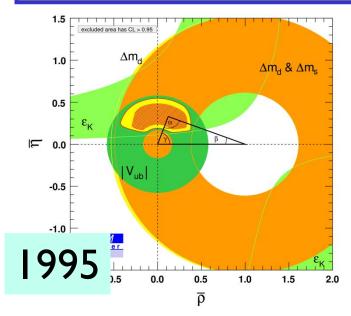


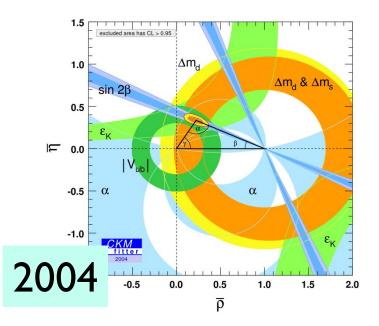
Review of CP-violation and spectroscopy measurements at LHCb

LHCD THCD

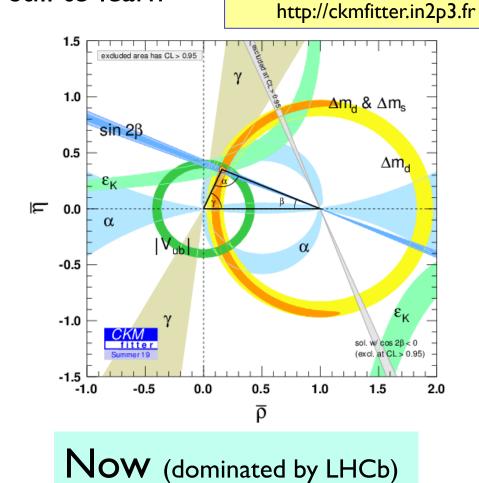
Neville Harnew

University of Oxford


On behalf of the LHCb Collaboration

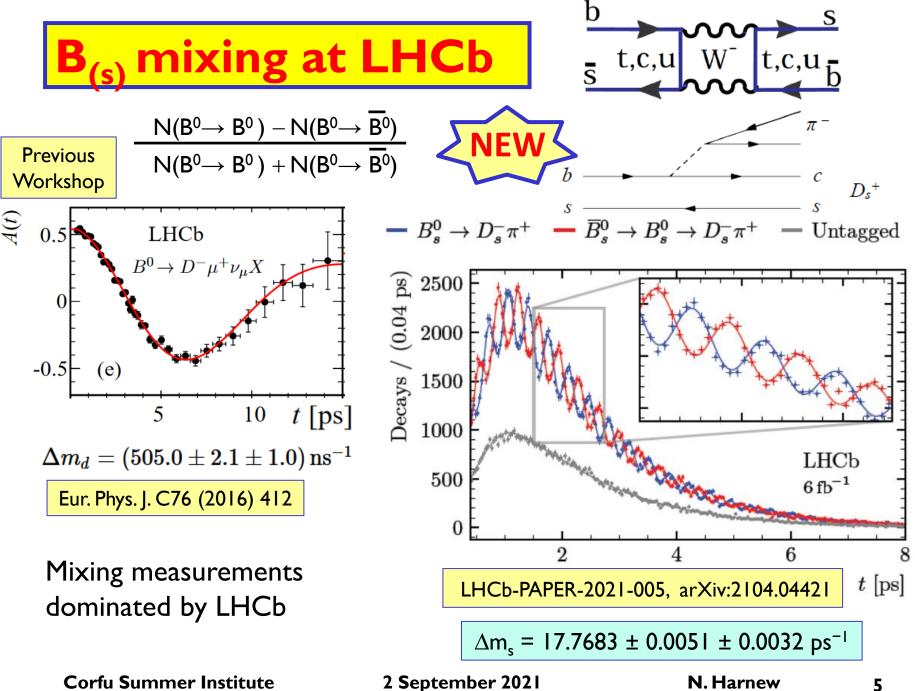

Corfu Summer Institute 2 September 2021

Outline


- General introduction
- An update of mixing and CP-violation measurements
 - New unitarity triangle measurements
 - Update on the angle γ
 - CP violation and mixing in charm
- New measurements in spectroscopy
- The upgraded LHCb detector and outlook
- Summary

Unitarity Triangle measurements

Amazing progress in the last 26 years; the SM remains intact, but a whole lot still to learn

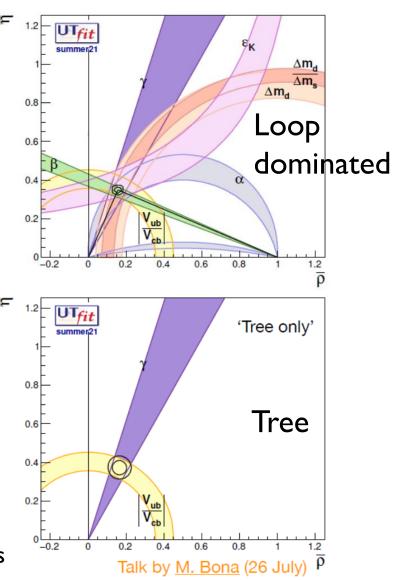

LHCb Mixing and CPviolation in beauty and charm

Corfu Summer Institute

2 September 2021

N. Harnew

4


Corfu Summer Institute

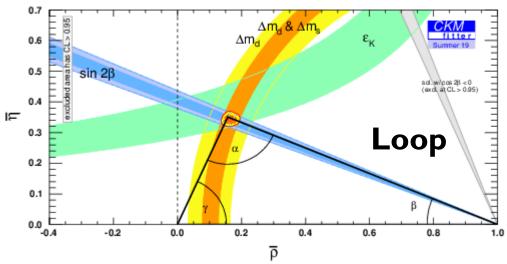
The angle γ (a key measurement)

- Loop processes are very sensitive to the presence of New Physics
- Constraints on the triangle apex largely come from loop decay measurements
- Large uncertainty on γ, the only angle accessible at tree level : forms a SM benchmark*
- γ measurement theoretically very clean

JHEP 01 (2014) 051, PRD 92(3):033002 (2015)

* assuming no significant New Physics in tree decays

Corfu Summer Institute


2 September 2021

N. Harnew

γ : indirect vs direct determinations

$$\gamma \equiv \arg \left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right]$$

 γ combination from all direct measurements from tree decays

Determination from CKM fit excluding all direct measurements of γ

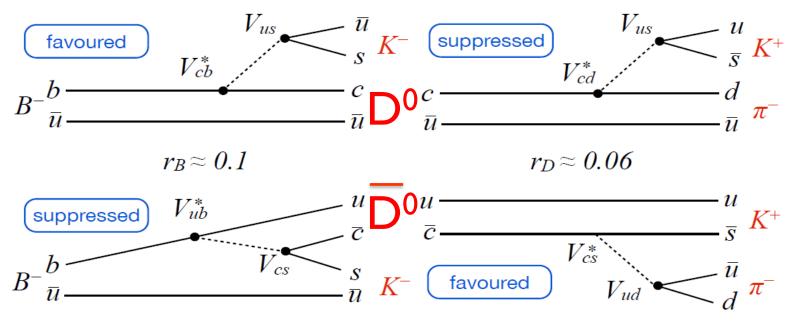
$$\gamma = (72.1^{+5.4}_{-5.7})^{\circ}$$

(As of Summer 2019)

 $\gamma = (65.8^{+0.9}_{-1.3})^{\circ}$

http://ckmfitter.in2p3.fr

Reaching degree level precision from direct measurements is crucial

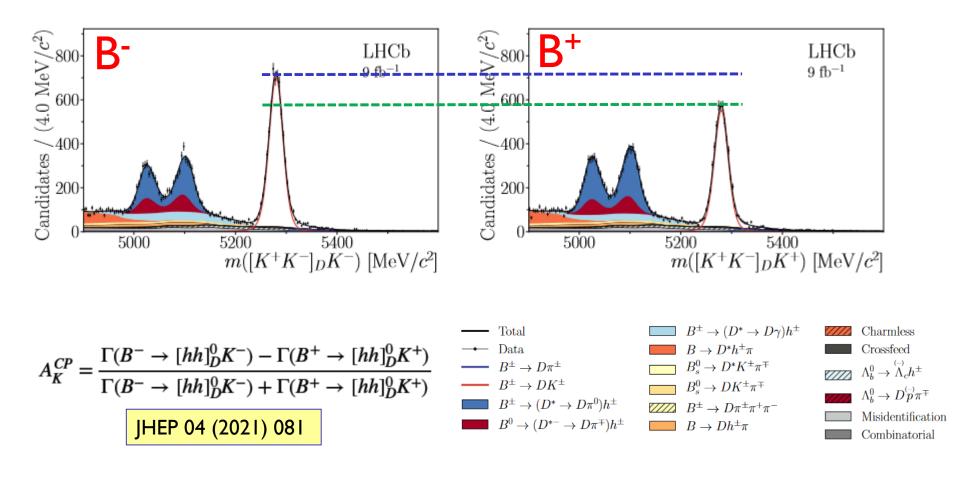

Corfu Summer Institute

The time-integrated mode: B⁻→D⁰K⁻

$$\gamma \equiv \arg \left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right]$$

(and charge conjugate mode
$$B^+ \rightarrow \overline{D}^0 K^+$$
)

- Interference possible if D^0 and $\overline{D^0}$ decay to same final state
- Two possible decay paths to final state via D⁰ and $\overline{D^0}$



Branching fraction for favoured B decay only ~10⁻⁴

> Measurements require high statistics

New GLW & ADS γ measurements

GLW : where D^0 and \underline{D}^0 decay to CP eigenstates ADS : where D^0 and D^0 decay to flavour-specific states

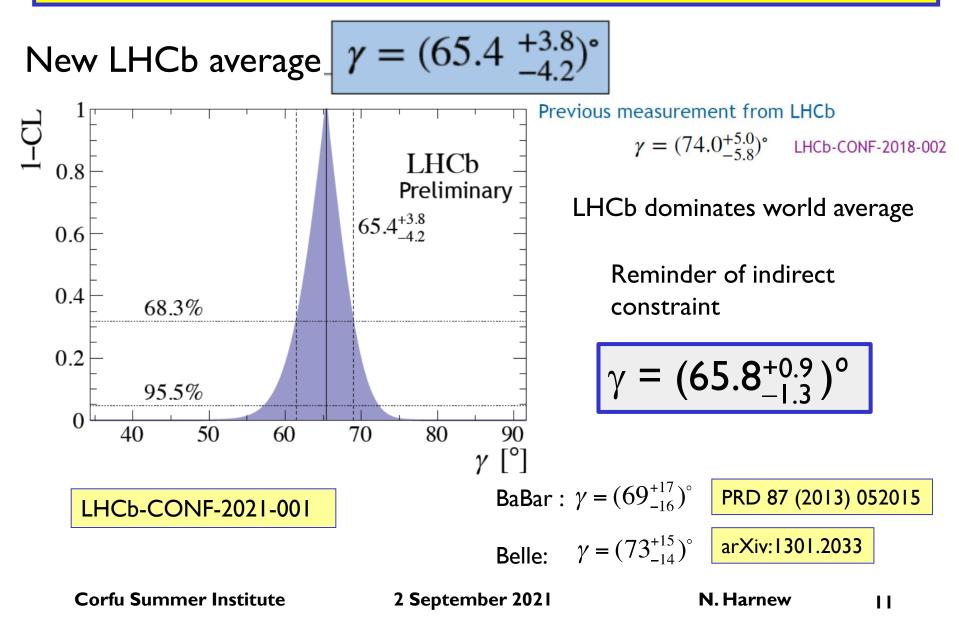
Corfu Summer Institute

2 September 2021

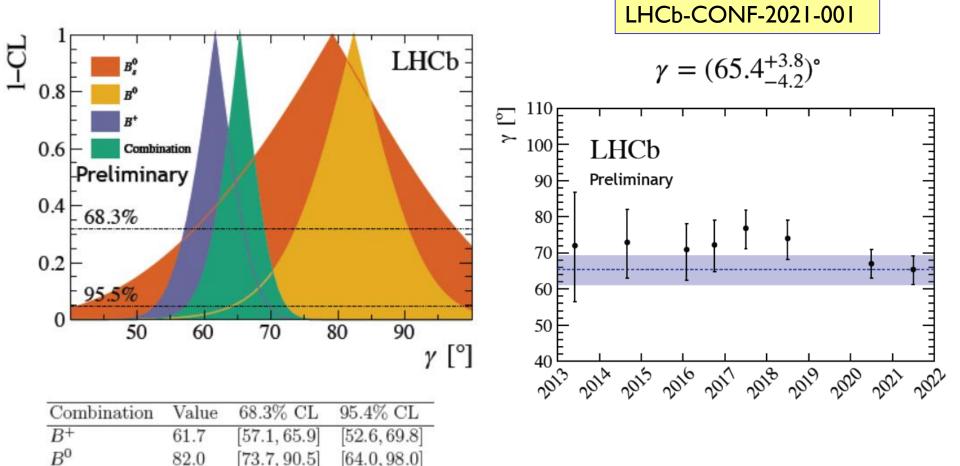
N. Harnew

LHCb combination from different modes

LHCb-CONF-2021-001


The most recent combination includes the following modes:

B decay	D decay	Ref.	Dataset	Lumi	Status since	_					
				(fb^{-1})	Ref. [21]						
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$	[23]	Run 1&2	9	Updated	D decay	Ref.	Dataset	Lumi	Stat	us since
$B^\pm \to D h^\pm$	$D \to h^+ \pi^- \pi^+ \pi^-$	[24]	Run 1	3	As before				(fb^{-1})	Ref.	[21]
$B^\pm \to D h^\pm$	$D \to h^+ h^- \pi^0$	[25]	Run 1	3	As before	$D \rightarrow L+L-$	[25 27	7] D 1	18-0	0	Nom
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[22]	$\operatorname{Run} 2$	9	Updated	$D \rightarrow h^+ h^-$	[35-3]	-		9	New
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 K^{\pm} \pi^{\mp}$	[26]	Run 1&2	9	Updated	$D ightarrow h^+ h^-$	[38]	Run 1		3	New
$B^{\pm} \rightarrow D^{*}h^{\pm}$	$D ightarrow h^+ h^-$	[23]	$\operatorname{Run}1\&2$	5	Updated	$D ightarrow h^+ h^-$	[39]	Run 1	1&2	9	New
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ h^-$	[27]	Run 1&2	5	As before	$D \rightarrow K^+ \pi^-$	[40]	Run 1	Î	3	New
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[27]	Run 1&2	5	As before	$D \rightarrow K^+ \pi^-$	[41]	Run 1		5	New
$B^{\pm} \rightarrow D h^{\pm} \pi^+ \pi^-$	$D ightarrow h^+ h^-$	[28]	Run 1	3	As before					220	
$B^0 \to DK^{*0}$	$D \to K^+ \pi^-$	[29]	Run 1&2	5	Updated	$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[42]	Run 1	L	3	New
$B^0 \to DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[29]	Run 1&2	5	New	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[43, 44]	l] Run I	1&2	9	New
$B^0 \to D K^+ \pi^-$	$D ightarrow h^+ h^-$	[30]	Run 1	3	Supersede	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[45]	Run 1	L	1	New
$B^0 \to DK^{*0}$	$D ightarrow K_{ m S}^0 \pi^+ \pi^-$	[31]	Run 1	3	As before		[]			<u> </u>	
$B^0 \to D^\mp \pi^\pm$	$D^+ \to K^- \pi^+ \pi^+$	[32]	Run 1	3	As before						
$B^0_s \to D^\mp_s K^\pm$	$D_s^+ \to h^+ h^- \pi^+$	[33]	Run 1	3	As before						
$B^0_s \to D^{\mp}_s K^{\pm} \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	[34]	Run 1&2	9	New	_					


Corfu Summer Institute

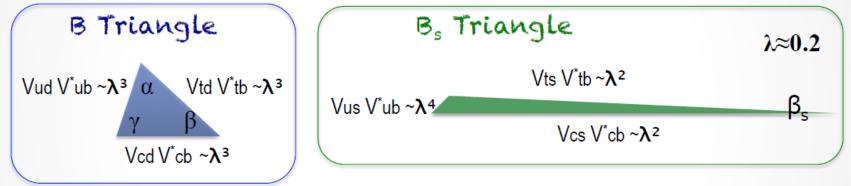
10

LHCb combination from different modes

Breakdowns and evolution of γ **results**

Corfu Summer Institute

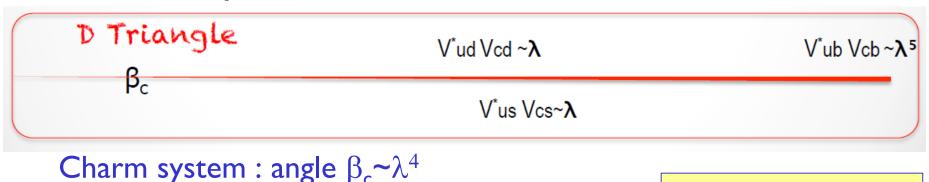
79.0


[59.0, 98.0]

 B_s^0

[41.0, 106.0]

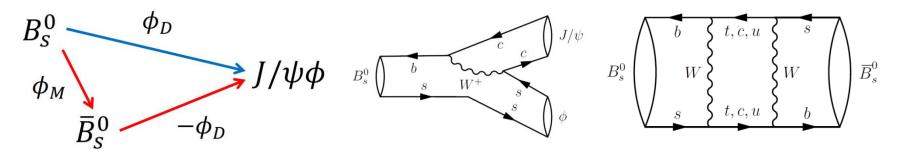
Beauty and Charm unitarity triangles


Beauty system

B system : angles α , β , $\gamma \sim 1$ B_s system

B_s system : angle $\beta_s \sim \lambda^2$

Charm system



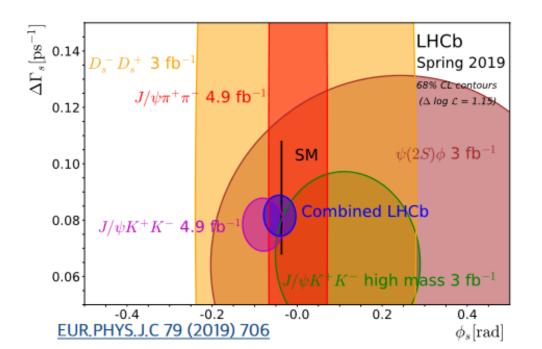
Corfu Summer Institute

2 September 2021

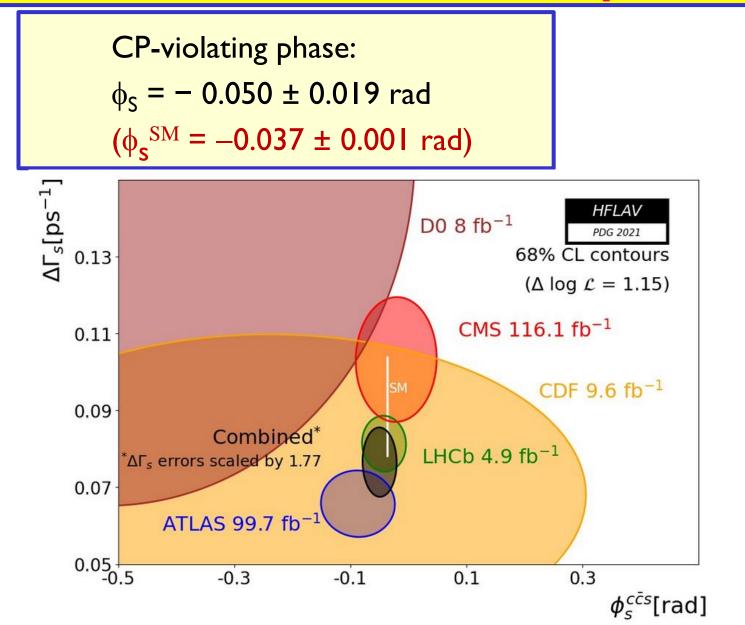
Diagrams from Jolanta Brodzicka

B_s weak mixing phase ϕ_s in **B**_s \rightarrow **J**/ $\psi \phi$

- "Golden mode" for this study is $B_s \rightarrow J/\psi \phi (\rightarrow K^+K^-)$
- Analogue of 2β (phase of B⁰ mixing) but in the B_s system
- Interference between B⁰ decay to J/ $\psi \phi$ directly and via B⁰ $\overline{B^0}$ oscillation gives rise to a CP violating phase in the SM : a time-dependent measurement $\phi_S = \phi_{Mixing} - 2 \phi_{Decay} = -2\beta_s$
- ϕ_{S} is expected to be very small in the SM and precisely predicted: $\phi_{SM} = -0.037 \pm 0.001$ rad (see eg Charles et al PRD84 (2011) 033005)

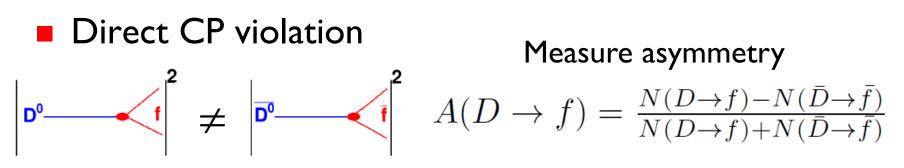

Corfu Summer Institute

2 September 2021

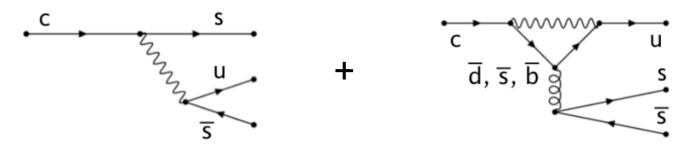

LHCb combination

- $\phi_{\rm S}$ fitted value correlated with $\Delta\Gamma_{\rm s}$ = width diff. of the B_s mass eigenstates \rightarrow plot as contours in ($\phi_{\rm S} vs \Delta\Gamma_{\rm S}$) plane
- ϕ_S is 0.1 σ from Standard Model and 1.6 σ from zero

 $\Delta \Gamma_{\rm S} = 0.0813 \pm 0.0048 \text{ ps}^{-1}$ CP-violating phase: $\phi_{\rm S} = -0.040 \pm 0.025 \text{ rad}$



HFLAV combination all experiments



16

CP violation in charm

Most promising channels are Cabibbo-suppressed (CS) decays where CPV may arise from the interference between the tree and the penguin amplitudes

• SM prediction is very small $O(10^{-4}) \rightarrow O(10^{-3})$

2 September 2021

Reminder of the "\Delta A_{CP}" measurement

- Tag D^0 and $\overline{D^0}$ via "prompt" and "semileptonic" decays:
 - Prompt: coming from primary vertex, i.e. $D^{*+-} \rightarrow D^0 \pi^{+-}_{soft}$
 - Semileptonic: coming from B-decays, i.e. $B^{+-} \rightarrow \overleftrightarrow{D}^0 \mu^{+-} X$
- The raw asymmetry (A) in Cabibbo-suppressed $D^0 \rightarrow h^- h^+$ decays (h = K or π) defined as

$$A(D \to f) = \frac{N(D \to f) - N(\bar{D} \to \bar{f})}{N(D \to f) + N(\bar{D} \to \bar{f})}$$

includes physics and detector effects:

$$A = A_{CP} + A_D + A_P$$

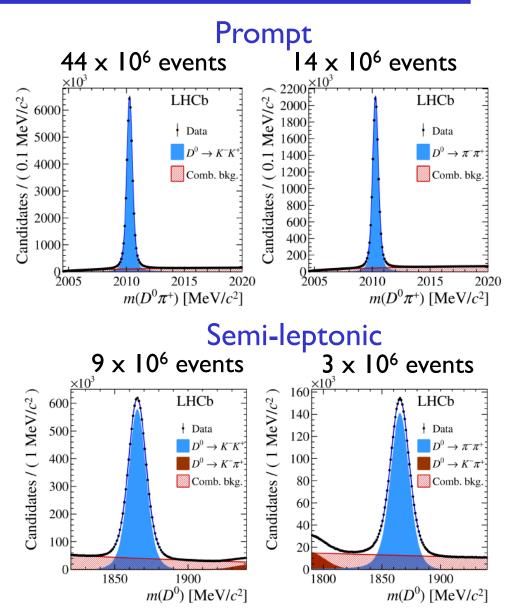
Phys. Rev. Lett. 122 (2019) 211803

Detection asymmetry from π^+_{soft} or μ^+ Production asymmetry from D^{*+} or B decays

To eliminate these contributions and cancel the systematics measure :

 $\Delta A_{CP} = A(K^-K^+) - A(\Pi^-\Pi^+) = A_{CP}(K^-K^+) - A_{CP}(\Pi^-\Pi^+)$ Corfu Summer Institute 2 September 2021 N. Harnew

Observation of CPV in charm decays


 Measurement performed with combined Run-I and Run-2 data-set

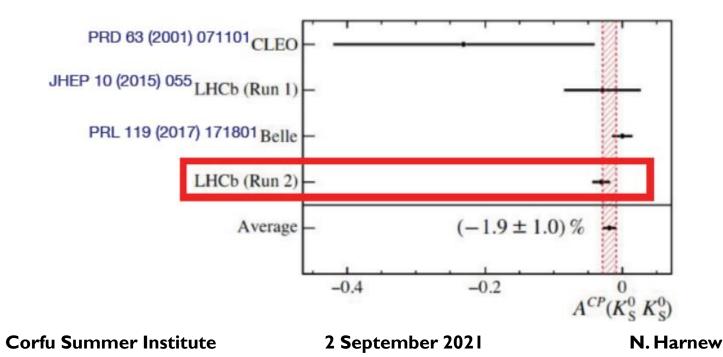
Phys. Rev. Lett. 122 (2019) 211803

 $\Delta A_{CP} = [-15.4 \pm 2.9] \times 10^{-4}$

A 5.3σ measurement of CPV in the charm system !

Corfu Summer Institute

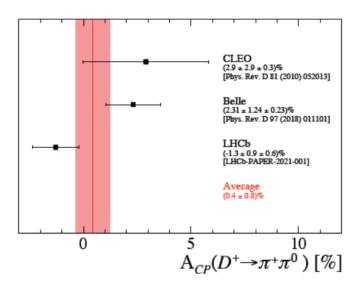
Charm CPV : more recent measurements


• Direct CPV : $A_{CP}(D^0 \rightarrow K^0_{\varsigma}K^0_{\varsigma})$

• Use $D^0 \to K^+K^-$ channel as control for $A_D \& A_P$

 $A_{CP} = (-3.1 \pm 1.2 \pm 0.4 \pm 0.2)\%$ [last uncertainity : CP violation of control channel]

arXiv:2105.01565 (2021)


• Consistent with no violation at the 2.4 σ level

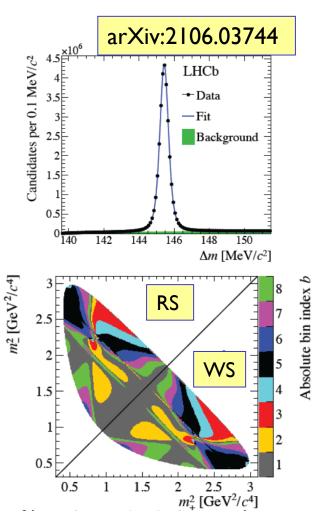
(s) $\rightarrow h^+ \pi^0$

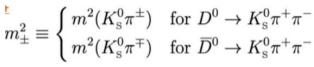
JHEP 06 (2021) 019

$$egin{aligned} \mathcal{A}_{CP} \left(D^+ o \pi^+ \pi^0
ight) &= (-1.3 \pm 0.9 \pm 0.6) \,\%, \ \mathcal{A}_{CP} \left(D^+ o K^+ \pi^0
ight) &= (-3.2 \pm 4.7 \pm 2.1) \,\%, \ \mathcal{A}_{CP} \left(D^+ o \pi^+ \eta
ight) &= (-0.2 \pm 0.8 \pm 0.4) \,\%, \ \mathcal{A}_{CP} \left(D^+ o K^+ \eta
ight) &= (-6 \pm 10 \pm 4) \,\%, \ \mathcal{A}_{CP} \left(D^+_s o K^+ \pi^0
ight) &= (-0.8 \pm 3.9 \pm 1.2) \,\%, \ \mathcal{A}_{CP} \left(D^+_s o \pi^+ \eta
ight) &= (0.8 \pm 0.7 \pm 0.5) \,\%, \ \mathcal{A}_{CP} \left(D^+_s o K^+ \eta
ight) &= (0.9 \pm 3.7 \pm 1.1) \,\%, \end{aligned}$$

- All compatible with no CP violation
- More data needed !
- Note that LHCb is now regularly extracting measurements with neutrals in the final state (K_sK_s and h⁰h⁺)

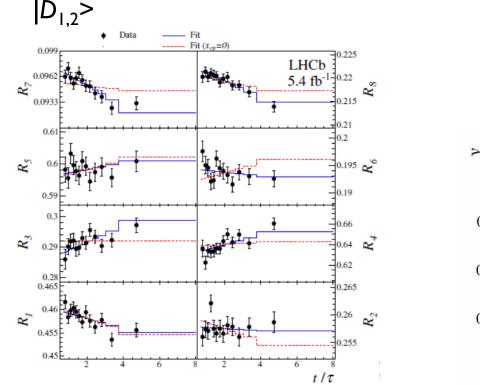
Corfu Summer Institute

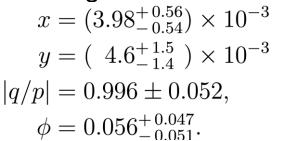

2 September 2021


D⁰ mixing parameters in $D^0 \rightarrow K_S^0 \pi^+\pi^-$

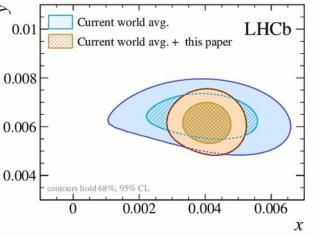
- Mass eigenstates $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D^0}\rangle$
- $x = (m_1 m_2)/\Gamma$; $y = (\Gamma_1 \Gamma_2)/2\Gamma$, $\phi = \arg(q/p)$ until now x measured only at ~3 σ (HFLAV)
- 30.6 x 10⁶ of D⁰ → K_S⁰ <u>π</u>⁺ π⁻ decays with very small background. D or D flavour tagging using D* → D π decays
- Use the bin-flip method
 - Measure ratios between D⁰ and D⁰ candidates in symmetric bins of Dalitz plot m² (K_S⁰ π⁻) vs m² (K_S⁰ π⁺)
 - 2 (flavour) x 16 (Dalitz bin) x 13 (decay time bin) subsamples
 - In each bin, strong-phase difference approx. constant for D⁰ and D⁰ amplitudes (input from CLEOc and BESIII)

2 September 2021



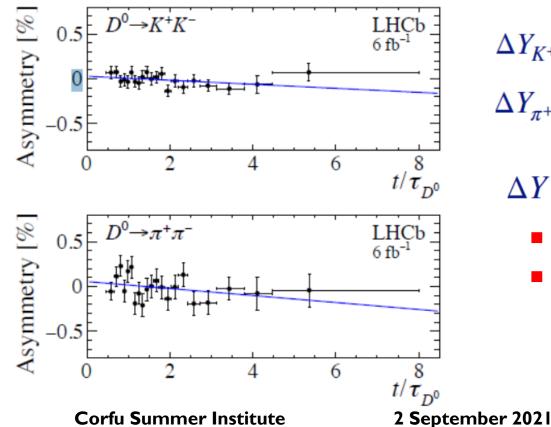

22

N. Harnew


D⁰ mixing parameters in $D^0 \rightarrow K_S^0 \pi^+\pi^-$

- Plot Ratio R_i : asymmetry for Dalitz bin *i* in bins of decay time
 - Deviations from constant values are due to mixing
- First observation with a significance of more than 7 standard deviations of the mass difference between mass eigenstates

arXiv:2106.03744

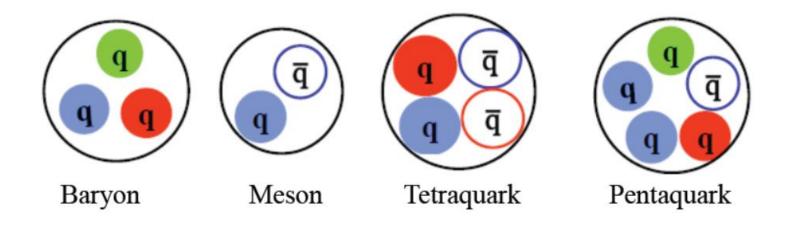


Corfu Summer Institute

2 September 2021

ΔY in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decays

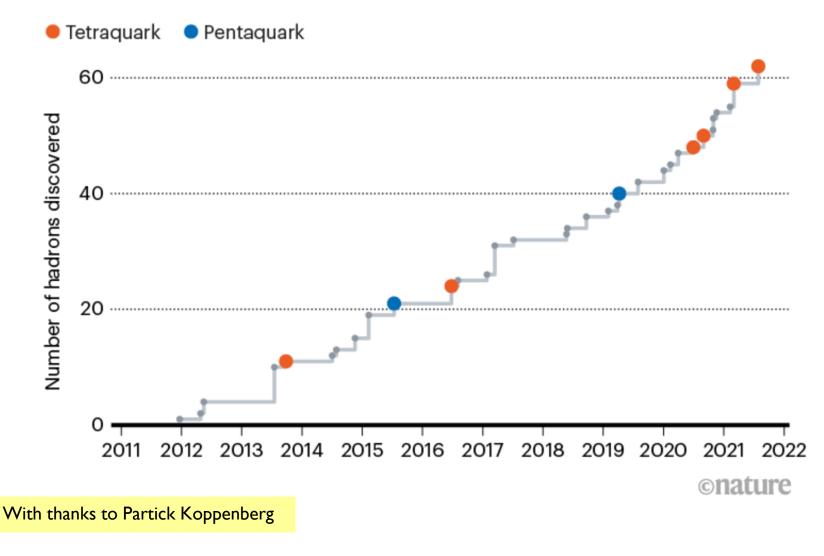
- ΔY is the slope of the time-dependent asymmetry of the decay rates of D⁰ and D⁰ mesons
- It is a measure of CP violation in mixing and interference
- Strategy: measure asymmetry in bins of decay time and measure the linear slope



$$\Delta Y_{K^+K^-} = (-2.3 \pm 1.5 \pm 0.3) \times 10^{-4}$$
$$\Delta Y_{\pi^+\pi^-} = (-4.0 \pm 2.8 \pm 0.4) \times 10^{-4}$$
Combining
$$\Delta Y = (-2.7 \pm 1.3 \pm 0.3) \times 10^{-4}$$

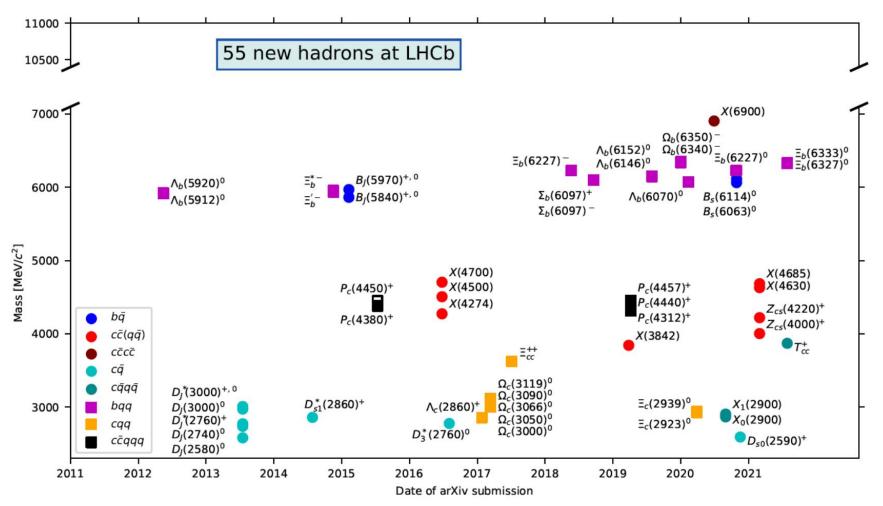
- Compatible with 0 within 2σ
- This result improves by nearly a factor 2 the precision of the previous world average

arXiv:2105.09889


LHCb new (exotic) spectroscopy measurements

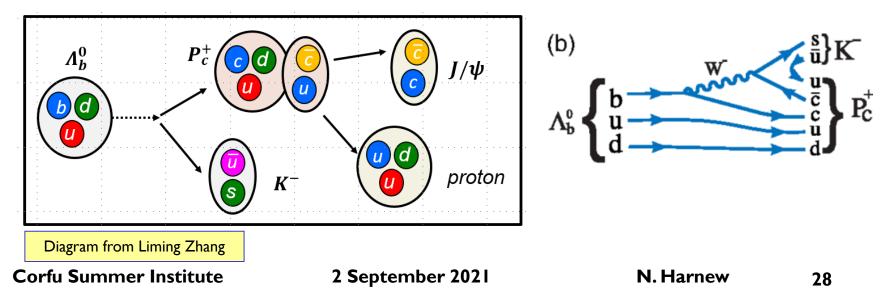
Corfu Summer Institute

2 September 2021


New hadron discoveries at the LHC

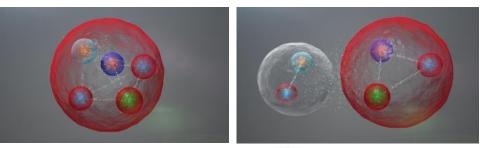
Corfu Summer Institute

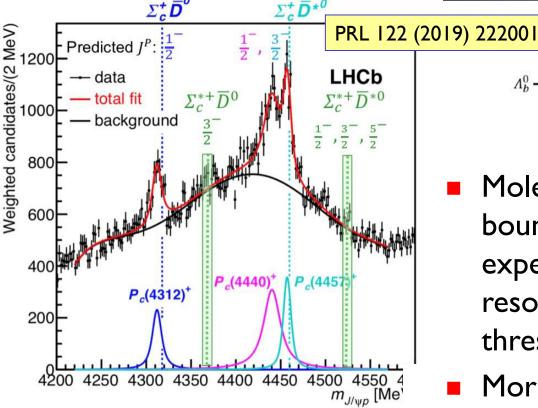
2 September 2021

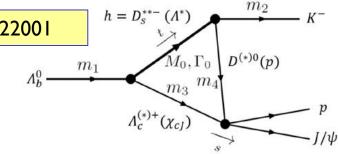

New hadron discoveries at LHCb

With thanks to Partick Koppenberg

Pentaquark discovery by LHCb

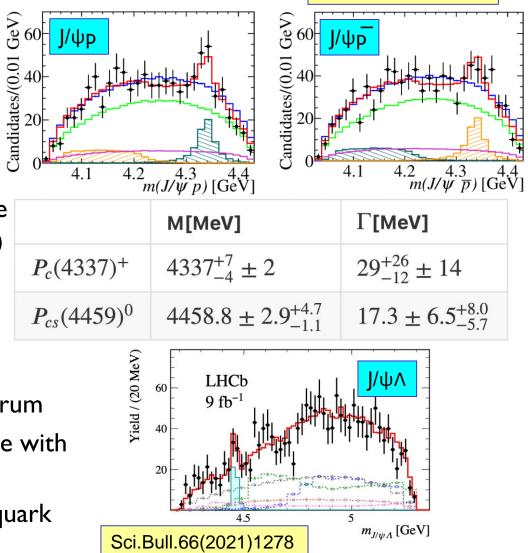

- Discovery of X(3872) now χ_{c1}(3872) by Belle in 2003 started new era in exotic spectroscopy
- First observation of $P_c(4312)^+$, $P_c(4440)^+$ and $P_c(4457)^+$ as narrow resonances in the mass spectrum of $(J/\psi p)$ in $\Lambda_b \rightarrow (J/\psi p) \text{ K}^-$ decays PRL 115 (2015) 072001
- Consistent with cc uud pentaquarks : allowed by QCD, but not observed in 50 years of searching.




Nature of pentaquarks ?

Possible models describing the observed pentaquark states :

- Tightly bounded states
- Re-scattering models
- Meson-baryon molecules


- Molecular-state model favoured : bound mesons and baryons are expected to form narrow resonances just below mass thresholds
- More work needed

Evidence for more pentaquark states

2 September 2021

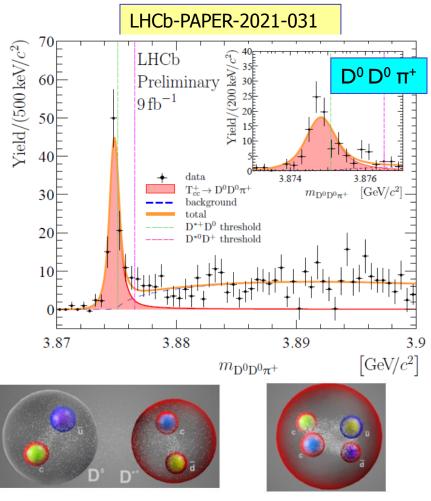
- Amplitude analysis using 800 $B_s^0 \rightarrow J/\psi pp$ decays
- Observe additional structure in J/ψp and J/ψp spectra
- Significance of 3.1σ to 3.7σ
 depending on J^P assignment
- Evidence for new P_c(4337)⁺ state consistent with another (cc uud) pentaquark
- Amplitude analysis using 1750 $\Xi_{b}^{-} \rightarrow J/\psi \wedge K^{-}$ decays
- Observe structure in J/ψΛ spectrum
- Evidence for new P_{cs}(4459)⁰ state with significance of 3.1 σ
- Consistent with (cc uds) pentaquark

Corfu Summer Institute

N. Harnew

30

arXiv:2108.04720


New doubly charmed tetraquark T_{cc}⁺

 Study D⁰ D⁰ π⁺ mass spectrum near D^{*+}D⁰ and D^{*0}D⁺ thresholds

 $\delta m \equiv m_{\mathrm{T_{cc}^+}} - (m_{\mathrm{D}^{*+}} + m_{\mathrm{D}^0})$

- Very narrow state in D⁰D⁰ π⁺ mass spectrum consistent with ccu d tetraquark, with significance 10σ . Manifestly exotic state.
- Very close to D*+D⁰ mass thresholds

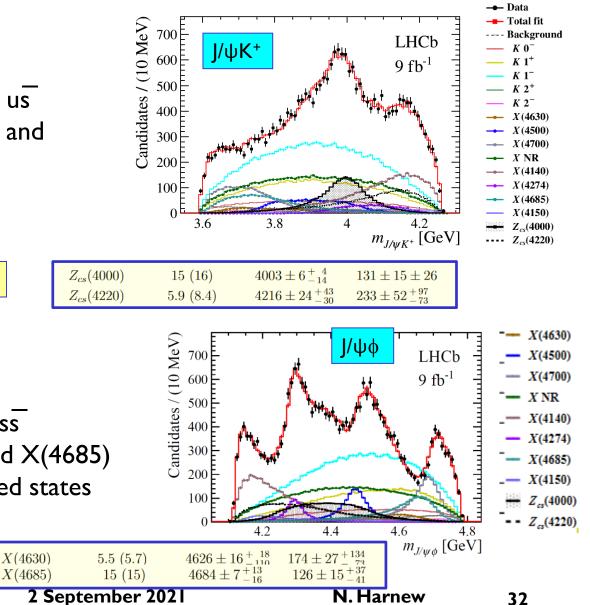
 $\begin{array}{ll} \delta m_{\rm BW} & -273 \pm 61 \quad {\rm keV}/c^2 \\ \Gamma_{\rm BW} & 410 \pm 165 \, {\rm keV} \end{array}$

Possible evidence for molecular bound state, but jury still out.

Corfu Summer Institute

2 September 2021

N. Harnew


More observations of new tetraquark states

- $B^+ \rightarrow J/\psi \phi K^+$ sample
- Observe structure in J/ψK
- Observation of two new c c us tetraquark states Z_{cs}(4000)⁺ and Z_{cs}(4220)⁺
- Significance of I 5σ and 6σ
 respectively, I⁺ assignment

Phys. Rev. Lett. 127 (2021) 082001

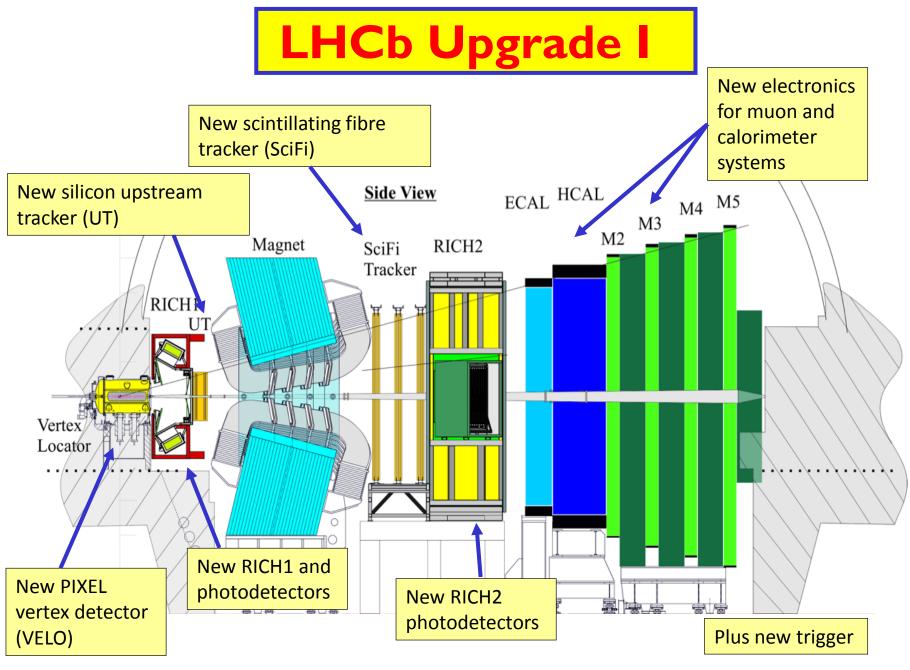
- $B^+ \rightarrow J/\psi \phi K^+$ sample
- Observe structure in $J/\psi\phi$
- Observation of two new c c ss tetraquark states X(4630) and X(4685) as well as previously confirmed states
- Significance of 5.5σ and 15σ respectively

Corfu Summer Institute

The upgraded LHCb detector and outlook

Corfu Summer Institute

2 September 2021


N. Harnew

33

LHCb Upgrade planning

WE ARE HERE

2020 2021	2022 20	023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	203+
	Run III					Rı	Run IV					Run V	
LS2					LS3					LS4			
LHCb 40 MHz UPGRADE I			33	LHCb Consolidate: UPGRADE Ib		$L = 2 x 10^{33}$ 50 fb ⁻¹		LHCb UPGRADE II		$ L=1-2x \ 10^{34} \\ 300 \ fb^{-1} $			
ATLAS Phase I Upgr	L = 2	$L = 2 \ x \ 10^{34}$		ATLAS Phase II UPGRADE CMS Phase II UPGRADE			HL-LHC $L = 5 \times 10^{34}$				HL-L $L = 5$		
CMS Phase I Upgr	300 fb ⁻¹										3000 fb ⁻¹		
Bell e II		4	5 ab-1		L=6	$x \ 10^{35}$		5	50 ab-1				
uminosity 4x10 ³² cm ⁻² s ⁻¹ 1.1 visible nteractions/crossing -9 fb ⁻¹ collected			Luminosity 2x10 ~5.5 visible interactions/cro Up to 50 fb ⁻¹ co			ossing			Luminosity 2x10 ³⁴ cm ⁻² s ~55 visible interactions/crossing 300 fb ⁻¹ collected				

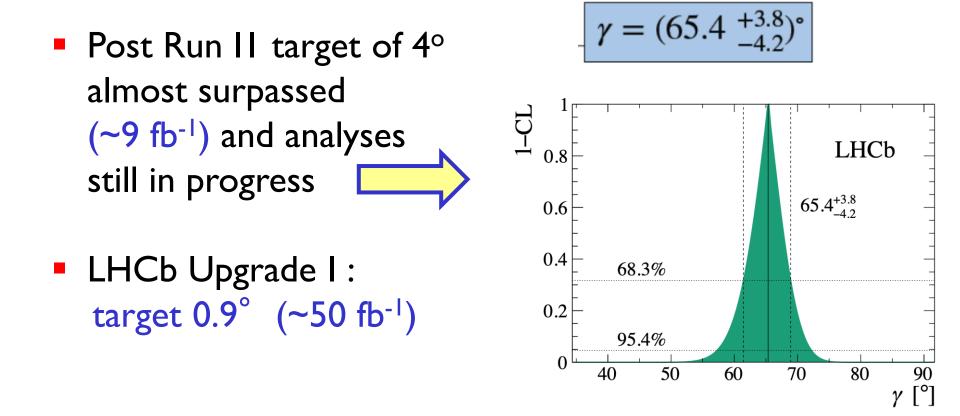
Corfu Summer Institute

2 September 2021

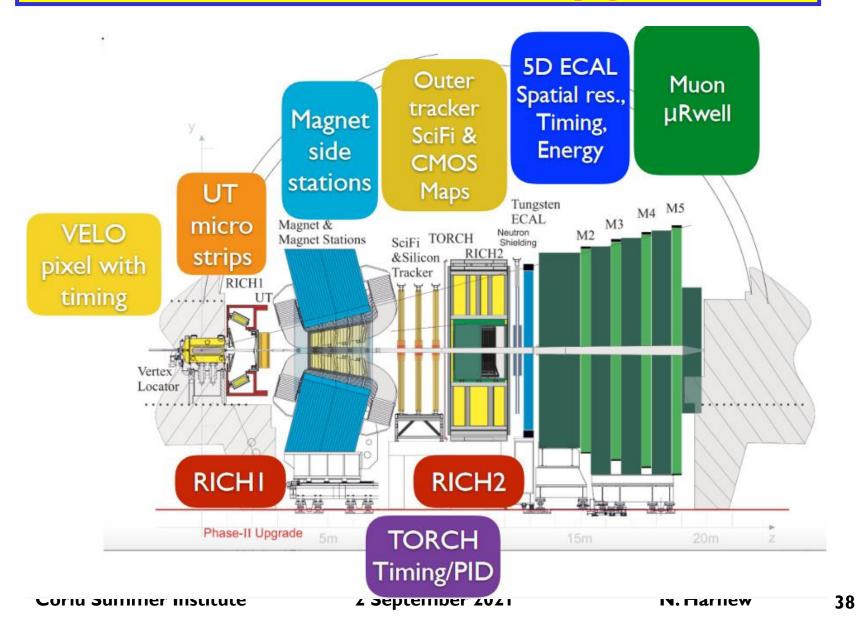
Construction & Installation – Upgrade I

SciFi tracker

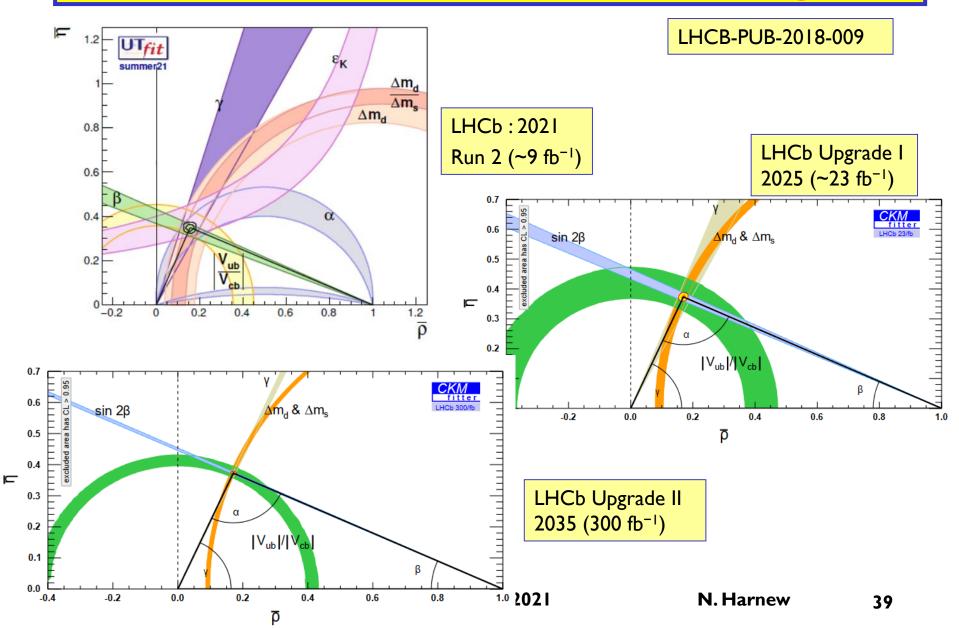
Corfu Summer Institute



RICH 2

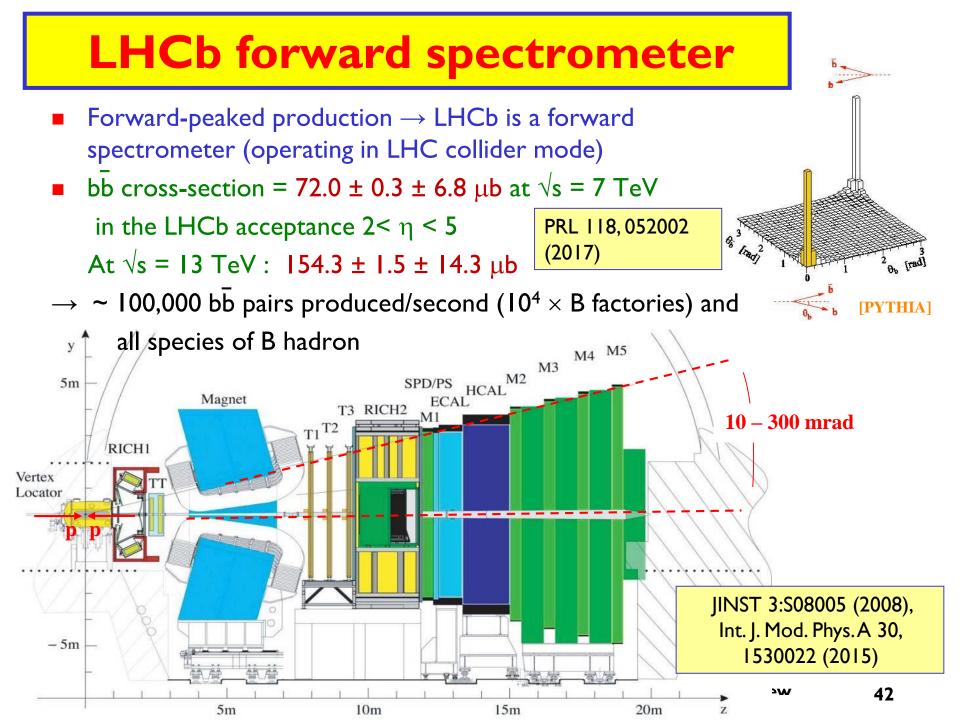


UT stave


γ prospects : Run II \rightarrow Upgrade I

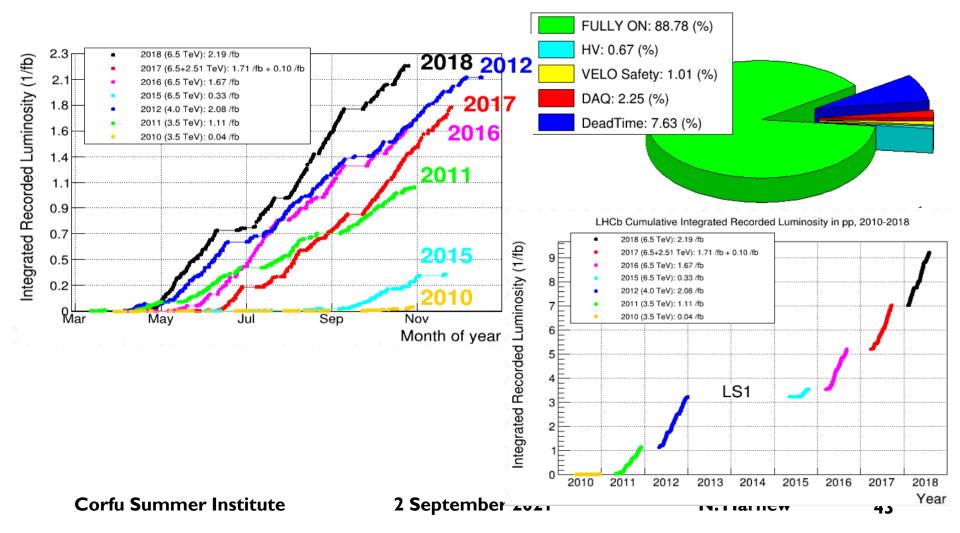
... and beyond 2030 : Upgrade II

Evolution of the Unitarity Triangle

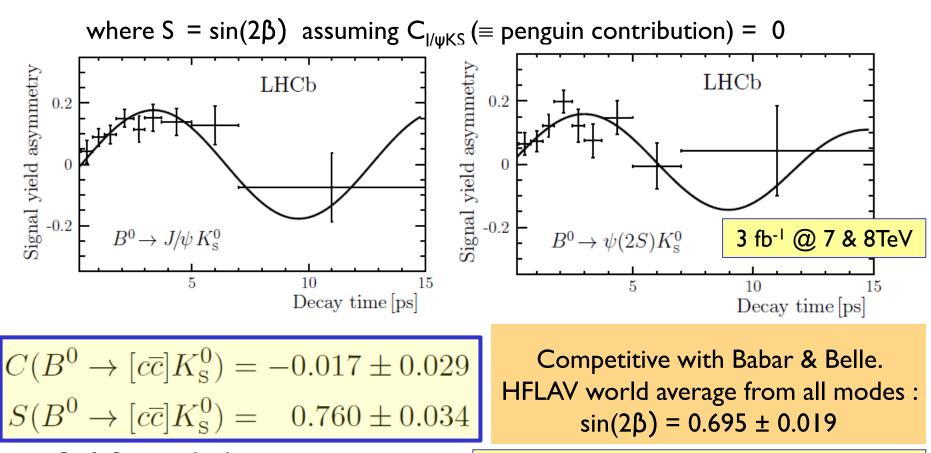

Summary and Outlook

- The LHCb experiment has performed spectacularly well : $\rightarrow \sim 9 \text{ fb}^{-1}$ of recorded data up to $\sqrt{s} = 13 \text{ TeV}$
- So far all Unitarity Triangle measurements are consistent with the Standard Model
 New Physics is becoming constrained
 - \rightarrow New Physics is becoming constrained
- LHCb is a fantastic platform for spectroscopy measurements: many measurements were never foreseen in LHCb's original physics portfolio.
- Still much room for New Physics, but higher precision required
 - → preparing for LHCb Upgrades beyond 2022 and the decade afterwards!

Corfu Summer Institute



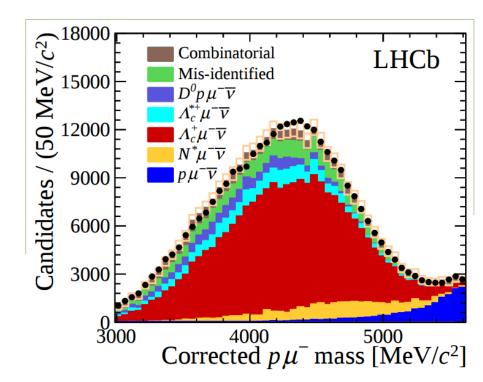
Corfu Summer Institute



LHCb data taking

Design luminosity = 2 × 10³² cm⁻² s⁻¹ (50 times less than ATLAS/CMS). Typical running luminosity ~4 × 10³² cm⁻² s⁻¹

LHCb measurement of sin(2) sin(2 β) from B⁰ \rightarrow J/ ψ K⁰_S and B⁰ \rightarrow ψ (2S)K⁰_S JHEP II (2017) 170 $\mathcal{A}_{[c\bar{c}]K^0_S}(t) \equiv \frac{\Gamma(\overline{B}^0(t) \rightarrow [c\bar{c}]K^0_S) - \Gamma(B^0(t) \rightarrow [c\bar{c}]K^0_S)}{\Gamma(\overline{B}^0(t) \rightarrow [c\bar{c}]K^0_S) + \Gamma(B^0(t) \rightarrow [c\bar{c}]K^0_S)} \approx S \sin(\Delta m t) - C \cos(\Delta m t)$



Corfu Summer Institute

https://www.slac.stanford.edu/xorg/hflav/triangle/summer2018/

LHCb measurement of |V_{ub}|

- |V_{ub}| / |V_{cb}| difficult at hadron colliders due to presence of neutrino
- LHCb measures $\Lambda_b \rightarrow p \mu^- v$ (the B⁰ $\rightarrow \pi^- \mu^+ v$ channel is extremely difficult)
- The measurement relies on $\Lambda_b \rightarrow p$ form factors from the lattice)

 $|V_{ub}| = (3.27 \pm 0.15(exp) \pm 0.17(theory) \pm 0.06 (|V_{cb}|)) \times 10^{-3}$

Nature Physics 10 (2015) 1038

Corfu Summer Institute

Several methods to measure γ

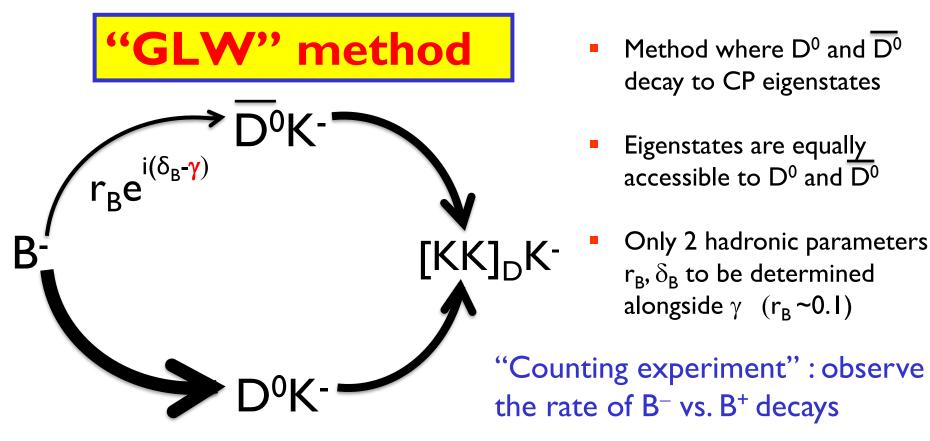
• From B^{\pm} (and $\overline{B^0}$) decays : the "time-integrated",

direct CP-violation modes $B^{\pm} \rightarrow D^{(-)} K^{\pm}$

Gronau & London, PLB 253 (1991) 483, Gronau & Wyler PLB 265 (1991) 172

ADS

GLW


Atwood, Dunietz & Soni PRL 78 (1997) 3257, Atwood, Dunietz & Soni PRD 63 (2001) 036005

GGSZ Giri, Gronau, Soffer & Zupan, PRD 68 (2003) 054018

• $B_s^0 \rightarrow D_s K$ time-dependent (TD) analysis

Dunietz & Sachs Phys. Rev. D37(1988) 3186, R.Aleksan, I. Dunietz & B. Kayser, Z. Phys. C54 (1992) 653

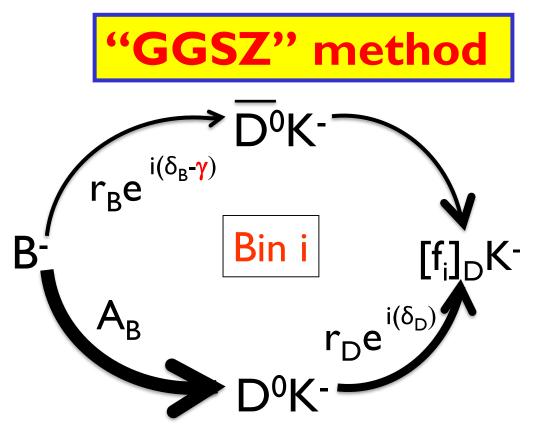
Corfu Summer Institute

Weak phase changes sign for equiv B⁺ diagram, thickness of arrows indicate relative strengths

 $\frac{N(B^{-}) - N(B^{+})}{N(B^{-}) + N(B^{+})} = A_{CP+} = \frac{1}{R_{CP+}} 2r_B (2F_+ - 1)\sin(\delta_B)\sin(\gamma)$ $\frac{N(B \to [KK]_D K) \times \Gamma(D \to K\pi)}{N(B \to [K\pi]_D K) \times \Gamma(D \to KK)} = R_{CP+} = 1 + r_B^2 + 2r_B (2F_+ - 1)\cos(\delta_B)\cos(\gamma)$

For CP+ eigenstates e.g KK, $\pi \pi$, $F_{+} = I$

Corfu Summer Institute


method _i(δ_B-γ) [π-K+]_⊂K-

Weak phase changes sign for equivalent B^+ diagram

- Decay into flavour-specific final states
- Larger interference effects than for GLW as both amplitudes of similar sizes.
- r_B, δ_B hadronic parameters again to be determined alongside γ ($r_B \sim 0.1$)
- Additional two parameters r_D , δ_D . External inputs from charm mixing measurements ($r_D \sim 0.06$)

$$\frac{N(B^{-}) - N(B^{+})}{N(B^{-}) + N(B^{+})} = A_{ADS} = \frac{1}{R_{ADS}} 2r_{B}r_{D}\sin(\delta_{B} + \delta_{D})\sin(\gamma)$$
$$\frac{N(B^{\pm} \rightarrow [\pi^{\pm}K^{\mp}]_{D}K^{\pm})}{N(B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}]_{D}K^{\pm})} = R_{ADS} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos(\gamma)$$

Again, a counting experiment : observing the rate of B⁻ vs. B⁺ decaysCorfu Summer Institute2 September 2021N. Harnew48

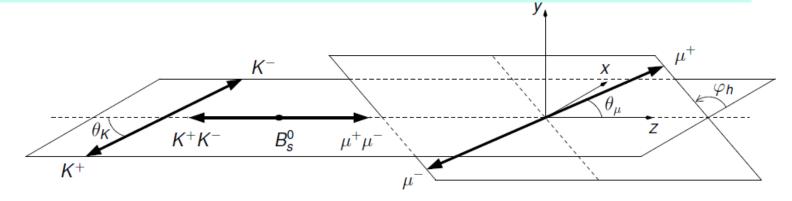
• 3-body final D states e.g. $D \rightarrow K_{S}^{0} \pi \pi$

Dalitz plot analysis :
 a counting experiment
 in bins of phase space,
 where r_D and δ_D vary

49

Weak phase changes sign for equiv B⁺ diagram

■ GGSZ observables (rate as function of Dalitz position) $d\Gamma_{B\pm}(\mathbf{x}) = A_{(\pm,\mp)}^{2} + r_{B}^{2}A_{(\mp,\pm)}^{2} + 2A_{(\pm,\pm)}A_{(\mp,\pm)}\left[\underbrace{r_{B}\cos(\delta_{B}\pm\gamma)}_{x_{\pm}}\underbrace{\cos(\delta_{D(\pm,\mp)})}_{c_{i}} + \underbrace{r_{B}\sin(\delta_{B}\pm\gamma)}_{y_{\pm}}\underbrace{\sin(\delta_{D(\pm,\mp)})}_{s_{i}}\right]$ c_i and s_i measured from Q-C D decays at CLEO-c arXiv:1010.2817 to

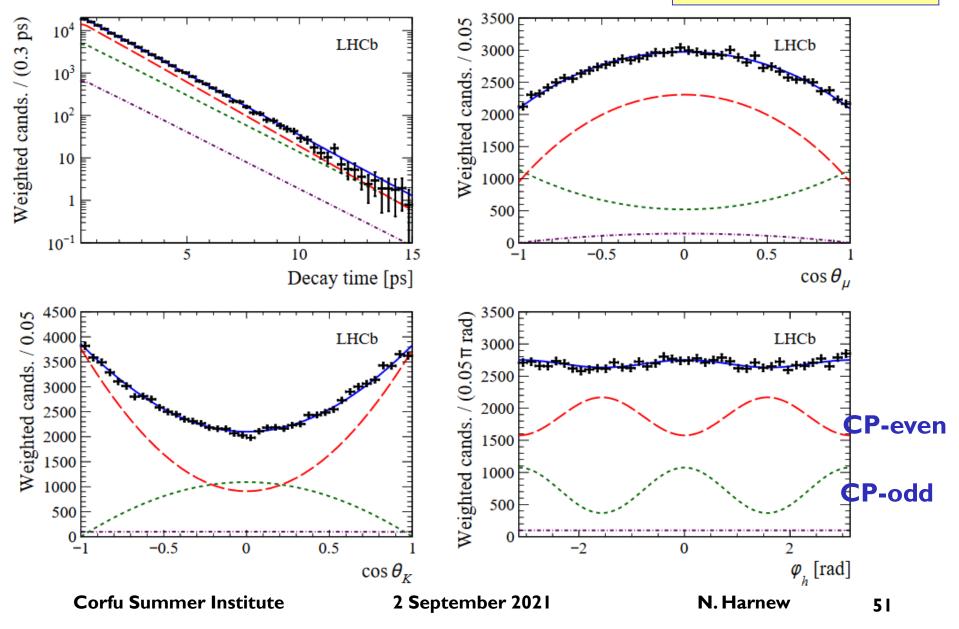


\$\overline{\overlin}\overlin{\overline{\overline{\overline{\overline{\overline{\overlin}\overlin{\overlin}\overlin{\overlin}\overlin{

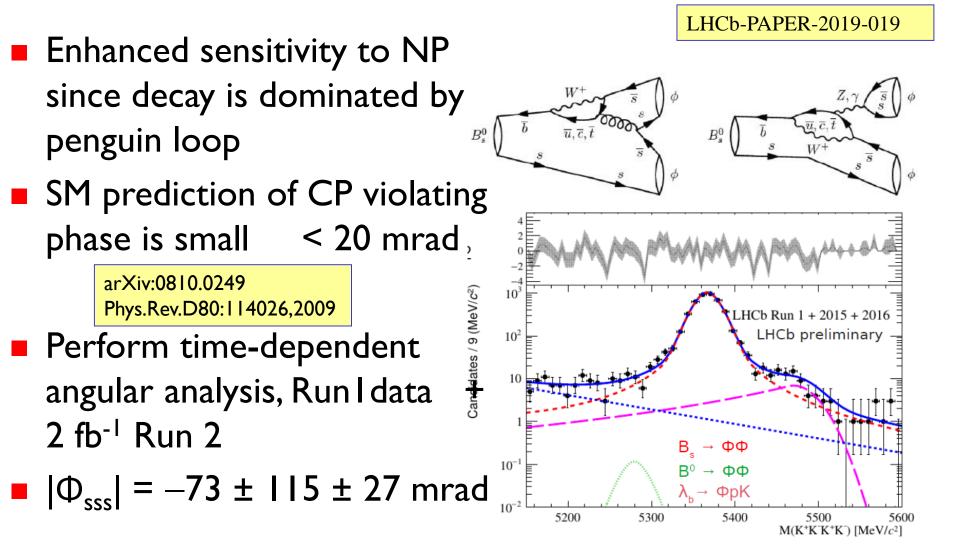
Eur. Phys. J. C 79 (2019) 706

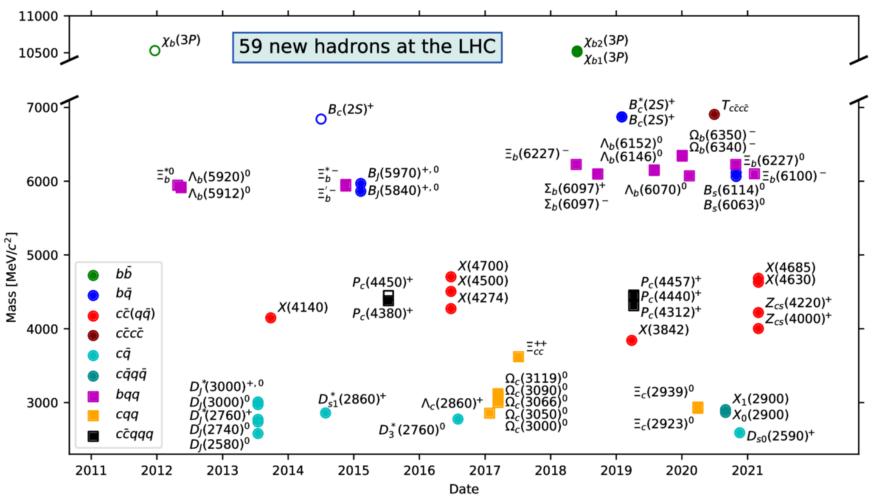
Vector-vector final state: mixture of CP-odd and CP-even components

Need to perform time-dependent $B_s \rightarrow J/\Psi \phi$ angular analysis



Good tagging performance of B_s & B_s is important


Category	$\epsilon_{ m tag}(\%)$	D^2	$\epsilon_{ m tag} D^2(\%)$	
OS only	11.4	0.078	0.88 ± 0.04	
SSK only	42.6	0.032	1.38 ± 0.30	
OS & SSK	23.8	0.104	2.47 ± 0.15	
Total	77.8	0.061	4.73 ± 0.34	N. Harnew


Eur. Phys. J. C 79 (2019) 706

Measurement of CP violation in $B_s \rightarrow \phi \phi$

New hadron discoveries at the LHC

With thanks to Partick Koppenberg

Corfu Summer Institute