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D=6 Super-Poincaré Representations with 8 supercharges:

B.L.G. representation multiplet

(2, 3; 1)⇥ 22 = (3, 3; 1) + (1, 3; 1) + (2, 3; 1) gravity

SO(4)⇥ SU(2) (2, 1; 1)⇥ 22 = (3, 1; 1) + (1, 1; 1) + (2, 1; 1) tensor

(1, 2; 1)⇥ 22 = (2, 2 : 1) + (1, 2; 1) Yang-Mills

22 = (2, 1; 1) + (1, 1; 2) hyper

Chiral bosonis and fermionic fields ) Anomalies

Anomaly cancelation possible if
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Anomaly-free theories:

• Heterotic strings on K3

8
<

:
perturbative: nT = 1 (c2 = 24)

non-perturbative: nT > 1 (c2 +NNS5 = 24)

• Perturbative IIB constructions (K3 orientifolds)

• F-theory

B Geometrisation of the necessary conditions for the anomaly cancellation

B Kodaira condition for elliptic CY3’s ) bound of physical couplings

• Anomaly-free supergravity models ( e.g. nT = 9 + 8k and G = (E8)k )

Questions:

• Extra consistency conditions?

? YES - unitarity of the worldsheet theory of the“supergraity strings” - according
to H-C.Kim, G. Shiu and C. Vafa

• A (geometric) bound that all consistent theories should satisfy?

? The subject of this talk



A cartoon of the situation that can be imagined

All 6D minimal supergravities

Inconsistent (anomalous) theories

Swamp

F-theory
Anomaly-free theories

Consistent theories  
of Quantum Gravity

The plan

• Review the unitarity argument in D=6 and ...

? Explain why we are we look answers to D=6 questions in D=5

• ... re-examine the unitary from D=5 point of view

• Establish a (geometric) bound for consistent theories



Supergravity strings in D=6

Consider an anomaly free D=6 theory with 8 spuercharges with

• nT tensor multiplets

• Yang-Mills multiplets with a group G =
Q

i
Gi

• hypermultiplets in different representations of the gauge group.

The anomaly polynomial:
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B ⌦↵� - symmetric inner product on the space of tensors with (1, nT ) signature

? X↵

4 = 1
8a

↵trR2 +
P

i
b↵
i

1
4h_

i
TrAdjF 2

i

B a, bi 2 R1,nT � determined by the field content of the theory

Dyonic BPS strings with (0,4) worldsheet supersymmetry:

? dH↵ = X↵

4 +Q↵
Q4

a=1 � (x
a) dxa

B Q↵ � string charges



Anomaly inflow from ⌦↵�B↵
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Need to use:

B � (xa) dxa � a particular representation of the Thom class � for i : W2 ,! M6

⇤ Thom isomorphism: i⇤� = �(N)

B trR2|TW2 = �2 p1(TW2)� 2 p1(N)

B �(N) = c2(SU(2)1)� c2(SU(2)2) and p1(N) = �2(c2(SU(2)1) + c2(SU(2)2)

B SU(2)2 � R-symmetry of the interacting part of the SCFT

Central charges (with c.o.m contribution):

cL � cR = �6⌦↵� a
↵ Q� ⌘ �6Q · a

cR = 3⌦↵� Q
↵ Q� � 6⌦↵� a

↵ Q� + 6 ⌘ 3Q ·Q� 6Q · a+ 6



Constraints on charges Q

• Well-defined moduli space:

⇧ j · j > 0, j · bi > 0, j · a < 0

⇧ j 2 R1,nT � a (1, nT ) vector on the tensor branch ( SO(1, nT )/SO(nT ) MS)

• Non-negative tension:

⇧ j ·Q � 0

• Non-negative levels for SU(2)1 and Gi affine current algebras

⇧ k = 1
2 (Q ·Q+Q · a+ 2) � 0 and ki = Q · bi � 0

Unitarity constraint on the worldsheet theory

B Left-moving current algebra for G is bounded by cL
P

i

ki·dimGi
ki+h

_
i

 cL � 4 = 3Q ·Q� 9Q · a+ 2

B Allows to rule out anomaly-free supergravities without string-theoretic realisations

B Is not directly comparable with geometric bounds



Why is it worthwhile to re-examine the question in D=5?

• Different way of packing the (same) information

⇧ Consider e.g. reduction on a smooth elliptic CY3
B D=6: LGS ⇠ b↵ijB↵

2 ^ F i

2 ^ F j ( part of CY intersection form
B D=5: - � 1

6CIJKAI ^ F I ^ F J ( entire CY intersection form
(CIJK =

R
!I ^ !J ^ !K ; I = 1, ..., nT + nV + 1)

⇧ In the S1 reduction from D=6 to D=5, a one-loop computation should reveal new
info and ... “hide” the anomaly

• Different scaling of central charges w.r.t string charge Q

⇧ D=6: cL, cR ⇠ #Q ·Q+#0Q · a+#00

⇧ D=5: cL, cR ⇠ #̃Q ·Q ·Q+#0Q · a+ #̃00

� General questions about which theories are liftable

⇧ reductions with Wilson lines

⇧ reductions with discrete holonomies

� Unitarity constraints for generic minimal D=5 theories...



Anomaly cancellation in D=6 (2n) , gauge/diff invariance in D=5 (2n-1)

⇧ S1 resuction of the GS terms:

�(◆vLGS) 6= 0 !!!

⇧ no D=5 anomaly to cancel it

Consider the simplest situation - nT = 1 and M6 = M5 ⇥ S1 (no curvature):

B I8 = X4 ^ X̃4; LGS = B̂2 ^ X̃4; dH = X4 (H = dB̂ +X(0)
3 )

B reduction: B̂2 7! (B2, A1); X4 7! (x4, x3)

⇧ (dx4, dx3) = 0; (x4 = dx(0)
3 , x3 = dx(0)

2 ); (�dx(0)
3 = dx(2)

2 , �x(0)
2 = 0)

B LGS 7! A1 ^ x4 +B2 ^ x3 �! dB2 ^ x(0)
2 �! F̃2xx(0)

2 � x(0)
3 ^ x(0)

2

⇧ CS-like terms with field dependent coefficients - not gauge/diff invariant

⇧ Can be cancelled by integrating out massive KK modes from chiral fields

⇧ Conditions for cancellation - the same as for the anomaly cancelation in D=6

⇧ many cases worked out by E. Poppitz, M, Unsal, F. Bonetti, T. Grimm, S.
Hohenegger, P. Corvilain, D. Regalado ....



Another (scheme-independent) way to look at the problem

B Reduction of the anomaly
Z

M2n�1⇥S1

I12n(✏, Â, F̂) = �✏

Z

M2n�1

� ·X(A,F) + ...

⇧ Â /A and F̂ /F � fields and curvatures in D=2n/2n-1

⇧ ✏ � the variation (gauge or diffeomorphism) parameter,

⇧ � � Wilson line along the circle (for gravity � - graviphoton curvature)

⇧ · � trace over group indices

B X(A,F) is derived from the Bardeen-Zumino polynomial

⇧ ... indicate correction terms when G �! G0 or Diff(M2n) �! Diff(M2n�1)

B Local counterterm �� ·X is always possible but can never be lifted to D=2n

B Liftability ) different counterterm

Obstruction to liftability



New CS couplings in D=5

B involve reduced D=6 YM fields, and the graviphoton

LCS = �k0
6
AKK ^ F KK ^ F KK +

kR
96

AKK ^ trR2

⇧ k0 = 2(9� nT ) and kR = 8(12� nT )

B Anomaly inflow

cR = k0Q
3
KK +

kR
2
QKK and cL = k0 Q

3
KK + kR QKK

⇧ The string source: dF = d⇢(r)e2/2

• d⇢(r)e2/2 � smooth representative of Thom class

• e2 � global angular form

•
R
S2 e2 ^ e2 ^ e2 = 2p1(N)

⇧ trR2|TW2 = �2 p1(TW2)� 2 p1(N)

B In D=5 there are strings with cubic central charges (not quadratic!)

B All strings with cubic central charges carry some magnetic KK charge



Central charges for D=5 BPS strings

cR = CIJKQIQJQK +
1

2
aIQ

I and cL = CIJKQIQJQK + aIQ
I

⇧ I = 1, ..., nT + nV + 1

B BPS strings in D=6 with transverse S1 (normal bundle R3 ⇥ S1)

⇧ Recall
I4 ⇠ ⌦↵�Q↵

�
a�p1(TW2)� 2
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⇧ Take c2(SU(2)1) = c2(SU(2)2) = c2(N),

cL = 2 cR = �12⌦↵� a
↵ Q� ⌘ �12Q · a

B The interacting part of SCFT

cint
R

= �6Q · a� 6 and cint
L

= �12Q · a� 3

B The unitarity condition for linear strings

X

i

(Q · bi) · dimGi

Q · bi + h_
i

 cint
L

= �12Q · a� 3



Kodaira positivity and F-theory models

B In all F-theory models the following bound holds:

j · (�12a�
X

i

xibi) � 0

B j 2 R1,nT � a (1, nT ) vector on the tensor branch

B a, bi 2 R1,nT � determined by the field content of the theory

B xi � number of D7 needed for Gi (multiplicity of respective singularity)

B Follows from the Kodaira condition - requirement that elliptic fibration over base B
with singularities over divisors Si is CY:

�12K =
X

i

xiSi + Y

B Y � residual divisor which must be effective

B For any nef divisor D : D · Y = D · (�12K �
P

i
xiSi) � 0

B KPC (j · (�12a�
P

i
xibi) � 0) is not expected to be satisfied in any consistent

D=6 theory



The unitariry bound should hold in all consistent D=6 theories

B The strongest for of the constraint:

Q · (�12a�
X

i

bi(
dimGi

1 + h_
i

)) � Q · (�12a�
X

i

bi(
dimGi

Q · bi + h_
i

)) � 3

⇧ If the strong form is satisfied, it will hold also for Q · b1 > 1

⇧ If it fails, need to check if Q · bi = 1 is possible

⇧ Impose: Q ·Q+Q · a+ 2 � 0 , ki = Q · bi � 0 and �Q · a > 0

B (Assuming D=6 theory is F-theoretic) UC can be converted into geometric form:

D · (�12K �
X

i

yiSi) � 3 with yi =
dimGi

1 + h_
i

B x is always larger than y:

Type of gauge algebra xi � yi Gauge algebra

K1 < 2 su(m), sp(1), sp(2), sp(3) in Kodaira type I

K2 � 2 All other groups



Comparing UC and KPC

D · Y � 3�
X

i

(xi � yi)D · Si

• In most of the cases the bound is automatic given KPC (KPC is stronger than UC)

B At least 3 gauge group factors (gauge divisors S1,2,3 (D · S1,2,3 > 0 holds))

B At least 2 gauge groups and at least 1 is type K2 (xi � dimGi
D·Si+h

_
i
� xi � yi � 2 )

• In other cases, KPC may be satisfied while UC is violated if

12n� 3 <
X

i

µiD · Si  12n�
X

i

(xi � µi)D · Si

B Y = �12K �
P

i
xiSi � NOT numerically 0 (GDs Si do not sweep �12K)

• 3 cases when UC imposes stronger constraints

B 9S1 2 {Si} and nef D : D · S1 = 1, D · Si = 0 (i 6= 1) & �D ·K 2 Z+

) D · Y � 1 for SU(12n) and D · Y � 2 for SU(12n� 1)

B 9S1 2 {Si} for D · Y � 1 ) SO(24n� 5), SO(24n� 4) or Sp(6n) ( I12n type)

B 9S1, S2 2 {Si} for D · Y � 1 ) SU(a)⇥ SU(12n� a), Sp(1)⇥ SU(12n� 2),
Sp(2)⇥ SU(12n� 4) or SU(12n� 6)⇥ Sp(3) ( I2, I4 and I6 type)



Example: SU(N)⇥ SU(N), nH = 2 ( bifundamentals) and nT = 9

⌦ = diag
�
+1, (�1)9

�
, a =

�
�3, (+1)9

�

b1 =
�
1,�1,�1,�1, 06

�
, b2 =

�
2, 0, 0, 0, (�1)6

�

B Q = (1, 0, 0, 0,�1, 0.., 0)

B Q ·Q = 0, Q · a = �2 and Q · b1 = Q · b2 = 1

B UC: 2(N � 1)  24� 3 ) N  11 (stronger bound in D6 UC)

B KPC : 2N  24!N  12

B Assuming F-theoretic realisation: �12K = NS1 +NS2 + Y

B For N � 4, the singular divisors are of type IN

⇧ S1 ·K = S2 ·K = 0

⇧ 2 bifundamental hypers: S1 · S1 = �2 = S2 · S2 and S1 · S2 = 2

⇧ nT = 9 translates into K ·K = 0.

B Can verify that Y = �12K � 12S1 � 12S2 has to be numerically non-trivial
(�12K = 12S1 + 12S2 cannot be realised on the base B of an elliptic Calabi-Yau
threefold with the required singularity structure)



A refined cartoon of the space of D=6 theories

All 6D minimal supergravities

Inconsistent (anomalous) theories

Swamp

F-theory
Anomaly-free theories

Consistent theories  
of Quantum Gravity

Unitarity Constraints

Unitarity constraints  
stronger than  

geometric constraints

Weaker bounds

... and much more left to be understood


