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The cosmological constant and the use of cuto↵s

John F. Donoghue⇤

Department of Physics, University of Massachusetts,
Amherst, MA 01003, USA

Of the contributions to the cosmological constant, zero-point energy and self energy contributions
scale as ⇤4 where ⇤ is an ultraviolet cuto↵ used to regulate the calculations. I show that such
contributions vanish when calculated in perturbation theory. This demonstration uses a little-known
modification to perturbation theory found by Honerkamp and Meetz and by Gerstein, Jackiw, Lee
and Weinberg which comes into play when using cuto↵s and interactions with multiple derivatives,
as found in chiral theories and gravity. In a path integral treatment, the new interaction arises from
the path integral measure. This reduces the sensitivity of the cosmological constant to the high
energy cuto↵ significantly, although it does not resolve the cosmological constant problem. The
feature removes one of the common motivations for supersymmetry. It also calls into question some
of the results of the Asymptotic Safety program. Covariance and quadratic cuto↵ dependence are
also briefly discussed.

PACS numbers:

I. CUTOFFS AND ZERO-POINT ENERGY

In regularizing quantum field theories, dimensional
regularization is the most common and useful choice,
partially because it preserves all the symmetries of the
theory. However, cuto↵s also plays a role in our thinking
about physics. Part of this is the legacy of the history
of cuto↵ regularization. But there is also some genuine
physics involved. We think of e↵ective field theories as
being valid up to some energy scale, and a cuto↵ can
parameterize this limit of validity of the e↵ective field
theory. In addition, running couplings depend on the en-
ergy scale and cuto↵s are sometimes used in their descrip-
tion. But if we are to use cuto↵s, our thinking should be
aligned with the underlying calculations. In this paper, I
describe how direct calculations of the cosmological con-
stant using a cuto↵ di↵er from our common description,
and show the need for a new interaction term when using
cuto↵s with gravity.

In discussing the cosmological constant problem, we
note that ⇤cc corresponds to the vacuum energy density,
for which there are many contributions. One which is
normally mentioned is the zero-point energy. When cal-
culated for a scalar field, using canonical quantization
one writes

E0 =

Z
d3p

(2⇡)3
1

2
!p ⇠

1

16⇡2
⇤4 (1)

where in the second form I have cuto↵ the divergent
momentum integral at a scale ⇤. (Unfortunately, the
standard convention is to call both the vacuum energy
and the cuto↵ by the symbol ⇤. I will always put the

⇤Electronic address: donoghue@physics.umass.edu

cc subscript on the cosmological constant, i.e. ⇤cc).
Since the measured value of the cosmological constant
is ⇤cc ⇠ (10�3 eV)4 and we might trust the zero-point
energy calculation up to the Planck mass, this leads to
the common complaint about this being the “worst pre-
diction ever - failing by 120 orders of magnitude”. One
of the motivations for supersymmetry is to cancel these
e↵ects by having equal numbers of boson and fermion
degrees of freedom.
This calculation is inadequate, as it is not covariant.

Indeed if we calculate all the components of the energy
momentum tensor using canonical quantization, we find
the ⇤4 contribution to the vacuum values is

Tµ⌫ |0 = diag(1,
1

3
,
1

3
,
1

3
)⇥

1

16⇡2
⇤4 (2)

such that this divergent part of the vacuum value is trace-
less, ⌘µ⌫Tµ⌫ |0 = 0. Since the contribution to the cosmo-
logical constant can equally be identified with the trace
of the energy momentum tensor

Tµ

µ
= 4⇤cc , (3)

we could equally well conclude that this contribution to
the cosmological constant is zero. The second quantiza-
tion calculation of the zero-point energies and momenta is
not compatible with Lorentz invariance of the vacuum.
The point is that covariance requires an e↵ect propor-
tional to ⌘µ⌫ .
The covariance problem can be resolved by using quan-

tum field theory to calculate the contribution to the cos-
mological constant. The cosmological constant appear in
the gravitational action as

Sgrav =

Z
d4x

p
�g


�⇤cc +

2

2
R+ ...

�

=

Z
d4x


�⇤cc

✓
1 +

1

2
⌘µ⌫hµ⌫

◆
+ ...

�
(4)
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1 Introduction

In this article we investigate the influence of the quantum energy-momentum tensor of gauge field

theory [1, 2, 3, 4, 5] and of the corresponding equation of state on the evolution of Freidmann cosmology

[6, 7], inflation [8, 9, 10, 11, 12, 13, 14, 15] and primordial gravitational waves [16, 17, 18, 19, 20, 21, 22].

The deep interrelation between elementary particle physics and cosmology manifests itself when

one considers the contribution of quantum fluctuations of vacuum fields to the e�ective cosmological

constant � [24, 25, 26, 11, 12, 14, 15, 17, 28]. In discussing the cosmological constant problem, it is

assumed that � corresponds to the vacuum energy density, for which there are many contributions and

that anything that contributes to the energy density of the vacuum acts as a cosmological constant.

The contribution of zero-point energy exceeds by many orders of magnitude the observational cosmo-

logical upper bound on the energy density of the universe. However the recent covariant calculation

of all components of the energy-momentum tensor performed by Donoghue demonstrated that the

contribution of the vacuum zero-point fluctuations has the form [27]

Tµ‹ Ã diag(1,
1
3 ,

1
3 ,

1
3)

and is therefore traceless: Tµµ = 0. It follows that the contribution of the vacuum zero-point energy

of quantised fields to the cosmological constant is equal to zero: �cc Ã Tµµ = 0.

The calculation of the e�ective Lagrangian in QED by Heisenberg and Euler was the first example of

a well-defined physically motivated prescription allowing to obtain a finite, gauge and renormalisation

group-invariant result when investigating the vacuum fluctuations of quantised fields [29]. It appears

that only the di�erence between vacuum energy in the presence and in the absence of external sources

has a well-defined physical meaning [29, 30, 31, 32, 33, 34, 35, 36, 1, 2, 3, 4, 5]. Here we will follow

this prescription and will derive the quantum equation of state for non-Abelian gauge fields by using

the e�ective Lagrangian approach [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,

55, 56, 57, 58] and analyse the properties of Friedmann cosmology driven by the quantum Yang-Mills

equation of state.

Let us first review in short the basic properties of Freidmann equations that we will use in our

approach and the standard contributions to the energy density and pressure by dust, radiation and

barotropic fluid [17, 11, 14]. The equation of state of matter in the universe defines the cosmological

evolution and enters on the right-hand side of the first and of the second Friedmann equations [6, 7]:

k

a2 + ȧ
2

a2 = 8fiG

3c4 ‘,
k

a2 + ȧ
2

a2 + 2 ä

a
= ≠8fiG

c4 p, (1.1)
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Contribution of Vacuum Fluctuations to the Cosmological 
Constant
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Heisenberg-Euler Effective  Lagrangian

where dimensionless fields are  

where
a = e~E

m2c3 , b = e~H

m2c3 (5.39)

introducing as æ s we will get

Leff = E
2

≠ H
2

2 ≠ 4fi2mc2(mc

~ )3
⁄ Œ

0

ds

s3 e≠ s
a

a2s cos(s)
sin(s)

b
as cosh( b

as)
sinh( b

as)
≠ 1 + e2 E

2
≠ H

2

3 s2
} (5.40)

1. The renormalisation of the quantum electrodynamics was clearly performed
2. The asymptotic behaviour of the e�ective Lagrangian at small and large fields was discovered.
3.The zeta regularisation was introduced and used to express the finale result.

mc2 = 8.2 · 10≠7 g cm2

s2 ⁄c = ~
mc

= 3.86 · 10≠11cm
mc2

( ~
mc)3 = 1.43 · 1025 g

cm s2

6 Lamb Shift

In 1947 Willis Lamb and Robert Retherford carried out an experiment using microwave techniques
to stimulate radio-frequency transitions between 2S1/2 and 2P1/2 levels of hydrogen [8]. By using
lower frequencies than for optical transitions the Doppler broadening could be neglected (Doppler
broadening is proportional to the frequency). The energy di�erence Lamb and Retherford found
was a rise of about 1000 MHz of the 2S1/2 level above the 2P1/2 level.

7 Casimir E�ect

Dutch physicists Hendrik Casimir and Dirk Polder at Philips Research Labs proposed the existence
of a force between two polarisable atoms and between such an atom and a conducting plate in
1947, this special form is called the Casimir-Polder force. After a conversation with Niels Bohr,
who suggested it had something to do with zero-point energy, Casimir alone formulated the theory
predicting a force between neutral conducting plates in 1948 which is called the Casimir e�ect in
the narrow sense [9].

8 Schwinger approach

Performing integration over wave function parameters one can get

9 Hawing Radiation
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8 Schwinger approach

Performing integration over wave function parameters one can get

9 Hawing Radiation

10

the dimensionless parameter Ÿ as it follow form (3.10) is

Ÿ =

Û
m2c3

e~
1
E =

Û
Ec

E , where the critical field is Ec = m
2
c

3

e~ ≥ 1016
V olt/cm (3.15)

and for the fields which are much smaller than the critical value Ec = 1016 Volt/cm the Ÿ is much
larger than one, Ÿ Ø 1ú and the decay of the wave functions towards the point › = 0 is exponential

P ≥ e
≠fi

m2c3
e~E . (3.16)

Similar phenomena is Black hole Hawking radiation

T = ~c
3

8fiGMkB

(3.17)

4 Euler E�ective Lagrangian

5 Heisenberg Euler E�ective Lagrangian

”The fact that electromagnetic radiation can be transformed into electron-positron pairs and vice
versa leads to fundamentally new features in quantum electrodynamics. One of the most important
consequences is that, even in the vacuum, the Maxwell equation have to be exchanged by more
complicated formulas. In general, it will be not possible to separate processes in the vacuum from
those involving electron-positron pairs since electromagnetic fields can create pairs if they are strong
enough. Even if they are not strong enough to create pairs they will, due to the virtual possibility
of creating pairs, polarise the vacuum and therefore change the Maxwell equations” [7].

When the external electric Ę and magnetic H̨ fields are applied to the vacuum they influence
the behaviour of the virtual electron-positron pairs and can therefore induce a nonzero dielectric
polarisation P̨vac and magnetisation M̨vac of the vacuum. The electric displacement D̨ and magnetic
induction B̨ induced in the vacuum were suggested to be written as a sum

D̨ = Ę + 4fiP̨vac (5.18)
B̨ = H̨ ≠ 4fiM̨vac (5.19)

and the main goal of Heisenberg and Euler was to find the vacuum polarisation functions P̨vac(Ę , H̨)
and M̨vac(Ę , H̨) in the background electromagnetic fields Ę , H̨ when the fields are varying slowly on
the scale of the Compton wavelength of the electrons ⁄c = ~

mc
. The last condition was imposed in

order to avoid the dependents of the polarisation functions on the derivatives of the fields strength
tensor. The important step in the realisation of this program was the introduction of the e�ective
Lagrangian Leff

Leff = Ę2 ≠ H̨2

8fi
+ Lvac(Ę , H̨) (5.20)

úIt should be noted that this exponential decay of functions towards the point › = 0 is due to the particular choice
of integration path on Fig.2 which defines the solution. If one use an alternative integration path one would obtain
an exponential increase of the functions towards the zero point › = 0. Such integration paths is given by a loop
that comes as in Fig.2 from the positive-real-infinite, but surrounded only one of the two branch points. Therefore,
a suitable linear combination of these solutions gives the expected increase. The dotted curve in Fig.3 is intended to
schematically indicate this possibility.

5

Leff ¥ ≠H2

2 + e
2

~c

H2

24fi2 ln( e~H
m2c3 ) = ≠H2

2
1
1 ≠ –el

12fi2 ln H
Hc

2

(6.56)

where –el = e
2
~c

. The vacuum became unstable at extremely strong field !

H0 = Hc e

12fi2
–el (6.57)

7 Physical Interpretation of Results

The zeta function regularisation was introduced and used to express the finale result
The renormalisation of Quantum Electrodynamics was clearly performed
The results represent infinite sum of the series in the electromagnetic coupling constant expansion
The asymptotic behaviour of the e�ective Lagrangian at week and strong fields was derived
Weak expansion coincides with the Euler-Kockel Scattering of Light by Light
Clear understanding the tunnelling production of electron-positron pairs by strong electric field
The strong field behaviour demonstrate the vacuum instability for strong magnetic field known as
Moscow zero

mc
2 = 8.2 · 10≠7 g cm

2

s2 ⁄c = ~
mc

= 3.86 · 10≠11
cm

mc
2

( ~
mc

)3 = 1.43 · 1025 g

cm s2

The breakdown field strength at which dry air loses its insulating ability and allows a discharge to
pass through is Eb = 3 · 104

V olt/cm. At this field strength, the electric energy density is:

Eb = 3 · 104
V olt/cm Uelec = 4 · 102 g

cm s2

Ec = 1016
V olt/cm Uelec = 0.8 1026 g

cm s2

Hc = 4.4 · 1013
Gauss Umagnet = 0.8 · 1026 g

cm s2

Hneutron star = 1015
Gauss Umagnet = 4 · 1028 g

cm s2

(7.58)

Hc = m
2
c

3

e~ ≥ 4.4 · 1013
Gauss (7.59)

8 Schwinger Approach and Anomalies

It was discovered that the Heisenberg-Euler Lagrangian is a sum of one loop diagrams with electron
running in the loop and that the sum can be expressed as a functional determinant of the Dirac
operator

W
(1) = ≠i T r ln(“� + m) = i

⁄ Œ

0

ds

s
Tr exp ≠i(“� + m)s = i

2

⁄ Œ

0

ds

s
Tr exp ≠i(m2 ≠ (“�)2)s

(8.60)
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Adding and subtracting the logarithmically divergent term one can get the renormalised e�ective
Lagrangian which can be written in the finale form as

Leff = E2 ≠ H2

2 ≠ fimc
2(mc

h
)3

⁄ Œ

0

ds

s3 e
≠s{as cos(as)

sin(as)
bs cosh(bs)

sinh(bs) ≠ 1 + a
2 ≠ b

2

3 s
2} (4.38)

where
a = e~E

m2c3 , b = e~H
m2c3 . (4.39)

By substitution s æ (m2
c

3
/~)s we shall get

Leff = E2 ≠ H2

2 ≠ 1
8fi2~c

⁄ Œ

0

ds

s3 e
≠ m2c3

~ s{eEs cos(eEs)
sin(eEs)

eHs cosh(eHs)
sinh(eHs) ≠1+ 2

3e
2 E2 ≠ H2

2 s
2} (4.40)

With additional normalisation factor 1/32fi
4 it will coincides with the Schwinger form

Leff = E2 ≠ H2

2 ≠ 1
8fi2

1
~c

⁄ Œ

0

ds

s3 e
≠ m2c3

~ s{eEs cos(eEs)
sin(eEs)

eHs cosh(eHs)
sinh(eHs) ≠1+ 2

3e
2 E2 ≠ H2

2 s
2} (4.41)

Let us consider the counter term

Leff = E2 ≠ H2

2 + 1
8fi2~c

⁄ Œ

0

ds

s3 e
≠ m2c3

~ s
2
3e

2
s

2 E2 ≠ H2

2

= E2 ≠ H2

2 (1 + 1
8fi2~c

⁄ Œ

0

ds

s3 e
≠ m2c3

~ s
2
3e

2
s

2) (4.42)

Leff = E2 ≠ H2

2 (1 + 1
12fi2

e
2

~c

⁄ Œ

s0

ds

s
e

≠ m2c3
~ s) = E2 ≠ H2

2 (1 + 1
12fi2

e
2

~c
C)

(4.43)

thus
E2

r ≠ H2
r

2 = E2 ≠ H2

2 (1 + 1
12fi2

e
2

~c
C), e

2
r = e

2

1 + 1
12fi2

e2
~c

C
(4.44)

we shall get expression which is the renormalisation group invariant

e
2
r

E2
r ≠ H2

r

2 = e
2 E2 ≠ H2

2 (4.45)

e
2
F

2
µ‹ (4.46)

4.1 Weak Field Expansion

The first nontrivial term in the perturbation expansion is

4fi
2

45 mc
2(mc

~ )3
⁄ Œ

0

ds

s3 e
≠s{(a2 ≠ b

2)2 + 7a
2
b

2}s
4 = 4fi

2

45
~e

4

m4c7 {(Ę2 ≠ H̨2)2 + 7(ĘH̨)2} (4.47)

With additional normalisation factor 1
32fi4 = 1

(4fi)2
1

2fi2
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Heisenberg-Euler Effective  Lagrangian

Limit of massless Fermions    

1 Introduction

In this article we shall analyse the e�ective action in QED and QCD by using the perturbative

loop expansion and renormalisation group equations and discuss the physical consequences which

can be derived from their explicit expressions. We shall reexamine the proof of the existence of the

chromomagnetic gluon condensation in Yang-Mills (YM) theory and will present the derivation

of the new results. The Heisenberg-Euler Lagrangian in QED [1, 2, 3, 4, 5, 6] is a sum of the one

loop diagrams with a vacuum electron-positron pair circulating in the loop and the gluons and

quarks in case of QCD [7, 8, 9, 10, 11, 12, 13, 14]. The e�ective action �[A] has the following

representation:

� =
⁄

Ldx =
ÿ

n

⁄
dx1...dxn�(n)a1...an

µ1...µn
(x1, ..., xn)Aa1

µ1(x1)...Aan

µn
(xn) = S + W

(1) + W
(2) + ....,

where L is the e�ective Lagrangian, �(n) is a one-particle irreducible (1PI) vertex function,

A
a
µ(x) ©< 0|Aa

µ(x)|0 > is the vacuum expectation value of the field operator and W
(n)

, n = 1, 2, ..

represent the terms of the loop expansion.

We shall consider the limit of massless electrons and quarks and demonstrate that the proper

time integral in the Heisenberg-Euler Lagrangian can be calculated explicitly by using covariant

renormalisation condition [11, 13, 14]

ˆL
ˆF |

t= 1
2 ln( 2e2|F|

µ4 )=G=0
= ≠1, (1.1)

where F = 1
4G

a
µ‹G

a
µ‹ is the Lorentz and gauge invariant form of the YM field strength tensor G

a
µ‹

and µ
2 is the renormalisation scale parameter. In the massless limit the QED e�ective Lagrangian

has the exact logarithmic dependence as a function of the invariant F (see Fig.1):

Le = ≠F + e
2F

24fi2

Ë
ln(2e

2F
µ4 ) ≠ 1

È
, F = H̨2 ≠ Ę2

2 , G = ĘH̨ = 0, (1.2)

where H̨ and Ę are magnetic and electric fields. This expression should be compared with the

one-loop e�ective Lagrangian in pure SU(N) gauge field theory, which has the form [11, 13] (see

Fig.2):

Lg = ≠F ≠ 11N

96fi2 g
2F

1
ln 2g

2F
µ4 ≠ 1

2
, F = H̨2

a ≠ Ę2
a

2 > 0, G = ĘaH̨a = 0 . (1.3)

From (1.2) it follows that the corresponding quark contribution considered in the chiral limit is

Lq = ≠F + Nf

48fi2 g
2F

Ë
ln(2g

2F
µ4 ) ≠ 1

È
, (1.4)

1

The e�ective Lagrangian approach allows to calculate the quantum-mechanical corrections to

the energy momentum tensor by using the formula derived by Schwinger in [5]:

Tµ‹ = (Fµ⁄F‹⁄ ≠ gµ‹

1
4F

2
⁄fl) ˆL

ˆF ≠ gµ‹(L ≠ F ˆL
ˆF ≠ G ˆL

ˆG ). (1.8)

In case of the Heisenberg-Euler e�ective Lagrangian Schwinger presented the expression for the

Tµ‹ in the fine structure constant – = e
2
/4fi expansion:

Tµ‹ = T
M

µ‹

1
1 ≠ 16

45m4 –
2F

2
+ gµ‹

2
45m4 –

2
1
4F2 + 7G2

2
+ ... (1.9)

with its nonzero trace

T = Tµµ = 8
45m4 –

2
1
4F2 + 7G2

2
+ ... (1.10)

In massless QED using the one-loop expression (1.2) for Tµ‹ one can get

Tµ‹ = T
M

µ‹

Ë
1 ≠ e

2

24fi2 ln 2e
2F

µ4

È
+ gµ‹

e
2

24fi2 F , G = 0. (1.11)

The Tµ‹ becomes proportional to the space-time metric tensor gµ‹ at the extreme magnetic field

H
2
0 = H

2
c exp (6fi/–) and therefore induces a positive e�ective cosmological constant (see Fig.1).

To calculate the energy momentum tensor Tµ‹ in pure SU(N) YM theory one should use the

expression (1.3) and in the case of QCD, in the limit of chiral fermions, one should also add the

quark contribution (1.4) by using the substitution 11N æ b = 11N ≠ 2Nf :

Tµ‹ = T
Y M

µ‹

Ë
1 + b g

2

96fi2 ln 2g
2F

µ4

È
≠ gµ‹

b g
2

96fi2 F , G = 0. (1.12)

The vacuum energy density T00 © ‘(F) has therefore the following form [13]:

‘(F) = F + b g
2

96fi2 F
1

ln 2g
2F

µ4 ≠ 1
2
. (1.13)

The energy density has its new minimum outside of the perturbative vacuum state ÈG2
µ‹Í = 0, at

the Lorentz and renormalisation group invariant field strength [13]

È2g
2FÍvac = µ

4 exp (≠ 96fi
2

b g2(µ)) = �4
QCD, (1.14)

where b = 11N ≠ 2Nf and characterises the dynamical breaking of scaling invariance in YM

theory†:

Tµµ = ≠ b

48fi2 È2g
2FÍvac.

†
The �QCD is defined here through the covariant subtraction scheme (1.1). The relation with other renormali-

sation schemes can be found in [32].
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Effective Lagrangian in Yang-Mills theory  

Using proper time representation

�(A) = SY M (A) ≠ i

2

⁄ Œ

0

ds

s
Tre

≠iHs + i

⁄ Œ

0

ds

s
Tre

≠iHF P s (11.91)

or in equivalent form

Leff = LY M ≠ i

2

⁄ Œ

0

ds

s
Tr(x|U(s)|x) + i

⁄ Œ

0

ds

s
Tr(x|U0(s)|x) (11.92)

where
U(s) = e

≠iHs
, U0(s) = e

≠iHF P s (11.93)

For covariantly constant fields the matrix elements can be calculated and are

(x|U(s)|y) = i

(4fis)2 exp {≠ i

4(x ≠ y)K(s)(x ≠ y) + i

2xNy ≠ L(s) + 2Ns} (11.94)

(x|U0(s)|y) = i

(4fis)2 exp {≠ i

4(x ≠ y)K(s)(x ≠ y) + i

2xNy ≠ L(s)} (11.95)

where the corresponding matrices are:

N = igG

K(s) = N coth(Ns)

L(s) = 1
2 tr ln[(Ns) sinh(Ns)] (11.96)

and
L(1) = ≠ 1

32fi2

⁄
ds

s3 Trexp{≠L(s) + 2Ns} + 1
16fi2

⁄
ds

s3 Trexp{≠L(s)} (11.97)

Substituting the matrix elements and calculating the traces one can get:

L(1) = ≠ 1
8fi2

⁄
ds

s3 e
≠iµ

2
s

(gF1s) (gF2s)
sinh(gF1s) sinh(gF2s) ≠

≠ 1
4fi2

⁄
ds

s3 e
≠iµ

2
s(gF1s) (gF2s)[ sinh(gF1s)

sinh(gF2s) + sinh(gF2s)
sinh(gF1s) ] (11.98)

where
F

2
1 = ≠F ≠ (F2 + G2)1/2

, F
2
2 = ≠F + (F2 + G2)1/2 (11.99)

and we have introduced the infrared regularisation parameter µ
2. Choosing the integration counters

so as to guarantee the convergence of the proper time integrals, that is to make substitution s æ ≠is

in the first and third integrals one can get

L(1) = 1
8fi2

⁄ Œ

s0

ds

s3 e
≠µ

2
s

(gf1s) (gf2s)
sinh(gf1s) sin(gf2s) +

+ 1
4fi2

⁄ Œ

s0

ds

s3 e
≠iµ

2
s(gf1s) (gf2s) sin(gf1s)

sinh(gf2s)

≠ 1
4fi2

⁄ Œ

s0

ds

s3 e
≠µ

2
s(gf1s) (gf2s) sin(gf2s)

sinh(gf1s) (11.100)

16
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Dimensional Transmutation and Condensation   
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1 Introduction

In this article we shall analyse the e�ective action in QED and QCD by using the perturbative

loop expansion and renormalisation group equations and discuss the physical consequences which

can be derived from their explicit expressions. We shall reexamine the proof of the existence of the

chromomagnetic gluon condensation in Yang-Mills (YM) theory and will present the derivation

of the new results. The Heisenberg-Euler Lagrangian in QED [1, 2, 3, 4, 5, 6] is a sum of the one

loop diagrams with a vacuum electron-positron pair circulating in the loop and the gluons and

quarks in case of QCD [7, 8, 9, 10, 11, 12, 13, 14]. The e�ective action �[A] has the following

representation:

� =
⁄

Ldx =
ÿ

n

⁄
dx1...dxn�(n)a1...an

µ1...µn
(x1, ..., xn)Aa1

µ1(x1)...Aan

µn
(xn) = S + W

(1) + W
(2) + ....,

where L is the e�ective Lagrangian, �(n) is a one-particle irreducible (1PI) vertex function,

A
a
µ(x) ©< 0|Aa

µ(x)|0 > is the vacuum expectation value of the field operator and W
(n)

, n = 1, 2, ..

represent the terms of the loop expansion.

We shall consider the limit of massless electrons and quarks and demonstrate that the proper

time integral in the Heisenberg-Euler Lagrangian can be calculated explicitly by using covariant

renormalisation condition [11, 13, 14]

ˆL
ˆF |

t= 1
2 ln( 2e2|F|

µ4 )=G=0
= ≠1, (1.1)

where F = 1
4G

a
µ‹G

a
µ‹ is the Lorentz and gauge invariant form of the YM field strength tensor G

a
µ‹

and µ
2 is the renormalisation scale parameter. In the massless limit the QED e�ective Lagrangian

has the exact logarithmic dependence as a function of the invariant F (see Fig.1):

Le = ≠F + e
2F

24fi2

Ë
ln(2e

2F
µ4 ) ≠ 1

È
, F = H̨2 ≠ Ę2

2 , G = ĘH̨ = 0, (1.2)

where H̨ and Ę are magnetic and electric fields. This expression should be compared with the

one-loop e�ective Lagrangian in pure SU(N) gauge field theory, which has the form [11, 13] (see

Fig.2):

Lg = ≠F ≠ 11N

96fi2 g
2F

1
ln 2g

2F
µ4 ≠ 1

2
, F = H̨2

a ≠ Ę2
a

2 > 0, G = ĘaH̨a = 0 . (1.3)

From (1.2) it follows that the corresponding quark contribution considered in the chiral limit is

Lq = ≠F + Nf

48fi2 g
2F

Ë
ln(2g

2F
µ4 ) ≠ 1

È
, (1.4)
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The e�ective Lagrangian approach allows to calculate the quantum-mechanical corrections to

the energy momentum tensor by using the formula derived by Schwinger in [5]:
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ˆG ). (1.8)

In case of the Heisenberg-Euler e�ective Lagrangian Schwinger presented the expression for the

Tµ‹ in the fine structure constant – = e
2
/4fi expansion:

Tµ‹ = T
M
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1
1 ≠ 16

45m4 –
2F

2
+ gµ‹

2
45m4 –

2
1
4F2 + 7G2

2
+ ... (1.9)

with its nonzero trace

T = Tµµ = 8
45m4 –

2
1
4F2 + 7G2

2
+ ... (1.10)

In massless QED using the one-loop expression (1.2) for Tµ‹ one can get

Tµ‹ = T
M

µ‹

Ë
1 ≠ e

2

24fi2 ln 2e
2F

µ4

È
+ gµ‹

e
2

24fi2 F , G = 0. (1.11)

The Tµ‹ becomes proportional to the space-time metric tensor gµ‹ at the extreme magnetic field

H
2
0 = H

2
c exp (6fi/–) and therefore induces a positive e�ective cosmological constant (see Fig.1).

To calculate the energy momentum tensor Tµ‹ in pure SU(N) YM theory one should use the

expression (1.3) and in the case of QCD, in the limit of chiral fermions, one should also add the

quark contribution (1.4) by using the substitution 11N æ b = 11N ≠ 2Nf :

Tµ‹ = T
Y M

µ‹

Ë
1 + b g

2

96fi2 ln 2g
2F

µ4

È
≠ gµ‹

b g
2

96fi2 F , G = 0. (1.12)

The vacuum energy density T00 © ‘(F) has therefore the following form [13]:

‘(F) = F + b g
2

96fi2 F
1

ln 2g
2F

µ4 ≠ 1
2
. (1.13)

The energy density has its new minimum outside of the perturbative vacuum state ÈG2
µ‹Í = 0, at

the Lorentz and renormalisation group invariant field strength [13]

È2g
2FÍvac = µ

4 exp (≠ 96fi
2

b g2(µ)) = �4
QCD, (1.14)

where b = 11N ≠ 2Nf and characterises the dynamical breaking of scaling invariance in YM

theory†:

Tµµ = ≠ b

48fi2 È2g
2FÍvac.

†
The �QCD is defined here through the covariant subtraction scheme (1.1). The relation with other renormali-

sation schemes can be found in [32].

3

2 Quantum Yang-Mills Equation of State

We will assume here that the universe has in it only fluctuating vacuum gauge fields and will neglect

the contributions to the energy density from radiation, elementary particles of the Standard Model

or of the Grand Unification Models (GUM). The contribution of the radiation and of other matter

components can be added afterwards. We will derive the equation of state by using the explicit

expression for the e�ective Lagrangian in the Yang-Mills gauge field theory [1, 2, 3, 4, 5]. The e�ective

Lagrangian is a sum of the Heisenberg-Euler Lagrangian Lq [29] taken in the limit of massless chiral

fermions [2]:

Lq = ≠F + Nf

48fi2 g
2F

Ë
ln(2g

2F
µ4 ) ≠ 1

È
, (2.9)

where Nf is the number of fermion flavours and of the Yang-Mills e�ective Lagrangian Lg for SU(N)

gauge field theory [1, 2, 3]:

Lg = ≠F ≠ 11N

96fi2 g
2F

1
ln 2g

2F
µ4 ≠ 1

2
, F = 1

4G
2
µ‹ = H̨2

a ≠ Ę2
a

2 > 0, G = ĘaH̨a = 0 , (2.10)

where H̨a and Ęa are chromomagnetic and chromoelectric vacuum fields. The one-loop e�ective La-

grangian has exact logarithmic dependence on the invariant F = 1
4G

2
µ‹ . The e�ective Lagrangian

allows to obtain the quantum energy momentum tensor Tµ‹ by using the expressions (2.9) and (2.10)

[2]:

Tµ‹ = T
Y M
µ‹

Ë
1 + b g

2

96fi2 ln 2g
2F

µ4

È
≠ gµ‹

b g
2

96fi2 F , G = 0, (2.11)

where b = 11N ≠ 2Nf . The vacuum energy density has therefore the following form:

T00 © ‘(F) = F + b g
2

96fi2 F
1

ln 2g
2F

µ4 ≠ 1
2

(2.12)

and the spacial components of the stress tensor are:

Tij = ”ij

Ë1
3F + 1

3
b g

2

96fi2 F
1

ln 2g
2F

µ4 + 3
2È

= ”ij p(F). (2.13)

Thus we have the following quantum gauge field theory equation of state:

‘(F) = F + b g
2

96fi2 F
1

ln 2g
2F

µ4 ≠ 1
2
, p(F) = 1

3F + 1
3

b g
2
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where H̨a and Ęa are chromomagnetic and chromoelectric vacuum fields. The one-loop e�ective La-

grangian has exact logarithmic dependence on the invariant F = 1
4G

2
µ‹ . The e�ective Lagrangian

allows to obtain the quantum energy momentum tensor Tµ‹ by using the expressions (2.9) and (2.10)

[2]:

Tµ‹ = T
Y M
µ‹

Ë
1 + b g

2

96fi2 ln 2g
2F

µ4

È
≠ gµ‹

b g
2

96fi2 F , G = 0, (2.11)

where b = 11N ≠ 2Nf . The vacuum energy density has therefore the following form:

T00 © ‘(F) = F + b g
2

96fi2 F
1

ln 2g
2F

µ4 ≠ 1
2

(2.12)

and the spacial components of the stress tensor are:

Tij = ”ij

Ë1
3F + 1

3
b g

2

96fi2 F
1

ln 2g
2F

µ4 + 3
2È

= ”ij p(F). (2.13)

Thus we have the following quantum gauge field theory equation of state:

‘(F) = F + b g
2

96fi2 F
1

ln 2g
2F

µ4 ≠ 1
2
, p(F) = 1

3F + 1
3

b g
2

96fi2 F
1

ln 2g
2F

µ4 + 3
2
. (2.14)

The energy density ‘(F) has its minimum outside of the perturbative vacuum state F = 0 at the

Lorentz and renormalisation group invariant field strength [1]

2g
2Fvac = µ

4 exp (≠ 96fi
2

b g2(µ)) = �4
Y M , (2.15)

4

2 Quantum Yang-Mills Equation of State

We will assume here that the universe has in it only fluctuating vacuum gauge fields and will neglect

the contributions to the energy density from radiation, elementary particles of the Standard Model

or of the Grand Unification Models (GUM). The contribution of the radiation and of other matter

components can be added afterwards. We will derive the equation of state by using the explicit

expression for the e�ective Lagrangian in the Yang-Mills gauge field theory [1, 2, 3, 4, 5]. The e�ective

Lagrangian is a sum of the Heisenberg-Euler Lagrangian Lq [29] taken in the limit of massless chiral

fermions [2]:

Lq = ≠F + Nf

48fi2 g
2F

Ë
ln(2g

2F
µ4 ) ≠ 1

È
, (2.9)

where Nf is the number of fermion flavours and of the Yang-Mills e�ective Lagrangian Lg for SU(N)

gauge field theory [1, 2, 3]:

Lg = ≠F ≠ 11N

96fi2 g
2F

1
ln 2g

2F
µ4 ≠ 1

2
, F = 1

4G
2
µ‹ = H̨2

a ≠ Ę2
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Figure 1: There are regions in the phase space (‘, p) of the quantum Yang-Mills states (2.16) where ‘

and p are positive, where p is positive and ‘ is negative and where they are both negative.

which characterises the dynamical breaking of scaling invariance of YM theory (2.11):

Tµµ = ≠ b

48fi2 2g
2Fvac.

Thus the equation of state (2.14) will take the following form:
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By expressing the vacuum field strength tensor F in terms of vacuum pressure F = F(p) and substi-

tuting it into the vacuum energy density we will get the equation of state in the form ‘ = ‘(p) shown

in Fig.1. In the limit 2g
2F ∫ �4

Y M (2.16) reduces to a radiation equation of state: p = ‘/3. There

are regions in the phase space of states (‘, p) where ‘ and p are positive, where p is positive and ‘ is

negative and where they are both negative, as it is shown in Fig. 1. The pressure is always higher

than in the case of radiation equation of state:
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It also follows from the energy momentum-tensor expression (2.11) that when the gauge field is in its

ground state (2.15), T
µ‹ is proportional to the space-time metric g

µ‹ :

T
µ‹
vac = ≠g

µ‹ b

192fi2 2g
2Fvac, (2.18)

and equation of state reduces to the equation p = ≠‘ > 0. The equation of state p = ≠‘ > 0

is equivalent to having a fluid of positive pressure and negative energy density alternative to the

inflation that is driven by a scalar field (1.6).

In the next sections we will analyse the Freidmann cosmology that is driven by the vacuum gauge

field theory equation of state (2.16). The Einstein equation in the presence of the vacuum energy

5

2 Quantum Yang-Mills Equation of State

We will assume here that the universe has in it only fluctuating vacuum gauge fields and will neglect

the contributions to the energy density from radiation, elementary particles of the Standard Model

or of the Grand Unification Models (GUM). The contribution of the radiation and of other matter

components can be added afterwards. We will derive the equation of state by using the explicit

expression for the e�ective Lagrangian in the Yang-Mills gauge field theory [1, 2, 3, 4, 5]. The e�ective

Lagrangian is a sum of the Heisenberg-Euler Lagrangian Lq [29] taken in the limit of massless chiral

fermions [2]:

Lq = ≠F + Nf

48fi2 g
2F

Ë
ln(2g

2F
µ4 ) ≠ 1

È
, (2.9)

where Nf is the number of fermion flavours and of the Yang-Mills e�ective Lagrangian Lg for SU(N)

gauge field theory [1, 2, 3]:

Lg = ≠F ≠ 11N

96fi2 g
2F

1
ln 2g

2F
µ4 ≠ 1

2
, F = 1

4G
2
µ‹ = H̨2

a ≠ Ę2
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where ‘ is the energy density, p is a pressure, and ȧ = da/cdt. The scale factor a(t) enters into the

metric as [17, 11, 14]

ds
2 = c

2
dt

2 ≠ a
2(t)

Y
__]

__[

d‰
2 + ‰

2
d�2

d‰
2 + sin2

‰d�2

d‰
2 + sinh2

‰d�2
. (1.2)

These are comoving coordinates; the universe expands or contracts as a(t) increases or decreases, and

the matter coordinates remain fixed. The conformal time ÷ is defined as cdt = a(÷)d÷. It is convenient

to transform the Friedmann equations (1.1) into the following form [17, 11, 14]:

‘̇ + 3 ȧ

a
(‘ + p) = 0, (1.3)

ä

a
= ≠4fiG

3c4 (‘ + 3p). (1.4)

It follows that the matter equation of state in the universe p = p(‘) defines the behaviour of the

solutions of the Freidmann equations. In the case of dust of zero pressure p = 0, ‘ = const it follows

from (1.3) that ‘ a
3 = const and in the case of pure radiation p = ‘/3 that ‘ a

4 = const. For the

general parametrisation of the equation of state p = w‘ in terms of the barotropic parameter w the

solution of (1.3) has the following form:

‘ a
3(1+w) = const, (1.5)

and when w = ≠1, p = ≠‘ < 0, it follows from (1.4) that the acceleration is positive:

ä

a
= 8fiG

3c4 ‘ > 0.

The equation of state p = ≠‘ < 0 is equivalent to having a fluid of positive energy density and negative

pressure. Representation of the dark energy as a barotropic fluid provides a su�cient condition for

the accelerating expansion of the universe [8, 9, 10, 23, 11, 12, 14, 15].

Most of the studies of inflation are carried out under the general hypothesis that inflation is driven

by a scalar field [11, 12]. A negative pressure fluid is realised with a scalar field driven inflation where
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It follows that the strong energy dominance condition ‘+3p Ø 0 is violated when p = ≠‘ = ≠V („0) < 0

and the energy momentum tensor Tµ‹ = gµ‹V („0) imitates the e�ective cosmological term in (1.4):
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It also follows from the energy momentum-tensor expression (2.11) that when the gauge field is in its

ground state (2.15), T
µ‹ is proportional to the space-time metric g
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and equation of state reduces to the equation p = ≠‘ > 0. The equation of state p = ≠‘ > 0

is equivalent to having a fluid of positive pressure and negative energy density alternative to the

inflation that is driven by a scalar field (1.6).
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momentum tensor (2.11) has the following form:
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It follows that the induced e�ective cosmological term can be expressed in terms of vacuum energy

density (2.16) and vacuum field (2.15) as

�eff = 8fiG

3c4 ‘vac = ≠8fiG

3c4
b

192fi2 2g
2Fvac = ≠8fiG

3c4
b

192fi2 �4
Y M . (2.20)

During the cosmological evolution the field strength tensor F will not stay constantly in its ground

state (2.15) but will roll through the well-defined trajectory in the phase space of states (‘, p), which

is defined by the Freidmann equations (1.1) and (1.3), (1.4).

In general relativity there is no covariantly constant gauge fields and the time evolution of the gauge

field is described by the Yang-Mills equation in the background gravitational field or equivalently can

be defined through the covariant conservation of the energy-momentum tensor: Tµ‹;‹ = 0. It is the

last option we will use in the next section in solving the Freidmann equations. Time-dependent space

homogeneous solutions of the Yang-Mills equations were first considered in [64, 65, 66] and recently

in the context of the cosmological models in [67, 68, 70, 70, 71].

3 Quantum Yang-Mills Equation of State and Friedmann Cosmology

The time derivative of the energy density given in (2.16) is

‘̇ = A (2g
2Ḟ) log 2g

2F
�4

Y M

, (3.21)

where Ḟ = dF/cdt. The time evolution of the energy density ‘ in (1.3) depends on the sign of the

sum ‘ + p. By using the expressions for ‘ and p in (2.16) for the sum ‘ + p we will obtain:

‘ + p = 4A
3 (2g

2F) log 2g
2F

�4
Y M

, (3.22)

where A is the gauge group coe�cient:

A = b

192fi2 = 11N ≠ 2Nf

192fi2 . (3.23)

It follows that for 2g
2F < �4

Y M the weak energy dominance condition ‘ + p Ø 0 is violated. The

equation (1.3) now takes the form

2g
2Ḟ + 4(2g

2F) ȧ

a
= 0 (3.24)
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momentum tensor (2.11) has the following form:

Rµ‹ ≠ 1
2gµ‹R = 8fiG
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Ë
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Y M
µ‹

1
1 + b g

2

96fi2 ln 2g
2F

µ4

2
≠ gµ‹

b g
2

96fi2 F
È
. (2.19)

It follows that the induced e�ective cosmological term can be expressed in terms of vacuum energy

density (2.16) and vacuum field (2.15) as

�eff = 8fiG

3c4 ‘vac = ≠8fiG

3c4
b

192fi2 2g
2Fvac = ≠8fiG

3c4
b

192fi2 �4
Y M . (2.20)

During the cosmological evolution the field strength tensor F will not stay constantly in its ground

state (2.15) but will roll through the well-defined trajectory in the phase space of states (‘, p), which

is defined by the Freidmann equations (1.1) and (1.3), (1.4).

In general relativity there is no covariantly constant gauge fields and the time evolution of the gauge

field is described by the Yang-Mills equation in the background gravitational field or equivalently can

be defined through the covariant conservation of the energy-momentum tensor: Tµ‹;‹ = 0. It is the

last option we will use in the next section in solving the Freidmann equations. Time-dependent space

homogeneous solutions of the Yang-Mills equations were first considered in [64, 65, 66] and recently

in the context of the cosmological models in [67, 68, 70, 70, 71].

3 Quantum Yang-Mills Equation of State and Friedmann Cosmology

The time derivative of the energy density given in (2.16) is

‘̇ = A (2g
2Ḟ) log 2g

2F
�4

Y M

, (3.21)

where Ḟ = dF/cdt. The time evolution of the energy density ‘ in (1.3) depends on the sign of the

sum ‘ + p. By using the expressions for ‘ and p in (2.16) for the sum ‘ + p we will obtain:

‘ + p = 4A
3 (2g

2F) log 2g
2F

�4
Y M

, (3.22)

where A is the gauge group coe�cient:

A = b

192fi2 = 11N ≠ 2Nf

192fi2 . (3.23)

It follows that for 2g
2F < �4

Y M the weak energy dominance condition ‘ + p Ø 0 is violated. The

equation (1.3) now takes the form

2g
2Ḟ + 4(2g

2F) ȧ

a
= 0 (3.24)

6

momentum tensor (2.11) has the following form:

S = ≠ c
3

16fiG

⁄
R

Ô
≠gd

4
x +

⁄
(Lq + Lg)

Ô
≠gd

4
x. (2.19)

Rµ‹ ≠ 1
2gµ‹R = 8fiG

c4

Ë
T

Y M
µ‹

1
1 + b g

2

96fi2 ln 2g
2F

µ4

2
≠ gµ‹

b g
2

96fi2 F
È
. (2.20)

It follows that the induced e�ective cosmological term can be expressed in terms of vacuum energy

density (2.16) and vacuum field (2.15) as

�eff = 8fiG

3c4 ‘vac = ≠8fiG

3c4
b

192fi2 2g
2Fvac = ≠8fiG

3c4
b

192fi2 �4
Y M . (2.21)

During the cosmological evolution the field strength tensor F will not stay constantly in its ground

state (2.15) but will roll through the well-defined trajectory in the phase space of states (‘, p), which

is defined by the Freidmann equations (1.1) and (1.3), (1.4).

In general relativity there is no covariantly constant gauge fields and the time evolution of the gauge

field is described by the Yang-Mills equation in the background gravitational field or equivalently can

be defined through the covariant conservation of the energy-momentum tensor: Tµ‹;‹ = 0. It is the

last option we will use in the next section in solving the Freidmann equations. Time-dependent space

homogeneous solutions of the Yang-Mills equations were first considered in [64, 65, 66] and recently

in the context of the cosmological models in [67, 68, 70, 70, 71].

3 Quantum Yang-Mills Equation of State and Friedmann Cosmology

The time derivative of the energy density given in (2.16) is

‘̇ = A (2g
2Ḟ) log 2g

2F
�4

Y M

, (3.22)

where Ḟ = dF/cdt. The time evolution of the energy density ‘ in (1.3) depends on the sign of the

sum ‘ + p. By using the expressions for ‘ and p in (2.16) for the sum ‘ + p we will obtain:

‘ + p = 4A
3 (2g

2F) log 2g
2F

�4
Y M

, (3.23)

where A is the gauge group coe�cient:

A = b

192fi2 = 11N ≠ 2Nf

192fi2 . (3.24)

It follows that for 2g
2F < �4

Y M the weak energy dominance condition ‘ + p Ø 0 is violated. The

equation (1.3) now takes the form

2g
2Ḟ + 4(2g

2F) ȧ

a
= 0 (3.25)
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where ‘ is the energy density, p is a pressure, and ȧ = da/cdt. The scale factor a(t) enters into the

metric as [17, 11, 14]

ds
2 = c

2
dt

2 ≠ a
2(t)

Y
__]

__[

d‰
2 + ‰

2
d�2

d‰
2 + sin2

‰d�2

d‰
2 + sinh2

‰d�2
. (1.2)

These are comoving coordinates; the universe expands or contracts as a(t) increases or decreases, and

the matter coordinates remain fixed. The conformal time ÷ is defined as cdt = a(÷)d÷. It is convenient

to transform the Friedmann equations (1.1) into the following form [17, 11, 14]:

‘̇ + 3 ȧ

a
(‘ + p) = 0, (1.3)

ä

a
= ≠4fiG

3c4 (‘ + 3p). (1.4)

It follows that the matter equation of state in the universe p = p(‘) defines the behaviour of the

solutions of the Freidmann equations. In the case of dust of zero pressure p = 0, ‘ = const it follows

from (1.3) that ‘ a
3 = const and in the case of pure radiation p = ‘/3 that ‘ a

4 = const. For the

general parametrisation of the equation of state p = w‘ in terms of the barotropic parameter w the

solution of (1.3) has the following form:

‘ a
3(1+w) = const, (1.5)

and when w = ≠1, p = ≠‘ < 0, it follows from (1.4) that the acceleration is positive:

ä

a
= 8fiG

3c4 ‘ > 0.

The equation of state p = ≠‘ < 0 is equivalent to having a fluid of positive energy density and negative

pressure. Representation of the dark energy as a barotropic fluid provides a su�cient condition for

the accelerating expansion of the universe [8, 9, 10, 23, 11, 12, 14, 15].

Most of the studies of inflation are carried out under the general hypothesis that inflation is driven

by a scalar field [11, 12]. A negative pressure fluid is realised with a scalar field driven inflation where

‘ = 1
2 „̇

2 +V („), p = 1
2 „̇

2 ≠V („) and ‘+p = „̇
2 Ø 0, ‘+3p = 2„̇

2 ≠2V („). The inflationary condition

‘+3p < 0 can be satisfied when the scalar field is in its vacuum state: V
Õ(„0) = 0, V („0) > 0, „̇0 = 0.

It follows that the strong energy dominance condition ‘+3p Ø 0 is violated when p = ≠‘ = ≠V („0) < 0

and the energy momentum tensor Tµ‹ = gµ‹V („0) imitates the e�ective cosmological term in (1.4):

ä

a
= 8fiG

3c4 V („0) > 0. (1.6)

2

The evolution equations (3.31) and (3.33) should be investigated in six regions of the two-dimensional

parameter space (a0, �Y M ). The numerical value of “
2 defines the relation a

2
0 = 1

“2 L
2(�Y M ) be-

tween basic independent parameters a0 and �Y M through the equations (3.31) and (3.28). Thus the

corresponding six regions in the parameter space are defined in terms of “
2:

k = ≠1, 0 Æ “
2

< “
2
c Regions I and II

k = ≠1, “
2 = “

2
c = 2Ô

e
Region III

k = ≠1, “
2
c < “

2 Regions IV (3.34)

k = 0,

k = 1, 0 Æ “
2
.

In terms of scale factor ã and time variable · (3.30) the field strength tensor (3.25) has the following

form:

2g
2F = �4

Y M

ã4(·) (3.35)

and the energy density and the pressure (3.26) will take the form

‘ = A
ã4(·)

1
log 1

ã4(·) ≠ 1
2
�4

Y M , p = A
3ã4(·)

1
log 1

ã4(·) + 3
2
�4

Y M . (3.36)

There is a straightforward relation between energy density, pressure and the barotropic parameter w:

p = 1
3‘ + 4

3
A

ã4(·)�4
Y M , w = p

‘
=

log 1
ã4(·) + 3

3
1

log 1
ã4(·) ≠ 1

2 . (3.37)

In the next sections we will investigate the solutions of the equation (3.31) and the time evolution of

the field strength tensor (3.35), of the energy density and the pressure (3.36 ). We can also extract

the Hubble parameter from (1.1) by using (3.31)

L
2
H

2 = L
2
1

ȧ

a

22
= 1

ã2

1
dã

d·

22
= 1

ã4(·)
1

log 1
ã4(·) ≠ 1

2
≠ k“

2

ã2(·) (3.38)

and the corresponding deceleration parameter

q = ≠ ä

a

1
H2 . (3.39)

The acceleration is determined by the right-hand side of the equation (1.4) and is proportional to

‘ + 3p, which is:

‘ + 3p = 2A (2g
2F)

1
log 2g

2F
�4

Y M

+ 1
2
. (3.40)
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momentum tensor (2.11) has the following form:

Rµ‹ ≠ 1
2gµ‹R = 8fiG

c4

Ë
T

Y M
µ‹

1
1 + b g

2

96fi2 ln 2g
2F

µ4

2
≠ gµ‹

b g
2

96fi2 F
È
. (2.19)

It follows that the induced e�ective cosmological term can be expressed in terms of vacuum energy

density (2.16) and vacuum field (2.15) as

�eff = 8fiG

3c4 ‘vac = ≠8fiG

3c4
b

192fi2 2g
2Fvac = ≠8fiG

3c4
b

192fi2 �4
Y M . (2.20)

During the cosmological evolution the field strength tensor F will not stay constantly in its ground

state (2.15) but will roll through the well-defined trajectory in the phase space of states (‘, p), which

is defined by the Freidmann equations (1.1) and (1.3), (1.4).

In general relativity there is no covariantly constant gauge fields and the time evolution of the gauge

field is described by the Yang-Mills equation in the background gravitational field or equivalently can

be defined through the covariant conservation of the energy-momentum tensor: Tµ‹;‹ = 0. It is the

last option we will use in the next section in solving the Freidmann equations. Time-dependent space

homogeneous solutions of the Yang-Mills equations were first considered in [64, 65, 66] and recently

in the context of the cosmological models in [67, 68, 70, 70, 71].

3 Quantum Yang-Mills Equation of State and Friedmann Cosmology

The time derivative of the energy density given in (2.16) is

‘̇ = A (2g
2Ḟ) log 2g

2F
�4

Y M

, (3.21)

where Ḟ = dF/cdt. The time evolution of the energy density ‘ in (1.3) depends on the sign of the

sum ‘ + p. By using the expressions for ‘ and p in (2.16) for the sum ‘ + p we will obtain:

‘ + p = 4A
3 (2g

2F) log 2g
2F

�4
Y M

, (3.22)

where A is the gauge group coe�cient:

A = b

192fi2 = 11N ≠ 2Nf

192fi2 . (3.23)

It follows that for 2g
2F < �4

Y M the weak energy dominance condition ‘ + p Ø 0 is violated. The

equation (1.3) now takes the form

2g
2Ḟ + 4(2g

2F) ȧ

a
= 0 (3.24)

6

momentum tensor (2.11) has the following form:

Rµ‹ ≠ 1
2gµ‹R = 8fiG

c4

Ë
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Y M
µ‹

1
1 + b g

2

96fi2 ln 2g
2F

µ4

2
≠ gµ‹

b g
2

96fi2 F
È
. (2.19)

It follows that the induced e�ective cosmological term can be expressed in terms of vacuum energy

density (2.16) and vacuum field (2.15) as

�eff = 8fiG

3c4 ‘vac = ≠8fiG

3c4
b

192fi2 2g
2Fvac = ≠8fiG

3c4
b

192fi2 �4
Y M . (2.20)

During the cosmological evolution the field strength tensor F will not stay constantly in its ground

state (2.15) but will roll through the well-defined trajectory in the phase space of states (‘, p), which

is defined by the Friedmann equations (1.1) and (1.3), (1.4).

In general relativity there is no covariantly constant gauge fields and the time evolution of the gauge

field is described by the Yang-Mills equation in the background gravitational field or equivalently can

be defined through the covariant conservation of the energy-momentum tensor: Tµ‹;‹ = 0. It is the

last option we will use in the next section in solving the Friedmann equations. Time-dependent space

homogeneous solutions of the Yang-Mills equations were first considered in [64, 65, 66] and recently

in the context of the cosmological models in [67, 68, 70, 70, 71].

3 Quantum Yang-Mills Equation of State and Friedmann Cosmology

The time derivative of the energy density given in (2.16) is

‘̇ = A (2g
2Ḟ) log 2g

2F
�4

Y M

, (3.21)

where Ḟ = dF/cdt. The time evolution of the energy density ‘ in (1.3) depends on the sign of the

sum ‘ + p. By using the expressions for ‘ and p in (2.16) for the sum ‘ + p we will obtain:

‘ + p = 4A
3 (2g

2F) log 2g
2F

�4
Y M

, (3.22)

where A is the gauge group coe�cient:

A = b

192fi2 = 11N ≠ 2Nf

192fi2 . (3.23)

It follows that for 2g
2F < �4

Y M the weak energy dominance condition ‘ + p Ø 0 is violated. The

equation (1.3) now takes the form

2g
2Ḟ + 4(2g

2F) ȧ

a
= 0 (3.24)
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and can be integrated yielding

2g
2F a

4 = const © �4
Y M a

4
0, (3.25)

where the integration constant is parametrised in terms of the initial data parameter a0. The energy

density and pressure (2.16) can now be expressed in terms of the scale factor a(t):

‘ = Aa
4
0

a4

1
log a

4
0

a4 ≠ 1
2
�4

Y M , p = A a
4
0

3a4

1
log a

4
0

a4 + 3
2
�4

Y M . (3.26)

With the help of the last expression for the ‘ the first Friedmann equation (1.1) will take the following

form:

da

cdt
= ±

Û
8fiG

3c4 A �4
Y M

a
4
0

a2

1
log a

4
0

a4 ≠ 1
2

≠ k, k = 0, ±1. (3.27)

It is convenient to define the length scale L as it appears naturally in (2.21) and (3.28):

1
L2 = 8fiG

3c4 A �4
Y M © �eff , (3.28)

so the equation (3.28) will take the following form:

da

cdt
= ±

Û
a

2
0

L2
a

2
0

a2

1
log a

4
0

a4 ≠ 1
2

≠ k. (3.29)

In order to simplify the evolution equations further it is convenient to introduce the dimensionless

scale factor ã and the dimensionless time variable · :

a(·) = a0 ã(·), ct = L ·, (3.30)

where we normalise the scale factor a(·) to the constant parameter a0 in (3.26). In these variables

the evolution equation (3.30) is in its final form:

dã

d·
= ±

Ú
1
ã2

1
log 1

ã4 ≠ 1
2

≠ k“2, k = 0, ±1, “
2 =

1
L

a0

22
. (3.31)

The evolution equation (3.32) can be represented in terms of the dimensionless conformal time ÷:

cdt = L d· = a(÷)d÷ = a0ãd÷, (3.32)

as well as (the prime denotes the di�erentiation with respect to ÷):

ã
Õ © dã

d÷
= ±

Û
1
“2

1
log 1

ã4 ≠ 1
2

≠ k ã2. (3.33)
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the first equation can be solved for the field strength 
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and can be integrated yielding
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Y M a

4
0, (3.25)

where the integration constant is parametrised in terms of the initial data parameter a0. The energy

density and pressure (2.16) can now be expressed in terms of the scale factor a(t):
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With the help of the last expression for the ‘ the first Freidmann equation (1.1) will take the following

form:
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It is convenient to define the length scale L as it appears naturally in (2.20) and (3.27):

1
L2 = 8fiG
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so the equation (3.27) will take the following form:
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≠ k. (3.29)

In order to simplify the evolution equations further it is convenient to introduce the dimensionless

scale factor ã and the dimensionless time variable · :

a(·) = a0 ã(·), ct = L ·, (3.30)

where we normalise the scale factor a(·) to the constant parameter a0 in (3.25). In these variables

the evolution equation (3.29) is in its final form:
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1
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. (3.31)

The evolution equation (3.31) can be represented in terms of the dimensionless conformal time ÷:

cdt = L d· = a(÷)d÷ = a0ãd÷, (3.32)

as well as (the prime denotes the di�erentiation with respect to ÷):

ã
Õ © dã
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= ±

Û
1
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1
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ã4 ≠ 1
2

≠ k ã2. (3.33)
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and can be integrated yielding
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Y M a

4
0, (3.25)

where the integration constant is parametrised in terms of the initial data parameter a0. The energy

density and pressure (2.16) can now be expressed in terms of the scale factor a(t):
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log a

4
0

a4 ≠ 1
2
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4
0

3a4

1
log a

4
0

a4 + 3
2
�4

Y M . (3.26)

With the help of the last expression for the ‘ the first Freidmann equation (1.1) will take the following

form:
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It is convenient to define the length scale L as it appears naturally in (2.20) and (3.27):

1
L2 = 8fiG

3c4 A �4
Y M © �eff , (3.28)

so the equation (3.27) will take the following form:
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Û
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2
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1
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4
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≠ k. (3.29)

In order to simplify the evolution equations further it is convenient to introduce the dimensionless

scale factor ã and the dimensionless time variable · :

a(·) = a0 ã(·), ct = L ·, (3.30)

where we normalise the scale factor a(·) to the constant parameter a0 in (3.25). In these variables

the evolution equation (3.29) is in its final form:

dã
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1
log 1
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The evolution equation (3.31) can be represented in terms of the dimensionless conformal time ÷:

cdt = L d· = a(÷)d÷ = a0ãd÷, (3.32)

as well as (the prime denotes the di�erentiation with respect to ÷):

ã
Õ © dã
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≠ k ã2. (3.33)
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and can be integrated yielding
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where the integration constant is parametrised in terms of the initial data parameter a0. The energy

density and pressure (2.16) can now be expressed in terms of the scale factor a(t):
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log a

4
0
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With the help of the last expression for the ‘ the first Freidmann equation (1.1) will take the following

form:
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1
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4
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It is convenient to define the length scale L as it appears naturally in (2.20) and (3.27):

1
L2 = 8fiG

3c4 A �4
Y M © �eff , (3.28)

so the equation (3.27) will take the following form:
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= ±

Û
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2
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1
log a

4
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In order to simplify the evolution equations further it is convenient to introduce the dimensionless

scale factor ã and the dimensionless time variable · :

a(·) = a0 ã(·), ct = L ·, (3.30)

where we normalise the scale factor a(·) to the constant parameter a0 in (3.25). In these variables

the evolution equation (3.29) is in its final form:

dã
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1
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The evolution equation (3.31) can be represented in terms of the dimensionless conformal time ÷:

cdt = L d· = a(÷)d÷ = a0ãd÷, (3.32)

as well as (the prime denotes the di�erentiation with respect to ÷):

ã
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≠ k ã2. (3.33)
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momentum tensor (2.11) has the following form:
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It follows that the induced e�ective cosmological term can be expressed in terms of vacuum energy

density (2.16) and vacuum field (2.15) as

�eff = 8fiG

3c4 ‘vac = ≠8fiG

3c4
b

192fi2 2g
2Fvac = ≠8fiG

3c4
b

192fi2 �4
Y M . (2.20)

During the cosmological evolution the field strength tensor F will not stay constantly in its ground

state (2.15) but will roll through the well-defined trajectory in the phase space of states (‘, p), which

is defined by the Friedmann equations (1.1) and (1.3), (1.4).

In general relativity there is no covariantly constant gauge fields and the time evolution of the gauge

field is described by the Yang-Mills equation in the background gravitational field or equivalently can

be defined through the covariant conservation of the energy-momentum tensor: Tµ‹;‹ = 0. It is the

last option we will use in the next section in solving the Friedmann equations. Time-dependent space

homogeneous solutions of the Yang-Mills equations were first considered in [64, 65, 66] and recently

in the context of the cosmological models in [67, 68, 70, 70, 71].

3 Quantum Yang-Mills Equation of State and Friedmann Cosmology

The time derivative of the energy density given in (2.16) is

‘̇ = A (2g
2Ḟ) log 2g

2F
�4

Y M

, (3.21)

where Ḟ = dF/cdt. The time evolution of the energy density ‘ in (1.3) depends on the sign of the

sum ‘ + p. By using the expressions for ‘ and p in (2.16) for the sum ‘ + p we will obtain:

‘ + p = 4A
3 (2g

2F) log 2g
2F

�4
Y M

, (3.22)

where A is the gauge group coe�cient:

A = b

192fi2 = 11N ≠ 2Nf

192fi2 . (3.23)

It follows that for 2g
2F < �4

Y M the weak energy dominance condition ‘ + p Ø 0 is violated. The

equation (1.3) now takes the form

2g
2Ḟ + 4(2g

2F) ȧ

a
= 0 (3.24)
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Figure 2: The behaviour of the potential U≠1(ã) (4.46) is shown in the left figure. When the parameter
“

2 is in the interval 0 Æ “
2

<
2Ô
e
, there are two solutions of the equation U≠1(µi) = 0, i = 1, 2, that

define the Region I, where ã œ [0, µ1] and the Region II, where ã œ [µ2, Œ]. When “
2 = “

2
c = 2Ô

e
,

there is only one solution of the equation U≠1(µs) = 0 that defines the Region III, where ã œ [0, µs].
When 2Ô

e
< “

2, the potential is always positive U≠1(ã) > 0 and the Region IV is where ã œ [0, Œ].
In particular, when “

2 = 1, µ1 ƒ 1, and the scale factor ã(·) is changing in the interval ã œ [0, µ1].
The whole evolution time is · œ [0, 2·m], where ·m ƒ 0.83 is a half period of the Type I solution. The
figure in the middle shows the behaviour of the Type I solution for which the deceleration parameter
is positive, q Ø 1. The Type II solution is changing in the interval ã œ [µ2, Œ], where µ2 ƒ 1.87 and
· œ [0, Œ]. The Type II solution initially grows exponentially because the deceleration parameter is
negative, q < 0, and at late time the regime of exponential expansion continuously transforms into a
linear in time growth of the scale factor shown in the right figure.

The behaviours of the solutions depending on the value of the parameter “
2. When

0 Æ “
2

< “
2
c © 2Ô

e
, (4.48)

there are two solutions ã1 = µ1 and ã2 = µ2 of the above equation that are defining the regions where

the potential U≠1(ã) is positive. In the first region I we have ã œ [0, µ1], and in the second region II

ã œ [µ2, Œ]. These two regions are shown in Fig.2. The region III appears when “
2 = “

2
c and it is the

border line between regions I and II that separates them. At this saddle point “
2 = “

2
c the equation

U≠1(µ) = 0 has only one solution ã = µs and the scale factor ã takes its values in the maximally

available interval ã œ [0, µs]. Finally, in the region IV , where “
2
c < “

2, the potential function U≠1(ã) is

always positive for all values of ã and the scale factor takes its values in the whole interval ã œ [0, Œ].

We will consider these four regions separately.

Let’s consider first the Type I solution when 0 Æ “
2

< “
2
c and ã Æ µ1. The equation (4.47) can be

solved by the substitution

“
2
µ

2 = 2u (4.49)

that reduces the equation (4.47) to the Lamber-Euler type [60, 61, 62]:

ue
≠u = “

2

2
Ô

e
. (4.50)
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Similar to the case of the scalar field driven evolution (1.6) here as well for the fields 2g
2F <

1
e �4

Y M

the strong energy dominance condition ‘ + 3p Ø 0 is violated. From acceleration Freidmann equation

(1.4) and (3.36 ) we have

L
2 ä

a
= ≠ 1

ã4

1
log 1

ã4 + 1
2
. (3.41)

Thus for q with the help of (3.38) we will get

q =
1
ã4

1
log 1

ã4 + 1
2

1
ã4

1
log 1

ã4 ≠ 1
2

≠ k“2

ã2

(3.42)

and for the density parameter �vac the following expression:

�vac © 8fiG

3c4
‘

H2 = 1
L2H2

1
ã4

1
log 1

ã4 ≠ 1
2
, (3.43)

where we used (3.36 ), (3.28). By using the equation (3.38) �vac can be expressed also in the following

form:

�vac ≠ 1 = k
“

2

L2H2ã2 = k
“

2

(dã
d· )2 . (3.44)

We will investigate these observables in the two-dimensional parameter space (a0, �Y M ) in each of the

six regions (3.34). As we mentioned above, the parameter “
2 = L2

a2
0

is a function of a0 and �Y M , the

basic parameters defining the evolution of the Freidmann equations in the case of gauge field theory

vacuum. We will start our analysis by considering the k = ≠1 geometry and 0 Æ “
2

< “
2
c .

4 Type I Solution

The equation (3.31) takes the following form:

dã

d·
= ±

Ú
1
ã2

1
log 1

ã4 ≠ 1
2

+ “2, where 0 Æ “
2
, (4.45)

and the corresponding ”potential” function U≠1(ã) shown in Fig.2 is:

U≠1(ã) © 1
ã2

1
log 1

ã4 ≠ 1
2

+ “
2
. (4.46)

The solution of the equation U≠1(µ) = 0 determines the values of the scale factor ã = µ at which the

square root changes its sign. The evolution equation (4.45) should be restricted to those real values

of ã at which the potential U0(ã) is nonnegative. Thus the equation U≠1(µ) = 0 defines the boundary

values of the scale factor ã = µ:

1
µ2

1
log 1

µ4 ≠ 1
2

+ “
2 = 0. (4.47)
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Figure 5: The r.h.s ‘ + 3p of the Friedmann acceleration equation (1.4) is negative when b < 0 and
positive when b > 0.

Thus there are four stages of alternating expansions. There is a period of deceleration in the first

stage · π ·c where qIV is positive. In the second stage, in the vicinity of · ≥ ·c where qIV = 0 the

expansion is quasi-stationary and a slow varying scale factor is of order ã(·) ƒ µc. In the third stage

· > ·c there is a period of exponential expansion of a finite duration b ≥ (0, 5) where qIV is negative.

It is of finite duration because when b > 0 is large, the acceleration tends to zero:

qIV ƒ ≠ 2
“2µ2

c
be

≠2b
.

In the fourth stage · ∫ ·c, where e
b ƒ “

“c

Ò
2
e · , the acceleration drops to zero qIV ƒ 0 and the universe

undergoes a continuous transition to a linear in time growth of the scale factor

a(t) ƒ ct , a(÷) ƒ e
÷ (7.117)

and the Hubble parameter (3.38) has the following behaviour:

H =
Ú

2
e

e
≠2b

L

1
“

2

“2
c

e
2b ≠ 1 ≠ 2b

21/2
ƒ 1

ct
. (7.118)

When · ∫ ·c the 2g
2F æ 0 and the energy density and pressure are approaching the zero values, �

(3.43) tends to zero value as well:

�vac = 1 ≠ “
2

(dã
d· )2 = 1 ≠ “

2
e

2b

“2
c

1
“2

“2
c
e2b ≠ 1 ≠ 2b

2 æ 0. (7.119)

The influence of the gauge field theory vacuum on the evolution of the universe is fades out at very

late-time. It seems that the Type IV solution is useful to explain a late-time acceleration of the

universe expansion if one appropriately adjust the parameters a0 and “.
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where ‘ is the energy density, p is a pressure, and ȧ = da/cdt. The scale factor a(t) enters into the

metric as [17, 11, 14]

ds
2 = c

2
dt

2 ≠ a
2(t)

Y
__]

__[

d‰
2 + ‰

2
d�2

d‰
2 + sin2

‰d�2

d‰
2 + sinh2

‰d�2
. (1.2)

These are comoving coordinates; the universe expands or contracts as a(t) increases or decreases, and

the matter coordinates remain fixed. The conformal time ÷ is defined as cdt = a(÷)d÷. It is convenient

to transform the Friedmann equations (1.1) into the following form [17, 11, 14]:

‘̇ + 3 ȧ

a
(‘ + p) = 0, (1.3)

ä

a
= ≠4fiG

3c4 (‘ + 3p). (1.4)

It follows that the matter equation of state in the universe p = p(‘) defines the behaviour of the

solutions of the Freidmann equations. In the case of dust of zero pressure p = 0, ‘ = const it follows

from (1.3) that ‘ a
3 = const and in the case of pure radiation p = ‘/3 that ‘ a

4 = const. For the

general parametrisation of the equation of state p = w‘ in terms of the barotropic parameter w the

solution of (1.3) has the following form:

‘ a
3(1+w) = const, (1.5)

and when w = ≠1, p = ≠‘ < 0, it follows from (1.4) that the acceleration is positive:

ä

a
= 8fiG

3c4 ‘ > 0.

The equation of state p = ≠‘ < 0 is equivalent to having a fluid of positive energy density and negative

pressure. Representation of the dark energy as a barotropic fluid provides a su�cient condition for

the accelerating expansion of the universe [8, 9, 10, 23, 11, 12, 14, 15].

Most of the studies of inflation are carried out under the general hypothesis that inflation is driven

by a scalar field [11, 12]. A negative pressure fluid is realised with a scalar field driven inflation where

‘ = 1
2 „̇

2 +V („), p = 1
2 „̇

2 ≠V („) and ‘+p = „̇
2 Ø 0, ‘+3p = 2„̇

2 ≠2V („). The inflationary condition

‘+3p < 0 can be satisfied when the scalar field is in its vacuum state: V
Õ(„0) = 0, V („0) > 0, „̇0 = 0.

It follows that the strong energy dominance condition ‘+3p Ø 0 is violated when p = ≠‘ = ≠V („0) < 0

and the energy momentum tensor Tµ‹ = gµ‹V („0) imitates the e�ective cosmological term in (1.4):

ä

a
= 8fiG

3c4 V („0) > 0. (1.6)
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Type II Solution —  Initial Acceleration of Finite Duration       

5 Type II Solution

For the Type II solution we have 0 Æ “
2

<
2Ô
e

and ã Ø µ2. The Lamber-Euler equation (4.50)

ue
≠u = “

2

2
Ô

e

has an alternative solution expressible in terms of W≠(x) function, which represents the other branch

of the general W (x) function of the real argument x (see Appendix A). For the negative values of

the argument in the interval ≠1/e Æ x Æ 0 the function acquires negative values in the interval

≠Œ Æ W≠(x) Æ ≠1. Thus the solution takes the following form:

u = ≠W≠
1

≠ “
2

2
Ô

e

2
.

The minimal value of the scale factor (4.49) therefore is

µ
2
2 = ≠ 2

“2 W≠
1

≠ “
2

2
Ô

e

2
, (5.71)

and it follows that (see Appendix A)

Ô
e < µ

2
2 Æ Œ, 2 < “

2
µ

2
2. (5.72)

The interval in which ã takes its values is now infinite:

ã œ [µ2, Œ]. (5.73)

With the substitution

ã
4 = µ

4
2e

b2
, b œ [0, Œ], (5.74)

the equation (4.45) will take the following form:

db

d·
= 2

µ
2
2

e
≠ b2

2
1

“
2
µ

2
2

b2 (e
b2
2 ≠ 1) ≠ 1

21/2
. (5.75)

With the boundary conditions at · = 0 where b(0) = 0 (ã(0) = µ2) we will get the integral represen-

tation of the function b(·):

⁄ b(·)

0

db e
b2
2

1
“2µ2

2
b2 (e b2

2 ≠ 1) ≠ 1
21/2 = 2

µ
2
2

·. (5.76)

The time interval is · œ [0, Œ], and as · æ Œ, we have

b
2(·) ƒ 4 ln “

µ2
·, ã ƒ “· = ct. (5.77)
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tation of the function b(·):

⁄ b(·)

0

db e
b2
2

1
“2µ2

2
b2 (e b2

2 ≠ 1) ≠ 1
21/2 = 2

µ
2
2

·. (5.76)

The time interval is · œ [0, Œ], and as · æ Œ, we have

b
2(·) ƒ 4 ln “

µ2
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and ã Ø µ2. The Lamber-Euler equation (4.50)

ue
≠u = “

2

2
Ô

e

has an alternative solution expressible in terms of W≠(x) function, which represents the other branch

of the general W (x) function of the real argument x (see Appendix A). For the negative values of

the argument in the interval ≠1/e Æ x Æ 0 the function acquires negative values in the interval

≠Œ Æ W≠(x) Æ ≠1. Thus the solution takes the following form:

u = ≠W≠
1

≠ “
2

2
Ô

e

2
.

The minimal value of the scale factor (4.49) therefore is

µ
2
2 = ≠ 2

“2 W≠
1

≠ “
2

2
Ô

e

2
, (5.71)

and it follows that (see Appendix A)

Ô
e < µ

2
2 Æ Œ, 2 < “

2
µ

2
2. (5.72)
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·, ã ƒ “· = ct. (5.77)

14

and can be integrated yielding

2g
2F a

4 = const © �4
Y M a

4
0, (3.25)

where the integration constant is parametrised in terms of the initial data parameter a0. The energy

density and pressure (2.16) can now be expressed in terms of the scale factor a(t):

‘ = Aa
4
0

a4

1
log a

4
0

a4 ≠ 1
2
�4

Y M , p = A a
4
0

3a4

1
log a

4
0

a4 + 3
2
�4

Y M . (3.26)

With the help of the last expression for the ‘ the first Freidmann equation (1.1) will take the following

form:

da

cdt
= ±

Û
8fiG

3c4 A �4
Y M

a
4
0

a2

1
log a

4
0

a4 ≠ 1
2

≠ k, k = 0, ±1. (3.27)

It is convenient to define the length scale L as it appears naturally in (2.20) and (3.27):

1
L2 = 8fiG

3c4 A �4
Y M © �eff , (3.28)

so the equation (3.27) will take the following form:

da

cdt
= ±

Û
a

2
0

L2
a

2
0

a2

1
log a

4
0

a4 ≠ 1
2

≠ k. (3.29)

In order to simplify the evolution equations further it is convenient to introduce the dimensionless

scale factor ã and the dimensionless time variable · :

a(·) = a0 ã(·), ct = L ·, (3.30)

where we normalise the scale factor a(·) to the constant parameter a0 in (3.25). In these variables

the evolution equation (3.29) is in its final form:

dã

d·
= ±

Ú
1
ã2

1
log 1

ã4 ≠ 1
2

≠ k“2, k = 0, ±1, “
2 =

1
L

a0

22
. (3.31)

The evolution equation (3.31) can be represented in terms of the dimensionless conformal time ÷:

cdt = L d· = a(÷)d÷ = a0ãd÷, (3.32)

as well as (the prime denotes the di�erentiation with respect to ÷):

ã
Õ © dã

d÷
= ±

Û
1
“2

1
log 1

ã4 ≠ 1
2

≠ k ã2. (3.33)
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5 Type II Solution

For the Type II solution we have 0 Æ “
2

<
2Ô
e

and ã Ø µ2. The Lamber-Euler equation (4.50)

ue
≠u = “

2

2
Ô

e

has an alternative solution expressible in terms of W≠(x) function, which represents the other branch

of the general W (x) function of the real argument x (see Appendix A). For the negative values of

the argument in the interval ≠1/e Æ x Æ 0 the function acquires negative values in the interval

≠Œ Æ W≠(x) Æ ≠1. Thus the solution takes the following form:

u = ≠W≠
1

≠ “
2

2
Ô

e

2
.

The minimal value of the scale factor (4.49) therefore is

µ
2
2 = ≠ 2

“2 W≠
1

≠ “
2

2
Ô

e

2
, (5.71)

and it follows that (see Appendix A)

Ô
e < µ

2
2 Æ Œ, 2 < “

2
µ

2
2. (5.72)

The interval in which ã takes its values is now infinite:

ã œ [µ2, Œ]. (5.73)

With the substitution

ã
4 = µ

4
2e

b2
, b œ [0, Œ], (5.74)

the equation (4.45) will take the following form:

db

d·
= 2

µ
2
2

e
≠ b2

2
1

“
2
µ

2
2

b2 (e
b2
2 ≠ 1) ≠ 1

21/2
. (5.75)

With the boundary conditions at · = 0 where b(0) = 0 (ã(0) = µ2) we will get the integral represen-

tation of the function b(·):

⁄ b(·)

0

db e
b2
2

1
“2µ2

2
b2 (e b2

2 ≠ 1) ≠ 1
21/2 = 2

µ
2
2

·. (5.76)

The time interval is · œ [0, Œ], and as · æ Œ, we have

b
2(·) ƒ 4 ln “

µ2
·, ã ƒ “· = ct. (5.77)
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Figure 2: The behaviour of the potential U≠1(ã) (4.46) is shown in the left figure. When the parameter
“

2 is in the interval 0 Æ “
2

<
2Ô
e
, there are two solutions of the equation U≠1(µi) = 0, i = 1, 2, that

define the Region I, where ã œ [0, µ1] and the Region II, where ã œ [µ2, Œ]. When “
2 = “

2
c = 2Ô

e
,

there is only one solution of the equation U≠1(µs) = 0 that defines the Region III, where ã œ [0, µs].
When 2Ô

e
< “

2, the potential is always positive U≠1(ã) > 0 and the Region IV is where ã œ [0, Œ].
In particular, when “

2 = 1, µ1 ƒ 1, and the scale factor ã(·) is changing in the interval ã œ [0, µ1].
The whole evolution time is · œ [0, 2·m], where ·m ƒ 0.83 is a half period of the Type I solution. The
figure in the middle shows the behaviour of the Type I solution for which the deceleration parameter
is positive, q Ø 1. The Type II solution is changing in the interval ã œ [µ2, Œ], where µ2 ƒ 1.87 and
· œ [0, Œ]. The Type II solution initially grows exponentially because the deceleration parameter is
negative, q < 0, and at late time the regime of exponential expansion continuously transforms into a
linear in time growth of the scale factor shown in the right figure.

The behaviours of the solutions depending on the value of the parameter “
2. When

0 Æ “
2

< “
2
c © 2Ô

e
, (4.48)

there are two solutions ã1 = µ1 and ã2 = µ2 of the above equation that are defining the regions where

the potential U≠1(ã) is positive. In the first region I we have ã œ [0, µ1], and in the second region II

ã œ [µ2, Œ]. These two regions are shown in Fig.2. The region III appears when “
2 = “

2
c and it is the

border line between regions I and II that separates them. At this saddle point “
2 = “

2
c the equation

U≠1(µ) = 0 has only one solution ã = µs and the scale factor ã takes its values in the maximally

available interval ã œ [0, µs]. Finally, in the region IV , where “
2
c < “

2, the potential function U≠1(ã) is

always positive for all values of ã and the scale factor takes its values in the whole interval ã œ [0, Œ].

We will consider these four regions separately.

Let’s consider first the Type I solution when 0 Æ “
2

< “
2
c and ã Æ µ1. The equation (4.47) can be

solved by the substitution

“
2
µ

2 = 2u (4.49)

that reduces the equation (4.47) to the Lamber-Euler type [60, 61, 62]:

ue
≠u = “

2

2
Ô

e
. (4.50)
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5 Type II Solution

For the Type II solution we have 0 Æ “
2

<
2Ô
e

and ã Ø µ2. The Lamber-Euler equation (4.50)

ue
≠u = “

2

2
Ô

e

has an alternative solution expressible in terms of W≠(x) function, which represents the other branch

of the general W (x) function of the real argument x (see Appendix A). For the negative values of

the argument in the interval ≠1/e Æ x Æ 0 the function acquires negative values in the interval

≠Œ Æ W≠(x) Æ ≠1. Thus the solution takes the following form:

u = ≠W≠
1

≠ “
2

2
Ô

e

2
.

The minimal value of the scale factor (4.49) therefore is

µ
2
2 = ≠ 2

“2 W≠
1

≠ “
2

2
Ô

e

2
, (5.71)

and it follows that (see Appendix A)

Ô
e < µ

2
2 Æ Œ, 2 < “

2
µ

2
2. (5.72)

The interval in which ã takes its values is now infinite:

ã œ [µ2, Œ]. (5.73)

With the substitution

ã
4 = µ

4
2e

b2
, b œ [0, Œ], (5.74)

the equation (4.45) will take the following form:

db

d·
= 2

µ
2
2

e
≠ b2

2
1

“
2
µ

2
2

b2 (e
b2
2 ≠ 1) ≠ 1

21/2
. (5.75)

With the boundary conditions at · = 0 where b(0) = 0 (ã(0) = µ2) we will get the integral represen-

tation of the function b(·):

⁄ b(·)

0

db e
b2
2

1
“2µ2

2
b2 (e b2

2 ≠ 1) ≠ 1
21/2 = 2

µ
2
2

·. (5.76)

The time interval is · œ [0, Œ], and as · æ Œ, we have

b
2(·) ƒ 4 ln “

µ2
·, ã ƒ “· = ct. (5.77)

14The regime of the exponential growth will continuously transformed into the linear in time growth of

the scale factor‡

a(t) ƒ ct, a(÷) ƒ a0e
÷
. (5.87)

The acceleration has its trace on the behaviour of Hubble parameter, which has the following form:

L
2
H

2 = e
≠b2

µ
4
2

1
“

2
µ

2
2(eb2/2 ≠ 1) ≠ b

2
2
. (5.88)

The L
2
H

2 is sharply increasing from zero value and reaches its maximum at

b
2
s = 1 ≠ “

2
µ

2
2 ≠ 2W≠1

1
≠ “

2
µ

2
2

4 exp (1 ≠ “
2
µ

2
2

2 )
2

(5.89)

and allows to estimate its duration

·s = µ
2
2

2

⁄ 9bs

0

db e
b2
2

1
“2µ2

2
b2 (e b2

2 ≠ 1) ≠ 1
21/2 . (5.90)

The number of e-foldings for the time evolution from · = 0 to ·s is defined as N = ln a(·s)
a(0) . For the

typical parameters around “
2 = 1.211, µ

2
2 ƒ 1.75 we get ·s = 1023 and N ƒ 53. The duration of the

inflation in the case of the GUM scale �Y M = �GUM = 1016
GeV is of order

t
GUM
s = LGUM

c
·s ƒ 4.2 ◊ 10≠13

sec, (5.91)

where LGUM ƒ 1.25 ◊ 10≠25
cm as in (4.70). The initial and finale values of the scale factor are:

a(0) = LGUM
µ2
“

ƒ 1.5 ◊ 10≠25
cm, a(ts) = LGUM

µ2
“

e
N ƒ 1.25 ◊ 10≠2

cm,

where a(ts) is ”about the size of a marble” [8]. The density parameter � (3.43) has the following form

�vac ≠ 1 = ≠ “
2

(dã
d· )2 = ≠ “

2
µ

2
2e

b2/2

“2µ
2
2(eb2/2 ≠ 1) ≠ b2 (5.92)

and at t ∫ ts (b2 æ Œ) the vacuum density parameter tends to zero �vac æ 0 meaning that the

influence of the gauge field theory vacuum on the evolution of the universe fades out turning into a

linear expansion (5.87).

It follows from the above consideration that it is natural to include the contributions to the total

energy density ‘ =
q

‘f arising from the hierarchy of fundamental interaction scales ‘f . Taking into

account the fact that at each scale (4.70) the acceleration has a finite duration (5.86) and appears at

a di�erent epoch of the universe expansion, its seems possible that a very large scale �Õ
Y M ∫ GeV

‡The asymptotic solution of (5.75) is b2
4 ƒ ln “

µ2
· and a = a0µ2 exp (b2/4), as it follows from (3.30), (5.74).
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Evolution of the Field Strength     

The evolution equations (3.31) and (3.33) should be investigated in six regions of the two-dimensional

parameter space (a0, �Y M ). The numerical value of “
2 defines the relation a

2
0 = 1

“2 L
2(�Y M ) be-

tween basic independent parameters a0 and �Y M through the equations (3.31) and (3.28). Thus the

corresponding six regions in the parameter space are defined in terms of “
2:

k = ≠1, 0 Æ “
2

< “
2
c Regions I and II

k = ≠1, “
2 = “

2
c = 2Ô

e
Region III

k = ≠1, “
2
c < “

2 Regions IV (3.34)

k = 0,

k = 1, 0 Æ “
2
.

In terms of scale factor ã and time variable · (3.30) the field strength tensor (3.25) has the following

form:

2g
2F = �4

Y M

ã4(·) (3.35)

and the energy density and the pressure (3.26) will take the form

‘ = A
ã4(·)

1
log 1

ã4(·) ≠ 1
2
�4

Y M , p = A
3ã4(·)

1
log 1

ã4(·) + 3
2
�4

Y M . (3.36)

There is a straightforward relation between energy density, pressure and the barotropic parameter w:

p = 1
3‘ + 4

3
A

ã4(·)�4
Y M , w = p

‘
=

log 1
ã4(·) + 3

3
1

log 1
ã4(·) ≠ 1

2 . (3.37)

In the next sections we will investigate the solutions of the equation (3.31) and the time evolution of

the field strength tensor (3.35), of the energy density and the pressure (3.36 ). We can also extract

the Hubble parameter from (1.1) by using (3.31)

L
2
H

2 = L
2
1

ȧ

a

22
= 1

ã2

1
dã

d·

22
= 1

ã4(·)
1

log 1
ã4(·) ≠ 1

2
≠ k“

2

ã2(·) (3.38)

and the corresponding deceleration parameter

q = ≠ ä

a

1
H2 . (3.39)

The acceleration is determined by the right-hand side of the equation (1.4) and is proportional to

‘ + 3p, which is:

‘ + 3p = 2A (2g
2F)

1
log 2g

2F
�4

Y M

+ 1
2
. (3.40)
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Evolution of Energy Density and Pressure     

The evolution equations (3.31) and (3.33) should be investigated in six regions of the two-dimensional

parameter space (a0, �Y M ). The numerical value of “
2 defines the relation a

2
0 = 1

“2 L
2(�Y M ) be-

tween basic independent parameters a0 and �Y M through the equations (3.31) and (3.28). Thus the

corresponding six regions in the parameter space are defined in terms of “
2:

k = ≠1, 0 Æ “
2

< “
2
c Regions I and II

k = ≠1, “
2 = “

2
c = 2Ô

e
Region III

k = ≠1, “
2
c < “

2 Regions IV (3.34)

k = 0,

k = 1, 0 Æ “
2
.

In terms of scale factor ã and time variable · (3.30) the field strength tensor (3.25) has the following

form:

2g
2F = �4

Y M

ã4(·) (3.35)

and the energy density and the pressure (3.26) will take the form

‘ = A
ã4(·)

1
log 1

ã4(·) ≠ 1
2
�4

Y M , p = A
3ã4(·)

1
log 1

ã4(·) + 3
2
�4

Y M . (3.36)

There is a straightforward relation between energy density, pressure and the barotropic parameter w:

p = 1
3‘ + 4

3
A

ã4(·)�4
Y M , w = p

‘
=

log 1
ã4(·) + 3

3
1

log 1
ã4(·) ≠ 1

2 . (3.37)

In the next sections we will investigate the solutions of the equation (3.31) and the time evolution of

the field strength tensor (3.35), of the energy density and the pressure (3.36 ). We can also extract

the Hubble parameter from (1.1) by using (3.31)

L
2
H

2 = L
2
1

ȧ

a

22
= 1

ã2

1
dã

d·

22
= 1

ã4(·)
1

log 1
ã4(·) ≠ 1

2
≠ k“

2

ã2(·) (3.38)

and the corresponding deceleration parameter

q = ≠ ä

a

1
H2 . (3.39)

The acceleration is determined by the right-hand side of the equation (1.4) and is proportional to

‘ + 3p, which is:

‘ + 3p = 2A (2g
2F)

1
log 2g

2F
�4

Y M

+ 1
2
. (3.40)
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Evolution of  the Hubble parameter    Similar to the case of the scalar field driven evolution (1.6) here as well for the fields 2g
2F <

1
e �4

Y M

the strong energy dominance condition ‘ + 3p Ø 0 is violated. From acceleration Freidmann equation

(1.4) and (3.36 ) we have

L
2 ä

a
= ≠ 1

ã4

1
log 1

ã4 + 1
2
. (3.41)

Thus for q with the help of (3.38) we will get

q =
1
ã4

1
log 1

ã4 + 1
2

1
ã4

1
log 1

ã4 ≠ 1
2

≠ k“2

ã2

(3.42)

and for the density parameter �vac the following expression:

�vac © 8fiG

3c4
‘

H2 = 1
L2H2

1
ã4

1
log 1

ã4 ≠ 1
2
, (3.43)

where we used (3.36 ), (3.28). By using the equation (3.38) �vac can be expressed also in the following

form:

�vac ≠ 1 = k
“

2

L2H2ã2 = k
“

2

(dã
d· )2 . (3.44)

We will investigate these observables in the two-dimensional parameter space (a0, �Y M ) in each of the

six regions (3.34). As we mentioned above, the parameter “
2 = L2

a2
0

is a function of a0 and �Y M , the

basic parameters defining the evolution of the Freidmann equations in the case of gauge field theory

vacuum. We will start our analysis by considering the k = ≠1 geometry and 0 Æ “
2

< “
2
c .

4 Type I Solution

The equation (3.31) takes the following form:

dã

d·
= ±

Ú
1
ã2

1
log 1

ã4 ≠ 1
2

+ “2, where 0 Æ “
2
, (4.45)

and the corresponding ”potential” function U≠1(ã) shown in Fig.2 is:

U≠1(ã) © 1
ã2

1
log 1

ã4 ≠ 1
2

+ “
2
. (4.46)

The solution of the equation U≠1(µ) = 0 determines the values of the scale factor ã = µ at which the

square root changes its sign. The evolution equation (4.45) should be restricted to those real values

of ã at which the potential U0(ã) is nonnegative. Thus the equation U≠1(µ) = 0 defines the boundary

values of the scale factor ã = µ:

1
µ2

1
log 1

µ4 ≠ 1
2

+ “
2 = 0. (4.47)
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The evolution equations (3.31) and (3.33) should be investigated in six regions of the two-dimensional

parameter space (a0, �Y M ). The numerical value of “
2 defines the relation a

2
0 = 1

“2 L
2(�Y M ) be-

tween basic independent parameters a0 and �Y M through the equations (3.31) and (3.28). Thus the

corresponding six regions in the parameter space are defined in terms of “
2:

k = ≠1, 0 Æ “
2

< “
2
c Regions I and II

k = ≠1, “
2 = “

2
c = 2Ô

e
Region III

k = ≠1, “
2
c < “

2 Regions IV (3.34)

k = 0,

k = 1, 0 Æ “
2
.

In terms of scale factor ã and time variable · (3.30) the field strength tensor (3.25) has the following

form:

2g
2F = �4

Y M

ã4(·) (3.35)

and the energy density and the pressure (3.26) will take the form

‘ = A
ã4(·)

1
log 1

ã4(·) ≠ 1
2
�4

Y M , p = A
3ã4(·)

1
log 1

ã4(·) + 3
2
�4

Y M . (3.36)

There is a straightforward relation between energy density, pressure and the barotropic parameter w:

p = 1
3‘ + 4

3
A

ã4(·)�4
Y M , w = p

‘
=

log 1
ã4(·) + 3

3
1

log 1
ã4(·) ≠ 1

2 . (3.37)

In the next sections we will investigate the solutions of the equation (3.31) and the time evolution of

the field strength tensor (3.35), of the energy density and the pressure (3.36 ). We can also extract

the Hubble parameter from (1.1) by using (3.31)

L
2
H

2 = L
2
1

ȧ

a

22
= 1

ã2

1
dã

d·

22
= 1

ã4(·)
1

log 1
ã4(·) ≠ 1

2
≠ k“

2

ã2(·) (3.38)

and the corresponding deceleration parameter

q = ≠ ä

a

1
H2 . (3.39)

The acceleration is determined by the right-hand side of the equation (1.4) and is proportional to

‘ + 3p, which is:

‘ + 3p = 2A (2g
2F)

1
log 2g

2F
�4

Y M

+ 1
2
. (3.40)
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Type II Solution     Deceleration of finite duration 
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The field strength evolution in time is expressible in terms of b(·) function:

2g
2F = e

≠b2(·)

µ
4
2

�4
Y M . (5.78)

The maximal value of the field strength (3.35) is at · = 0 where b(0) = 0:

2g
2Fm = 1

µ
4
1
�4

Y M , (5.79)

and from (5.72 )

0 Æ 2g
2Fm <

1
e

�4
Y M . (5.80)

The behaviour of the energy density and pressure is:

‘ = ≠ A
µ

4
2
e

≠b2(·)
1
b

2(·) + “
2
µ

2
2
2
�4

Y M , p = ≠ A
3µ

4
2
e

≠b2(·)
1
b

2(·) + “
2
µ

2
2 ≠ 4

2
�4

Y M , (5.81)

and as · æ Œ the energy density and pressure tend to zero values of the perturbative vacuum state.

At the initial stages of the expansion · = 0 (b = 0) the energy density and pressure are finite and the

solution avoids a singular behaviour

a(0) = a0 ã(0) = a0 µ2 e
b(0)2/4 = L

µ2
“

> 0.

This behaviour of the scale factor can be compared with the nonsingular solution discussed in [21].

For the equation of state p = w‘ one can find the behaviour of the e�ective parameter w

wII = b
2(·) + “

2
µ

2
2 ≠ 4

3
1
b2(·) + “2µ

2
2
2 , ≠ 1 Æ wII , (5.82)

where b œ [0, Œ]. The deceleration parameter of the Type II solution is always negative:

qII = b
2 + “

2
µ

2
2 ≠ 2

b2 + “2µ
2
2(1 ≠ eb2/2)

< 0 (5.83)

in the region II (5.72) where 2 < “
2
µ

2
2. As it follows from (5.83) and (5.76), there is a period of strong

acceleration

qII Ã ≠ 2
b2 (5.84)

at the initial stages of the expansion b
2 ≥ · and the scale factor (5.74) grows exponentially:

a(t) ƒ L
µ2
“

exp
Ë 2
µ

2
2

Û
“2µ

2
2

2 ≠ 1 ct

L

È
. (5.85)

The inflation is slowing down when ct > L because b
2 increases and the acceleration drops:

qII Ã ≠ b
2

“2µ
2
2
e

≠b2/2 æ 0. (5.86)
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The field strength evolution in time is expressible in terms of b(·) function:

2g
2F = e

≠b2(·)

µ
4
2

�4
Y M . (5.78)

The maximal value of the field strength (3.35) is at · = 0 where b(0) = 0:

2g
2Fm = 1

µ
4
1
�4

Y M , (5.79)

and from (5.72 )

0 Æ 2g
2Fm <

1
e

�4
Y M . (5.80)

The behaviour of the energy density and pressure is:

‘ = ≠ A
µ

4
2
e

≠b2(·)
1
b

2(·) + “
2
µ

2
2
2
�4

Y M , p = ≠ A
3µ

4
2
e

≠b2(·)
1
b

2(·) + “
2
µ

2
2 ≠ 4

2
�4

Y M , (5.81)

and as · æ Œ the energy density and pressure tend to zero values of the perturbative vacuum state.

At the initial stages of the expansion · = 0 (b = 0) the energy density and pressure are finite and the

solution avoids a singular behaviour

a(0) = a0 ã(0) = a0 µ2 e
b(0)2/4 = L

µ2
“

> 0.

This behaviour of the scale factor can be compared with the nonsingular solution discussed in [21].

For the equation of state p = w‘ one can find the behaviour of the e�ective parameter w

wII = b
2(·) + “

2
µ

2
2 ≠ 4

3
1
b2(·) + “2µ

2
2
2 , ≠ 1 Æ wII , (5.82)

where b œ [0, Œ]. The deceleration parameter of the Type II solution is always negative:

qII = b
2 + “

2
µ

2
2 ≠ 2

b2 + “2µ
2
2(1 ≠ eb2/2)

< 0 (5.83)

in the region II (5.72) where 2 < “
2
µ

2
2. As it follows from (5.83) and (5.76), there is a period of strong

acceleration

qII Ã ≠ 2
b2 (5.84)

at the initial stages of the expansion b
2 ≥ · and the scale factor (5.74) grows exponentially:

a(t) ƒ L
µ2
“

exp
Ë 2
µ

2
2

Û
“2µ

2
2

2 ≠ 1 ct

L

È
. (5.85)

The inflation is slowing down when ct > L because b
2 increases and the acceleration drops:

qII Ã ≠ b
2

“2µ
2
2
e

≠b2/2 æ 0. (5.86)

15

The field strength evolution in time is expressible in terms of b(·) function:

2g
2F = e

≠b2(·)

µ
4
2

�4
Y M . (5.78)

The maximal value of the field strength (3.35) is at · = 0 where b(0) = 0:

2g
2Fm = 1

µ
4
1
�4

Y M , (5.79)

and from (5.72 )

0 Æ 2g
2Fm <

1
e

�4
Y M . (5.80)

The behaviour of the energy density and pressure is:

‘ = ≠ A
µ

4
2
e

≠b2(·)
1
b

2(·) + “
2
µ

2
2
2
�4

Y M , p = ≠ A
3µ

4
2
e

≠b2(·)
1
b

2(·) + “
2
µ

2
2 ≠ 4

2
�4

Y M , (5.81)

and as · æ Œ the energy density and pressure tend to zero values of the perturbative vacuum state.

At the initial stages of the expansion · = 0 (b = 0) the energy density and pressure are finite and the

solution avoids a singular behaviour
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Hubble Parameter  

The evolution equations (3.31) and (3.33) should be investigated in six regions of the two-dimensional

parameter space (a0, �Y M ). The numerical value of “
2 defines the relation a

2
0 = 1

“2 L
2(�Y M ) be-

tween basic independent parameters a0 and �Y M through the equations (3.31) and (3.28). Thus the

corresponding six regions in the parameter space are defined in terms of “
2:

k = ≠1, 0 Æ “
2

< “
2
c Regions I and II

k = ≠1, “
2 = “

2
c = 2Ô

e
Region III

k = ≠1, “
2
c < “

2 Regions IV (3.34)

k = 0,

k = 1, 0 Æ “
2
.

In terms of scale factor ã and time variable · (3.30) the field strength tensor (3.25) has the following

form:

2g
2F = �4

Y M

ã4(·) (3.35)

and the energy density and the pressure (3.26) will take the form

‘ = A
ã4(·)

1
log 1

ã4(·) ≠ 1
2
�4

Y M , p = A
3ã4(·)

1
log 1

ã4(·) + 3
2
�4

Y M . (3.36)

There is a straightforward relation between energy density, pressure and the barotropic parameter w:

p = 1
3‘ + 4

3
A

ã4(·)�4
Y M , w = p

‘
=

log 1
ã4(·) + 3

3
1

log 1
ã4(·) ≠ 1

2 . (3.37)

In the next sections we will investigate the solutions of the equation (3.31) and the time evolution of

the field strength tensor (3.35), of the energy density and the pressure (3.36 ). We can also extract

the Hubble parameter from (1.1) by using (3.31)

L
2
H

2 = L
2
1

ȧ

a

22
= 1

ã2

1
dã

d·

22
= 1

ã4(·)
1

log 1
ã4(·) ≠ 1

2
≠ k“

2

ã2(·) (3.38)

and the corresponding deceleration parameter

q = ≠ ä

a

1
H2 . (3.39)

The acceleration is determined by the right-hand side of the equation (1.4) and is proportional to

‘ + 3p, which is:

‘ + 3p = 2A (2g
2F)

1
log 2g

2F
�4

Y M

+ 1
2
. (3.40)
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The regime of the exponential growth will continuously transformed into the linear in time growth of

the scale factor‡

a(t) ƒ ct, a(÷) ƒ a0e
÷
. (5.87)

The acceleration has its trace on the behaviour of Hubble parameter, which has the following form:

L
2
H

2 = e
≠b2

µ
4
2

1
“

2
µ

2
2(eb2/2 ≠ 1) ≠ b

2
2
. (5.88)

The L
2
H

2 is sharply increasing from zero value and reaches its maximum at

b
2
s = 1 ≠ “

2
µ

2
2 ≠ 2W≠1

1
≠ “

2
µ

2
2

4 exp (1 ≠ “
2
µ

2
2

2 )
2

(5.89)

and allows to estimate its duration

·s = µ
2
2

2

⁄ 9bs

0

db e
b2
2

1
“2µ2

2
b2 (e b2

2 ≠ 1) ≠ 1
21/2 . (5.90)

The number of e-foldings for the time evolution from · = 0 to ·s is defined as N = ln a(·s)
a(0) . For the

typical parameters around “
2 = 1.211, µ

2
2 ƒ 1.75 we get ·s = 1023 and N ƒ 53. The duration of the

inflation in the case of the GUM scale �Y M = �GUM = 1016
GeV is of order

t
GUM
s = LGUM

c
·s ƒ 4.2 ◊ 10≠13

sec, (5.91)

where LGUM ƒ 1.25 ◊ 10≠25
cm as in (4.70). The initial and finale values of the scale factor are:

a(0) = LGUM
µ2
“

ƒ 1.5 ◊ 10≠25
cm, a(ts) = LGUM

µ2
“

e
N ƒ 1.25 ◊ 10≠2

cm,

where a(ts) is ”about the size of a marble” [8]. The density parameter � (3.43) has the following form

�vac ≠ 1 = ≠ “
2

(dã
d· )2 = ≠ “

2
µ

2
2e

b2/2

“2µ
2
2(eb2/2 ≠ 1) ≠ b2 (5.92)

and at t ∫ ts (b2 æ Œ) the vacuum density parameter tends to zero �vac æ 0 meaning that the

influence of the gauge field theory vacuum on the evolution of the universe fades out turning into a

linear expansion (5.87).

It follows from the above consideration that it is natural to include the contributions to the total

energy density ‘ =
q

‘f arising from the hierarchy of fundamental interaction scales ‘f . Taking into

account the fact that at each scale (4.70) the acceleration has a finite duration (5.86) and appears at

a di�erent epoch of the universe expansion, its seems possible that a very large scale �Õ
Y M ∫ GeV

‡The asymptotic solution of (5.75) is b2
4 ƒ ln “

µ2
· and a = a0µ2 exp (b2/4), as it follows from (3.30), (5.74).

16

2 4 6 8 10
τ

0.02

0.04

0.06

H_II



Type II Solution     Density Parameter 

2 4 6 8 10
τ

-300

-250

-200

-150

-100

-50

Ω_II

The regime of the exponential growth will continuously transformed into the linear in time growth of

the scale factor‡

a(t) ƒ ct, a(÷) ƒ a0e
÷
. (5.87)

The acceleration has its trace on the behaviour of Hubble parameter, which has the following form:

L
2
H

2 = e
≠b2

µ
4
2

1
“

2
µ

2
2(eb2/2 ≠ 1) ≠ b

2
2
. (5.88)

The L
2
H

2 is sharply increasing from zero value and reaches its maximum at

b
2
s = 1 ≠ “

2
µ

2
2 ≠ 2W≠1

1
≠ “

2
µ

2
2

4 exp (1 ≠ “
2
µ

2
2

2 )
2

(5.89)

and allows to estimate its duration

·s = µ
2
2

2

⁄ 9bs

0

db e
b2
2

1
“2µ2

2
b2 (e b2

2 ≠ 1) ≠ 1
21/2 . (5.90)

The number of e-foldings for the time evolution from · = 0 to ·s is defined as N = ln a(·s)
a(0) . For the

typical parameters around “
2 = 1.211, µ

2
2 ƒ 1.75 we get ·s = 1023 and N ƒ 53. The duration of the

inflation in the case of the GUM scale �Y M = �GUM = 1016
GeV is of order

t
GUM
s = LGUM

c
·s ƒ 4.2 ◊ 10≠13

sec, (5.91)

where LGUM ƒ 1.25 ◊ 10≠25
cm as in (4.70). The initial and finale values of the scale factor are:

a(0) = LGUM
µ2
“

ƒ 1.5 ◊ 10≠25
cm, a(ts) = LGUM

µ2
“

e
N ƒ 1.25 ◊ 10≠2

cm,

where a(ts) is ”about the size of a marble” [8]. The density parameter � (3.43) has the following form

�vac ≠ 1 = ≠ “
2

(dã
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Similar to the case of the scalar field driven evolution (1.6) here as well for the fields 2g
2F <

1
e �4

Y M

the strong energy dominance condition ‘ + 3p Ø 0 is violated. From acceleration Friedmann equation

(1.4) and (3.36 ) we have

L
2 ä

a
= ≠ 1

ã4

1
log 1

ã4 + 1
2
. (3.41)

Thus for q with the help of (3.38) we will get

q =
1
ã4

1
log 1

ã4 + 1
2

1
ã4

1
log 1

ã4 ≠ 1
2

≠ k“2

ã2

(3.42)

and for the density parameter �vac the following expression:

�vac © 8fiG

3c4
‘

H2 = 1
L2H2

1
ã4

1
log 1

ã4 ≠ 1
2
, (3.43)

where we used (3.36 ), (3.28). By using the equation (3.38) �vac can be expressed also in the following

form:

�vac ≠ 1 = k
“

2

L2H2ã2 = k
“

2

(dã
d· )2 . (3.44)

We will investigate these observables in the two-dimensional parameter space (a0, �Y M ) in each of the

six regions (3.34). As we mentioned above, the parameter “
2 = L2

a2
0

is a function of a0 and �Y M , the

basic parameters defining the evolution of the Friedmann equations in the case of gauge field theory

vacuum. We will start our analysis by considering the k = ≠1 geometry and 0 Æ “
2

< “
2
c .

4 Type I Solution

The equation (3.31) takes the following form:

dã

d·
= ±

Ú
1
ã2

1
log 1

ã4 ≠ 1
2

+ “2, where 0 Æ “
2
, (4.45)

and the corresponding ”potential” function U≠1(ã) shown in Fig.2 is:

U≠1(ã) © 1
ã2

1
log 1

ã4 ≠ 1
2

+ “
2
. (4.46)

The solution of the equation U≠1(µ) = 0 determines the values of the scale factor ã = µ at which the

square root changes its sign. The evolution equation (4.45) should be restricted to those real values

of ã at which the potential U0(ã) is nonnegative. Thus the equation U≠1(µ) = 0 defines the boundary

values of the scale factor ã = µ:

1
µ2

1
log 1

µ4 ≠ 1
2

+ “
2 = 0. (4.47)

9



Type II Solution —  Effective Parameter w      

The field strength evolution in time is expressible in terms of b(·) function:

2g
2F = e

≠b2(·)

µ
4
2

�4
Y M . (5.78)

The maximal value of the field strength (3.35) is at · = 0 where b(0) = 0:

2g
2Fm = 1

µ
4
1
�4

Y M , (5.79)

and from (5.72 )

0 Æ 2g
2Fm <

1
e

�4
Y M . (5.80)

The behaviour of the energy density and pressure is:

‘ = ≠ A
µ

4
2
e

≠b2(·)
1
b

2(·) + “
2
µ

2
2
2
�4

Y M , p = ≠ A
3µ

4
2
e

≠b2(·)
1
b

2(·) + “
2
µ

2
2 ≠ 4

2
�4

Y M , (5.81)

and as · æ Œ the energy density and pressure tend to zero values of the perturbative vacuum state.

At the initial stages of the expansion · = 0 (b = 0) the energy density and pressure are finite and the

solution avoids a singular behaviour

a(0) = a0 ã(0) = a0 µ2 e
b(0)2/4 = L

µ2
“

> 0.

This behaviour of the scale factor can be compared with the nonsingular solution discussed in [21].

For the equation of state p = w‘ one can find the behaviour of the e�ective parameter w

wII = b
2(·) + “

2
µ

2
2 ≠ 4

3
1
b2(·) + “2µ

2
2
2 , ≠ 1 Æ wII , (5.82)

where b œ [0, Œ]. The deceleration parameter of the Type II solution is always negative:

qII = b
2 + “

2
µ

2
2 ≠ 2

b2 + “2µ
2
2(1 ≠ eb2/2)

< 0 (5.83)

in the region II (5.72) where 2 < “
2
µ

2
2. As it follows from (5.83) and (5.76), there is a period of strong

acceleration

qII Ã ≠ 2
b2 (5.84)

at the initial stages of the expansion b
2 ≥ · and the scale factor (5.74) grows exponentially:

a(t) ƒ L
µ2
“

exp
Ë 2
µ

2
2

Û
“2µ

2
2

2 ≠ 1 ct

L

È
. (5.85)

The inflation is slowing down when ct > L because b
2 increases and the acceleration drops:

qII Ã ≠ b
2

“2µ
2
2
e

≠b2/2 æ 0. (5.86)
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Figure 1: There are regions in the phase space (‘, p) of the quantum Yang-Mills states (2.16) where ‘

and p are positive, where p is positive and ‘ is negative and where they are both negative.

which characterises the dynamical breaking of scaling invariance of YM theory (2.11):

Tµµ = ≠ b

48fi2 2g
2Fvac.

Thus the equation of state (2.14) will take the following form:

‘(F) = b g
2

96fi2 F
1

ln 2g
2F

�4
Y M

≠ 1
2
, p(F) = 1

3
b g

2

96fi2 F
1

ln 2g
2F

�4
Y M

+ 3
2
. (2.16)

By expressing the vacuum field strength tensor F in terms of vacuum pressure F = F(p) and substi-

tuting it into the vacuum energy density we will get the equation of state in the form ‘ = ‘(p) shown

in Fig.1. In the limit 2g
2F ∫ �4

Y M (2.16) reduces to a radiation equation of state: p = ‘/3. There

are regions in the phase space of states (‘, p) where ‘ and p are positive, where p is positive and ‘ is

negative and where they are both negative, as it is shown in Fig. 1. The pressure is always higher

than in the case of radiation equation of state:

p = 1
3‘ + 4

3
b g

2F
96fi2 �4

Y M and w = p

‘
=

ln 2g2F
�4

Y M
+ 3

3
1

ln 2g2F
�4

Y M
≠ 1

2 (2.17)

It also follows from the energy momentum-tensor expression (2.11) that when the gauge field is in its

ground state (2.15), T
µ‹ is proportional to the space-time metric g

µ‹ :

T
µ‹
vac = ≠g

µ‹ b

192fi2 2g
2Fvac, (2.18)

and equation of state reduces to the equation p = ≠‘ > 0. The equation of state p = ≠‘ > 0

is equivalent to having a fluid of positive pressure and negative energy density alternative to the

inflation that is driven by a scalar field (1.6).

In the next sections we will analyse the Friedmann cosmology that is driven by the vacuum gauge

field theory equation of state (2.16). The Einstein equation in the presence of the vacuum energy

5

The evolution equations (3.31) and (3.33) should be investigated in six regions of the two-dimensional

parameter space (a0, �Y M ). The numerical value of “
2 defines the relation a

2
0 = 1

“2 L
2(�Y M ) be-

tween basic independent parameters a0 and �Y M through the equations (3.31) and (3.28). Thus the

corresponding six regions in the parameter space are defined in terms of “
2:

k = ≠1, 0 Æ “
2

< “
2
c Regions I and II

k = ≠1, “
2 = “

2
c = 2Ô

e
Region III

k = ≠1, “
2
c < “

2 Regions IV (3.34)

k = 0,

k = 1, 0 Æ “
2
.

In terms of scale factor ã and time variable · (3.30) the field strength tensor (3.25) has the following

form:

2g
2F = �4

Y M

ã4(·) (3.35)

and the energy density and the pressure (3.26) will take the form

‘ = A
ã4(·)

1
log 1

ã4(·) ≠ 1
2
�4

Y M , p = A
3ã4(·)

1
log 1

ã4(·) + 3
2
�4

Y M . (3.36)

There is a straightforward relation between energy density, pressure and the barotropic parameter w:

p = 1
3‘ + 4

3
A

ã4(·)�4
Y M , w = p

‘
=

log 1
ã4(·) + 3

3
1

log 1
ã4(·) ≠ 1

2 . (3.37)

In the next sections we will investigate the solutions of the equation (3.31) and the time evolution of

the field strength tensor (3.35), of the energy density and the pressure (3.36 ). We can also extract

the Hubble parameter from (1.1) by using (3.31)

L
2
H

2 = L
2
1

ȧ

a

22
= 1

ã2

1
dã

d·

22
= 1

ã4(·)
1

log 1
ã4(·) ≠ 1

2
≠ k“

2

ã2(·) (3.38)

and the corresponding deceleration parameter

q = ≠ ä

a

1
H2 . (3.39)

The acceleration is determined by the right-hand side of the equation (1.4) and is proportional to

‘ + 3p, which is:

‘ + 3p = 2A (2g
2F)

1
log 2g

2F
�4

Y M

+ 1
2
. (3.40)
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Figure 2: The behaviour of the potential U≠1(ã) (4.46) is shown in the left figure. When the parameter
“

2 is in the interval 0 Æ “
2

<
2Ô
e
, there are two solutions of the equation U≠1(µi) = 0, i = 1, 2, that

define the Region I, where ã œ [0, µ1] and the Region II, where ã œ [µ2, Œ]. When “
2 = “

2
c = 2Ô

e
,

there is only one solution of the equation U≠1(µs) = 0 that defines the Region III, where ã œ [0, µs].
When 2Ô

e
< “

2, the potential is always positive U≠1(ã) > 0 and the Region IV is where ã œ [0, Œ].
In particular, when “

2 = 1, µ1 ƒ 1, and the scale factor ã(·) is changing in the interval ã œ [0, µ1].
The whole evolution time is · œ [0, 2·m], where ·m ƒ 0.83 is a half period of the Type I solution. The
figure in the middle shows the behaviour of the Type I solution for which the deceleration parameter
is positive, q Ø 1. The Type II solution is changing in the interval ã œ [µ2, Œ], where µ2 ƒ 1.87 and
· œ [0, Œ]. The Type II solution initially grows exponentially because the deceleration parameter is
negative, q < 0, and at late time the regime of exponential expansion continuously transforms into a
linear in time growth of the scale factor shown in the right figure.

The behaviours of the solutions depending on the value of the parameter “
2. When

0 Æ “
2

< “
2
c © 2Ô

e
, (4.48)

there are two solutions ã1 = µ1 and ã2 = µ2 of the above equation that are defining the regions where

the potential U≠1(ã) is positive. In the first region I we have ã œ [0, µ1], and in the second region II

ã œ [µ2, Œ]. These two regions are shown in Fig.2. The region III appears when “
2 = “

2
c and it is the

border line between regions I and II that separates them. At this saddle point “
2 = “

2
c the equation

U≠1(µ) = 0 has only one solution ã = µs and the scale factor ã takes its values in the maximally

available interval ã œ [0, µs]. Finally, in the region IV , where “
2
c < “

2, the potential function U≠1(ã) is

always positive for all values of ã and the scale factor takes its values in the whole interval ã œ [0, Œ].

We will consider these four regions separately.

Let’s consider first the Type I solution when 0 Æ “
2

< “
2
c and ã Æ µ1. The equation (4.47) can be

solved by the substitution

“
2
µ

2 = 2u (4.49)

that reduces the equation (4.47) to the Lamber-Euler type [60, 61, 62]:

ue
≠u = “

2

2
Ô

e
. (4.50)
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The regime of the exponential growth will continuously transformed into the linear in time growth of
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The number of e-foldings for the time evolution from · = 0 to ·s is defined as N = ln a(·s)
a(0) . For the

typical parameters around “
2 = 1.211, µ

2
2 ƒ 1.75 we get ·s = 1023 and N ƒ 53. The duration of the

inflation in the case of the GUM scale �Y M = �GUM = 1016
GeV is of order

t
GUM
s = LGUM

c
·s ƒ 4.2 ◊ 10≠13

sec, (5.91)

where LGUM ƒ 1.25 ◊ 10≠25
cm as in (4.70). The initial and finale values of the scale factor are:

a(0) = LGUM
µ2
“

ƒ 1.5 ◊ 10≠25
cm, a(ts) = LGUM

µ2
“

e
N ƒ 1.25 ◊ 10≠2

cm,

where a(ts) is ”about the size of a marble” [8]. The density parameter � (3.43) has the following form
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and at t ∫ ts (b2 æ Œ) the vacuum density parameter tends to zero �vac æ 0 meaning that the

influence of the gauge field theory vacuum on the evolution of the universe fades out turning into a

linear expansion (5.87).

It follows from the above consideration that it is natural to include the contributions to the total

energy density ‘ =
q

‘f arising from the hierarchy of fundamental interaction scales ‘f . Taking into

account the fact that at each scale (4.70) the acceleration has a finite duration (5.86) and appears at

a di�erent epoch of the universe expansion, its seems possible that a very large scale �Õ
Y M ∫ GeV

‡The asymptotic solution of (5.75) is b2
4 ƒ ln “

µ2
· and a = a0µ2 exp (b2/4), as it follows from (3.30), (5.74).
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Figure 4: At k = ≠1 and 2Ô
e

< “
2 the value of ã is in the interval ã œ [0, Œ]. The solution shows four

stages of alternating expansion. In the first stage there is a period of deceleration, in the second stage
the expansion reaches a quasi-stationary evolution near ã ƒ µc, in the third stage there is a period of
exponential expansion of a finite duration that undergoes a continuous transition to the fourth stage
of a linear in time growth.

Type III solution:

‘ + 3p = ≠4A
e

b(·)e≠4b(·)�4
Y M , b œ [≠Œ, +Œ], (7.113)

and the strong energy dominance condition ‘ + 3p Ø 0 is violated here when b > 0 and the region of

positive acceleration is wherefore at b > 0 shown in Fig.5. Thus the deceleration parameter for the

Type IV solution is sign alternating, b œ [≠Œ, Œ]:

qIV = b

b + 1
2(1 ≠ “2

“2
c
e2b)

, (7.114)

it is positive for b œ [≠Œ, 0) and is negative for b œ (0, Œ). Therefore the character of the solution is

changing at b = 0 where the deceleration parameter qIV = 0. In these two regions the behaviour of

the solution is qualitatively di�erent. At the quasi-stationary point · = ·c (b = 0)
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Figure 5: The r.h.s ‘ + 3p of the Friedmann acceleration equation (1.4) is positive when b < 0 and is
negative when b > 0.

Thus there are four stages of alternating expansions. There is a period of deceleration in the first

stage · π ·c where qIV is positive. In the second stage, in the vicinity of · ≥ ·c where qIV = 0 the

expansion is quasi-stationary and a slow varying scale factor is of order ã(·) ƒ µc. In the third stage

· > ·c there is a period of exponential expansion of a finite duration b ≥ (0, 5) where qIV is negative.

It is of finite duration because when b > 0 is large, the acceleration tends to zero:

qIV ƒ ≠ 2
“2µ2

c
be

≠2b
.

In the fourth stage · ∫ ·c, where e
b ƒ “

“c

Ò
2
e · , the acceleration drops to zero qIV ƒ 0 and the universe

undergoes a continuous transition to a linear in time growth of the scale factor

a(t) ƒ ct , a(÷) ƒ e
÷ (7.117)

and the Hubble parameter (3.38) has the following behaviour:
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When · ∫ ·c the 2g
2F æ 0 and the energy density and pressure are approaching the zero values, �

(3.43) tends to zero value as well:
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The influence of the gauge field theory vacuum on the evolution of the universe is fades out at very

late-time. It seems that the Type IV solution is useful to explain a late-time acceleration of the

universe expansion if one appropriately adjust the parameters a0 and “.

21

Figure 5: The r.h.s ‘ + 3p of the Friedmann acceleration equation (1.4) is positive when b < 0 and is
negative when b > 0.
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The Hubble parameter and the density parameter � (3.43) are:

L
2
H

2 = 2e
≠4b≠1

1
e

2b ≠ 1 ≠ 2b

2
, �vac ≠ 1 = ≠ “

2
c

(dã
d· )2 = ≠ e

2b

e2b ≠ 1 ≠ 2b
. (6.106)

The Type III ”static” solution is unstable because it is tuned to the critical value “
2 = “

2
c and

infinitesimal variation of its value turns the solution either into the Type II solution or into the Type

IV solution that we will consider in the next section. The character of the solution is changing again

when “
2

> “
2
c .

7 Type IV Solution

The Type IV solution is defined in the region “
2

> “
2
c where the equation

U≠1(µ) = 1
µ2

1
log 1

µ4 ≠ 1
2

+ “
2 = 0 (7.107)

has no real solutions. The potential function U≠1(ã) is always positive for all positive values of ã and

the scale factor variates in the whole interval ã œ [0, Œ] (see Fig.4). With the substitution

ã = µce
b
, b œ [≠Œ, Œ], 2 < “

2
µ

2
c , (7.108)

where µ
2
c =

Ô
e, as in (6.93), the equation (4.45) will take the following form:

db

d·
=

Ú
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e

e
≠2b

1
“

2

“2
c

e
2b ≠ 1 ≠ 2b

21/2
. (7.109)

With the boundary conditions b(0) = ≠Œ (ã(0) = 0) we will get the integral representation of the

function b(·):
⁄ b(·)

≠Œ

db e
2b

1
“2

“2
c
e2b ≠ 1 ≠ 2b

21/2 =
Ú

2
e

·, · œ [0, Œ]. (7.110)

The field strength evolution in time is similar to the Type III solution (6.98):

2g
2F = e

≠4b(·)≠1�4
Y M , (7.111)

but the time dependence of b(·) is di�erent and is defined now by the equation (7.110). The same is

true for the behaviour of the energy density and pressure:

‘ = 2Ae
≠4b(·)≠1

1
≠ 2b(·) ≠ 1

2
�4

Y M , p = 2A
3 e

≠4b(·)≠1
1

≠ 2b(·) + 1
2
�4

Y M . (7.112)

The right-hand side of the Friedmann acceleration equation (1.4) has a similar expression with the
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Figure 3: When k = ≠1 and “
2 = “

2
c = 2Ô

e
, the Type III solution is approaching asymptotically the

maximum value ã = µc as · æ Œ.

The behaviour of the energy density and pressure is:
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3 e
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≠ 2b(·) + 1
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�4

Y M . (6.99)

There is a characteristic time · = ·0, corresponding to b = ≠1/2
⁄ ≠1/2

≠Œ

db e
2b

1
e2b ≠ 1 ≠ 2b

21/2 =
Ú

2
e

·0 (6.100)

when the energy density approaches the zero value

2g
2F0 = e�4

Y M , ‘0 = 0, p0 = 4A
3e

�4
Y M . (6.101)

The scale factor asymptotically approaches a maximal static value shown in Fig.3

ã = µce
b æ µc (6.102)

when · æ Œ and b Ã e
≠

Ô
2· æ 0 in (6.97). The energy density becomes negative in the region

b œ (≠1/2, 0]. The field strength, energy density, and pressure are approaching asymptotically the

following values:

2g
2Fc = 1

e
�4

Y M , ‘c = ≠2A
e

�4
Y M , pc = 2A

3e
�4

Y M . (6.103)

According to the Friedmann equations (1.3)-(1.4) the acceleration is driven by the overall sign of the

‘ + 3p that can be calculated by using the expressions (6.99)

‘ + 3p = ≠4Ab(·)e≠4b(·)≠1�4
Y M Ø 0, b œ [≠Œ, 0]. (6.104)

The strong energy dominance condition ‘ + 3p Ø 0 holds here. The deceleration parameter for the

Type III solution is always positive, b œ [≠Œ, 0]:

qIII = b

b + 1
2(1 ≠ e2b)

Ø 0. (6.105)
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