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A Brief Digression...

’

“Celestial Operator Product Expansions and w, . .. Symmetry for All Spins’
2108.07763 with Elizabeth (Mina) Himwich and Kyle Singh

Use Poincaré symmetry to fix OPE coefficients between massless Mellin primaries of any spin:
51,82
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Construct celestial currents from light-transforms of conformally soft gravitons that generate the action of w,, _ on
massless particles:
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Verify OPE coefficients also respect w_ .

[see also Hongliang Jiang’s talk and paper 2108.08799]



Motivation

* Overarching Goal: add to our understanding of quantum gravity
* Prevailing Idea: holography

* Quantum gravity can be described by known frameworks (such as QFT) provided
we find an appropriate recasting in terms of a holographically dual theory

* Challenge: find (and justify) the dual theory



Scattering in Asymptotically Flat Spacetimes

* The scattering problem is a natural question in quantum gravitational theories in
asymptotically flat spacetimes and readily admits a holographic interpretation.

* First, the data characterizing the scattering problem resides in a slightly different
space than the gravitational theory.

* Namely, scattering data is specified at the past and future boundaries of
spacetime where gravitational effects are weak and perturbative.

* Second, scattering data in 4D spacetime is organized by symmetries which include
the global conformal symmetry of theories in two dimensions.

=) A 2D theory with conformal symmetry is a natural candidate for a holographic dual of
quantum gravity in 4D asymptotically flat spacetimes.



Celestial Amplitudes

To investigate the merits of the proposal, it is helpful to work in a basis in which the
2D conformal symmetry is manifest.

Lorentz symmetry SO(3,1) = SL(2,C) is the 4D interpretation of the 2D global
conformal symmetry.

States which diagonalize a maximal number of the Lorentz generators transform
most simply under 2D global conformal symmetry.

Can simultaneously diagonalize 1 boost & 1 rotation

= Boost & helicity eigenstates



Celestial Amplitudes

* Boost + helicity eigenstates are related to momentum eigenstates by a change of
basis.

« For example, for massless particles p* = w (1 +zZ,z+ 7, —i(z—2),1 — ZZ) and

* dw
| A, 5,2,2) =[ —a)A|a),S,z,Z).
0 @

* Celestial amplitudes are constructed by Mellin-transforming each external
massless particle state:
® dw.

o %

i=1 J

[Kapec, Mitra, Raclariu, & Strominger, hep-th/1609.00282; Cheung, de la Fuente & Sundrum, hep-th/1609.00732]
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Celestial Amplitudes

* Celestial amplitudes transform under Lorentz like correlation functions of primary
operators:

7> 7=

az+b a b
cz+d’ c d

> e SL(2,C),

n _
Ay 532, %) = A (B, 5,2, Z) = H (cz;+ d)*i(cz; + )i | A (A 5,2 7)-
j=1
* This supports the hope that quantum gravity in asymptotically flat spacetimes

might be amenable to standard field theory techniques, applied to this auxiliary
space (a.k.a. the “celestial sphere”).

[Kapec, Mitra, Raclariu, & Strominger, hep-th/1609.00282; Cheung, de la Fuente & Sundrum, hep-th/1609.00732]



Celestial Conformal Field Theory

* Ideally would like to know if CCFT is a field theory.

* More modest question:

What are the implications of known field theoretic (or non-field theoretic) behavior of
4D gravitational scattering amplitudes for CCFT?

« Comments (on why field theory behavior is important):
* Can provide good perturbative framework.
* Physical phenomena are known to be encoded in certain analytic behavior.

* Field theory formalizes decoupling of physics at long & short distances.



UV and IR Aspects of Celestial Amplitudes

* Focus of the talk: implications of known or assumed UV and IR behavior of 4D
gravitational scattering amplitudes for celestial amplitudes

1. EFT expansion

2. Soft factorization

[See also Kevin’s and Prahar’s talks and references therein for more recent developments]

In momentum space, these formalize the insensitivity of low energy physics to the
details of UV completion.

These properties are manifest in a basis in which we have diagonalized the
maximal number of Poincaré generators.

How do they manifest in the celestial amplitudes?



Outline

Review of massless scalar 4-point celestial amplitude
EFT expansion from celestial amplitude
Soft factorization in celestial amplitudes

Open questions



Massless Scalar 4-point Celestial Amplitude

* First, must identify variables that parametrize celestial amplitudes.
» Consider Poincaré constrained 4-point massless scalar celestial amplitude.

1. Lorentz = Global conformal symmetry

= Only non-trivial function of conformal cross ratios z and zZ, where z =
{12434

2. 4D Translations

= Only non-trivial function of real part of zand f = Z (A, = 1).

l

[Zlotnikov & Law, hep-th/1910.04356; Arkani-Hamed, MP, Raclariu, & Strominger, hep-th/2012.04208]
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Massless Scalar 4-point Amplitude

* Derive Poincaré-constrained celestial amplitude by directly transforming momentum
space amplitude.

* In momentum space, 2 — 2 massless scalar scattering is constrained by

1. Lorentz symmetry
A=AQp;- pj)'

2. Translations = only two p; - p; are independent

A = M(s, 1) 5<4>( ip,).

i=1

—2p; - Py,
—2p; - p3-

12

Center of mass energy: § = — (pl +p2

) =
Momentum transfer: ¢t = — (p; + p;)* =



Massless Scalar 4-point Celestial Amplitude

Parametrize Mandelstam invariants by

s = 0)2, I =—2zZw center of mass energy @ and
) conformal cross ratio z
da) A @ 4
(A7) = (|| —0") M. 59( Y pi)
(%) do 4 © o A < -
0o @ imdo 9 @
p= Z (Ai - 1) = Momentum-conserving
i=1 delta function localizes three of

four integrals
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Massless Scalar 4-point Celestial Amplitude

* Arrive at the following decomposition:

_ Lph—h, _Lh—h—h _ [ dow
‘Q[(Ai’ Zis Zi) ~ < Zijs' | ]Zl; l ]>5(Z - Z)J _a)ﬂM(a)Z, - Za)z)
i<j o @®
Fixed by kinematics = M (P,2)

Captures dynamics

* Conformal cross ratio replaces ratio of Mandelstam invariants.
* Center of mass energy w is traded for sum of conformal dimensions  + 4

* Dynamical content is contained in .Z and related to momentum space matrix element (at fixed angle) by a single
Mellin transform.



Effective Field Theory Expansion

Momentum space scattering amplitudes admit an effective field theory expansion.

* Consider scattering of massless scalars mediated by a massive exchange:
2
M(s) ~ A

s— M2

* In momentum space, amplitude admits low-energy (EFT) expansion:

* Consider celestial amplitude for leading term:
® dw —ib
M) ~ J TP =)"Z —2m05().
0 a)
* Subleading corrections ruin marginal convergence (diverges at upper limit).

= Celestial amplitudes don’t exist for truncated EFT’s!
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Beyond the Wilsonian Paradigm

Wilsonian paradigm: low-energy physics is insensitive to the details of the UV.

* Simple result for full (not truncated) amplitude:

M? ime'™P
= M(P) = IMP—

M(s) =4 :
(S) 1 — eiﬂﬂ

s — M?

* Celestial amplitudes are sensitive to UV physics
* Drastically different result if truncate EFT expansion
* Really only exist for consistent UV complete theories

* UV sensitivity is a consequence of scattering boost eigenstates, which contain contributions
from arbitrarily high-energy modes.
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EFT Expansion in Celestial Amplitudes

* Can we recover the EFT expansion directly from celestial amplitudes?
* What is the signature of the EFT expansion in celestial amplitudes?

» Strategy: Use EFT expansion to approximate the amplitude in the lower range of
integration

M(s.0) ~ Y a, 5’17~ Y a,@o™ =  MP D J

P4 0

dw Z a,(z2)
) @ Zn a(2)o p+2n

n

= Residues of poles at negative even integer f give coefficients in EFT expansion.



EFT Expansion from Celestial Amplitudes

Residues of poles at negative even integer f give coefficients in EFT expansion.

* Recall example:

M(w) = 1 i — M) = AMP ine'™
w) = —
w? — M? 1 — einb
EFT expansion 1 1 ReSieGLl:r:1 ?; :eeggearttive
M B ; a)2n 2
(@) = — Z e — ResLA())p- 2, = =~
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Factorization of Infrared Divergences

Soft factorization of momentum space amplitudes in QED with massless charges

A(pz) — eBAO(pz)

Infrared j \

Infrar
divergent ared

finite

Universal soft factor containing all infrared divergences:

B=— 4— InAyk Y Q0 (a)la)]zl]zlj)

i<j
~ Pi" P;

[Weinberg 1965]
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Soft Factor as 2D Correlator

* (g;, z;) dependence is entirely in terms of pairwise distances on the 2D plane

= Express (g;, Z;) contribution as 2-point correlation function on the 2D plane

2
B=— 4e—ﬂ2 InAy Y 00 In(ww) — Y QO(P(.Z)P(z. 7)),
i<j <j
2

(D(z;, 2)P(2;, Z) = — In A ln| Zl]|

* Exploit pairwise structure to express entirely as correlation of free field:
6‘2 2
B _ (Ha)imQ,- 1nA1R> L CEA N CRAIN
i

[Nande, MP & Strominger, hep-th/1705.00608] ,,



Factorization Revisited

« Can now express factorization as a statement pertaining to asymptotic states:

A(p) = e®Ay(p),

B FOIMARY i0,02). .. 10,05
e = <Ha)l4” ><el 194&1,41 ...el n = sy >'

l

e2 27 B o —
— L|pk> — C()];L?Qk In AIReiQk(I)(Zk,Zk) |pk> J

\

[Nande, MP & Strominger, hep-th/1705.00608] .,



Interpretation of Factorization

2
< 02InA,, N
Py = @~ e UG | )
D(z,2) — D(z,2) + £(z,2) P I0PLEE) _y o037 o IQP (@2
Transformation of Goldstone boson Transformation of charge Q, state

under large gauge symmetry

= Under (Goldstone) shift transformation of @, IR divergent factor fully captures non-trivial
transformation of asymptotic particles under large gauge symmetry.

[Nande, MP & Strominger, hep-th/1705.00608] ,



Factorization of Celestial Amplitudes

A(A, 7 %) = (ﬁ‘w@wk et Agp)

k=170 @k
. _ do, A+S02InA
— <ezQ1(I>(z1,Z1) zQ D(z,.2, )><H[ k KT %k IR>A0(19,-)
4’-”__\#’&/
'stoft
Qihard
2
(D(z; Zi)q)( % )> = ln AjgIn] Ljj | Renormalization of dimensions in
2 A }.rq 1 needed to account for these
= ¢"%®G%) has conformal weight A = — —QZIn Ay, non-trivial weights.
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Infrared Safe Scattering Amplitudes

* To obtain IR safe amplitudes in momentum space, dress charged particles

Wil f] ka, Qk>,

Pr-9q ,(q ;

f(0) = 1. Photons

d3—> — L pola N
W,Lf] = exp —erJ 1 ﬂq)(” S o P e a;@) |

[Faddeev & Kulish 1970;
Kapec, Perry, Raclariu & Strominger, hep-th/1703.05448] ,,



Dressing with Boost Eigenstate Photons

 Choose conformally invariant dressing f(q¢) = 1.

Wlf=1]l=exp |- O Ja’zz — 1_ [ dw (a+(a),z,2)—ai(a),z,2)) +h.c.
\V22n)3 Z=Zk Jo
J°° do

;60 a,(®,z,72)
0

A=1

Dressing involves photon in boost
eigenstate with boost weight A = 1!
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Boost Weight A = 1 Photons

* Two photon modes with boost weight A = 1:
1.  Generator of large gauge symmetry
2. Its symplectic partner
Soft photons generate large gauge symmetry

[Donnay, Puhm & Strominger, hep-th/1810.05219]

lim wa, (@,2,7) ~ J do 8()o a,(@,2,7)

w—0

0
Ward identity “ dw
Soft photon ~ lim (A — I)J —ow’a (w,2,7)
+ o 9
theorem for large gauge Aol )

symmetry \

[He, Mitra, Porfyriadis & Strominger, hep-th/1407.37809; Conformally soft currents involve
Kapec, MP & Strominger, hep-th/1506,02906] residues in conformal dimension, similar
to EFT expansion
[Cheung, de la Fuente,& Sundrum, hep-th/1609.00732;
Fan, Fotopoulos & Taylor, hep-th/1903.01676;
MP, Raclariu, & Strominger, hep-th/1904.10831 ]



Boost Weight A = 1 Photons

Generator of large gauge transformations:

J.~limo [a(@,2,2) + al(o,2,2)]

w—0

. « da) A _ + _
~lmA-1)| —w [a+(a), z,2) +al(w,z, Z)]

AO=0) e - 2
w

la(w, z,2),d" (@', 2,2 ~

[Donnay, Puhm & Strominger, hep-th/1810.05219]

A = 1 mode in dressing:

S, ~ J d—wa)A laj(w,2,2) — al(w,z,2)|
Z a) + 2 2 —_ 2 b
0

[Jza Sw] ~ 5Pz —w)
= J and § are symplectic partners
S, =1i0,®

= Identify S with Goldstone boson!
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Dressing with Boost Eigenstate Photons

* Return to dressing with boost eigenstate photons:

d*z 1 °° _ _
W,Lf = 11 ~ exp —QkJ [ dw (a(@,2,2) — al(®,2,2) + h.c.
0

27Z Z—Zk

1.
~ — Elazq)

A=l

*® dw
[ —® [a(@,2,2) — al(®,2,2)]
0o @

Li0,®(z,.2) Precisely cancels IR divergent
$ Wilf=1]l=e (0P factor previously found in

factorization!
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Infrared Safe Celestial Amplitudes

* Obtain natural construction of IR safe celestial amplitudes

 Dressing with boost weight A = 1 photons precisely cancels IR divergent
correlation of Goldstone bosons.

[ o4 dressed — o4 hard’ ]
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Factorization in Gravity

* Soft factorization of massless particle momentum-space amplitudes in gravity:

A(p) = e®Ay(p),

where the universal soft factor containing all IR divergences is given by

) 16w (o d=4-2
e =¢€X i ;o p- 1N .
P Py Pi* Pj 42 ¢ regulates the IR

divergences

ij=1

[Weinberg 1965; Naculich & Schnitzer hep-th/1101.1524]

30



Soft Factor as a 2D Correlator

* Parametrize by energies and points on 2D plane:

. 1G ¢ o
i#] p} = noll +zz; ),
out/in :;; ==+ 1

f(zi, Z; s ZJ) = lezlj 1Og(ZlJZlJ) .
* Expressed as a correlation of free fields:
eB = <einlwlC(Zl’Zl)...einnwnc(zn’zn)>,

_ _ 1 2G o
(C(z,2)C(z 2)) = — ——(2, 25 2 Z))-
€ T

[Himwich, Narayanan, MP, Paul & Strominger, hep-th/2005.13433] =



Interpretation of Factorization

* Factorization as a statement pertaining to asymptotic states:

| ) = @ | By,

* Identify factorization as decomposition according to supertranslation symmetry:

07C(z,2) = f(2,2) = = ide G = g, flz,, 7)e G,

__am—

C transforms like a
Goldstone boson associated
supertranslation symmetry

Reproduces net infinitesimal
transformation of single particle states
under supertranslations:
—i6¢| pr) = W1 f(2 Z) | Pr)-

[Himwich, Narayanan, MP, Paul & Strominger, hep-th/2005.13433]

32



Factorization of Celestial Amplitudes

L dw _
ﬂ(Al, Zl’ Zl) — <H J _ka)Ak> <elﬂ10)1C(Zl Z]) ”/Ina)nc(zn’zn)> Ao(pl)
0

k=1 Wi
_ iP,C(z,2y). .. ,iP,C(2,.2,) w Ak A
<€ e > O(pl)
‘Q{soft '
'Qihard
P p) = may | po
dw
P Ay 72y = ‘ ?ka) Pl o 20 Zi) = M| A+ 1,7, Zg)
0o W

» Soft component is an operator for celestial amplitudes!
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Infrared Safe Scattering Amplitudes

* Obtain infrared-safe amplitudes in momentum space by dressing particles with
coherent clouds of gravitons

dq f(q) pl )
Wilfllpw,  Wilfl=exp [—gJ 1_J4) PLri (J a(q)—e“cﬁ(q))]

2n)* 29° py-q
[Choi, Kol & Akhoury, hep-th/1708.05717; Choi & Akhoury, hep-th/1712.04551]

» Conformally invariant choice f('¢") = 1 can be identified with exponentiated
Goldstone boson:

Wlf = 1] = e,
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Infrared Safe Celestial Amplitudes

* Conformally invariant graviton dressing precisely cancels IR divergent correlator of
Goldstone bosons C:

[ o4 dressed — A hard’ ]

n (0]

Dhara = (H‘ @%Ak)Ao(Pi)-

k=170 @k

35



Summary

Identified Poincaré-constrained 4-point celestial amplitude (for Mellin primaries)

* Non-trivial dependence on real part of conformal cross ratio z and sum of conformal
dimensions f + 4

Identified EFT expansion implies poles at negative even integer 3

Soft factorization in momentum space is current algebra factorization in celestial
amplitudes

IR safe celestial amplitudes obtained by dressing with (conformal primary)
Goldstone bosons.
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Open Questions

Minimal number of variables (analogues of  and z) for higher-point Poincaré-

constrained celestial amplitudes.

Precise relation between causality in 4D and supertranslation symmetry of

scattering amplitudes.
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Thank You!



