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A Brief Digression …

1. Use Poincaré symmetry to fix OPE coefficients between massless Mellin primaries of any spin: 

, 

. 

2. Construct celestial currents from light-transforms of conformally soft gravitons that generate the action of  on 
massless particles: 

. 

. 

3. Verify OPE coefficients also respect .
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Motivation

• Overarching Goal: add to our understanding of quantum gravity 

• Prevailing Idea: holography 

• Quantum gravity can be described by known frameworks (such as QFT) provided 
we find an appropriate recasting in terms of a holographically dual theory 

• Challenge: find (and justify) the dual theory
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Scattering in Asymptotically Flat Spacetimes

• The scattering problem is a natural question in quantum gravitational theories in 
asymptotically flat spacetimes and readily admits a holographic interpretation. 

• First, the data characterizing the scattering problem resides in a slightly different 
space than the gravitational theory. 

• Namely, scattering data is specified at the past and future boundaries of 
spacetime where gravitational effects are weak and perturbative. 

• Second, scattering data in 4D spacetime is organized by symmetries which include 
the global conformal symmetry of theories in two dimensions.

4

A 2D theory with conformal symmetry is a natural candidate for a holographic dual of 
quantum gravity in 4D asymptotically flat spacetimes. 



Celestial Amplitudes

• To investigate the merits of the proposal, it is helpful to work in a basis in which the 
2D conformal symmetry is manifest.  

• Lorentz symmetry  is the 4D interpretation of the 2D global 
conformal symmetry. 

• States which diagonalize a maximal number of the Lorentz generators transform 
most simply under 2D global conformal symmetry. 

• Can simultaneously diagonalize 1 boost & 1 rotation  

 Boost & helicity eigenstates

SO(3,1) ≅ SL(2,ℂ)

⇒
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Celestial Amplitudes
• Boost + helicity eigenstates are related to momentum eigenstates by a change of 

basis. 

• For example, for massless particles  and 

. 

• Celestial amplitudes are constructed by Mellin-transforming each external 
massless particle state: 

.

pμ = ω (1 + zz̄, z + z̄, − i(z − z̄),1 − zz̄)

|Δ, s, z, z̄⟩ = ∫
∞

0

dω
ω

ωΔ |ω, s, z, z̄⟩

𝒜(Δi, si, zi, z̄i) = (
n

∏
j=1

∫
∞

0

dωj

ωj
ωΔj

j )A(ωi, si, zi, z̄i)
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[Kapec, Mitra, Raclariu, & Strominger, hep-th/1609.00282;  Cheung, de la Fuente & Sundrum, hep-th/1609.00732]



Celestial Amplitudes
• Celestial amplitudes transform under Lorentz like correlation functions of primary 

operators:  

, 

. 

• This supports the hope that quantum gravity in asymptotically flat spacetimes 
might be amenable to standard field theory techniques, applied to this auxiliary 
space (a.k.a. the “celestial sphere”).

z → z′� =
az + b
cz + d

, (a b
c d) ∈ SL(2,ℂ)

𝒜(Δi, si, zi, z̄i) → 𝒜(Δi, si, z′�i, z̄′�i) =
n

∏
j=1

(czj + d)2hj(cz̄j + d)2h̄j 𝒜(Δi, si, zi, z̄i)
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[Kapec, Mitra, Raclariu, & Strominger, hep-th/1609.00282;  Cheung, de la Fuente & Sundrum, hep-th/1609.00732]



Celestial Conformal Field Theory

• Ideally would like to know if CCFT is a field theory. 

• More modest question:  

What are the implications of known field theoretic (or non-field theoretic) behavior of 
4D gravitational scattering amplitudes for CCFT? 

• Comments (on why field theory behavior is important): 

• Can provide good perturbative framework. 

• Physical phenomena are known to be encoded in certain analytic behavior. 

• Field theory formalizes decoupling of physics at long & short distances.
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UV and IR Aspects of Celestial Amplitudes
• Focus of the talk: implications of known or assumed UV and IR behavior of 4D 

gravitational scattering amplitudes for celestial amplitudes 

1. EFT expansion 

2. Soft factorization 
[See also Kevin’s and Prahar’s talks and references therein for more recent developments]
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In momentum space, these formalize the insensitivity of low energy physics to the 
details of UV completion. 

These properties are manifest in a basis in which we have diagonalized the 
maximal number of Poincaré generators.     

How do they manifest in the celestial amplitudes?



Outline

1. Review of massless scalar 4-point celestial amplitude 

2. EFT expansion from celestial amplitude 

3. Soft factorization in celestial amplitudes 

4. Open questions
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Massless Scalar 4-point Celestial Amplitude

• First, must identify variables that parametrize celestial amplitudes. 

• Consider Poincaré constrained 4-point massless scalar celestial amplitude. 

1. Lorentz = Global conformal symmetry  

 Only non-trivial function of conformal cross ratios  and , where  . 

2. 4D Translations 

 Only non-trivial function of real part of  and .

⇒ z z̄ z =
z13z24

z12z34

⇒ z β = ∑
i

(Δi − 1)
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[Zlotnikov & Law, hep-th/1910.04356; Arkani-Hamed, MP, Raclariu, & Strominger, hep-th/2012.04208 ]



Massless Scalar 4-point Amplitude
• Derive Poincaré-constrained celestial amplitude by directly transforming momentum 

space amplitude. 

• In momentum space,  massless scalar scattering is constrained by 

1. Lorentz symmetry 

.  

2. Translations  only two  are independent 

.

2 → 2

A = A(pi ⋅ pj)

⇒ pi ⋅ pj

A = M(s, t) δ(4)(
4

∑
i=1

pi)
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Center of mass energy:   
Momentum transfer:       .

s = − (p1 + p2)2 = − 2p1 ⋅ p2,
t = − (p1 + p3)2 = − 2p1 ⋅ p3



Massless Scalar 4-point Celestial Amplitude
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∏
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∞
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4
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ωi

ω

s = ω2, t = − zω2

∼ ∫
∞

0

dω
ω

ωβ
4

∏
j=2

∫
∞

0

dσj

σj
σΔj

j

β =
4

∑
i=1

(Δi − 1)

Parametrize Mandelstam invariants by 
center of mass energy  and 

conformal cross ratio  
ω

z

 Momentum-conserving 
delta function localizes three of 

four integrals

⇒



Massless Scalar 4-point Celestial Amplitude

• Arrive at the following decomposition:
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𝒜(Δi, zi, z̄i) ∼ (∏
i<j

z
1
3 h−hi−hj
ij z̄

1
3 h̄−h̄i−h̄j
ij )δ(z − z̄)∫

∞

0

dω
ω

ωβM(ω2, − zω2)

≡ ℳ(β, z)Fixed by kinematics

Captures dynamics

• Conformal cross ratio replaces ratio of Mandelstam invariants. 

• Center of mass energy  is traded for sum of conformal dimensions  

• Dynamical content is contained in  and related to momentum space matrix element (at fixed angle) by a single 
Mellin transform.

ω β + 4

ℳ



Effective Field Theory Expansion

• Consider scattering of massless scalars mediated by a massive exchange: 

. 

• In momentum space, amplitude admits low-energy (EFT) expansion: 

. 

• Consider celestial amplitude for leading term: 

. 

• Subleading corrections ruin marginal convergence (diverges at upper limit). 

 Celestial amplitudes don’t exist for truncated EFT’s! 

M(s) ∼ λ
M2

s − M2

M(ω) ∼ − λ (1 +
ω2

M2
+

ω4

M4
+ ⋯), s = ω2

ℳ(β) ∼ ∫
∞

0

dω
ω

ωβ(−λ) β=ib= − 2πλδ(b)

⇒

Momentum space scattering amplitudes admit an effective field theory expansion.
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Beyond the Wilsonian Paradigm

• Simple result for full (not truncated) amplitude: 

. 

• Celestial amplitudes are sensitive to UV physics 

• Drastically different result if truncate EFT expansion 

• Really only exist for consistent UV complete theories 

• UV sensitivity is a consequence of scattering boost eigenstates, which contain contributions 
from arbitrarily high-energy modes.

M(s) = λ
M2

s − M2
⇒ ℳ(β) = λMβ iπeiπβ

1 − eiπβ

16

Wilsonian paradigm: low-energy physics is insensitive to the details of the UV.



EFT Expansion in Celestial Amplitudes

• Can we recover the EFT expansion directly from celestial amplitudes? 

• What is the signature of the EFT expansion in celestial amplitudes? 

• Strategy: Use EFT expansion to approximate the amplitude in the lower range of 
integration 

 

 Residues of poles at negative even integer  give coefficients in EFT expansion.

M(s, t) ∼ ∑
p,q

ap,qsptq ∼ ∑
n

an(z)ω2n ⇒ ℳ(β) ⊃ ∫0

dω
ω

ωβ ∑
n

an(z)ω2n ∼ ∑
n

an(z)
β + 2n

⇒ β
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EFT Expansion from Celestial Amplitudes

• Recall example:

Residues of poles at negative even integer  give coefficients in EFT expansion.β
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M(ω) = λ
M2

ω2 − M2
ℳ(β) = λMβ iπeiπβ

1 − eiπβ

M(ω) = − λ∑
n

ω2n

M2n Res[ℳ(β)]β=−2n = −
λ

M2n

EFT expansion Residue at negative 
even integer



Factorization of Infrared Divergences
Soft factorization of momentum space amplitudes in QED with massless charges

19
[Weinberg 1965 ]

A(pi) = eBA0(pi)

Infrared 
divergent Infrared 

finite

Universal soft factor containing all infrared divergences:

B = −
e2

4π2
ln ΛIR ∑

i<j

QiQj ln (ωiωjzijz̄ij)
∼ pi ⋅ pj



Soft Factor as 2D Correlator

•  dependence is entirely in terms of pairwise distances on the 2D plane 

 Express  contribution as 2-point correlation function on the 2D plane 

, 

. 

• Exploit pairwise structure to express entirely as correlation of free field: 

.

(zi, z̄i)

⇒ (zi, z̄i)

B = −
e2

4π2
ln ΛIR ∑

i<j

QiQj ln(ωiωj) − ∑
i<j

QiQj⟨Φ(zi, z̄i)Φ(zj, z̄j)⟩

⟨Φ(zi, z̄i)Φ(zj, z̄j)⟩ =
e2

4π2
ln ΛIR ln |zij |

2

eB = (∏
i

ω
e2

4π2 Q2
i ln ΛIR

i )⟨eiQ1Φ(z1,z̄1)⋯eiQnΦ(zn,z̄n)⟩

20[Nande, MP & Strominger, hep-th/1705.00608]



Factorization Revisited

• Can now express factorization as a statement pertaining to asymptotic states: 

, 

.

A(pi) = eBA0(pi)

eB = (∏
i

ω
e2

4π2 Q2
i ln ΛIR

i )⟨eiQ1Φ(z1,z̄1)⋯eiQnΦ(zn,z̄n)⟩

21[Nande, MP & Strominger, hep-th/1705.00608]

|pk⟩ = ω
e2

4π2 Q2
k ln ΛIR

k eiQkΦ(zk,z̄k) ̂|pk⟩
⇒



Interpretation of Factorization

 Under (Goldstone) shift transformation of , IR divergent factor fully captures non-trivial 
transformation of asymptotic particles under large gauge symmetry.

⇒ Φ

22[Nande, MP & Strominger, hep-th/1705.00608]

|pk⟩ = ω
e2

4π2 Q2
k ln ΛIR

k eiQkΦ(zk,z̄k) ̂|pk⟩

Φ(z, z̄) → Φ(z, z̄) + ε(z, z̄) eiQkΦ(zk,z̄k) → eiQkε(zk,z̄k)eiQkΦ(zk,z̄k)

Transformation of Goldstone boson Transformation of charge  state 
under large gauge symmetry 

Qk



Factorization of Celestial Amplitudes
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𝒜(Δi, zi, z̄i) = (
n

∏
k=1

∫
∞

0

dωk

ωk
ωΔk

k )eBA0(pi)

= ⟨eiQ1Φ(z1,z̄1)⋯eiQnΦ(zn,z̄n)⟩(
n

∏
k=1

∫
∞

0

dωk

ωk
ωΔk+ e2

4π2 Q2
k ln ΛIR

k )A0(pi)

𝒜soft
𝒜hard

⟨Φ(zi, z̄i)Φ(zj, z̄j)⟩ =
e2

4π2
ln ΛIR ln |zij |

2

⇒  has conformal weight eiQkΦ(zk,z̄k) Δ = −
e2

4π2
Q2

k ln ΛIR

Renormalization of dimensions in 
 is needed to account for these 

non-trivial weights. 
𝒜hard}



Infrared Safe Scattering Amplitudes

• To obtain IR safe amplitudes in momentum space, dress charged particles 

, 

, 

. 

Wk[ f ] |pk, Qk⟩

Wk[ f ] = exp −eQk ∫
d3 ⃗q
(2π)3

f( ⃗q )
2q0 ( pk ⋅ ε*α

pk ⋅ q
aα( ⃗q ) −

pk ⋅ εα

pk ⋅ q
a†

α( ⃗q ))
f(0) = 1

24

[Faddeev & Kulish 1970;  
Kapec, Perry, Raclariu & Strominger, hep-th/1703.05448]

Photons



Dressing with Boost Eigenstate Photons

• Choose conformally invariant dressing  . 

 

f( ⃗q ) = 1

Wk[ f = 1] = exp −
eQk

2(2π)3 ∫ d2z ( 1
z̄ − z̄k ∫

∞

0
dω (a+(ω, z, z̄) − a†

−(ω, z, z̄)) + h . c . )

25

∫
∞

0

dω
ω

ωΔa+(ω, z, z̄)
Δ=1

⇒ Dressing involves photon in boost 
eigenstate with boost weight !Δ = 1



Boost Weight  PhotonsΔ = 1

• Two photon modes with boost weight : 

1. Generator of large gauge symmetry 

2. Its symplectic partner 

[Donnay, Puhm & Strominger, hep-th/1810.05219]

Δ = 1

26

Soft photon 
theorem 

Ward identity 
for large gauge 

symmetry
=

[He, Mitra, Porfyriadis & Strominger, hep-th/1407.3789; 
Kapec, MP & Strominger, hep-th/1506.02906]

Soft photons generate large gauge symmetry 

lim
ω→0

ωa+(ω, z, z̄) ∼ ∫
∞

0
dω δ(ω)ω a+(ω, z, z̄)

∼ lim
Δ→1

(Δ − 1)∫
∞

0

dω
ω

ωΔa+(ω, z, z̄)

Conformally soft currents involve 
residues in conformal dimension, similar 

to EFT expansion 

[Cheung, de la Fuente,& Sundrum, hep-th/1609.00732; 
Fan, Fotopoulos & Taylor, hep-th/1903.01676;  

MP, Raclariu, & Strominger, hep-th/1904.10831 ]



Boost Weight  PhotonsΔ = 1

Generator of large gauge transformations: 

Jz ∼ lim
ω→0

ω [a+(ω, z, z̄) + a†
−(ω, z, z̄)]

∼ lim
Δ→1

(Δ − 1)∫
∞

0

dω
ω

ωΔ [a+(ω, z, z̄) + a†
−(ω, z, z̄)]

27

 mode in dressing: Δ = 1

Sz ∼ ∫
∞

0

dω
ω

ωΔ [a+(ω, z, z̄) − a†
−(ω, z, z̄)]

Δ=1

[a(ω, z, z̄), a†(ω′�, z′�, z̄′�)] ∼
δ(ω − ω′ �)

ω
δ(2)(z − z′�) ⇒  

  and  are symplectic partners 

 

 Identify  with Goldstone boson!

[Jz, Sw̄] ∼ δ(2)(z − w)

⇒ J S

Sz = i∂zΦ

⇒ S[Donnay, Puhm & Strominger, hep-th/1810.05219]



Dressing with Boost Eigenstate Photons
• Return to dressing with boost eigenstate photons: 

Wk[ f = 1] ∼ exp −Qk ∫
d2z
2π ( 1

z̄ − z̄k ∫
∞

0
dω (a+(ω, z, z̄) − a†

−(ω, z, z̄)) + h . c . )

28

∫
∞

0

dω
ω

ωΔ [a+(ω, z, z̄) − a†
−(ω, z, z̄)]

Δ=1

∼ −
1
2

i∂zΦ

⇒ Wk[ f = 1] = e−iQkΦ(zk,z̄k)
Precisely cancels IR divergent 

factor previously found in 
factorization! 



Infrared Safe Celestial Amplitudes

• Obtain natural construction of IR safe celestial amplitudes 

• Dressing with boost weight  photons precisely cancels IR divergent 
correlation of Goldstone bosons. 

, 

.

Δ = 1

𝒜dressed = 𝒜hard

𝒜hard = (
n

∏
k=1

∫
∞

0

dωk

ωk
ωΔ′�k

k )A0(pi)
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Factorization in Gravity

• Soft factorization of massless particle momentum-space amplitudes in gravity: 

, 

where the universal soft factor containing all IR divergences is given by 

 .

A(pi) = eBA0(pi)

eB = exp −
1
ϵ

G
2π

n

∑
i,j=1

pi ⋅ pj ln (
2pi ⋅ pj

μ2 )

30

, 
 regulates the IR 

divergences

d = 4 − 2ϵ
ϵ

[Weinberg 1965; Naculich & Schnitzer hep-th/1101.1524]



Soft Factor as a 2D Correlator

• Parametrize by energies and points on 2D plane: 

, 

 

• Expressed as a correlation of free fields: 

, 

.

eB = exp
1
ϵ

G
π

n

∑
i≠j

ηiηjωiωj𝒢(zi, z̄i; zj, z̄j)

𝒢(zi, z̄i; zj, z̄j) = zijz̄ij log(zijz̄ij) .

eB = ⟨eiη1ω1C(z1,z̄1)⋯eiηnωnC(zn,z̄n)⟩
⟨C(zi, z̄i)C(zj, z̄j)⟩ = −

1
ϵ

2G
π

𝒢(zi, z̄i; zj, z̄j)

31[Himwich, Narayanan, MP, Paul & Strominger, hep-th/2005.13433]

pμ
i = ηiωi(1 + ziz̄i, ⋯),

out/in : ηi = ± 1



Interpretation of Factorization

• Factorization as a statement pertaining to asymptotic states: 

. 

• Identify factorization as decomposition according to supertranslation symmetry: 

.

|pk⟩ = eiωkC(zk,z̄k) | ̂pk ⟩

δfC(z, z̄) = f(z, z̄) ⇒ − iδfeiωkC(zk,z̄k) = ωk f(zk, z̄k)eiωkC(zk,z̄k)

32

 transforms like a 
Goldstone boson associated 
supertranslation symmetry

C Reproduces net infinitesimal 
transformation of single particle states 

under supertranslations: 
.−iδf |pk⟩ = ωk f(zk, z̄k) |pk⟩

[Himwich, Narayanan, MP, Paul & Strominger, hep-th/2005.13433]



Factorization of Celestial Amplitudes

• Soft component is an operator for celestial amplitudes!

33

𝒜(Δi, zi, z̄i) = (
n

∏
k=1

∫
∞

0

dωk

ωk
ωΔk

k )⟨eiη1ω1C(z1,z̄1)⋯eiηnωnC(zn,z̄n)⟩ A0(pi)

= ⟨eiP1C(z1,z̄1)⋯eiPnC(zn,z̄n)⟩(
n

∏
k=1

∫
∞

0

dωk

ωk
ωΔk

k )A0(pi)

𝒜soft
𝒜hard

Pk |pk⟩ = ηkωk |pk⟩

Pk |Δk, zk, z̄k⟩ = ∫
∞

0

dωk

ωk
ωΔk

k Pk |ωk, zk, z̄k⟩ = ηk |Δk + 1,zk, z̄k⟩



Infrared Safe Scattering Amplitudes

• Obtain infrared-safe amplitudes in momentum space by dressing particles with 
coherent clouds of gravitons 

. 

[Choi, Kol & Akhoury, hep-th/1708.05717; Choi & Akhoury, hep-th/1712.04551] 

• Conformally invariant choice  can be identified with exponentiated 
Goldstone boson: 

.

Wk[ f ] |pk⟩, Wk[ f ] = exp [−
κ
2 ∫

d ⃗q
(2π)3

f( ⃗q )
2q0

pμ
k pν

k

pk ⋅ q (ε*α
μν aα( ⃗q ) − εα

μνa†
α( ⃗q ))]

f( ⃗q ) = 1

Wk[ f = 1] = e−iηkωkC(zk,z̄k)

34



Infrared Safe Celestial Amplitudes

• Conformally invariant graviton dressing precisely cancels IR divergent correlator of 
Goldstone bosons : 

, 

. 

C

𝒜dressed = 𝒜hard

𝒜hard = (
n

∏
k=1

∫
∞

0

dωk

ωk
ωΔk

k )A0(pi)
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Summary

• Identified Poincaré-constrained 4-point celestial amplitude (for Mellin primaries) 

• Non-trivial dependence on real part of conformal cross ratio  and sum of conformal 
dimensions  

• Identified EFT expansion implies poles at negative even integer  

• Soft factorization in momentum space is current algebra factorization in celestial 
amplitudes 

• IR safe celestial amplitudes obtained by dressing with (conformal primary) 
Goldstone bosons.

z
β + 4

β
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Open Questions

1. Minimal number of variables (analogues of  and ) for higher-point Poincaré-

constrained celestial amplitudes. 

2. Precise relation between causality in 4D and supertranslation symmetry of 
scattering amplitudes.

β z
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Thank You!


