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We discuss the entanglement entropy of theories on
time-dependent backgrounds.
Having in mind possible applications to cosmology, we consider a
background metric that takes the Friedmann-Robertson-Walker
(FRW) form with an arbitrary scale factor.
We are interested in the quantum entanglement between two
subsystems classically confined within two regions A and B,
separated by an entangling surface A.
The entaglement entropy is a measure of the quantum
entanglement.
The entanglement entropy associated with the region A is defined
as the von Neumann entropy computed through the reduced
density matrix, in which the degrees of freedom in the region B
are traced out.
The explicit calculation is difficult for time-dependent
backgrounds.
We use the holographic approach.
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In the framework of the AdS/CFT correspondence, we use
appropriate coordinates for the bulk AdS space, such that the
boundary metric takes the FRW form.
We study the entanglement entropy for a CFT confined within a
part of the AdS boundary delimited by an entangling surface A
of fixed comoving size.
In the static case, the entropy is proportional to the area of a
minimal surface at fixed time, which starts from A and extends
into the bulk (Ryu, Takayanagi 2006).
When the background is time dependent, one must use the
covariant formulation (Hubeny, Rangamani, Takayanagi 2007).
The entanglement entropy is proportional to the area of an
extremal surface, anchored on A, which is obtained from the area
functional by extremizing with respect to the timelike coordinate
as well.
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Figure: Nishioka, Ryu, Takayanagi (2009).
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General expectation (Maldacena, Pimentel 2012)

For d = 3 the entanglement entropy of a CFT for a spherical
entangling surface in a time-dependent background has the form

S = C1
A
ϵ2 + (C2 + C3A) log(ϵ) + C4 log(A) + C5A.

Proper area: A(T,R) = 4πa2(T)R2.
Expansion rate: H(T) = a′(T)/a2(T).
The terms involving C1, C2, C4 would be present also for a static
flat background.
The terms involving C3, C5 have an explicit dependence on the
expansion rate and the spatial curvature.
We have neglected finite terms that are mere constants.
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Plan

Spatially flat FRW background
Spatial curvature
Temperature
Cross-checks
Conclusions

D. Giataganas, N. T.
arXiv:2105.12614 [hep-th], Phys. Lett. B 820 (2021) 136493
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Spatially flat FRW

We consider a slicing of (d + 2)-dimensional AdS with a
boundary (d + 1)-dimensional FRW metric.

ds2
d+2 =

1
z2
[
dz2 − N2(τ, z)dτ2 + A2(τ, z)

(
dρ2 + ρ2 dΩ2

d−1
)]

N(τ, z) = a(τ)
(

1 − −3a′2(τ) + 2a(τ)a′′(τ)
4a4(τ)

z2
)

A(τ, z) = a(τ)
(

1 − a′2(τ)
4a4(τ)

z2
)
.

All quantities are expressed in terms of the AdS length.
The scale factor a(τ) is an arbitrary function of time.
The metric is of the typical Fefferman-Graham form for an
asymptotially AdS space.
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The metric can also be written in Poincare coordinates

ds2
d+2 =

1
ζ2
[
dζ2 − dt2 + dρ2 + ρ2 dΩ2

d−1
]
.

The two metrics are related through the coordinate
transformation

t(z, τ) = τ +
2a′(τ)a(τ) z2

−4a4(τ) + a′2(τ) z2

ζ(z, τ) =
z

a(τ)

(
1 − a′2(τ)

4a4(τ)
z2
)−1

.

There is a singularity at z = 2/H(τ), where H(τ) = a′(τ)/a2(τ).
The transformation is well defined for z < 2/H(τ).
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Extremal surface
Consider a spherical entangling surface Σ on the boundary, with
comoving radius ρ = R.
The entropy is proportional to the area

Area(γA) = Sd−1I(ϵ) = Sd−1
∫
ϵ

dρ ρd−1 Ad−1(τ(ρ), z(ρ))
zd(ρ)

×√
A2(τ(ρ), z(ρ))− N2(τ(ρ), z(ρ))

(
dτ(ρ)

dρ

)2
+

(
dz(ρ)

dρ

)2
,

extremized with respect to the functions τ(ρ) and z(ρ), with the
boundary conditions τ(R) = T and z(R) = 0.
The integral diverges near the boundary, so that a cutoff must
be imposed on the bulk coordinate z at z = ϵ.
The entanglement entropy is given by the relation

S =
Sd−1

4Gd+2
I(ϵ),

with Gd+2 the bulk Newton’s constant.
N. Tetradis University of Athens
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The calculation is simplified if one switches to Poincare
coordinates. The functional to be extremized is

Area(γA) = Sd−1
∫

dρ ρd−1 1
ζd(ρ)

√
1 −

(
dt(ρ)

dρ

)2
+

(
dζ(ρ)

dρ

)2
.

The solution for the function t(ρ) is trivial: t(ρ) = T =constant.
For a spherical entangling surface, the minimization with respect
to ζ(ρ) is standard. The minimal surface is given by
ζ(ρ) =

√
R2 − ρ2.

The extremal surface corresponding to an entangling surface of
comoving radius R at a time T on the boundary is given by the
implicit relations

T = τ +
2a′(τ)a(τ) z2

−4a4(τ) + a′2(τ) z2√
R2 − ρ2 =

z
a(τ)

(
1 − a′2(τ)

4a4(τ)
z2
)−1

for the functions τ(ρ) and z(ρ).
N. Tetradis University of Athens
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The integration for the area of the extremal surface can be
performed by using ζ as an independent variable.

Area(γA) = Sd−1I(ϵ) = Sd−1
∫ 1

ϵζ(T)/R
dy (1 − y2)(d−2)/2

yd ,

where y = ζ/R.
The area must be regulated by imposing a cutoff on ζ, resulting
from the cutoff ϵ imposed on the Fefferman-Graham coordinate z:

ϵζ(T) =
ϵ

a(T)

(
1 − 1

4H2(T)ϵ2
)

We have defined the Hubble parameter H(T) = a′(T)/a2(T) in
terms of the conformal time on the boundary.
The whole dependence of the entropy on T enters through ϵζ(T).
This cutoff results from the fundamental cutoff ϵ that regulates
the UV divergences of the theory.
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For ϵ → 0 we have

d = 3 I(ϵ) = a2(T)R2

2ϵ2 +
1
2 log

(
ϵ

2a(T)R

)
+

1
4a2(T)R2H2(T)− 1

4 +O(ϵ2)

d = 2 I(ϵ) = a(T)R
ϵ

− 1 +O(ϵ1)

d = 1 I(ϵ) = − log

(
ϵ

2a(T)R

)
+O(ϵ2).

The time dependence of the scale factor a(T) is arbitrary.
The boundary metric is not dynamical. However, the expressions
are applicable to physical FRW cosmologies with metrics that
have a dynamical origin.
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Spatial curvature

The bulk metric has the form

ds2
d+2 =

1
z2

[
dz2 − N2(τ, z)dτ2 + A2(τ, z)

(
dρ2

1 − k
R2

0
ρ2 + ρ2 dΩ2

d−1

)]
,

with

N(τ, z) = a(τ)
(

1 − 1
4

(
−3a′2(τ)

a4(τ)
− k

a2(τ)R2
0
+ 2a′′(τ)

a3(τ)

)
z2
)

A(τ, z) = a(τ)
(

1 − 1
4

(
a′2(τ)
a4(τ)

+
k

a2(τ)R2
0

)
z2
)
,

with k = 0,±1, depending on the spatial curvature of the
boundary. The parameter R0 sets the scale of the spatial
curvature.
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This metric can also be rewritten as

ds2
d+2 =

1
ζ2

[
dζ2 −

(
1 +

1
4

k
R2

0
ζ2
)2

dt2

+

(
1 − 1

4
k

R2
0
ζ2
)2
(

dρ2

1 − k
R2

0
ρ2 + ρ2 dΩ2

d−1

)]
.

The two metrics are related through a coordinate transformation
that does not involve ρ and the angular variables.
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The extremal surface corresponds to the minimization of the
functional

Area(γA) = Sd−1
∫
ϵζ(T,R)

dρ ρd−1

(
1 − 1

4
k

R2
0
ζ2
)d−1

ζd ×√√√√√(1 − 1
4

k
R2

0
ζ2
)2

1 − k
R2

0
ρ2 +

(
dζ(ρ)

dρ

)2
.

The cutoff is the same as in the spatially flat case:

ϵζ(T,R) =
ϵ

a(T)R

(
1 − 1

4H2(T)ϵ2
)

where ϵ is the cutoff imposed on the bulk coordinate z.
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The minimization of the area can be performed in a
straightforward manner.
The curvature gives a nonzero contribution for d = 3:

I(ϵ) = a2(T)R2

2ϵ2 +
1
2 log

(
ϵ

2a(T)R

)
+

1
4a2(T)R2H2(T)

+
1
4

(
kR2

R2
0
− 1
)
+O(ϵ2)
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Temperature

The simplest way to introduce an energy scale is by considering
the theory at nonzero temperature. The dual picture includes a
bulk black hole, whose Hawking temperature is identified with
the CFT temperature.
An explicit calculation is possible for a (2+1)-dimensional bulk
with a BTZ black hole. The metric can be written in
Schwarzschild coordinates as

ds2 = −f(r)dt2 +
dr2

f(r) + r2dϕ2, f(r) = r2 − µ.

The Hawking temperature of the black hole is θ0 =
√
µ/(2π).
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The above metric can also be expressed as

ds2 =
1
z2
[
dz2 − N2(τ, z)dτ2 + A2(τ, z)dϕ2] ,

where

N(τ, z) = a(τ)
(

1 − µ a(τ)2 − 3a′2(τ) + 2a(τ)a′′(τ)
4a4(τ)

z2
)

A(τ, z) = a(τ)
(

1 +
µ a(τ)2 − a′2(τ)

4a4(τ)
z2
)
.

The metrics are related through the coordinate transformation

t(z, τ) = τ +
1

2√µ
log

[
4a4 −

(√
µ a(τ) + a′(τ)

)2 z2

4a4 −
(√

µ a(τ)− a′(τ)
)2 z2

]

r(z, τ) =
a(τ)

z

(
1 +

µ a(τ)2 − a′2(τ)
4a4(τ)

z2
)
.
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The stress-energy tensor of the dual CFT on the time-dependent
boundary, as determined via holographic renormalization, is

ρ = −⟨Tt
t⟩ =

1
16πG3

(
µ

a2 − a′2

a4

)

P = ⟨Tϕ
ϕ⟩ =

1
16πG3

(
µ

a2 +
−3a′2 + 2aa′′

a4

)
.

The terms proportional to µ/a2 can be interpreted as the thermal
energy density and pressure of a CFT at a temperature
θ(T) = θ0/a(T).
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We consider the entanglement entropy of the CFT on a segment
of comoving length ∆ϕ = 2R on the boundary.
The minimization of the area functional can be performed by
switching to the coordinates (t, r).
The minimal curve has a trivial time dependence:
t(ϕ) = T=constant. T corresponds to the value that the function
τ(ϕ) on the minimal surface takes on the boundary.
The minimal area is (Hubeny, Rangamani, Takayanagi 2007)

S =
1

2G3
log

(
1

π θ0 ϵr
sinh(2π θ0 R)

)
.

The cutoff ϵr has been imposed on the bulk coordinate at
r = 1/ϵr.
This is the standard result for the static case (Calabrese, Cardy
2004).
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The cutoff ϵr can be related to the cutoff ϵ that we must impose
on the Fefferman-Graham coordinate z for the metric with a
time-dependent boundary.
We find ϵr = ϵ/a(T) +O(ϵ3).
The higher-order corrections can be neglected for a
(1 + 1)-dimensional boundary. However, this is not the case in
higher dimensions.
We obtain

S =
1

2G3
log

(
a(T)

π θ0 ϵ
sinh(2π θ0 R)

)
=

1
2G3

log

(
1

π θ(T) ϵ
sinh(2π θ(T) a(T)R)

)
for the time-dependent background.
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(3+1)-dimensional boundary (preliminary)

In 3+1 dimensions, the entanglement entropy of a thermalized
CFT can be computed in closed form for a static strip geometry
(Erdmenger, Miekley 2018).
The bulk is asymptotically AdS and includes a planar black hole.
This result can be used in order to compute the entanglement
entropy for a FRW boundary.
The necessary coordinate transformations that set the boundary
metric in a FRW form are known
(Apostolopoulos, Siopsis, Tetradis 2009).
The effective UV cutoff can still be written as

ϵeff(t) =
ϵ

a(t)

(
1 − 1

4H2(t)ϵ2
)
.
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Figure: Nishioka, Ryu, Takayanagi (2009).
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For a large width of the strip, the maximal extension of the
minimal surface z∗ coincides with the black hole horizon zh.
In this limit, the entanglement entropy is

S =
l̃2a2(t)
4G5ϵ2 +

l̃2l
4G5z3

h
+ G πl̃2

16
√

6G5z2
h
+

l̃2a2(t)H2(t)
8G5

,

where the AdS length has been set equal to 1, and G ≃ −2.07678
is a certain value of the Meijer G-function.
The parameter l is the width of the strip, and l̃ stands for the size
of the two dimensions parallel to the strip in comoving
coordinates.
The parameter zh = 1/(πTh) is related to the Hawking
temperature of the black hole, whose mass is µ = 1/z4

h in five
dimensions.
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The physical temperature T(t) of the CFT redshifts as Th/a(t),
as can be checked by computing the dual stress-energy tensor

−T0
0 = ρ =

3
64πG5

4µ+ ȧ4

a4

Ti
i = P =

1
64πG5

4µ+ ȧ4 − 4aȧ2ä
a4

The physical lengths are a(t)l and a(t)̃l.
The entanglement entropy can be rewritten as

S =
l̃2a2(t)
4G5ϵ2 +

π3̃l2la3(t)T3(t)
4G5

+ Gπ3̃l2a2(t)T2(t)
16
√

6G5
+

l̃2a2(t)H2(t)
8G5

.

Using the standard AdS/CFT relation π/(2G5) = N2, the second
term can be identified with the thermal entropy.
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Cross-checks
For d = 3, the expectation for the entanglement entropy is

S = C1
A
ϵ2 + (C2 + C3A) log(ϵ) + C4 log(A) + C5A,

with A(T,R) = 4πa2(T)R2 the proper area.
Our result is

S =
1

8G5ϵ2A+
π

2G5
log

(
ϵ√
A

)
+

1
16G5

(
H2 +

k
a2R2

0

)
A.

The first term is the standard area term.
The coefficient of the second term involves the central charge of
the dual CFT, in this case the N = 4 supersymmetric SU(N)
gauge theory in the large-N limit: π/(2G5) = N2. For this CFT,
the coefficients C2 and C4 are related: C2 = −2C4 = N2.
The last term depends explicitly on the expansion rate and the
spatial curvature.
The logarithmic term proportional to C3 is absent for this
particular CFT (Solodukhin 2008, 2011).
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Consistency with Maldacena, Pimentel 2012 for a conformal
theory in dS.
For d = 1 the entanglement entropy was computed in Chu,
Giataganas 2017 for a dS boundary, using holography.
A first-principle calculation of the entanglement entropy was
performed in Berges, Floerchinger, Venugopalan 2018. It
concerns the massless Schwinger model of quantum
electrodynamics in 1+1 spacetime dimensions with an expanding
geometry. The entanglement entropy in a finite rapidity interval
∆η is equivalent to that of a (1+1)-dimensional conformal field
theory at a finite temperature T that scales as 1/τ in terms of
proper time. The entanglement entropy agrees with our result
with R = ∆η/2, a(τ) = τ and θ0 = 1/(2π).
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Comments

The divergent terms have the same form as for a static
background, with the radius of the entangling surface
corresponding to the physical radius a(T)R that determines the
proper area of the surface. The divergences are associated with
the entanglement of UV degrees of freedom very close to the
entangling surface.
A possible logarithmic divergence that would depend on the
curvature of the background related to the expansion is absent
for the particular theory that we considered.
The spatial curvature gives a finite contribution that depends
quadratically on the physical radius, so that the effect is
proportional to the proper area. This contribution vanishes when
the ratio of the physical radius to the curvature radius of the
background goes to zero.
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The finite term involving the expansion rate accounts for
contributions to the entanglement entropy from regions not
confined in the vicinity of the entanglement surface.
The dependence of the finite term on the square of the expansion
rate means that it has the same value both for expanding and
contracting cosmologies.
The finite term is still proportional to the area of the entangling
surface. There is no effect proportional to the volume in the
zero-temperature case.
For a cosmological expansion driven by matter with p = wε with
w > −1/3, the scale factor evolves as a(T) ∼ T2/(1+3w). At very
early times T → 0+, the finite contribution to the entanglement
entropy scales as a2(T)R2H2(T) ∼ T−2. Its growth at early times
could be attributed to physical distances between adjacent points
being small in this limit.
As a final remark, we emphasize the general applicability of our
results for any form of the scale function a(T) and any number of
dimensions.
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