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e GOAL: Find an action that reproduces soft exchange and soft theorems in gauge
and gravitational theories in D = d + 2 > 4.

e Why D > 47
— Generic features of CCFT might be more obvious.

e How?
— Fix action using asymptotic symmetries.
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Introduction

e Introduce an infrared cutoff 1 and a scale A which separates soft and hard modes
with K, AN Etypica/-
e A hard scattering amplitude is given by

(01 On)u = / [dele®tO; - O,
e Separate the fields ¢ into s and ¢ and similarly for the operators
Oi() = Ui(9s)O; (pn)-
e Integrate over the hard modes.
(0100} = [1dpiln -+ Uy [Idgile™ater oo .}
— [Idpt - Ue =) 0f - OF)
:'<U1"'Un>soft<0f"'og>/\-

This is the soft-hard factorization of the amplitude, A,(u) = e "*MA,(A).
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an amplitude contains soft external states, then we also have a factorization
formula given by soft theorems
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Effective Soft Action - What about soft theorems?

e So far, we have assumed that all particles in the scattering amplitude are hard. If
an amplitude contains soft external states, then we also have a factorization
formula given by soft theorems

(S1--SmO1- - OV =T1 - Tm{O1- - Op).

e It follows that
<Sl e SmUI o Un >soft = S ooc jmeir(u’/\).

The goal of this talk will be to find an effective soft action Ssn so that this
equation is true.
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e (d + 2)-dimensional momenta are parameterized as

2
o) =wp (Tx), B (Zx) =40 + o,
w w w

1+x° 1—x2 1 1
AL _ a w0
q(X)_( D) y Xy 2 )7 n _(2707 2>

e Ingoing vs. outgoing momenta are identified by 7 = sign(w).

where

e The photon and graviton polarizations are
e5(q) = 0:6"(x), €l (q) =€,(q)eny(a)-
e Define

Ow, %) = a0ur(p(w, x))8(w) + &), (—p(w, X))(~w).
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e The S-matrix then takes the form
An = <O1(W1,X1) o 'O"(W'HX”)) = <Ol e On >

e Up to a (generalized) Mellin transform, the S-matrix transforms precisely as a
correlation function of n conformal primary operators. For a massive scalar,

O (A, x) = mAfd/ddy/ dww?  Ka(m/w; y|x)O(£w, y)
0
where A € g + iR and

Ka(z,xly) = g [Aa) (( = )A

o We will NOT work in the Mellin basis.




l. Review - Soft Photon Theorem

e The soft-photon theorem is
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l. Review - Soft Photon Theorem

e The soft-photon theorem is

<Sa(X)Ol ce On>u,C:0 = ja(X)<Ol -+ Oh >,u,C:0

where S,(x) =1 Iimo[wOa(w,x)] and
(x)
Ja(x) = ZQ, AI.AX =0, ZQ,In[ pi - §(x)]-

Qi € Z are the U(1) charges of the particles.

e Soft theorems are Ward identities of asymptotic symmetries (in this case, large
gauge symmetries).



l. Review - U(1) Current

e The conserved U(1) current can be constructed from the soft operator
1 ~
= §

2C1,1 ?

Ja(x)
where the ~ denotes the shadow transform
~ ’ 1
Od-ar(x) = /d YWR(I(X =¥)) Oar(y)-

Here, Z,5(x) = da5 — 22232, The shadow transform satisfies

O = car® (A -1)(d-A-1)F(2 - A)(Aa-9)
TR BT ATt s)(d - A1+ s)(A)(d— A)
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l. Review - U(1) Current

e The conserved U(1) current can be constructed from the soft operator
1 ~

Sa(x
2c11

Ja(x) =
where the ~ denotes the shadow transform
~ ’ 1
Od-ar(x) = /d YWR(I(X =¥)) Oar(y)-

Here, Z,(x) = dap — 27232, The shadow transform satisfies

O = car® (A -1)(d-A-1)F(2 - A)(Aa-9)
=carRY, CA,S_(A—l-l—s)(d—A—1+5)r(A)|—(d_A).

e The current Ward identity is
(0°Ja(x) ZQJCd mi/wi, xi|x)(O1 - Op).

Massless particles have a localized charge distribution since

i — 5@y _
ZIEPOICd(z,x|y)—5 (x—y).

10
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I. Review - Soft Exchange/Infrared Divergences

e Scattering amplitudes factorize as
An(p) = e TN AL(A).

where

Fir A gd+2y pi - pj
Ml ) = ZQ'QJ/ @) (@ i) L —ic)(p L= i) "

e This integral can be evaluated (ref. Weinberg) explicitly, but the following form will
is more convenient

[ A) = a(Ar + 2iAs) —iz/Ad =3 4 —/ﬂ[j(x)]2
1y = alA1 TIA2), a_87r p ww , = (2r)d a .

11



|. Review - Summary

The effective soft action must satisfy

(San(y1)+* San(Ym)Us - Un Yoot = Tag (y2) -+ = T (ym)e "¢

where
dx

T =0 @inl=p-al. () = o [ SRR

12



l.
Il. Boundary Action for Abelian Gauge Theory
Il. Gravity

IV. Conclusions and open problems

13
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Il. Boundary Action

e The boundary action depends on the soft modes in gauge theory - namely, S (soft
photon mode) and C = A|s.» (edge mode) so we need to find Ssr[S, C].

e Lets start by considering an amplitude with no soft photons. In this case, we can
integrate out S and obtain an effective action for the edge mode, Ssor[C].

e Son[C] can be constructed by analyzing symmetries.

14



Il. Boundary Action - Spontaneously Broken Large Gauge Symmetries

e The asymptotic symmetry group of Abelian gauge theories are large gauge
transformations which are generated by a function € which does not vanish at
infinity €|s.# # 0. The order parameter for this symmetry is the Wilson line on the
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e The asymptotic symmetry group of Abelian gauge theories are large gauge
transformations which are generated by a function € which does not vanish at
infinity €|s.# # 0. The order parameter for this symmetry is the Wilson line on the
celestial sphere

W (x) = exp (// C) , W (x) — eEXI==Call (k).
X0

e In the quantum theory, ( W(x)) =1 # 0 so large gauge symmetries are
spontaneously broken down to global U(1) symmetries £(x) = ¢.

e The Goldstone mode for the broken symmetry is the edge mode C which realizes
the symmetry non-linearly, C — C + de.

15
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form
Ssoft[C] = Ssoft[FL F=dC.
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Il. Boundary Action

e A soft action must be invariant under large gauge symmetry so it must have the
form
Ssoft[C] = Ssoft[FL F=dC.

e In the absence of magnetic charges, F = 0 so the action is trivial! In the absence of
an IR regulator, the story would end here and IR dynamics would be trivial.

e When the IR cutoff i # 0, the large gauge symmetries are EXPLICITLY broken.
We must therefore also include explicit symmetry breaking term in the soft action.
The simplest guess for such a term is a mass term

Seort[C] = a(u)/C/\* C, C = db.

e In this action, we have assumed locality. While the bulk theory must be local the
boundary theory need not be! A more general version of this action is then

SurlCl = [ dxd’y (P71)(x = CACY). €= db.

16



Il. Boundary Action - Operator Insertions

e The operators U; appeared in the hard-soft factorization of O;,
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e The operators U; appeared in the hard-soft factorization of O;,
(’);(w,-,x,-) = U,'O,-h(w,',Xi).
e Consider the large gauge transformation of the operators O;,

Oi(wi, xi) — exp |:I'Qi/ddXE(X)’Cd(mi/wi,Xi;X) Oi(wi, xi).

For massless particles, O; — /%) ;.
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Il. Boundary Action - Operator Insertions

e The operators U; appeared in the hard-soft factorization of O;,
(’);(w,-,x,-) = U,'O,-h(w,',x,').
e Consider the large gauge transformation of the operators O;,
Oi(wi, xi) — exp {iQ,-/ddxs(x)lCd(m,-/w,-,x,-;X) Oi(wi, xi).
For massless particles, O; — /%) ;.
e The Goldstone mode transforms as
C—CH+de = 0O(x)—0(x)+e(x).

so we can take

U =exp [iQ,-/ddXO(X)ICd(m,-/w,-,X,-;X) .

17



Il. Boundary Action - Summary

e Note
U Uy = exp {i / d?x0(x) Z Q,-ICd(m,-/w,-,X,-;x)}
= exp { /d"xaa (x)ja(x +IGOZQ,] .
where
#(00 = 5o, = 3 Qkalmifr i)

18



Il. Boundary Action - Soft Path Integral

e The soft path integral is therefore

(Ur- Undoor = / [d6] exp {— / d’xd?y (P™)™(x — )2:0(x)0(y)
—i/ddxaae(x)ja(X) + it Z Q,]

1 .
= 05, q,08XP [—1 / dxd"yPas(x — y)i (X)Jb(}’)} :
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Il. Boundary Action - Soft Path Integral

e The soft path integral is therefore

(Ur- Undoor = / [d6] exp {— / d’xd?y (P™)™(x — )2:0(x)0(y)
/ d?x70(x)ja(x :902 Q,]

= s 000~ [ dyPat =)l )j"(yﬂ .

e Matching this result to soft exchange requires

1 B\
3 [ I YPax = (01 ) = 1.
4 (2 )
Using Jja(x) = ﬁja(x) we can completely fix the propagator P and its inverse

Pt

19
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Il. Boundary Action - Soft Action

e We find

sy o O [ e T =x) TEw =)
(P70 = Gogins | 4 P oy

e The soft action then takes the form

d ac(w — x Cb w—
SwalC] = 1(62;1;)1@ [ ety [ awi Et)z]dzl o _(y)z]ﬁlca(x)cb(y).
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Il. Boundary Action - Soft Action

e We find

sy o O [ e T =x) TEw =)
(P70 = Gogins | 4 P oy

e The soft action then takes the form

d ac(w — x Cb w—
SealCl = fogg | 45 [ W S e T OG0

e Written in terms of the shadow edge mode, the action is local

(2m)’

Seort[C] = 16¢2

/ d?xC?(x)G,(x)

The operator insertions can also be written in terms of the shadow edge mode as

]

Up--- U, = exp |:— Peis /ddxga(x)ja(x) + i0p Z Qi

20



1. Boundary Action - Integrating ‘in’ S,(x)

o The full soft action is

Ssoft [57 C] —

«

(@n)?

S /ddXsa(X)Sa(X)—

]

2c1,1

/ d?xCa(x)S?(x)
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1. Boundary Action - Integrating ‘in’ S,(x)

o The full soft action is

«

e / d9xS?(x)Sa(x) —

e The full soft path integral can now be evaluated as

Seoft[S, C] = d/xC,(x)S%(x)

<515 Ul"'Un>soft

/ [dS][d6] exp { / d9xS*(x)S,

+ /ddxCa(x)[S (x) — x)] + i6o Z Qi:| S1--5m

2C1,1

— exp {—#/ddxja(x)ja(x)} Fooo T

21



Il. Boundary Action - Final Comments

Suor[S, C] = /d XS5%(x)S4(x) - 11/d s
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Il. Boundary Action - Final Comments

Seort[S, C] = /d xS()S,(x) — 5~ /d xCa(x)5°(x)

e The action is local when written in terms of the shadow edge mode.

e InD >4, a— 0as pu— 0 so the first term vanishes. The remaining action
reproduces the commutators derived from covariant phase space formalism.

e InD =4, a— ocoas u— 0 so the first term is dominant and gives us the infrared
divergence.

e Another specialty feature of D = 4 is that the shadow transform of an exact 1-form
is local

Co(x) = 27Co(x) if Co = 0.0(x).

22



IIiHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

l.
Il
Il. Gravity

IV. Conclusions and open problems

23



1. Gravity

e Gravity can be treated in a very similar way so I'll just flash the relevant formulae.

24



1. Gravity

e Gravity can be treated in a very similar way so I'll just flash the relevant formulae.

e The soft theorem is given by

(Nap(x)O1 - Op) = Tap(x) (O1---Onp).

where Nap(x) = \/jc lim [wOab(w x)] and
w—0

jab(X) = w,-w = = (aaab ab8 ) Zwl[ P: ]|Og[ Pl ( )]

pi - 4(x)

24



1. Gravity

e Gravity can be treated in a very similar way so I'll just flash the relevant formulae.

e The soft theorem is given by

(Nap(x)O1 - Op) = Tap(x) (O1---Onp).

where Nap(x) = \/jc J'ﬂ? [wOab(w, x)] and
Talo) = L w2 __ (50, - Zas0%) Sl Al gl (<)
- pi - 4(x)
e The conserved current is defined by P (x) = e, zdb N,s(x) with

(PPH(x)01---0,) = Zm//CdH(m,'/w,-,x,-;x)(Ol - Dy

24



1. Gravity

e Gravity can be treated in a very similar way so I'll just flash the relevant formulae.

e The soft theorem is given by

(Nap(x)O1 - Op) = Tap(x) (O1---Onp).

where Nap(x) = \/jc J'ﬂ? [wOab(w, x)] and
Talo) = L w2 __ (50, - Zas0%) Sl Al gl (<)
- pi - 4(x)
e The conserved current is defined by P (x) = e, zdb N,s(x) with

(7P (x)O01-+-0n) =Y~ miKaia(mi/wi, xi; x){(O1 -+ Op).
e The soft exchange amplitude is
gr - " d—3 gr d?x 2
Mgr = agr(AT + 27iAS"), agr =G ; dww® 7, A = W[jab()()] .

24



I1l. Gravity - Soft Action

e The soft action in GR is depends on the soft graviton mode N,, and the
gravitational edge mode Cp ~ r~*(ga» — r?05)|0.7. C satisfies a higher
dimensional analogue of the CK constraint (magnetic part of Weyl tensor is zero)
which solves to C,p = 20,0, C(x). Under supertranslations C(x) — C(x) + f(x).
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gravitational edge mode Cp ~ r~*(ga» — r?05)|0.7. C satisfies a higher
dimensional analogue of the CK constraint (magnetic part of Weyl tensor is zero)
which solves to C,p = 20,0, C(x). Under supertranslations C(x) — C(x) + f(x).

e The soft action that reproduces soft theorems and soft exchange is

! / dxC?(x) N (x)-

16C172

Ogr

Ssoft[C7 N] - (27T)d .

ddXNab(X) Nab(x) +
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I1l. Gravity - Soft Action

e The soft action in GR is depends on the soft graviton mode N,, and the
gravitational edge mode Cp ~ r~*(ga» — r?05)|0.7. C satisfies a higher
dimensional analogue of the CK constraint (magnetic part of Weyl tensor is zero)
which solves to C,p = 20,0, C(x). Under supertranslations C(x) — C(x) + f(x).

e The soft action that reproduces soft theorems and soft exchange is

/ 95N ()N ()

agr

Seoft[C, N] = xC?(x)Nap(x).

e The operators U; are

U = exp {Im,/d xC(x)Kas1(mi fwi, xi; )]

with

Up--- U, = exp [ /ddxC X)ZmlCdH( ,-/w,-7x,-;x):|

i d_ =ab
= exp [16c172/d xCP(x)Tab(x) — lfuZP,:|

Note that the zero modes have the form C(x) = £°(1 4 x?) — 2¢7x, — €911 (1 — x?).
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I11. Conclusions

e We have derive an effective action which reproduces almost all of the soft physics
in Abelian gauge and gravitational theories.
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suggests that the set of local operators in boundary theory are shadow transforms
of bulk local operators. It would be interesting to explore this better.
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Since the edge mode is not exact, the shadow transform of this field will NOT

localize in D = 4. The theory is much more complicated, but nonabelian
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I11. Conclusions

We have derive an effective action which reproduces almost all of the soft physics
in Abelian gauge and gravitational theories.

The soft action is local when written in terms of the shadow edge modes which
suggests that the set of local operators in boundary theory are shadow transforms
of bulk local operators. It would be interesting to explore this better.

There are still a few interesting open problems

0 How does the imaginary part of I' fit into the celestial CFT?
[0 Can we apply this to nonabelian gauge theories? We are tempted to conjecture
Seott[S, C] ~ /tr [aSA %S+ iSA % 6] ., C=Udu™

Since the edge mode is not exact, the shadow transform of this field will NOT
localize in D = 4. The theory is much more complicated, but nonabelian
infrared divergences are also very complicated.

O There are other soft modes — Superrotations, subleading soft graviton theorem
and the stress tensor.
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Imaginary Part of I'

e The imaginary part of ' has the form

po= [T [ SN o +15 0P)

where

Jai(l/7 X) = 8 Z Ql[ila\"%
ic® out(+)

in(—)

The [ ]- symbol removes any i = j terms in the integrand.

e One way to reproduce this in a CCFT is to introduce two fields, C; (v, x) with
C (v, x)* = CF(—v,x) with action

Seoft ~ ’/_Z dy/ddx (‘E:(V,X”Z + {C’_(V’X)F
+Re [ (v, )T (v, x) + C, (v, x)T5 (v, X)})
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