CP-violating inflation

Venus Keus

University of Helsinki & Helsinki Institute of Physics

In collaboration with Kimmo Tuominen

Based on arXiv:2102.07777 (to appear in PRD)

and work in progress

(日) (四) (日) (日) (日)

Motivatio

CP-violating inflation

Summary

The Standard Model

Its current formulation was finalised in the 70's and predicted:

- the W & Z bosons discovered in 1983
- the top quark discovered in 1995
- the tau neutrino discovered in 2000
- the Brout-Englert-Higgs mechanism <u>a</u> scalar boson was discovered in 2012

Image: Image:

Motivatio

CP-violating inflation

Summary

\cdots and the need to go beyond

What is missing:

- a suitable Dark Matter candidate
- a successful baryogenesis mechanism
 - strong first order phase transition
 - sufficient amount of <u>CP-violation</u>
- a natural inflation framework
- an explanation for the fermion mass hierarchy
- a stable electroweak vacuum
- \Rightarrow beyond the Standard Model
 - \Rightarrow scalar extensions of the SM

Motivation 000

CP-violating inflation

Summary

Scalar extensions of the SM

$\mathsf{SM} + \mathsf{scalar \ singlets}$

- Dark Matter severely constrained
- CP-violation not possible
- Inflation DM incompatible

2HDM: SM + a doublet

- Dark Matter constrained & CPV incompatible
- CP-violation severely constrained & DM incompatible
- Inflation CPV incompatible

3HDM: SM + 2 doublets

- Dark Matter many exotic possibilities
- CP-violation unbounded dark CP-violation
- Inflation easily achieved + exotic possibilities
- Bonus: fermion mass hierarchy explanation

< □ > < 同 >

Introduction
0000

CP-violating inflation

Summary

Upcoming experimental probes

- Collider experiments
 - 2021: LHC-RUN-III
 - 2026: HI -I HC
 - 2028: CEPC
- DM experiments
 - 2020: XENONnT
 - 2022: CTA
- GW experiments
 - 2027: DECIGO
 - 2034: LISA mission
- Precision experiments
 - 2020: $(g-2)_{\mu}$
 - 2020: Advanced ACME

Sac

1 -

Circulant	and heart to a surrow	والمتعادية والمتعادية والمتعادية والمتعاد	
0000	00	0000000	00
Introduction	Motivation	CP-violating inflation	Summary

Simplest and best in agreement with observation:

Slow roll inflation:

driven by a scalar field (inflaton) slowly rolling down its smooth potential

J. Garcia-Bellido, [arXiv:hep-ph/0303153 [hep-ph]]

Venus Keus	(Helsinki)
· citab i teab	(1.10.0.1.1.1.)

< □ > < □ >

Introduction N 0000 C	lotivation ●O	CP-violating inflation	Summary 00
The Higgs inflatio	n model		
The SM Higgs potentia $V(\phi) = -\mu_h^2 \phi^{\dagger} \phi + \lambda_h (\phi^{\dagger} \phi)$	2 6.×10 ⁻¹⁸	$\mu^2 > 0, \lambda > 0$ $\widehat{\mathfrak{S}}$ $\mu^2 < 0, \lambda > 0$ $\widehat{\mathfrak{S}}$ $\mu^2 < 0, \lambda > 0$	•
Introducing a non-mini coupling to gravity ξ :	mal 5.×10 ⁻⁷⁸	*	*
$\mathcal{L}_J = rac{\sqrt{-g_J}}{2} \left[\left(rac{\xi}{\phi}^2 + (\partial_\mu \phi)^2 - ight) ight]$	$M_{pl}^{2}R = V(\phi) \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{2$	$\begin{aligned} \xi &= 0 \\ \xi &= \pm 0.00 \\ \xi &= \pm 0.01 \\ \xi &$	-M 1.4×10 ⁻¹⁸

S. Choudhury, T. Chakraborty, S. Pal, [Nucl. Phys. B 880, 155-174 (2014)]

Venus Keus (Helsinki)

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ Ξ| =
 Corfu - Sep 2021

Dianaly ages		want inflation and mand	ala
0000	000	0000000	00
Introduction	Motivation	CP-violating inflation	Summar

Planck constraints on different inflationary models

Tensor to scalar ratio $r = 16\epsilon$ and the spectral index $n_s = 1 - 6\epsilon + 2\eta$ calculated from the slow-roll parameters $\epsilon = \frac{1}{2}M_{pl}^2 \left(\frac{1}{\tilde{V}}\frac{d\tilde{V}}{d\phi}\right)^2$ and $\eta = M_{pl}^2 \frac{1}{\tilde{V}}\frac{d^2\tilde{V}}{d\phi^2}$

P. A. R. Ade et al. [Planck], [Astron. Astrophys. 571, A22 (2014)]

Venus Keus (Helsinki)

EL OQO

Introduction	Motivation	CP-violating inflation	Summary
0000	000	•000000	00
3HDMs: 3-Higgs	s doublet model	S	

two scalar doublets + the SM Higgs doublet ϕ_1, ϕ_2 ϕ_3 $\phi_1 = \begin{pmatrix} h_1^+ \\ \frac{h_1 + i\eta_1}{\sqrt{2}} \end{pmatrix}, \phi_2 = \begin{pmatrix} h_2^+ \\ \frac{h_2 + i\eta_2}{\sqrt{2}} \end{pmatrix}, \phi_3 = \begin{pmatrix} G^+ \\ \frac{h_3 + iG^0}{\sqrt{2}} \end{pmatrix}$

Z₂-symmetric 3HDM with dark CPV

Lagrangian invariant under a Z_2 symmetry (-, -, +):

 $\phi_1 \to -\phi_1, \ \phi_2 \to -\phi_2,$ SM fields \to SM fields, $\phi_3 \to \phi_3$

and respected by the vacuum (0, 0, v):

$$\phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\h_1 + i\eta_1 \end{pmatrix}, \ \phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\h_2 + i\eta_2 \end{pmatrix}, \qquad \phi_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\v_h + h_3 \end{pmatrix}$$

Only ϕ_3 can couple to fermions: $\phi_u = \phi_d = \phi_e = \phi_3$

No contributions to electric dipole moments (EDMs)

VK, S. F. King, S. Moretti, D. Sokolowska, D. Rojas, [JHEP 12, 014 (2016)], VK, [Phys. Rev. D 101, 073007 (2020)]

Venus Keus (Helsinki)

Z_2 -symmetric 3HDM with dark CPV

The scalar potential: $V = V_0 + V_{Z_2}$ with

 $V_0 = -\mu_i^2(\phi_i^{\dagger}\phi_i) + \lambda_{ii}(\phi_i^{\dagger}\phi_i)^2 + \lambda_{ij}(\phi_i^{\dagger}\phi_i)(\phi_j^{\dagger}\phi_j) + \lambda_{ij}'(\phi_i^{\dagger}\phi_j)(\phi_j^{\dagger}\phi_i) \qquad (i = 1, 2, 3)$

which is CP-conserving (real parameters),

 $V_{Z_2} = -\mu_{12}^2(\phi_1^{\dagger}\phi_2) + \lambda_1(\phi_1^{\dagger}\phi_2)^2 + \lambda_2(\phi_2^{\dagger}\phi_3)^2 + \lambda_3(\phi_3^{\dagger}\phi_1)^2 + h.c.$

which is CP-violating (complex parameters).

The action of the model:

$$S_{J} = \int d^{4}x \sqrt{-g} \left[-\frac{1}{2} M_{\rho l}^{2} R - D_{\mu} \phi_{i}^{\dagger} D^{\mu} \phi_{i} - V - \left(\xi_{i} |\phi_{i}|^{2} + \underbrace{\xi_{4}(\phi_{1}^{\dagger}\phi_{2})}_{Z_{2}-\text{symmetric}} + h.c. \right) R \right]$$

The sources of CP-violation are $\lambda_1 = |\lambda_1| e^{i\theta_1}$ and $\xi_4 = |\xi_4| e^{i\theta_4}$.

Venus Keus (Helsinki)

Introduction 0000	Motivation 000	CP-violating inflation	Summary 00
The inflationary	potential \widetilde{V}		
To simplify the analy Finding the inflation	ysis: $\eta_1 = \beta_1 h_1$ and h_2 ary direction yields:	$= \beta_2 h_1$ $\beta_1(\theta_1, \theta_4), \beta_2(\theta_1, \theta_4)$	
Another standard re	parametrisation: $h_1^2 = 1$	$= \frac{M_{pl}^2}{2 \xi_4 \beta_2(c_{\theta_4}+\beta_1 s_{\theta_4})}$	$rac{1}{2}\left(e^{ ilde{\mathcal{A}}}_{\uparrow} - 1 ight)$ rametrised inflaton field
The potential is sim	plified to: $\widetilde{V} = \left(\frac{M}{2 \xi }\right)$	$\left(1-e^{-\widetilde{A}}\right)^{2}\left(1-e^{-\widetilde{A}}\right)^{2}$	$\overset{2}{\underbrace{X(\theta_1,\theta_4)}}_{\text{new}}$
$\begin{array}{c} 0.0015 \\ 0.0015 \\ 0.0005 \\ 0.0000 \\ 0.000 \\ 0.000 $	$\begin{array}{c} \theta_1 = \pi/2 \\ \theta_1 = \pi/3 \\ \theta_1 = \pi/4 \\ \theta_2 \\ \end{array}$	$\begin{array}{c} 0.0015 \\ \theta_{1}=\pi/3 \\ 0.0010 \\ 0.0005 \\ 0.0000 \end{array}$	$\frac{\theta_4 = \pi t/4}{\theta_4 = \pi t/3}$ $\frac{\theta_4 = \pi t/2}{\theta_4 = \pi t/2}$
0 1	2 3 4 5 Ã	0 1 2	3 4 5 Ã < = > < = > = つへで

Venus Keus (Helsinki)

CP-violating inflation

Corfu - Sep 2021 12/17

Introduction Motivation 0000 000		CP-violating inflation	Summary 00
1 10	· · · DI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

1σ and 2σ regions from Planck observation

the

Tensor to scalar ratio $r = 16\epsilon$ and the spectral index $n_s = 1 - 6\epsilon + 2\eta$ calculated from the slow-roll parameters $\epsilon = \frac{1}{2}M_{pl}^2 \left(\frac{1}{\tilde{V}}\frac{d\tilde{V}}{d\tilde{A}}\right)^2$ and $\eta = M_{pl}^2 \frac{1}{\tilde{V}}\frac{d^2\tilde{V}}{d\tilde{A}^2}$

Motivatio

CP-violating inflation

Summary 00

WMAP7 constraints on the scalar power spectrum P_s

Introduction	Motivation	CP-violating inflation	Summary
0000	000		00
Reheating and	l scalar asymn	netries	

At the exit from inflation: doublets acquire an initial expectation value

$$\left\{ \begin{array}{c} \phi_1 \to \phi_1 - a_1 e^{i\alpha} \\ \phi_1^{\dagger} \to \phi_1^* - a_1 e^{-i\alpha} \end{array} \right. \left\{ \begin{array}{c} \phi_2 \to \phi_2 - a_2 \\ \phi_2^{\dagger} \to \phi_2^* - a_2 \end{array} \left. \left\{ \begin{array}{c} \phi_3 \to \phi_3 - a_3 \\ \phi_3^{\dagger} \to \phi_3^* - a_3 \end{array} \right. \right. \right. \right.$$

where the phase $\alpha = \alpha(\theta_1, \theta_4)$.

Instant reheating: the inflaton quickly decays to ϕ_3 $\mathcal{M}_{(\phi_1 \to \phi_3^* \phi_3^*)} \propto 2a_1\lambda_3 e^{i(\alpha+\theta_3)}$ $\mathcal{M}_{(\phi_1 \to \phi_3 \to \phi_3^* \phi_3^*)} \propto 4a_1a_3^2\lambda_{11}\lambda_{33}(\lambda_{31} + \lambda'_{31})e^{-i\alpha}$ resulting in unequal number of ϕ_3 and ϕ_3^* states with asymmetries $A_{CP}^1 = \Gamma_{(\phi_1 \to \phi_3^* \phi_3^*)}^{\text{tree+loop}} - \Gamma_{(\phi_1^* \to \phi_3 \phi_3)}^{\text{tree+loop}} \propto \sin(2\alpha + \theta_3)$

Such asymmetries are then transferred to the fermion sector through the couplings of the Higgs/W/Z with the fermions.

Venus Keus (Helsinki)

<ロ > < 団 > < 団 > < Ξ > < Ξ > < Ξ > 三目 のへで Corfu - Sep 2021 15/17

CP-violating inflation

Summary

 $\theta_4 = \pi/4$

A one-slide summary

Venus Keus (Helsinki)

CP-violating inflation

θ1

Corfu - Sep 2021

16/17

-0.17

0.16

-0.15

0.14

-0.13

Motivation 000 CP-violating inflation

Summary O

In memory of

Venus Keus (Helsinki)

Corfu - Sep 2021 17/17

< □ > < 同 >

▲ 문 ▶ ▲ 문 ▶ 문 님 = ∽ < ↔

BACKUP SLIDES

Venus Keus (Helsinki)

Summary

SM + scalar singlets

- Dark Matter severely constrained
- CP-violation not possible
- Inflation DM incompatible

2HDM: SM + a doublet

- Dark Matter constrained & CPV incompatible
- CP-violation severely constrained & DM incompatible
- Inflation CPV incompatible

3HDM: SM + 2 doublets

- Dark Matter CP-violating DM
- CP-violation unbounded dark CP-violation
- Inflation CP-violating inflation
- Bonus: fermion mass hierarchy explanation

number of e-folds N_e , the spectral index n_s , tensor to scalar ratio r

Venus Keus (Helsinki)

Corfu - Sep 2021 20/17

= nac

Reheating

Corfu - Sep 2021 21/17

< 口 > < 同

▲ 토 ▶ 토 티 = ∽ ९ ()