Search for Higgs boson pair production in the two bottom quarks plus two photons final state with the ATLAS detector Corfu 2021 conference

1st September 2021,

Mohamed BELFKIR

on behalf of the ATLAS Collaboration

Higgs boson pair production - HH

- Two Higgs bosons produced in a single pp collision
- $\bullet\,$ HH cross-section is $1000\times$ smaller than single Higgs one
- Still challenging, limits on its production cross-section
- Could be enhanced by Beyond Standard Model physics:
 - Non-resonant: self-coupling variation λ
 - Resonant: new particles X

Higgs boson self-coupling

- Higgs boson trilinear coupling: self-coupling
- Controls the shape of the Higgs potential
 - $\lambda^{SM} \sim$ 0.13, to be experimentally verified
- BSM modifications quantified as $\kappa_{\lambda} = \frac{\lambda}{\lambda^{SM}}$, can manifest as:
 - Total cross-section
 - Differential cross-section
- Measurement of $\kappa_{\lambda} \rightarrow \kappa_{\lambda} \neq 1$, presence of BSM physics

Higgs boson pair production at the LHC

- Production modes:
 - **<u>non-resonant</u>** at 13 TeV for $m_H = 125.09$ GeV:
 - ggF: σ^{ggF}_{HH} = 31.02 fb
 VBF: σ^{VBF}_{HH} = 1.72 fb
 - resonant ggF: Spin 0 decay, $m_X \in [251, 1000]$ GeV

Di-Higgs boson decay modes

	bb	ww	ττ	ZZ	γγ
bb	33%				
ww	25%	4.6%			
ττ	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26% _*	0.10%	0.029%	0.013%	0.0005%

• Focusing on $HH \rightarrow b\bar{b}\gamma\gamma$ (Golden channel)

- Despite low decay rate, one of the most sensitive channels:
 - **High** $H \rightarrow b\bar{b}$ branching ratio
 - Very **clean** signature
 - Excellent m_{γγ} mass resolution
 - Good signal extraction

Di-Higgs boson decay modes

		bb	ww	ττ	ZZ	γγ
	bb	33%				
	ww	25%	4.6%			
	ττ	7.4%	2.5%	0.39%		
	ZZ	3.1%	1.2%	0.34%	0.076%	
016	γγ	0.26%	0.10%	0.029%	0.013%	0.0005%

ATLAS-CONF-2021-016

• Focusing on $HH \rightarrow b\bar{b}\gamma\gamma$ (Golden channel)

- Despite low decay rate, one of the most sensitive channels:
 - High $H \rightarrow b\bar{b}$ branching ratio
 - Very **clean** signature
 - **Excellent** $m_{\gamma\gamma}$ mass resolution
 - Good signal extraction

Data used

- Previous search used 2015-2016 data, $\mathcal{L}_{int} = 36.1 \text{ fb}^{-1}$ JHEP 11 (2018) 040
- Today presentation: search with full Run-2 data
 - data-taking: 2015-2018
 - $\mathcal{L}_{int} = 139 \text{ fb}^{-1}$

	HH	$ extsf{HH} ightarrow bar{b}\gamma\gamma$	${\sim}10\%$ eff.
Events	4.3k	11	$\mathcal{O}(1)$

Object and event pre-selection

- **Di-photon trigger**, efficiency:
 - 83% for SM HH signal
 - 70% for resonant signal ($m_X = 300 \text{ GeV}$)
- \geq 2 Tight and isolated photons (H $\rightarrow \gamma\gamma$):
 - $\frac{p_T^{T}}{m_{\gamma\gamma}} > 35\%$ (25%) for leading (subleading)
 - $m_{\gamma\gamma}^{\prime\prime}$, built with the two leading photons, satisfies $105 < m_{\gamma\gamma} < 160$ GeV
- Exactly 2 *b*-jet $(H \rightarrow b\bar{b})$:
 - particle flow jet (p_{T} > 25 GeV & $|\eta| < 2.5$)
 - b-tagging at 77% efficiency (DL1r algorithm)
 - *b*-jet energy correction
- < 6 jets, reduce hadronic $t\bar{t}H$
- Zero leptons, reduce semi-leptonic $t\bar{t}H$
- Common for resonant and non-resonant analysis

Dominant backgrounds

- Single $H \rightarrow \gamma \gamma$: ggF + $t\bar{t}H$ + ZH
- Continuum $\gamma\gamma$ + jets

- Two mass regions:
 - High mass $m^*_{bar{b}\gamma\gamma}>$ 350 GeV
 - Low mass $m^*_{bar{b}\gamma\gamma} < 350$ GeV
- In each mass region, **BDT** trained to discriminating signal from backgrounds:
 - High mass: SM HH ($\kappa_\lambda=1$)
 - Low mass: **BSM HH** ($\kappa_{\lambda} = 10$)
- Same inputs: object and event kinematic
- 4 categories, maximum combined significance:
 - High mass: tight and loose BDT
 - Low mass: tight and loose BDT

$$m^*_{bar{b}\gamma\gamma}=m_{bar{b}\gamma\gamma}-m_{bar{b}}-m_{\gamma\gamma}+250~{
m GeV}$$

- Two mass regions:
 - High mass $m^*_{b\bar{b}\gamma\gamma} > 350$ GeV
 - Low mass $m^*_{b\bar{b}\gamma\gamma} < 350$ GeV
- In each mass region, BDT trained to discriminating signal from backgrounds:
 - High mass: SM HH ($\kappa_{\lambda} = 1$)
 - Low mass: BSM HH ($\kappa_{\lambda} = 10$)
- Same inputs: object and event kinematic
- 4 categories, maximum combined significance:
 - High mass: tight and loose BDT
 - Low mass: tight and loose BDT

$$m^*_{bar{b}\gamma\gamma} = m_{bar{b}\gamma\gamma} - m_{bar{b}} - m_{\gamma\gamma} + 250 \; {
m GeV}$$

- Two mass regions:
 - High mass $m^*_{b\bar{b}\gamma\gamma} > 350$ GeV
 - Low mass $m^*_{b\bar{b}\gamma\gamma} < 350$ GeV
- In each mass region, BDT trained to discriminating signal from backgrounds:
 - High mass: SM HH ($\kappa_{\lambda} = 1$)
 - Low mass: BSM HH ($\kappa_{\lambda} = 10$)
- Same inputs: object and event kinematic
- 4 categories, maximum combined significance:
 - High mass: tight and loose BDT
 - Low mass: tight and loose BDT

$$m^*_{bar{b}\gamma\gamma}=m_{bar{b}\gamma\gamma}-m_{bar{b}}-m_{\gamma\gamma}+250~{
m GeV}$$

- Two mass regions:
 - High mass $m^*_{b\bar{b}\gamma\gamma} > 350$ GeV
 - Low mass $m^*_{b\bar{b}\gamma\gamma} < 350$ GeV
- In each mass region, BDT trained to discriminating signal from backgrounds:
 - High mass: SM HH ($\kappa_{\lambda} = 1$)
 - Low mass: BSM HH ($\kappa_{\lambda} = 10$)
- Same inputs: object and event kinematic
- 4 categories, maximum combined significance:
 - High mass: tight and loose BDT
 - Low mass: tight and loose BDT

$$m^*_{bar{b}\gamma\gamma}=m_{bar{b}\gamma\gamma}-m_{bar{b}}-m_{\gamma\gamma}+$$
250 GeV

Resonant categorization

- Two **BDTs** trained discriminating signal from:
 - **BDT** $_{\gamma\gamma}$: continuum $\gamma\gamma$ +jets
 - **BDT**_{SingleH}: single Higgs
- Inclusive training for all resonances masses
- BDTs scores combined in quadrature

$$rac{1}{\sqrt{\mathcal{C}_1^2+\mathcal{C}_2^2}}\sqrt{\mathcal{C}_1^2\left(rac{\mathsf{BDT}_{\gamma\gamma}+1}{2}
ight)^2+\mathcal{C}_2^2\left(rac{\mathsf{BDT}_{\mathit{signletl}}+1}{2}
ight)^2}$$

- 1 category maximizes significance per resonance
- $m^*_{b\bar{b}\gamma\gamma}$ cut at $\pm 2\sigma$ ($\pm 4\sigma$) for each m_X (900-1000 GeV)

 $C_2 = 1 - C_1$

Signal extraction

- Non-resonant & resonant: $m_{\gamma\gamma}$ fit
- HH signal (ggF + VBF), single Higgs and resonant signal:
 - from Monte Carlo using Double-sided Crystal-Ball
 - Yield parametrized as a function of κ_λ for non-resonant search
- Continuum $\gamma\gamma$ + jets:
 - fully data driven
 - smoothly falling analytic function
 - Spurious signal test: quantify model bias \rightarrow systematic uncertainty

most sensitive category

• No significant signal observed

• $\frac{\sigma_{HH}}{\sigma_{HH}^{SM}}$ limit: **4.1** (Exp. **5.5**)

- κ_{λ} constrain: [-1.5, 6.7] (Exp. [-2.4, 7.7])
- Statistically limited
 - Systematic effect \sim 4%
 - background modelling & photon energy scale
- 5× improvement w.r.t 36 fb $^{-1}$ analysis
 - Increased luminosity: 2×
 - Analysis improvement: 3×
 - *m_{HH}* categorization and MVA strategy (80%)
 - b-jet energy calibration (7%)

<u>ا</u>..

- No significant signal observed
- $\frac{\sigma_{HH}}{\sigma_{HH}^{SM}}$ limit: **4.1** (Exp. **5.5**)
- κ_λ constrain: [-1.5, 6.7] (Exp. [-2.4, 7.7])
- Statistically limited
 - Systematic effect ~ 4% World Selbest of fimit le 5× improvement w.r.t 36 fb⁻¹ analysis
 - Increased luminosity: $2 \times$
 - Analysis improvement: 3×
 - *m_{HH}* categorization and MVA strategy (80%)
 - b-jet energy calibration (7%)
 -

- No significant signal observed
- $\frac{\sigma_{HH}}{\sigma_{HH}^{SM}}$ limit: **4.1** (Exp. **5.5**)
- κ_λ constrain: [-1.5, 6.7] (Exp. [-2.4, 7.7])
- Statistically limited
 - Systematic effect \sim 4%
 - background modelling & photon energy scale
- $\mathbf{5} imes$ improvement w.r.t 36 fb $^{-1}$ analysis
 - Increased luminosity: 2×
 - Analysis improvement: 3×
 - *m_{HH}* categorization and MVA strategy (80%)
 - *b*-jet energy calibration (7%)

- No significant signal observed
- $\frac{\sigma_{HH}}{\sigma_{HH}^{SM}}$ limit: **4.1** (Exp. **5.5**)
- κ_λ constrain: [-1.5, 6.7] (Exp. [-2.4, 7.7])
- Statistically limited
 - Systematic effect \sim 4%
 - background modelling & photon energy scale
- $5 \times$ improvement w.r.t 36 fb⁻¹ analysis
 - Increased luminosity: $2\times$
 - Analysis improvement: 3 imes
 - *m_{HH}* categorization and MVA strategy (80%)
 - b-jet energy calibration (7%)

<u>...</u>

• No significant excess is observed

- $\sigma_{X o HH}$ limit: **610-47 fb** (Exp. **360-43 fb**)
- Statistically limited
 - Systematic effect up to 10%
 - background modelling & photon energy scale
- 30% improvement from BDT w.r.t 36 fb⁻¹ on top luminosity increase

- No significant excess is observed
- $\sigma_{X \to HH}$ limit: **610-47 fb** (Exp. **360-43 fb**)
- Statistically limited
 - Systematic effect up to 10%
 - background modelling & photon energy scale
- **30% improvement** from BDT w.r.t 36 fb⁻¹ on top luminosity increase

- No significant excess is observed
- $\sigma_{X \to HH}$ limit: **610-47 fb** (Exp. **360-43 fb**)
- Statistically limited
 - Systematic effect up to 10%
 - background modelling & photon energy scale
- 30% improvement from BDT w.r.t 36 fb⁻¹ on top luminosity increase

- No significant excess is observed
- $\sigma_{X \to HH}$ limit: **610-47 fb** (Exp. **360-43 fb**)
- Statistically limited
 - Systematic effect up to 10%
 - background modelling & photon energy scale
- 30% improvement from BDT w.r.t 36 fb⁻¹ on top luminosity increase

Summary

- Non-resonant and resonant HH $\rightarrow b\bar{b}\gamma\gamma$ searches using the full Run-2 data (139 fb⁻¹)
- Other channels are published:
 - **Resonant HH** $\rightarrow b\bar{b}b\bar{b}$: ATLAS-CONF-2021-035
 - Resonant & Non-resonant $HH \rightarrow b\bar{b}\tau\tau$: ATLAS-CONF-2021-030
- Resonant & Non-resonant comparisons: ATL-PHYS-PUB-2021-031

Thank you for your attention

BACKUP

Large Hadron Collider

▶ p (proton) ▶ ion ▶ neutrons ▶ p (antiproton) ▶ electron →++> proton/antiproton conversion

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF3 Clic Test Facility AWAKE Advanced WAKefield Experiment ISOLDE Isotope Separator OnLine DEvice

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

ATLAS detector

Di-Higgs - production modes

Di-Higgs - cross-section

Data and Monte Carlo samples

- ggF HH signal (κ_{λ} = 1, 10) at NLO with Powheg-Box v2 PDF4LHC15 + Pythia 8
- VBF HH signal ($\kappa_{\lambda} = 0, 1, 2, 10$) at LO with MadGraph5_aMC@NLO v2.6.0 NNPDF3.0nlo + Pythia 8
- resonant spin-0 X \rightarrow HH via ggF at LO with MadGraph5_aMC@NLO v2.6.1 NNPDF2.3lo + Herwig v7.1.3. $m_X \in [251, 1000]$ GeV and $\Lambda_X = 10$ MeV

Process	Generator	PDF set	Showering	Tune
ggF	NNLOPS	PDFLHC	Рутніа 8.2	AZNLO
VBF	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
WH	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
$qq \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
$gg \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
$t\bar{t}H$	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.2	A14
bbH	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.2	A14
tHqj	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14
tHW	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14
$\gamma\gamma$ +jets	Sherpa v2.2.4	NNPDF3.0nnlo	Sherpa v2.2.4	-
$t\bar{t}\gamma\gamma$	MadGraph5_aMC@NLO	NNPDF2.31o	Рутніа 8.2	-

 $m^*_{b\bar{b}\gamma\gamma}$ variable

 $m^*_{bar{b}\gamma\gamma}$ for ggF vs VBF HH

non-resonant BDT variables

Variable	Definition				
Photon-related kin	Photon-related kinematic variables				
$p_{\rm T}/m_{\gamma\gamma}$	Transverse momentum of the two photons scaled by their invariant mass $m_{\gamma\gamma}$				
η and ϕ	Pseudo-rapidity and azimuthal angle of the leading and sub-leading photon				
Jet-related kinema	tic variables				
b-tag status	Highest fixed b-tag working point that the jet passes				
p_{T}, η and ϕ	Transverse momentum, pseudo-rapidity and azimuthal angle of the two jets with the highest <i>b</i> -tagging score				
$p_{\rm T}^{b\bar{b}}, \eta_{b\bar{b}}$ and $\phi_{b\bar{b}}$	Transverse momentum, pseudo-rapidity and azimuthal angle of <i>b</i> -tagged jets system				
$m_{b\bar{b}}$	Invariant mass built with the two jets with the highest <i>b</i> -tagging score				
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event				
Single topness	For the definition, see Eq. (??)				
Missing transverse momentum-related variables					
$E_{\rm T}^{\rm miss}$ and $\phi^{\rm miss}$	Missing transverse momentum and its azimuthal angle				

$$\chi_{Wt} = \min \sqrt{\left(\frac{m_{j_1 j_2} - m_W}{m_W}\right)^2 + \left(\frac{m_{j_1 j_2 j_3} - m_t}{m_t}\right)^2}$$

non-resonant BDT scores

Category	Selection criteria
High mass BDT tight	$m_{b\bar{b}\gamma\gamma}^* \ge 350 \text{ GeV}, \text{BDT score} \in [0.967, 1]$
High mass BDT loose	$m_{b\bar{b}\gamma\gamma}^* \ge 350 \text{ GeV}, \text{BDT score} \in [0.857, 0.967]$
Low mass BDT tight	$m_{b\bar{b}\gamma\gamma}^* < 350 \text{ GeV}, \text{BDT score} \in [0.966, 1]$
Low mass BDT loose	$m_{b\bar{b}\gamma\gamma}^{*}$ < 350 GeV, BDT score \in [0.881, 0.966]

resonant BDT variables

-

-

Variable	Definition
Photon-related kinematic variab	les
$p_{\rm T}^{\gamma\gamma}, y^{\gamma\gamma}$	Transverse momentum and rapidity of the di-photon system
$\Delta \phi_{\gamma\gamma}$ and $\Delta R_{\gamma\gamma}$	Azimuthal angular distance and ΔR between the two photons
Jet-related kinematic variables	
$m_{b\bar{b}}, p_{\mathrm{T}}^{b\bar{b}}$ and $y_{b\bar{b}}$	Invariant mass, transverse momentum and rapidity of the <i>b</i> -tagged jets system
$\Delta\phi_{b\bar{b}}$ and $\Delta R_{b\bar{b}}$	Azimuthal angular distance and ΔR between the two <i>b</i> -tagged jets
N _{jets} and N _{b-jets}	Number of jets and number of <i>b</i> -tagged jets
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event
Photons and jets-related kinema	tic variables
$m_{b\bar{b}\gamma\gamma}$	Invariant mass built with the di-photon and b -tagged jets system
$\Delta y_{\gamma\gamma,b\bar{b}}, \Delta \phi_{\gamma\gamma,b\bar{b}}$ and $\Delta R_{\gamma\gamma,b\bar{b}}$	Distance in rapidity, azimuthal angle and ΔR between the di-photon and the <i>b</i> -tagged jets system

resonant BDT scores

non-resonant data/MC

background-only fit : non-resonant

resonant data/MC

background-only fit : resonant

Expected and observed numbers of events of the non-resonant HH search

	High mass BDT tight	High mass BDT loose	Low mass BDT tight	Low mass BDT loose
Continuum background Single Higgs boson background ggF tr̃H ZH Rest	$\begin{array}{c} 4.9 \pm 1.1 \\ 0.670 \pm 0.032 \\ 0.261 \pm 0.028 \\ 0.1929 \pm 0.0045 \\ 0.142 \pm 0.005 \\ 0.074 \pm 0.012 \end{array}$	$\begin{array}{c} 9.5 \pm 1.5 \\ 1.57 \pm 0.04 \\ 0.44 \pm 0.04 \\ 0.491 \pm 0.007 \\ 0.486 \pm 0.010 \\ 0.155 \pm 0.020 \end{array}$	$\begin{array}{c} 3.7 \pm 1.0 \\ 0.220 \pm 0.016 \\ 0.063 \pm 0.014 \\ 0.1074 \pm 0.0033 \\ 0.04019 \pm 0.0027 \\ 0.008 \pm 0.006 \end{array}$	$\begin{array}{c} 24.9 \pm 2.5 \\ 1.39 \pm 0.04 \\ 0.274 \pm 0.030 \\ 0.742 \pm 0.009 \\ 0.269 \pm 0.007 \\ 0.109 \pm 0.016 \end{array}$
SM HH signal ggF VBF	$\begin{array}{c} 0.8753 \pm 0.0032 \\ 0.8626 \pm 0.0032 \\ 0.01266 \pm 0.00016 \end{array}$	$\begin{array}{c} 0.3680 \pm 0.0020 \\ 0.3518 \pm 0.0020 \\ 0.01618 \pm 0.00018 \end{array}$	$\begin{array}{c} (49.4\pm0.7)\cdot10^{-3}\\ (46.1\pm0.7)\cdot10^{-3}\\ (3.22\pm0.08)\cdot10^{-3} \end{array}$	$\begin{array}{c} (78.7\pm0.9)\cdot10^{-3} \\ (71.8\pm0.9)\cdot10^{-3} \\ (6.923\pm0.011)\cdot10^{-3} \end{array}$
Alternative $HH(\kappa_{\lambda} = 10)$ signal	6.36 ± 0.05	3.691 ± 0.038	4.65 ± 0.04	8.64 ± 0.06
Data	2	17	5	14

Expected and observed numbers of events of the resonant HH search

	$m_X = 300 \text{ GeV}$	$m_X = 500 \text{ GeV}$
Continuum background Single Higgs boson background SM <i>HH</i> background	$5.6 \pm 2.4 \\ 0.339 \pm 0.009 \\ (20.6 \pm 0.5) \cdot 10^{-3}$	3.5 ± 2.0 0.398 ± 0.010 0.1932 ± 0.0015
$X \to HH$ signal	5.771 ± 0.031	5.950 ± 0.026
Data	6	4

Syetamtic impact

		Relative impact of the syst	ematic uncertainties in %
Source	Туре	Non-resonant analysis HH	Resonant analysis $m_X = 300 \text{ GeV}$
Experimental			
Photon energy scale Photon energy resolution Flavor tagging	Norm. + Shape Norm. + Shape Normalization	5.2 1.8 0.5	2.7 1.6 < 0.5
Theoretical			
Heavy flavor content Higgs boson mass PDF+ α_s	Normalization Norm. + Shape Normalization	1.5 1.8 0.7	< 0.5 < 0.5 < 0.5
Spurious signal	Normalization	5.5	5.4

$HH \rightarrow b \bar{b} \gamma \gamma$ 36 fb⁻¹ results

CMS full Run-2 results

	Expected	Observed
CMS $\frac{\sigma_{HH}}{\sigma_{MH}^{SM}}$ limit	5.2	7.7
CMS $\kappa_{\lambda}^{""}$ interval	[-2.5, 8.2]	[-3.3, 8.5]
ATLAS $\frac{\sigma_{HH}}{\sigma_{MH}^{SM}}$ limit	5.5	4.1
ATLAS κ_{λ}^{HH} interval	[-2.4, 7.7]	[-1.5, 6.7]

Early Run-2 combination

