Anomalies as obstructions: from dimensional lifts to swampland

with Peng Cheng and Stefan Theisen

D=6 Super-Poincaré Representations with 8 supercharges:

B.L.G.	representation	multiplet
	$(2,3;1) \times 2^2 = (3,3;1) + (1,3;1) + (2,3;1)$	gravity
$SO(4) \times SU(2)$	$(2,1;1) \times 2^2 = (3,1;1) + (1,1;1) + (2,1;1)$	tensor
	$(1,2;1) \times 2^2 = (2,2:1) + (1,2;1)$	Yang-Mills
	$2^2 = (2,1;1) + (1,1;2)$	hyper

Chiral bosonis and fermionic fields \Rightarrow Anomalies

Anomaly cancelation possible if

$$\star I_8 = \frac{1}{2} \Omega_{\alpha\beta} X_4^{\alpha} X_4^{\beta}$$

$$\triangleright \alpha, \beta = 0, 1, \dots n_T$$

 $\triangleright \Omega_{\alpha\beta}$ - symmetric inner product on the space of tensors with $(1, n_T)$ signature

* GSS couplings $\sim \Omega_{\alpha\beta} B_2^{\alpha} X_4^{\beta}$

* Anomalous Bl $dH^{\alpha} = X_4^{\alpha}$

Anomaly-free theories:

• Heterotic strings on K3 $\begin{cases} \text{perturbative:} & n_T = 1 \ (c_2 = 24) \\ \text{non-perturbative:} & n_T > 1 \ (c_2 + N_{\text{NS5}} = 24) \end{cases}$

- Perturbative IIB constructions (K3 orientifolds)
- F-theory
 - Geometrisation of the necessary conditions for the anomaly cancellation
 - \triangleright Kodaira condition for elliptic CY3's \Rightarrow bound of physical couplings
- Anomaly-free supergravity models (e.g. $n_T = 9 + 8k$ and $G = (E_8)^k$)

Questions:

- Extra consistency conditions?
 - * YES unitarity of the worldsheet theory of the "supergraity strings" according to H-C.Kim, G. Shiu and C. Vafa
- A (geometric) bound that all consistent theories should satisfy?
 - \star The subject of this talk

A cartoon of the situation that can be imagined

The plan

- Review the unitarity argument in D=6 and ...
 - \star Explain why we are we look answers to D=6 questions in D=5
- ... re-examine the unitary from D=5 point of view
- Establish a (geometric) bound for consistent theories

Supergravity strings in D=6

Consider an anomaly free D=6 theory with 8 spuercharges with

- n_T tensor multiplets
- Yang-Mills multiplets with a group $G = \prod_i G_i$
- hypermultiplets in different representations of the gauge group.

The anomaly polynomial:

 $\star I_8 = \frac{1}{2} \Omega_{\alpha\beta} X_4^{\alpha} X_4^{\beta}$

$$\triangleright \alpha, \beta = 0, 1, \dots n_T$$

 $\triangleright \ \Omega_{\alpha\beta}$ - symmetric inner product on the space of tensors with $(1, n_T)$ signature

$$\star X_4^{\alpha} = \frac{1}{8}a^{\alpha} \operatorname{tr} R^2 + \sum_i b_i^{\alpha} \frac{1}{4h_i^{\vee}} \operatorname{Tr}_{\operatorname{Adj}} F_i^2$$

 $\triangleright a, b_i \in \mathbb{R}^{1, n_T}$ – determined by the field content of the theory

Dyonic BPS strings with (0,4) worldsheet supersymmetry:

★
$$dH^{\alpha} = X_4^{\alpha} + Q^{\alpha} \prod_{a=1}^4 \delta(x^a) dx^a$$

▷ Q^{α} - string charges

Anomaly inflow from $\Omega_{\alpha\beta}B_2^{\alpha}X_4^{\beta}$ to the BPS string \Rightarrow (0,4) anomaly:

$$I_{4} = -\Omega_{\alpha\beta} Q^{\alpha} \left(X_{4}^{\beta}(M_{6})|_{W_{2}} + \frac{1}{2} Q^{\beta} \chi(N) \right)$$

$$= -\frac{1}{4} \Omega_{\alpha\beta} Q^{\alpha} \left(a^{\beta} p_{1}(TW_{2}) - 2 \left(Q^{\beta} + a^{\beta} \right) c_{2}(SU(2)_{1}) + 2 \left(Q^{\beta} - a^{\beta} \right) c_{2}(SU(2)_{2}) + ... \right)$$

Need to use:

▷ $\delta(x^a) dx^a$ - a particular representation of the Thom class Φ for $i: W_2 \hookrightarrow M_6$ * Thom isomorphism: $i^* \Phi = \chi(N)$ ▷ $\operatorname{tr} R^2|_{TW_2} = -2 p_1(TW_2) - 2 p_1(N)$ ▷ $\chi(N) = c_2(SU(2)_1) - c_2(SU(2)_2)$ and $p_1(N) = -2(c_2(SU(2)_1) + c_2(SU(2)_2))$

 \triangleright $SU(2)_2 - \mathcal{R}$ -symmetry of the interacting part of the SCFT

Central charges (with c.o.m contribution):

$$c_L - c_R = -6 \,\Omega_{\alpha\beta} \,a^{\alpha} \,Q^{\beta} \equiv -6Q \cdot a$$

$$c_R = 3 \,\Omega_{\alpha\beta} \,Q^{\alpha} \,Q^{\beta} - 6 \,\Omega_{\alpha\beta} \,a^{\alpha} \,Q^{\beta} + 6 \equiv 3Q \cdot Q - 6Q \cdot a + 6$$

Constraints on charges Q

• Well-defined moduli space:

 $\diamond \ j \cdot j > 0, \quad j \cdot b_i > 0, \quad j \cdot a < 0$

♦ $j \in \mathbb{R}^{1,n_T}$ – a $(1,n_T)$ vector on the tensor branch ($SO(1,n_T)/SO(n_T)$ MS)

• Non-negative tension:

 $\diamond \ j \cdot Q \geq 0$

• Non-negative levels for $SU(2)_1$ and G_i affine current algebras

$$\diamond k = \frac{1}{2}(Q \cdot Q + Q \cdot a + 2) \ge 0$$
 and $k_i = Q \cdot b_i \ge 0$

Unitarity constraint on the worldsheet theory

 \triangleright Left-moving current algebra for G is bounded by c_L

$$\sum_{i} \frac{k_i \cdot \dim G_i}{k_i + h_i^{\vee}} \le c_L - 4 = 3 Q \cdot Q - 9 Q \cdot a + 2$$

- > Allows to rule out anomaly-free supergravities without string-theoretic realisations
- ▷ Is not directly comparable with geometric bounds

Why is it worthwhile to re-examine the question in D=5?

- Different way of packing the (same) information
 - ◊ Consider e.g. reduction on a smooth elliptic CY3

▷ D=6:
$$L_{GS} \sim b_{\alpha ij} B_2^{\alpha} \wedge F_2^i \wedge F^j \iff \text{part of CY intersection form}$$

▷ D=5: - $-\frac{1}{6} C_{IJK} A^I \wedge F^I \wedge F^J \iff \text{entire CY intersection form}$
 $(C_{IJK} = \int \omega_I \wedge \omega_J \wedge \omega_K; \quad I = 1, ..., n_T + n_V + 1)$

- ◊ In the S¹ reduction from D=6 to D=5, a one-loop computation should reveal new info and ... "hide" the anomaly
- Different scaling of central charges w.r.t string charge Q
 - ◊ **D=6:** $c_L, c_R \sim \# Q \cdot Q + \#'Q \cdot a + \#''$
 - $\diamond \mathsf{D=5:} \qquad c_L, c_R \sim \tilde{\#} Q \cdot Q \cdot Q + \#' Q \cdot a + \tilde{\#}''$
- General questions about which theories are liftable
 - o reductions with Wilson lines
 - reductions with discrete holonomies
- Unitarity constraints for generic minimal D=5 theories...

Anomaly cancellation in D=6 (2n) \Leftrightarrow gauge/diff invariance in D=5 (2n-1)

 \diamond S^1 resuction of the GS terms:

$$\delta(\iota_v L_{\rm GS}) \neq 0 \quad !!!$$

◊ no D=5 anomaly to cancel it

Consider the simplest situation - $n_T = 1$ and $M_6 = M_5 \times S^1$ (no curvature):

 $\triangleright I_8 = X_4 \wedge \tilde{X}_4; \qquad L_{GS} = \hat{B}_2 \wedge \tilde{X}_4; \qquad dH = X_4 \ (H = d\hat{B} + X_3^{(0)})$

 \triangleright reduction: $\hat{B}_2 \mapsto (B_2, A_1); \qquad X_4 \mapsto (x_4, x_3)$

$$\diamond \ (dx_4, dx_3) = 0; \qquad (x_4 = dx_3^{(0)}, x_3 = dx_2^{(0)}); \qquad (\delta dx_3^{(0)} = dx_2^{(2)}, \delta x_2^{(0)} = 0)$$

 $\triangleright \ L_{\rm GS} \mapsto A_1 \wedge x_4 + B_2 \wedge x_3 \longrightarrow dB_2 \wedge x_2^{(0)} \longrightarrow \tilde{F}_2 \bot x_2^{(0)} - x_3^{(0)} \wedge x_2^{(0)}$

- CS-like terms with field dependent coefficients not gauge/diff invariant
- Can be cancelled by integrating out massive KK modes from chiral fields
- ◊ Conditions for cancellation the same as for the anomaly cancelation in D=6
- many cases worked out by E. Poppitz, M, Unsal, F. Bonetti, T. Grimm, S. Hohenegger, P. Corvilain, D. Regalado

Another (scheme-independent) way to look at the problem

▷ Reduction of the anomaly

$$\int_{M_{2n-1}\times S^1} I_{2n}^1(\epsilon,\hat{\mathcal{A}},\hat{\mathcal{F}}) = \delta_{\epsilon} \int_{M_{2n-1}} \Phi \cdot X(\mathcal{A},\mathcal{F}) + \dots$$

- \diamond $\hat{\mathcal{A}} / \mathcal{A}$ and $\hat{\mathcal{F}} / \mathcal{F} fields$ and curvatures in D=2n/2n-1
- \diamond ϵ the variation (gauge or diffeomorphism) parameter,
- $\diamond \quad \Phi \text{Wilson line along the circle}$ (for gravity Φ graviphoton curvature)
- \diamond · trace over group indices
- \triangleright $X(\mathcal{A}, \mathcal{F})$ is derived from the Bardeen-Zumino polynomial
 - \diamond ... indicate correction terms when $G \longrightarrow G'$ or $\text{Diff}(M_{2n}) \longrightarrow \text{Diff}(M_{2n-1})$
- ▷ Local counterterm $-\Phi \cdot X$ is *always* possible but can *never* be lifted to D=2n
- \triangleright Liftability \Rightarrow *different* counterterm

Obstruction to liftability

New CS couplings in D=5

▷ involve reduced D=6 YM fields, and the graviphoton

$$\mathcal{L}_{\rm CS} = -\frac{k_0}{6} A^{\rm KK} \wedge F^{\rm KK} \wedge F^{\rm KK} + \frac{k_R}{96} A^{\rm KK} \wedge {\rm tr} R^2$$

 \diamond $k_0 = 2(9 - n_T)$ and $k_R = 8(12 - n_T)$

▷ Anomaly inflow

$$c_{R} = k_{0}Q_{\text{KK}}^{3} + \frac{k_{R}}{2}Q_{\text{KK}}$$
 and $c_{L} = k_{0}Q_{\text{KK}}^{3} + k_{R}Q_{\text{KK}}$

- $\diamond~$ The string source: $~~dF=d\rho(r) {\it e_2}/2$
 - $d\rho(r)e_2/2$ smooth representative of Thom class
 - e_2 global angular form
 - $\int_{S^2} e_2 \wedge e_2 \wedge e_2 = 2p_1(N)$

 $\diamond \ \mathrm{tr} R^2|_{TW_2} = -2 \, p_1(TW_2) - 2 \, p_1(N)$

- ▷ In D=5 there are strings with *cubic* central charges (not quadratic!)
- > All strings with cubic central charges carry some magnetic KK charge

Central charges for D=5 BPS strings

 \diamond

$$c_R = C_{IJK}Q^IQ^JQ^K + \frac{1}{2}a_IQ^I \quad \text{and} \quad c_L = C_{IJK}Q^IQ^JQ^K + a_IQ^I$$
$$I = 1, ..., n_T + n_V + 1$$

- \triangleright BPS strings in D=6 with transverse S^1 (normal bundle $\mathbb{R}^3 \times S^1$)
 - ◇ Recall *I*₄ ~ Ω_{αβ}*Q*^α (*a^βp*₁(*TW*₂) - 2 (*Q^β* + *a^β*) *c*₂(*SU*(2)₁) + 2 (*Q^β* - *a^β*) *c*₂(*SU*(2)₂) + ...)
 ◇ Take *c*₂(*SU*(2)₁) = *c*₂(*SU*(2)₂) = *c*₂(*N*), *c*_L = 2 *c*_R = -12 Ω_{αβ} *a^α Q^β* ≡ -12*Q* · *a*
- ▷ The interacting part of SCFT

$$c_R^{int} = -6 Q \cdot a - 6$$
 and $c_L^{int} = -12 Q \cdot a - 3$

▷ The unitarity condition for linear strings

$$\sum_{i} \frac{(Q \cdot b_i) \cdot \dim G_i}{Q \cdot b_i + h_i^{\vee}} \le c_L^{int} = -12 Q \cdot a - 3$$

Kodaira positivity and F-theory models

▷ In all F-theory models the following bound holds:

$$j \cdot (-12a - \sum_{i} x_i b_i) \ge 0$$

 $\triangleright j \in \mathbb{R}^{1,n_T} - a(1,n_T)$ vector on the tensor branch

 $\triangleright a, b_i \in \mathbb{R}^{1, n_T}$ – determined by the field content of the theory

 $\triangleright x_i$ – number of D7 needed for G_i (multiplicity of respective singularity)

 \triangleright Follows from the Kodaira condition - requirement that elliptic fibration over base B with singularities over divisors S_i is CY:

$$-12K = \sum_{i} x_i S_i + Y$$

 \triangleright Y – residual divisor which must be *effective*

▷ For any nef divisor D: $D \cdot Y = D \cdot (-12K - \sum_i x_i S_i) \ge 0$

▷ KPC $(j \cdot (-12a - \sum_i x_i b_i) \ge 0)$ is not expected to be satisfied in any consistent D=6 theory

The unitariry bound should hold in all consistent D=6 theories

▷ The strongest for of the constraint:

$$Q \cdot \left(-12a - \sum_{i} b_i\left(\frac{\dim G_i}{1 + h_i^{\vee}}\right)\right) \ge Q \cdot \left(-12a - \sum_{i} b_i\left(\frac{\dim G_i}{Q \cdot b_i + h_i^{\vee}}\right)\right) \ge 3$$

♦ If the strong form is satisfied, it will hold also for $Q \cdot b_1 > 1$

- ♦ If it fails, need to check if $Q \cdot b_i = 1$ is possible
- $\diamond \text{ Impose:} \quad Q \cdot Q + Q \cdot a + 2 \ge 0, \quad k_i = Q \cdot b_i \ge 0 \quad \text{and} \quad -Q \cdot a > 0$
- ▷ (Assuming D=6 theory is F-theoretic) UC can be converted into geometric form:

$$D \cdot (-12K - \sum_{i} y_i S_i) \ge 3$$
 with $y_i = \frac{\dim G^i}{1 + h_i^{\vee}}$

 \triangleright x is always larger than y:

Type of gauge algebra	$x_i - y_i$	Gauge algebra
K_1	< 2	su(m), sp(1), sp(2), sp(3) in Kodaira type I
K_2	≥ 2	All other groups

Comparing UC and KPC

$$D \cdot Y \ge 3 - \sum_{i} (x_i - y_i) D \cdot S_i$$

• In most of the cases the bound is automatic given KPC (KPC is stronger than UC)

- ▷ At least 3 gauge group factors (gauge divisors $S_{1,2,3}$ ($D \cdot S_{1,2,3} > 0$ holds))
- ▷ At least 2 gauge groups and at least 1 is type K_2 $(x_i \frac{\dim G_i}{D \cdot S_i + h_i^{\vee}} \ge x_i y_i \ge 2)$
- In other cases, KPC may be satisfied while UC is violated if

$$12n - 3 < \sum_{i} \mu_i D \cdot S_i \le 12n - \sum_{i} (x_i - \mu_i) D \cdot S_i$$

 $\triangleright Y = -12K - \sum_i x_i S_i - NOT$ numerically 0 (GDs S_i do not sweep -12K)

3 cases when UC imposes stronger constraints

$$\exists S_1 \in \{S_i\} \text{ and nef } D: D \cdot S_1 = 1, D \cdot S_i = 0 (i \neq 1) \& -D \cdot K \in \mathbb{Z}_+ \\ \Rightarrow D \cdot Y \ge 1 \text{ for } SU(12n) \text{ and } D \cdot Y \ge 2 \text{ for } SU(12n-1)$$

 $\triangleright \exists S_1 \in \{S_i\} \text{ for } D \cdot Y \ge 1 \implies SO(24n-5), SO(24n-4) \text{ or } Sp(6n) \text{ (} I_{12n} \text{ type)}$

 $\exists S_1, S_2 \in \{S_i\} \text{ for } D \cdot Y \ge 1 \Rightarrow SU(a) \times SU(12n-a), Sp(1) \times SU(12n-2), \\ Sp(2) \times SU(12n-4) \text{ or } SU(12n-6) \times Sp(3) \text{ (} I_2, I_4 \text{ and } I_6 \text{ type)}$

Example: $SU(N) \times SU(N)$, $n_H = 2$ (bifundamentals) and $n_T = 9$

$$\Omega = \operatorname{diag} \left(+1, (-1)^9 \right), \qquad a = \left(-3, (+1)^9 \right)$$
$$b_1 = \left(1, -1, -1, -1, 0^6 \right), \quad b_2 = \left(2, 0, 0, 0, (-1)^6 \right)$$

 $\triangleright \quad Q = (1, 0, 0, 0, -1, 0.., 0)$

$$\triangleright \quad Q \cdot Q = 0, \ Q \cdot a = -2 \text{ and } Q \cdot b_1 = Q \cdot b_2 = 1$$

▷ UC:
$$2(N-1) \le 24-3 \Rightarrow N \le 11$$
 (stronger bound in D6 UC)

$$\triangleright \quad \mathsf{KPC}: \qquad 2N \le 24 \to N \le 12$$

- ▷ Assuming F-theoretic realisation: $-12K = NS_1 + NS_2 + Y$
- \triangleright For $N \ge 4$, the singular divisors are of type I_N
 - $\diamond \ S_1 \cdot K = S_2 \cdot K = 0$
 - \diamond 2 bifundamental hypers: $S_1 \cdot S_1 = -2 = S_2 \cdot S_2$ and $S_1 \cdot S_2 = 2$
 - $\diamond n_T = 9$ translates into $K \cdot K = 0$.

▷ Can verify that $Y = -12K - 12S_1 - 12S_2$ has to be numerically non-trivial $(-12K = 12S_1 + 12S_2$ cannot be realised on the base *B* of an elliptic Calabi-Yau threefold with the required singularity structure)

A refined cartoon of the space of D=6 theories

... and much more left to be understood