Anomalies as obstructions: from dimensional lifts to swampland

with Peng Cheng and Stefan Theisen

D=6 Super-Poincaré Representations with 8 supercharges:

B.L.G.	representation	multiplet
$S O(4) \times S U(2)$	$(2,3 ; 1) \times 2^{2}=(3,3 ; 1)+(1,3 ; 1)+(2,3 ; 1)$	gravity
	$(2,1 ; 1) \times 2^{2}=(3,1 ; 1)+(1,1 ; 1)+(2,1 ; 1)$	tensor
	$(1,2 ; 1) \times 2^{2}=(2,2: 1)+(1,2 ; 1)$	Yang-Mills
	$2^{2}=(2,1 ; 1)+(1,1 ; 2)$	hyper

Chiral bosonis and fermionic fields \Rightarrow Anomalies
Anomaly cancelation possible if
$\star I_{8}=\frac{1}{2} \Omega_{\alpha \beta} X_{4}^{\alpha} X_{4}^{\beta}$
$\triangleright \alpha, \beta=0,1, \ldots n_{T}$
$\triangleright \Omega_{\alpha \beta}$ - symmetric inner product on the space of tensors with $\left(1, n_{T}\right)$ signature
\star GSS couplings $\sim \Omega_{\alpha \beta} B_{2}^{\alpha} X_{4}^{\beta}$
\star Anomalous BI $d H^{\alpha}=X_{4}^{\alpha}$

Anomaly-free theories:

- Heterotic strings on K3

$$
\left\{\begin{array}{l}
\text { perturbative: } \quad n_{T}=1\left(c_{2}=24\right) \\
\text { non-perturbative: } \quad n_{T}>1\left(c_{2}+N_{\mathrm{NS5}}=24\right)
\end{array}\right.
$$

- Perturbative IIB constructions (K3 orientifolds)
- F-theory
\triangleright Geometrisation of the necessary conditions for the anomaly cancellation
\triangleright Kodaira condition for elliptic CY3's \Rightarrow bound of physical couplings
- Anomaly-free supergravity models (e.g. $n_{T}=9+8 k$ and $G=\left(E_{8}\right)^{k}$)

Questions:

- Extra consistency conditions?
* YES - unitarity of the worldsheet theory of the"supergraity strings" - according to H-C.Kim, G. Shiu and C. Vafa
- A (geometric) bound that all consistent theories should satisfy?
* The subject of this talk

A cartoon of the situation that can be imagined

The plan

- Review the unitarity argument in $\mathrm{D}=6$ and ...
* Explain why we are we look answers to $\mathrm{D}=6$ questions in $\mathrm{D}=5$
- ... re-examine the unitary from $\mathrm{D}=5$ point of view
- Establish a (geometric) bound for consistent theories

Supergravity strings in $D=6$

Consider an anomaly free $\mathrm{D}=6$ theory with 8 spuercharges with

- n_{T} tensor multiplets
- Yang-Mills multiplets with a group $G=\prod_{i} G_{i}$
- hypermultiplets in different representations of the gauge group.

The anomaly polynomial:
$\star I_{8}=\frac{1}{2} \Omega_{\alpha \beta} X_{4}^{\alpha} X_{4}^{\beta}$
$\triangleright \alpha, \beta=0,1, \ldots n_{T}$
$\triangleright \Omega_{\alpha \beta}$ - symmetric inner product on the space of tensors with $\left(1, n_{T}\right)$ signature
$\star X_{4}^{\alpha}=\frac{1}{8} a^{\alpha} \operatorname{tr} R^{2}+\sum_{i} b_{i}^{\alpha} \frac{1}{4 h_{i}^{\nu}} \operatorname{Tr}_{\text {Adj }} F_{i}^{2}$
$\triangleright a, b_{i} \in \mathbb{R}^{1, n_{T}}$ - determined by the field content of the theory
Dyonic BPS strings with $(0,4)$ worldsheet supersymmetry:
$\star d H^{\alpha}=X_{4}^{\alpha}+Q^{\alpha} \prod_{a=1}^{4} \delta\left(x^{a}\right) d x^{a}$
$\triangleright Q^{\alpha}$ - string charges

Anomaly inflow from $\Omega_{\alpha \beta} B_{2}^{\alpha} X_{4}^{\beta}$ to the BPS string $\Rightarrow(0,4)$ anomaly:

$$
\begin{aligned}
I_{4} & =-\Omega_{\alpha \beta} Q^{\alpha}\left(\left.X_{4}^{\beta}\left(M_{6}\right)\right|_{W_{2}}+\frac{1}{2} Q^{\beta} \chi(N)\right) \\
& =-\frac{1}{4} \Omega_{\alpha \beta} Q^{\alpha}\left(a^{\beta} p_{1}\left(T W_{2}\right)-2\left(Q^{\beta}+a^{\beta}\right) c_{2}\left(S U(2)_{1}\right)+2\left(Q^{\beta}-a^{\beta}\right) c_{2}\left(S U(2)_{2}\right)+\ldots\right)
\end{aligned}
$$

Need to use:
$\triangleright \delta\left(x^{a}\right) d x^{a}$ - a particular representation of the Thom class Φ for $i: W_{2} \hookrightarrow M_{6}$

* Thom isomorphism: $\quad i^{*} \Phi=\chi(N)$
$\left.\triangleright \operatorname{tr} R^{2}\right|_{T W_{2}}=-2 p_{1}\left(T W_{2}\right)-2 p_{1}(N)$
$\triangleright \chi(N)=c_{2}\left(S U(2)_{1}\right)-c_{2}\left(S U(2)_{2}\right)$ and $p_{1}(N)=-2\left(c_{2}\left(S U(2)_{1}\right)+c_{2}\left(S U(2)_{2}\right)\right.$
$\triangleright S U(2)_{2}-\mathcal{R}$-symmetry of the interacting part of the SCFT

Central charges (with c.o.m contribution):

$$
\begin{aligned}
c_{L}-c_{R} & =-6 \Omega_{\alpha \beta} a^{\alpha} Q^{\beta} \equiv-6 Q \cdot a \\
c_{R} & =3 \Omega_{\alpha \beta} Q^{\alpha} Q^{\beta}-6 \Omega_{\alpha \beta} a^{\alpha} Q^{\beta}+6 \equiv 3 Q \cdot Q-6 Q \cdot a+6
\end{aligned}
$$

Constraints on charges Q

- Well-defined moduli space:
$\diamond j \cdot j>0, \quad j \cdot b_{i}>0, \quad j \cdot a<0$
$\diamond j \in \mathbb{R}^{1, n_{T}}-\mathrm{a}\left(1, n_{T}\right)$ vector on the tensor branch $\left(S O\left(1, n_{T}\right) / S O\left(n_{T}\right) \mathrm{MS}\right)$
- Non-negative tension:
$\diamond j \cdot Q \geq 0$
- Non-negative levels for $S U(2)_{1}$ and G_{i} affine current algebras
$\diamond k=\frac{1}{2}(Q \cdot Q+Q \cdot a+2) \geq 0 \quad$ and $\quad k_{i}=Q \cdot b_{i} \geq 0$

Unitarity constraint on the worldsheet theory

\triangleright Left-moving current algebra for G is bounded by c_{L}

$$
\sum_{i} \frac{k_{i} \cdot \operatorname{dim}_{i} G_{i}}{k_{i}+h_{i}} \leq c_{L}-4=3 Q \cdot Q-9 Q \cdot a+2
$$

\triangleright Allows to rule out anomaly-free supergravities without string-theoretic realisations
\triangleright Is not directly comparable with geometric bounds

Why is it worthwhile to re-examine the question in $\mathrm{D}=5$?

- Different way of packing the (same) information
\diamond Consider e.g. reduction on a smooth elliptic CY3

$$
\begin{aligned}
& \triangleright \mathrm{D}=6: \quad L_{\mathrm{GS}} \sim b_{\alpha i j} B_{2}^{\alpha} \wedge F_{2}^{i} \wedge F^{j} \Leftarrow \text { part of } \mathrm{CY} \text { intersection form } \\
& \triangleright \mathrm{D}=5:-\quad-\frac{1}{6} C_{I J K} A^{I} \wedge F^{I} \wedge F^{J} \Leftarrow \text { entire } \mathrm{CY} \text { intersection form } \\
& \\
& \left(C_{I J K}=\int \omega_{I} \wedge \omega_{J} \wedge \omega_{K} ; \quad I=1, \ldots, n_{T}+n_{V}+1\right)
\end{aligned}
$$

\diamond In the S^{1} reduction from $\mathrm{D}=6$ to $\mathrm{D}=5$, a one-loop computation should reveal new info and ... "hide" the anomaly

- Different scaling of central charges w.r.t string charge Q
$\diamond \mathrm{D}=6: \quad c_{L}, c_{R} \sim \# Q \cdot Q+\#^{\prime} Q \cdot a+\#^{\prime \prime}$
$\diamond \mathrm{D}=5: \quad c_{L}, c_{R} \sim \tilde{\#} Q \cdot Q \cdot Q+\#^{\prime} Q \cdot a+\tilde{\#}^{\prime \prime}$
- General questions about which theories are liftable
\diamond reductions with Wilson lines
\diamond reductions with discrete holonomies
- Unitarity constraints for generic minimal $\mathrm{D}=5$ theories...

Anomaly cancellation in $\mathrm{D}=6(2 \mathrm{n}) \quad \Leftrightarrow \quad$ gauge/diff invariance in $\mathrm{D}=5(2 \mathrm{n}-1)$
$\diamond S^{1}$ resuction of the GS terms:

$$
\delta\left(\iota_{v} L_{\mathrm{Gs}}\right) \neq 0 \quad!!!
$$

\diamond no $\mathrm{D}=5$ anomaly to cancel it
Consider the simplest situation - $n_{T}=1$ and $M_{6}=M_{5} \times S^{1}$ (no curvature):
$\triangleright I_{8}=X_{4} \wedge \tilde{X}_{4} ; \quad L_{\mathrm{GS}}=\hat{B}_{2} \wedge \tilde{X}_{4} ; \quad d H=X_{4}\left(H=d \hat{B}+X_{3}^{(0)}\right)$
\triangleright reduction: $\quad \hat{B}_{2} \mapsto\left(B_{2}, A_{1}\right) ; \quad X_{4} \mapsto\left(x_{4}, x_{3}\right)$
$\diamond\left(d x_{4}, d x_{3}\right)=0 ; \quad\left(x_{4}=d x_{3}^{(0)}, x_{3}=d x_{2}^{(0)}\right) ; \quad\left(\delta d x_{3}^{(0)}=d x_{2}^{(2)}, \delta x_{2}^{(0)}=0\right)$
$\triangleright L_{\mathrm{GS}} \mapsto A_{1} \wedge x_{4}+B_{2} \wedge x_{3} \longrightarrow d B_{2} \wedge x_{2}^{(0)} \longrightarrow \tilde{F}_{2}\left\llcorner x_{2}^{(0)}-x_{3}^{(0)} \wedge x_{2}^{(0)}\right.$
\diamond CS-like terms with field dependent coefficients - not gauge/diff invariant
\diamond Can be cancelled by integrating out massive KK modes from chiral fields
\diamond Conditions for cancellation - the same as for the anomaly cancelation in D=6
\diamond many cases worked out by E. Poppitz, M, Unsal, F. Bonetti, T. Grimm, S. Hohenegger, P. Corvilain, D. Regalado

Another (scheme-independent) way to look at the problem
\triangleright Reduction of the anomaly

$$
\int_{M_{2 n-1} \times S^{1}} I_{2 n}^{1}(\epsilon, \hat{\mathcal{A}}, \hat{\mathcal{F}})=\delta_{\mathcal{M}_{\epsilon n-1}} \int_{M_{2 n-1}} \Phi \cdot X(\mathcal{A}, \mathcal{F})+\ldots
$$

$\diamond \quad \hat{\mathcal{A}} / \mathcal{A}$ and $\hat{\mathcal{F}} / \mathcal{F}$ - fields and curvatures in $\mathrm{D}=2 \mathrm{n} / 2 \mathrm{n}-1$
$\diamond \quad \epsilon-$ the variation (gauge or diffeomorphism) parameter,
$\diamond \quad \Phi-$ Wilson line along the circle (for gravity Φ - graviphoton curvature)
$\diamond \quad .-$ trace over group indices
$\triangleright \quad X(\mathcal{A}, \mathcal{F})$ is derived from the Bardeen-Zumino polynomial
$\diamond \ldots$ indicate correction terms when $G \longrightarrow G^{\prime}$ or $\operatorname{Diff}\left(M_{2 n}\right) \longrightarrow \operatorname{Diff}\left(M_{2 n-1}\right)$
\triangleright Local counterterm $-\Phi \cdot X$ is always possible but can never be lifted to $D=2 n$
\triangleright Liftability \Rightarrow different counterterm
Obstruction to liftability

New CS couplings in $\mathrm{D}=5$
\triangleright involve reduced $D=6 \mathrm{YM}$ fields, and the graviphoton

$$
\mathcal{L}_{\mathrm{cs}}=-\frac{k_{0}}{6} A^{\mathrm{\kappa K}} \wedge F^{\mathrm{\kappa K}} \wedge F^{\mathrm{\kappa K}}+\frac{k_{R}}{96} A^{\mathrm{\kappa K}} \wedge \operatorname{tr} R^{2}
$$

$\diamond \quad k_{0}=2\left(9-n_{T}\right) \quad$ and $\quad k_{R}=8\left(12-n_{T}\right)$
\triangleright Anomaly inflow

$$
c_{R}=k_{0} Q_{\mathrm{kk}}^{3}+\frac{k_{R}}{2} Q_{\mathrm{kK}} \quad \text { and } \quad c_{L}=k_{0} Q_{\mathrm{kK}}^{3}+k_{R} Q_{\mathrm{\kappa k}}
$$

\diamond The string source: $\quad d F=d \rho(r) e_{2} / 2$

- $d \rho(r) e_{2} / 2$ - smooth representative of Thom class
- e_{2} - global angular form
- $\int_{S^{2}} e_{2} \wedge e_{2} \wedge e_{2}=2 p_{1}(N)$
$\left.\diamond \operatorname{tr} R^{2}\right|_{T W_{2}}=-2 p_{1}\left(T W_{2}\right)-2 p_{1}(N)$
$\triangleright \quad$ In $\mathrm{D}=5$ there are strings with cubic central charges (not quadratic!)
\triangleright All strings with cubic central charges carry some magnetic KK charge

Central charges for $\mathrm{D}=5$ BPS strings

$$
\begin{aligned}
& c_{R}=C_{I J K} Q^{I} Q^{J} Q^{K}+\frac{1}{2} a_{I} Q^{I} \quad \text { and } \quad c_{L}=C_{I J K} Q^{I} Q^{J} Q^{K}+a_{I} Q^{I} \\
& \diamond \quad I=1, \ldots, n_{T}+n_{V}+1
\end{aligned}
$$

$\triangleright \quad$ BPS strings in $\mathrm{D}=6$ with transverse $S^{1} \quad$ (normal bundle $\mathbb{R}^{3} \times S^{1}$)
\diamond Recall

$$
I_{4} \sim \Omega_{\alpha \beta} Q^{\alpha}\left(a^{\beta} p_{1}\left(T W_{2}\right)-2\left(Q^{\beta}+a^{\beta}\right) c_{2}\left(S U(2)_{1}\right)+2\left(Q^{\beta}-a^{\beta}\right) c_{2}\left(S U(2)_{2}\right)+\ldots\right)
$$

\diamond Take $c_{2}\left(S U(2)_{1}\right)=c_{2}\left(S U(2)_{2}\right)=c_{2}(N)$,

$$
c_{L}=2 c_{R}=-12 \Omega_{\alpha \beta} a^{\alpha} Q^{\beta} \equiv-12 Q \cdot a
$$

$\triangleright \quad$ The interacting part of SCFT

$$
c_{R}^{i n t}=-6 Q \cdot a-6 \quad \text { and } \quad c_{L}^{i n t}=-12 Q \cdot a-3
$$

$\triangleright \quad$ The unitarity condition for linear strings

$$
\sum_{i} \frac{\left(Q \cdot b_{i}\right) \cdot \operatorname{dim} G_{i}}{Q \cdot b_{i}+h_{i}^{V}} \leq c_{L}^{i n t}=-12 Q \cdot a-3
$$

Kodaira positivity and F-theory models

\triangleright In all F-theory models the following bound holds:

$$
j \cdot\left(-12 a-\sum_{i} x_{i} b_{i}\right) \geq 0
$$

$\triangleright j \in \mathbb{R}^{1, n_{T}}-\mathrm{a}\left(1, n_{T}\right)$ vector on the tensor branch
$\triangleright a, b_{i} \in \mathbb{R}^{1, n_{T}}$ - determined by the field content of the theory
$\triangleright x_{i}$ - number of D7 needed for G_{i} (multiplicity of respective singularity)
\triangleright Follows from the Kodaira condition - requirement that elliptic fibration over base B with singularities over divisors S_{i} is CY :

$$
-12 K=\sum_{i} x_{i} S_{i}+Y
$$

$\triangleright Y-$ residual divisor which must be effective
\triangleright For any nef divisor D :

$$
D \cdot Y=D \cdot\left(-12 K-\sum_{i} x_{i} S_{i}\right) \geq 0
$$

$\triangleright \quad \operatorname{KPC}\left(j \cdot\left(-12 a-\sum_{i} x_{i} b_{i}\right) \geq 0\right)$ is not expected to be satisfied in any consistent $\mathrm{D}=6$ theory

The unitariry bound should hold in all consistent $D=6$ theories
\triangleright The strongest for of the constraint:

$$
Q \cdot\left(-12 a-\sum_{i} b_{i}\left(\frac{\operatorname{dim} G_{i}}{1+h_{i}^{\vee}}\right)\right) \geq Q \cdot\left(-12 a-\sum_{i} b_{i}\left(\frac{\operatorname{dim} G_{i}}{Q \cdot b_{i}+h_{i}^{\vee}}\right)\right) \geq 3
$$

\diamond If the strong form is satisfied, it will hold also for $Q \cdot b_{1}>1$
\diamond If it fails, need to check if $Q \cdot b_{i}=1$ is possible
\diamond Impose: $\quad Q \cdot Q+Q \cdot a+2 \geq 0, \quad k_{i}=Q \cdot b_{i} \geq 0 \quad$ and $\quad-Q \cdot a>0$
\triangleright (Assuming $\mathrm{D}=6$ theory is F-theoretic) UC can be converted into geometric form:

$$
D \cdot\left(-12 K-\sum_{i} y_{i} S_{i}\right) \geq 3 \quad \text { with } \quad y_{i}=\frac{\operatorname{dim} G^{i}}{1+h_{i}^{\bigvee}}
$$

$\triangleright \quad x$ is always larger than y :

Type of gauge algebra	$x_{i}-y_{i}$	Gauge algebra
K_{1}	<2	$s u(m), s p(1), s p(2), s p(3)$ in Kodaira type I
K_{2}	≥ 2	All other groups

Comparing UC and KPC

$$
D \cdot Y \geq 3-\sum_{i}\left(x_{i}-y_{i}\right) D \cdot S_{i}
$$

- In most of the cases the bound is automatic given KPC (KPC is stronger than UC)
\triangleright At least 3 gauge group factors (gauge divisors $S_{1,2,3}\left(D \cdot S_{1,2,3}>0\right.$ holds))
\triangleright At least 2 gauge groups and at least 1 is type $K_{2}\left(x_{i}-\frac{\operatorname{dim} G_{i}}{D \cdot S_{i}+h_{i}^{V}} \geq x_{i}-y_{i} \geq 2\right)$
- In other cases, KPC may be satisfied while UC is violated if

$$
12 n-3<\sum_{i} \mu_{i} D \cdot S_{i} \leq 12 n-\sum_{i}\left(x_{i}-\mu_{i}\right) D \cdot S_{i}
$$

$\triangleright Y=-12 K-\sum_{i} x_{i} S_{i}-$ NOT numerically 0 (GDs S_{i} do not sweep $-12 K$)

- 3 cases when UC imposes stronger constraints
$\triangleright \exists S_{1} \in\left\{S_{i}\right\}$ and nef $D: D \cdot S_{1}=1, D \cdot S_{i}=0(i \neq 1) \&-D \cdot K \in \mathbb{Z}_{+}$ $\Rightarrow D \cdot Y \geq 1$ for $S U(12 n) \quad$ and $\quad D \cdot Y \geq 2$ for $S U(12 n-1)$
$\triangleright \exists S_{1} \in\left\{S_{i}\right\}$ for $D \cdot Y \geq 1 \Rightarrow S O(24 n-5), S O(24 n-4)$ or $S p(6 n)$ ($I_{12 n}$ type)
$\triangleright \exists S_{1}, S_{2} \in\left\{S_{i}\right\}$ for $D \cdot Y \geq 1 \Rightarrow S U(a) \times S U(12 n-a), S p(1) \times S U(12 n-2)$, $S p(2) \times S U(12 n-4)$ or $S U(12 n-6) \times S p(3)\left(I_{2}, I_{4}\right.$ and I_{6} type $)$

Example: $S U(N) \times S U(N), n_{H}=2$ (bifundamentals) and $n_{T}=9$

$$
\begin{array}{cr}
\Omega=\operatorname{diag}\left(+1,(-1)^{9}\right), & a=\left(-3,(+1)^{9}\right) \\
b_{1}=\left(1,-1,-1,-1,0^{6}\right), & b_{2}=\left(2,0,0,0,(-1)^{6}\right)
\end{array}
$$

$\triangleright \quad Q=(1,0,0,0,-1,0 . ., 0)$
$\triangleright \quad Q \cdot Q=0, Q \cdot a=-2$ and $Q \cdot b_{1}=Q \cdot b_{2}=1$
$\triangleright \quad$ UC: $2(N-1) \leq 24-3 \Rightarrow N \leq 11 \quad$ (stronger bound in D6 UC)
$\triangleright \quad \mathrm{KPC}: \quad 2 N \leq 24 \rightarrow N \leq 12$
\triangleright Assuming F-theoretic realisation: $\quad-12 K=N S_{1}+N S_{2}+Y$
$\triangleright \quad$ For $N \geq 4$, the singular divisors are of type I_{N}
$\diamond S_{1} \cdot K=S_{2} \cdot K=0$
$\diamond 2$ bifundamental hypers: $S_{1} \cdot S_{1}=-2=S_{2} \cdot S_{2}$ and $S_{1} \cdot S_{2}=2$
$\diamond n_{T}=9$ translates into $K \cdot K=0$.
$\triangleright \quad$ Can verify that $Y=-12 K-12 S_{1}-12 S_{2}$ has to be numerically non-trivial $\left(-12 K=12 S_{1}+12 S_{2}\right.$ cannot be realised on the base B of an elliptic Calabi-Yau threefold with the required singularity structure)

A refined cartoon of the space of $D=6$ theories

... and much more left to be understood

