5)
lvu(t)) e~ Hwa—w1)tging cos 6 vu) )

which is the time evolution we started with our original Lagrangian
and motion equations.



In conclusion, the effect of time evolution through the refractive
medium is equivalent to the effect of the background gauge field
Aé” = 2(wp —wy) €020 = Zw(ny —ny) cos20, for § # I 4+ T, which
indeed disappears when propagation occurs in the vacuum with n; =
no = ng = 1 (i.e. W] = w = wz).





