Corfu Summer Workshop on Celestial Amplitudes and Flat Space Holography Aug 31 2021

Celestial Free Fields

Shu-Heng Shao C. N. Yang Institute for Theoretical Physics Stony Brook University

Top-down model?

- In recent years, we have seen a lot of exciting developments on celestial amplitudes and flat space holography.
- Many general properties of the celestial amplitudes were discovered and understood, such as those related to the soft theorems.
- However, as Andy Strominger and many others like to emphasize, there isn't a concrete top-down model for the celestial holography.
- It would be desirable to have an example analogous to IIB SUGRA and 4d N=4 SYM.
- In this 10-min presentation I will share some thoughts on arguably the simplest model for celestial holography.

Celestial dual of a free field

 Consider a free, massive complex bulk scalar field Φ in the d + 2 dimensional Minkowski spacetime R^{1,d+1}:

$$\mathcal{L} = \frac{1}{2} \left| \partial_{\mu} \Phi \right|^2 - \frac{1}{2} m^2 |\Phi|^2$$

• The four-point amplitude is disconnected:

$$\mathcal{A}(p_i^{\mu}) \sim \delta^{(d+1)}(\hat{p}_1, \hat{p}_3) \delta^{(d+1)}(\hat{p}_2, \hat{p}_4) + \delta^{(d+1)}(\hat{p}_1, \hat{p}_4) \delta^{(d+1)}(\hat{p}_2, \hat{p}_3)$$

where $\delta^{(d+1)}(\hat{p}, \hat{p}')$ is an SO(1, d+1) invariant delta function for unit time-like vectors $\hat{p} \in \mathbb{R}^{1, d+1}$.

Celestial dual of a free field

- Next, we transform the free, disconnected four-point amplitude in $\mathbb{R}^{1,d+1}$ to a celestial amplitude on \mathbb{R}^d . We will take the conformal dimensions to be $\Delta_i = \frac{d}{2} + i\nu_i$ with $\nu_1 = \nu_2 = \nu > 0$ and $\nu_3 = \nu_4 = \nu' > 0$ to simplify the answer (no contact terms).
- The final celestial amplitude is

$$\begin{split} \tilde{\mathcal{A}}(\nu,\nu',\vec{w}_i) &= 2\pi m^{-2d} C(\nu)^2 \delta(\nu-\nu')^2 \frac{1}{|\vec{w}_{12}|^{2(\frac{d}{2}+i\nu)}|\vec{w}_{34}|^{2(\frac{d}{2}+i\nu)}} \\ &\times \left[(z\bar{z})^{\frac{d}{2}+i\nu} + \left(\frac{z\bar{z}}{(1-z)(1-\bar{z})}\right)^{\frac{d}{2}+i\nu} \right] \end{split}$$

Here $\vec{w}_i \in \mathbb{R}^d$ and $z\bar{z} = w_{12}^2 w_{34}^2 / w_{13}^2 w_{24}^2$ and $(1-z)(1-\bar{z}) = w_{14}^2 w_{23}^2 / w_{13}^2 w_{24}^2$. $C(v) = \frac{\pi^2}{\Gamma(\frac{d}{2}+iv)}$.

Generalized free field

$$\begin{split} \tilde{\mathcal{A}}(\nu,\nu',\overrightarrow{w_{i}}) &= 2\pi m^{-2d} C(\nu)^{2} \delta(\nu-\nu')^{2} \frac{1}{|\overrightarrow{w}_{12}|^{2(\frac{d}{2}+i\nu)}|\overrightarrow{w}_{34}|^{2(\frac{d}{2}+i\nu)}} \\ &\times \left[(z\overline{z})^{\frac{d}{2}+i\nu} + \left(\frac{z\overline{z}}{(1-z)(1-\overline{z})}\right)^{\frac{d}{2}+i\nu} \right] \end{split}$$

• Up to the prefactor, this is the correlation function of a complex ddimensional generalized free field with scaling dimension $\Delta = \frac{d}{2} + i\nu$.

Free scalar in
$$\mathbb{R}^{1,d+1} \xleftarrow[celestial dual]{}^{denomination}$$
 Generalized free scalar in \mathbb{R}^d

Generalized free field

- The generalized free field theory is labeled by a scaling dimension Δ_{ϕ} .
- It is a conformal theory whose primary operator spectrum includes a scalar field ϕ with scaling dimension Δ_{ϕ} :

$$\left\langle \bar{\phi}(\vec{w}_1)\phi(\vec{w}_2) \right\rangle = \frac{1}{|\vec{w}_{12}|^{2\Delta\phi}}$$

• The other primary operators are the double-trace operators:

$$\bar{\phi}\partial_{\mu_1}\dots\partial_{\mu_\ell}\partial^{2n}\phi$$

Generalized free field

• All correlation functions are given by products of the two-point functions: $\langle \phi(w_1)\phi(w_2)\overline{\phi}(w_3)\overline{\phi}(w_4) \rangle$

$$= \frac{1}{|\vec{w}_{12}|^{2\Delta\phi}|\vec{w}_{34}|^{2\Delta\phi}} \left[(z\bar{z})^{\Delta\phi} + \left(\frac{z\bar{z}}{(1-z)(1-\bar{z})}\right)^{\Delta\phi} \right]$$

- Correlation functions admit unitary conformal block and partial wave decompositions.
- See, for example, [Karateev, Kravchuk, Simmons-Duffin 2018] for the OPE functions and the OPE coefficients.

Generalized free field in AdS/CFT

- In AdS_{d+1}/CFT_d , the generalized free field is the boundary dual of a massive free bulk scalar field in AdS with mass given by $\Delta_{\phi}(\Delta_{\phi} + d) = m^2 R^2$.
- It generally does not have a stress tensor, so is not a conformal *field* theory. Relatedly, there is no graviton in the bulk AdS.
- The generalized free field can be thought of as the large N limit of a scalar operator in a holographic CFT. The stress tensor only appears in the subleading order in 1/N [..., Heemskerk, Penedones, Polchinski, Sully 2009,...].
- When $\Delta_{\phi} = \frac{d-2}{2}$, it becomes the literal free scalar *field* theory. (d = 2 is more subtle.)

Conclusion

• AdS/CFT:

Free scalar in $AdS_{d+1} \leftrightarrow$ Generalized free scalar in \mathbb{R}^d

• Celestial holography:

Free scalar in $\mathbb{R}^{1,d+1} \underset{?}{\leftrightarrow}$ Generalized free scalar in \mathbb{R}^d with $\Delta_{\phi} \in \frac{d}{2} + i\mathbb{R}$

- What does this celestial free theory mean?
- How do we understand the contact terms for more general scaling dimensions v_i ?