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Introduction

• GOAL: Find an action that reproduces soft exchange and soft theorems in gauge
and gravitational theories in D = d + 2 ≥ 4.

• Why D > 4?
– Generic features of CCFT might be more obvious.

• How?
– Fix action using asymptotic symmetries.
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Introduction

• Introduce an infrared cutoff µ and a scale Λ which separates soft and hard modes
with µ,Λ ≪ Etypical .

• A hard scattering amplitude is given by

⟨O1 · · · On ⟩µ =

∫
[dφ]e iSbulk [φ]O1 · · · On.

• Separate the fields φ into φs and φh and similarly for the operators

Oi (φ) = Ui (φs)Oh
i (φh).

• Integrate over the hard modes.

⟨O1 · · · On ⟩µ =

∫
[dφs ]U1 · · ·Un

∫
[dφh]e

iSbulk [φs ,φh ]Oh
1 · · · Oh

n

=

∫
[dφs ]U1 · · ·Une

−Ssoft [φs ]⟨Oh
1 · · · Oh

n ⟩Λ

= ⟨U1 · · ·Un ⟩soft⟨Oh
1 · · · Oh

n ⟩Λ.

This is the soft-hard factorization of the amplitude, An(µ) = e−Γ(µ,Λ)An(Λ).
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Effective Soft Action - What about soft theorems?

• So far, we have assumed that all particles in the scattering amplitude are hard. If
an amplitude contains soft external states, then we also have a factorization
formula given by soft theorems

⟨ S1 · · ·SmO1 · · · On ⟩µ = J1 · · · Jm⟨O1 · · · On ⟩µ.

• It follows that

⟨ S1 · · ·SmU1 · · ·Un ⟩soft = J1 · · · Jme
−Γ(µ,Λ).

The goal of this talk will be to find an effective soft action Ssoft so that this
equation is true.
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Outline

I. Review

II. Boundary Action for Abelian Gauge Theory

III. Gravity

IV. Conclusions and open problems
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I. Review - Momenta and Polarizations

• (d + 2)-dimensional momenta are parameterized as

pµ(ω, x) = ωp̂µ
(m
ω
, x

)
, p̂µ

(m
ω
, x

)
= q̂µ(x) +

m2

ω2 n
µ,

where

q̂µ(x) =

(
1 + x2

2
, xa,

1 − x2

2

)
, nµ =

(
1
2
, 0a,−1

2

)
.

• Ingoing vs. outgoing momenta are identified by η = sign(ω).

• The photon and graviton polarizations are

εµa (q) = ∂aq̂
µ(x), εµνab (q) = εµ{a(q)ε

ν
b}(q).

• Define

O(ω, x) ≡ aout(p(ω, x))θ(ω) + ā†in(−p(ω, x))θ(−ω).
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I. Review - Scattering Matrix

• The S-matrix then takes the form

An = ⟨O1(ω1, x1) · · · On(ωn, xn) ⟩ ≡ ⟨O1 · · · On ⟩.

• Up to a (generalized) Mellin transform, the S-matrix transforms precisely as a
correlation function of n conformal primary operators. For a massive scalar,

Ô±(∆, x) = m∆−d

∫
ddy

∫ ∞

0
dωωd−1K∆(m/ω; y |x)O(±ω, y)

where ∆ ∈ d
2 + iR and

K∆(z , x |y) =
Γ(∆)

π
d
2 Γ(∆− d

2 )

(
z

(x − y)2 + z2

)∆

• We will NOT work in the Mellin basis.

8



I. Review - Scattering Matrix

• The S-matrix then takes the form

An = ⟨O1(ω1, x1) · · · On(ωn, xn) ⟩ ≡ ⟨O1 · · · On ⟩.

• Up to a (generalized) Mellin transform, the S-matrix transforms precisely as a
correlation function of n conformal primary operators. For a massive scalar,
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I. Review - Soft Photon Theorem

• The soft-photon theorem is

⟨Sa(x)O1 · · · On ⟩µ,C=0 = Ja(x)⟨O1 · · · On ⟩µ,C=0

where Sa(x) =
1
e
lim
ω→0

[ωOa(ω, x)] and

Ja(x) =
∑
i

Qi
p̂i · εa(x)
p̂i · q̂(x)

= ∂a

∑
i

Qi ln[−p̂i · q̂(x)].

Qi ∈ Z are the U(1) charges of the particles.

• Soft theorems are Ward identities of asymptotic symmetries (in this case, large
gauge symmetries).
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I. Review - U(1) Current

• The conserved U(1) current can be constructed from the soft operator

Ja(x) =
1

2c1,1
S̃a(x)

where the ∼ denotes the shadow transform

Õd−∆,R(x) =

∫
ddy

1
[(x − y)2]d−∆

R(I(x − y)) · O∆,R(y).

Here, Iab(x) = δab − 2 xaxb
x2 . The shadow transform satisfies

˜̃O = c∆,RO, c∆,s =
πd(∆− 1)(d −∆− 1)Γ( d2 −∆)Γ(∆− d

2 )

(∆− 1 + s)(d −∆− 1 + s)Γ(∆)Γ(d −∆)
.

• The current Ward identity is

⟨ ∂aJa(x)O1 · · · On ⟩ =
∑
i

QiKd(mi/ωi , xi |x)⟨O1 · · · On ⟩.

Massless particles have a localized charge distribution since

lim
z→0

Kd(z , x |y) = δ(d)(x − y).
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I. Review - Soft Exchange/Infrared Divergences

• Scattering amplitudes factorize as

An(µ) = e−Γ(µ,Λ)An(Λ).

where

Γ(µ,Λ) =
ie2

2

∑
ij

QiQj

∫ Λ

µ

dd+2ℓ

(2π)d+2
pi · pj

(ℓ2 − iϵ)(pi · ℓ− iϵ)(−pj · ℓ− iϵ)
.

• This integral can be evaluated (ref. Weinberg) explicitly, but the following form will
is more convenient

Γ(µ,Λ) = α(A1 + 2πiA2), α =
e2

8π

∫ Λ

µ

dωωd−3, A1 =

∫
ddx

(2π)d
[Ja(x)]

2.
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I. Review - Summary

The effective soft action must satisfy

⟨ Sa1(y1) · · ·Sam (ym)U1 · · ·Un ⟩soft = Ja1(y1) · · · Jam (ym)e
−Γ(µ,Λ)

where

Ja(x) = ∂a

∑
i

Qi ln[−p̂i · q̂(x)], Γ(µ,Λ) = α

∫
ddx

(2π)d
[Ja(x)]

2
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Outline

I. Review

II. Boundary Action for Abelian Gauge Theory

III. Gravity

IV. Conclusions and open problems
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II. Boundary Action

• The boundary action depends on the soft modes in gauge theory - namely, S (soft
photon mode) and C = A|∂I (edge mode) so we need to find Ssoft [S ,C ].

• Lets start by considering an amplitude with no soft photons. In this case, we can
integrate out S and obtain an effective action for the edge mode, Ssoft [C ].

• Ssoft [C ] can be constructed by analyzing symmetries.
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II. Boundary Action - Spontaneously Broken Large Gauge Symmetries

• The asymptotic symmetry group of Abelian gauge theories are large gauge
transformations which are generated by a function ε which does not vanish at
infinity ε|∂I ̸= 0. The order parameter for this symmetry is the Wilson line on the
celestial sphere

W (x) = exp

(
i

∫ x

x0

C

)
, W (x) → e i [ε(x)−ε(x0)]W (x).

• In the quantum theory, ⟨W (x) ⟩ = 1 ̸= 0 so large gauge symmetries are
spontaneously broken down to global U(1) symmetries ε(x) = ε.

• The Goldstone mode for the broken symmetry is the edge mode C which realizes
the symmetry non-linearly, C → C + dε.
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II. Boundary Action

• A soft action must be invariant under large gauge symmetry so it must have the
form

Ssoft [C ] = Ssoft [F ], F = dC .

• In the absence of magnetic charges, F = 0 so the action is trivial! In the absence of
an IR regulator, the story would end here and IR dynamics would be trivial.

• When the IR cutoff µ ̸= 0, the large gauge symmetries are EXPLICITLY broken.
We must therefore also include explicit symmetry breaking term in the soft action.
The simplest guess for such a term is a mass term

Ssoft [C ] = a(µ)

∫
C∧ ⋆ C , C = dθ.

• In this action, we have assumed locality. While the bulk theory must be local the
boundary theory need not be! A more general version of this action is then

Ssoft [C ] =

∫
ddxddy (P−1)ab(x − y)Ca(x)Cb(y), C = dθ.
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II. Boundary Action - Operator Insertions

• The operators Ui appeared in the hard-soft factorization of Oi ,

Oi (ωi , xi ) = UiOh
i (ωi , xi ).

• Consider the large gauge transformation of the operators Oi ,

Oi (ωi , xi ) → exp

[
iQi

∫
ddxε(x)Kd(mi/ωi , xi ; x)

]
Oi (ωi , xi ).

For massless particles, Oi → e iQiε(xi )Oi .

• The Goldstone mode transforms as

C → C + dε =⇒ θ(x) → θ(x) + ε(x).

so we can take

Ui = exp

[
iQi

∫
ddxθ(x)Kd(mi/ωi , xi ; x)

]
.

17
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II. Boundary Action - Summary

• Note

U1 · · ·Un = exp

[
i

∫
ddxθ(x)

∑
i

QiKd(mi/ωi , xi ; x)

]

= exp

[
−i

∫
ddx∂aθ(x)ja(x) + iθ0

∑
i

Qi

]
.

where

ja(x) =
1

2c1,1
J̃a(x), ∂aja(x) =

∑
i

QiKd(mi/ωi , xi ; x).
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II. Boundary Action - Soft Path Integral

• The soft path integral is therefore

⟨U1 · · ·Un ⟩soft =
∫

[dθ] exp

[
−
∫

ddxddy (P−1)ab(x − y)∂aθ(x)∂bθ(y)

−i

∫
ddx∂aθ(x)ja(x) + iθ0

∑
i

Qi

]

= δ∑
i Qi ,0 exp

[
−1

4

∫
ddxddyPab(x − y)ja(x)jb(y)

]
.

• Matching this result to soft exchange requires

1
4

∫
ddxddyPab(x − y)ja(x)jb(y) = α

∫
ddx

(2π)d
[Ja(x)]

2.

Using ja(x) =
1

2c1,1
J̃a(x), we can completely fix the propagator P and its inverse

P−1.
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II. Boundary Action - Soft Action

• We find

(P−1)ab(x − y) =
(2π)d

16c2
1,1α

∫
ddw

Iac(w − x)

[(w − x)2]d−1
Ic

b(w − y)

[(w − y)2]d−1 .

• The soft action then takes the form

Ssoft [C ] =
(2π)d

16c2
1,1α

∫
ddxddy

∫
ddw

Iac(w − x)

[(w − x)2]d−1
Ic

b(w − y)

[(w − y)2]d−1Ca(x)Cb(y).

• Written in terms of the shadow edge mode, the action is local

Ssoft [C ] =
(2π)d

16c2
1,1α

∫
ddxC̃ a(x)C̃a(x)

The operator insertions can also be written in terms of the shadow edge mode as

U1 · · ·Un = exp

[
− i

2c1,1

∫
ddxC̃a(x)J a(x) + iθ0

∑
i

Qi

]
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II. Boundary Action - Integrating ‘in’ Sa(x)

• The full soft action is

Ssoft[S ,C ] =
α

(2π)d

∫
ddxSa(x)Sa(x)−

i

2c1,1

∫
ddxC̃a(x)S

a(x)

• The full soft path integral can now be evaluated as

⟨S1 · · ·SmU1 · · ·Un ⟩soft

=

∫
[dS ][dθ] exp

[
− α

(2π)d

∫
ddxSa(x)Sa(x)

+
i

2c1,1

∫
ddxC̃a(x)[S

a(x)− J a(x)] + iθ0
∑
i

Qi

]
S1 · · ·Sm

= exp

[
− α

(2π)d

∫
ddxJ a(x)Ja(x)

]
J1 · · · Jm.
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II. Boundary Action - Final Comments

Ssoft[S ,C ] =
α

(2π)d

∫
ddxSa(x)Sa(x)−

i

2c1,1

∫
ddxC̃a(x)S

a(x)

• The action is local when written in terms of the shadow edge mode.

• In D > 4, α → 0 as µ → 0 so the first term vanishes. The remaining action
reproduces the commutators derived from covariant phase space formalism.

• In D = 4, α → ∞ as µ → 0 so the first term is dominant and gives us the infrared
divergence.

• Another specialty feature of D = 4 is that the shadow transform of an exact 1-form
is local

C̃a(x) = 2πCa(x) if Ca = ∂aθ(x).
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III. Gravity

• Gravity can be treated in a very similar way so I’ll just flash the relevant formulae.

• The soft theorem is given by

⟨Nab(x)O1 · · · On ⟩ = Jab(x) ⟨O1 · · · On ⟩.

where Nab(x) =
1√
8πG

lim
ω→0

[ωOab(ω, x)] and

Jab(x) =
∑
i

ωi
p̂iµp̂iνε

µν
ab (x)

p̂i · q̂(x)
= −

(
∂a∂b −

1
d
δab∂

2
)∑

i

ωi [−p̂i ·q̂(x)] log[−p̂i ·q̂(x)].

• The conserved current is defined by P+
a (x) =

1
4c1,2

∂bÑab(x) with

⟨ ∂aP+
a (x)O1 · · · On ⟩ =

∑
i

miKd+1(mi/ωi , xi ; x)⟨O1 · · · On ⟩.

• The soft exchange amplitude is

Γgr = αgr(A
gr
1 + 2πiAgr

2 ), αgr = G

∫ Λ

µ

dωωd−3, Agr
1 =

∫
ddx

(2π)d
[Jab(x)]

2.
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∂bÑab(x) with

⟨ ∂aP+
a (x)O1 · · · On ⟩ =

∑
i

miKd+1(mi/ωi , xi ; x)⟨O1 · · · On ⟩.

• The soft exchange amplitude is

Γgr = αgr(A
gr
1 + 2πiAgr

2 ), αgr = G

∫ Λ

µ

dωωd−3, Agr
1 =

∫
ddx

(2π)d
[Jab(x)]

2.

24



III. Gravity

• Gravity can be treated in a very similar way so I’ll just flash the relevant formulae.

• The soft theorem is given by

⟨Nab(x)O1 · · · On ⟩ = Jab(x) ⟨O1 · · · On ⟩.

where Nab(x) =
1√
8πG

lim
ω→0

[ωOab(ω, x)] and

Jab(x) =
∑
i

ωi
p̂iµp̂iνε

µν
ab (x)

p̂i · q̂(x)
= −

(
∂a∂b −

1
d
δab∂

2
)∑

i

ωi [−p̂i ·q̂(x)] log[−p̂i ·q̂(x)].

• The conserved current is defined by P+
a (x) =

1
4c1,2
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III. Gravity - Soft Action

• The soft action in GR is depends on the soft graviton mode Nab and the
gravitational edge mode Cab ∼ r−1(gab − r2δab)|∂I . C satisfies a higher
dimensional analogue of the CK constraint (magnetic part of Weyl tensor is zero)
which solves to Cab = 2∂{a∂b}C(x). Under supertranslations C(x) → C(x) + f (x).

• The soft action that reproduces soft theorems and soft exchange is

Ssoft[C ,N] =
αgr

(2π)d

∫
ddxNab(x)N

ab(x) +
i

16c1,2

∫
ddxC̃ ab(x)Nab(x).

• The operators Ui are

Ui = exp

[
i

2
mi

∫
ddxC(x)Kd+1(mi/ωi , xi ; x)

]
with

U1 · · ·Un = exp

[
i

2

∫
ddxC(x)

∑
i

miKd+1(mi/ωi , xi ; x)

]

= exp

[
i

16c1,2

∫
ddxC̃ ab(x)Jab(x)− iξµ

∑
i

pµ
i

]
Note that the zero modes have the form C(x) = ξ0(1+ x2)− 2ξaxa − ξd+1(1− x2).
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III. Conclusions

• We have derive an effective action which reproduces almost all of the soft physics
in Abelian gauge and gravitational theories.

• The soft action is local when written in terms of the shadow edge modes which
suggests that the set of local operators in boundary theory are shadow transforms
of bulk local operators. It would be interesting to explore this better.

• There are still a few interesting open problems

□ How does the imaginary part of Γ fit into the celestial CFT?
□ Can we apply this to nonabelian gauge theories? We are tempted to conjecture

Ssoft[S ,C ] ∼
∫

tr
[
αS∧ ⋆ S + iS∧ ⋆ C̃

]
, C = UdU−1

Since the edge mode is not exact, the shadow transform of this field will NOT
localize in D = 4. The theory is much more complicated, but nonabelian
infrared divergences are also very complicated.

□ There are other soft modes – Superrotations, subleading soft graviton theorem
and the stress tensor.

27



III. Conclusions

• We have derive an effective action which reproduces almost all of the soft physics
in Abelian gauge and gravitational theories.

• The soft action is local when written in terms of the shadow edge modes which
suggests that the set of local operators in boundary theory are shadow transforms
of bulk local operators. It would be interesting to explore this better.

• There are still a few interesting open problems

□ How does the imaginary part of Γ fit into the celestial CFT?
□ Can we apply this to nonabelian gauge theories? We are tempted to conjecture

Ssoft[S ,C ] ∼
∫

tr
[
αS∧ ⋆ S + iS∧ ⋆ C̃

]
, C = UdU−1

Since the edge mode is not exact, the shadow transform of this field will NOT
localize in D = 4. The theory is much more complicated, but nonabelian
infrared divergences are also very complicated.

□ There are other soft modes – Superrotations, subleading soft graviton theorem
and the stress tensor.

27



III. Conclusions

• We have derive an effective action which reproduces almost all of the soft physics
in Abelian gauge and gravitational theories.

• The soft action is local when written in terms of the shadow edge modes which
suggests that the set of local operators in boundary theory are shadow transforms
of bulk local operators. It would be interesting to explore this better.

• There are still a few interesting open problems

□ How does the imaginary part of Γ fit into the celestial CFT?

□ Can we apply this to nonabelian gauge theories? We are tempted to conjecture

Ssoft[S ,C ] ∼
∫

tr
[
αS∧ ⋆ S + iS∧ ⋆ C̃

]
, C = UdU−1

Since the edge mode is not exact, the shadow transform of this field will NOT
localize in D = 4. The theory is much more complicated, but nonabelian
infrared divergences are also very complicated.

□ There are other soft modes – Superrotations, subleading soft graviton theorem
and the stress tensor.

27



III. Conclusions

• We have derive an effective action which reproduces almost all of the soft physics
in Abelian gauge and gravitational theories.

• The soft action is local when written in terms of the shadow edge modes which
suggests that the set of local operators in boundary theory are shadow transforms
of bulk local operators. It would be interesting to explore this better.

• There are still a few interesting open problems

□ How does the imaginary part of Γ fit into the celestial CFT?
□ Can we apply this to nonabelian gauge theories? We are tempted to conjecture

Ssoft[S ,C ] ∼
∫

tr
[
αS∧ ⋆ S + iS∧ ⋆ C̃

]
, C = UdU−1

Since the edge mode is not exact, the shadow transform of this field will NOT
localize in D = 4. The theory is much more complicated, but nonabelian
infrared divergences are also very complicated.

□ There are other soft modes – Superrotations, subleading soft graviton theorem
and the stress tensor.

27



III. Conclusions

• We have derive an effective action which reproduces almost all of the soft physics
in Abelian gauge and gravitational theories.

• The soft action is local when written in terms of the shadow edge modes which
suggests that the set of local operators in boundary theory are shadow transforms
of bulk local operators. It would be interesting to explore this better.

• There are still a few interesting open problems

□ How does the imaginary part of Γ fit into the celestial CFT?
□ Can we apply this to nonabelian gauge theories? We are tempted to conjecture

Ssoft[S ,C ] ∼
∫

tr
[
αS∧ ⋆ S + iS∧ ⋆ C̃

]
, C = UdU−1

Since the edge mode is not exact, the shadow transform of this field will NOT
localize in D = 4. The theory is much more complicated, but nonabelian
infrared divergences are also very complicated.

□ There are other soft modes – Superrotations, subleading soft graviton theorem
and the stress tensor.
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Imaginary Part of Γ

• The imaginary part of Γ has the form

A2 =

∫ ∞

−∞

dν

2π

∫
ddx

(2π)d
[|J +

a (ν, x)|2 + |J−
a (ν, x)|2]r ,

where

J±
a (ν, x) ≡ ∂a

∑
i∈ out(+)

in(−)

Qi
[−p̂i · q̂(x)]iν

iν
.

The [ ]r symbol removes any i = j terms in the integrand.

• One way to reproduce this in a CCFT is to introduce two fields, C±
a (ν, x) with

C±
a (ν, x)∗ = C±

a (−ν, x) with action

Ssoft ∼ i

∫ ∞

−∞
dν

∫
ddx

(∣∣C̃+
a (ν, x)

∣∣2 + ∣∣C̃−
a (ν, x)

∣∣2
+Re

[
C̃+
a (ν, x)J +

a (ν, x) + C̃−
a (ν, x)J−

a (ν, x)
])
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