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A

Ordinary GUTs vs F-GUTs




Old GUT's:

Gauge coupling unification

Assembling of SM fermions in a few irreps.
(€ 5,10 216,10 C 27---.)

Charge Quantisation
v Deficiencies
A fermion mass hierarchy and mixing not predicted
A Yukawa Lagrangian poorly constrained
A Baryon number non-conservation

... Solution requires new insights ... such as:

Discrete and U(1) symmetry extensions



F-GUTs: New Ingredients from F-theory

Discrete and U(1) symmetries:

e necessary tools to suppress or eliminate undesired superpotential

terms
Fluxes :

e induce chirality, ... truncate GUT irreps, ..., symmetry breaking
“Internal” Geometry :

e ... determines SM arbitrary parameters from a handful of

properties




% F-theory and Elliptic Fibrationv




F-theory : Type II-B superstring with 7-branes

I1I-B: closed string spectrum obtained by combining left and right

mouving open strings with N.S and R-boundary conditions:

 (NS,,R_), (R_,NS,)

Bosonic spectrum, notation:

. graviton, dilaton and 2-form KB-field:

Juv, @, B,LLV — B>

: scalar, 2- and 4-index fields (p-form potentials)

CO: C,uz/a C&)\/u/ — Cpa p=0,2,4




Notations and Definitions (bosonic part)

1. The dilaton ¢ determines the string coupling:
_ ot

gIIB _

2. The RR axion Cy, and the dilaton ¢ are combined to one

modulus, the axion-dilaton field:

T:CO—l-’L'B_QS%CO—I—

gIIB

3. The importance of 7 is that it can be used to write the type

IIB action in an SL(2, Z) invariant way

19,707 1|Gs]* 1
10 = = 2
S][B 0.8 /d TN — (R 9 (I 7_>2 2 T 4|175|

—3/—C4+G3AG3

4 Im7




4. Indeed, it can be observed that this action in invariant under

the trasformations:

at + b
T —
ct +d

. Due to SL(2, Z) invariace, 7 can vary accordingly, while

leaving the action invariant.

. Recall that the imaginary part is

1
Im7 = —

gIIB

which implies that there exist values of 7 leading to strongly

coupled regions.




A few words about
Elliptic Curves Elliptic Fibration

An extremely important implication of the variation of the
axion-dilaton 7 1s that it gives rise to an elliptic fibration over the
physical space-time

In order to see this, let’s start with 1I-B theory which is defined in
10-d space described by:

Rg’l X Bg

where
R>1 is the usual 4-d space-time
B3 Calabi-Yau (CY) manifold of 3 complex dimensions (3-fold)




ATIIB on: R*! x Bs

A A F-theory is compactified on an elliptically fibered
manifold where B3 is the base of the fibration.

Mathematically, the Elliptic Fibration is described by the
Weierstrafl £quation

the latter being a cubic equation with a rational point on it.
Recall that =




% Weierstrafd equation with complex coefficients defines a Torus

V2 =x"3+fx+ g
Complex

T

A#0

non-singular elliptic curve

/ T

A=0

singular elliptic curve

Non-singular curve “upgrades” to normal torus

Singular curve corresponds to torus with a pinched radius.




Recall now that the axion-dilaton modulus 7 = Cy +1e~? can be

thought as describing a torus

Motivated by this, we make a continuous mapping of T to the points
of the base Bs. We say that:
F-theory is defined on R*! x X
where X, elliptically fibered CY 4-fold over Bjg

CY 4-fold: Red points: pinched torus




In Weierstrall Form the is described by the

vanishing locus of the polynomial

y? = (27 + f(2) 2w + g(2)w®) =0

. with properties:

1. equivalence relations of homogeneous (projective) coordinates
£y, w = (N2, Ay, Aw)

2. f(2), g(z) — 8" and 12!" degree polynomials.

Two Important Quantities characterise the fibration:

1. Discriminant: A(z) =4 f3 + 27¢°

2. and j-invariant: j(7) = 4(22122?)3




e The zeros of the discriminant determine fiber singularities:

24
A= H(z —2;) =0 = 24 roots z;
i=1

Coordinate z and modulus T related through:

(24/(2))°

X 6—27m'7' _|_744_|_O(627m7')

j(r) =4
A=) (1)

OC€27T/936_27TiCO—|—744—|—"’

Solution gives 7 around the zeros z; of A:
—log(z =)
T~ —log(z — z;
omi

Due to multivalued log function, circling around z; roots, 7 shifts:
T—=7+1 =Cop—>Co+1—

In other words, 7, Cj undergo Monodromy.




Interpretation:

At z = z; d source of RR-flux which is interpreted as a:

D'7-brane at z = z; , normal to the “tangent plane”

D7

Figure 1: Moving around z;, log(z) — log |z|+i(2n+0) and 7 — 7+1

D7 branes are magnetic sources for the type I1IB RR axion ()




Geometric Singularities &

e Type of Manifold singularity is specified by the vanishing
order of A and the polynomials f(z), g(z) of Weierstrass eq:

y? =1’ + f(2) x + g(2)

e Singularities are classified in terms of AD &£ Lie groups.

Interpretation of geometric singularities

g

C'Y,-Singularities = gauge symmetries

’

SU (n)
SO(m)
En




C
The Non Abelian Sector

Role of Geometric Singularities on EF'Ts




ord(f(z))

ord(g(z))

ord(A(z))

fiber type

The Kodaira classification: w.r.t. vanishing order of f(z), g(z) and
A(z) = 4f(2)° + 27g(2)?. (see Morrison, Vafa hep-th/9603161)
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Tate’s Algorithm

y2—|—a1:1:y—|—a3y:a:3—|—a2x2—|—a,4:1:—|—a,6

Table: Classification of Elliptic Singularities w.r.t. vanishing order

of Tate’s form coefficients a;:

Group aq A
SU (2n) 0 2n
SU@2n+1) | O
SU(5) 0
1

1

1

1

SO(10)




EXAMPLE

Choose “Tate” coeflicients as follows:
a1 = —b = b = — b2 — bhy2® = bo2°
1= 5, A2 = 042, A3 = 3< , 4 = 022, Ag = 0p<

2V 2t 22 3 AT
= Weierstrafl” equation for the SU(5) singularity

2

Y- = 3+ bpz® + boxz® + b3y22 + bya’z + bsxy

Associated spectral cover obtained by defining homogeneous
coordinates z — U, x — V?, y — V3 and affine parameter

C5 |0 = b085 + b283 + b382 -+ b48 -+ b5




D
The Abelian Sector

Role of Rational Points on Elliptic Curves




The Group Law on Elliptic Curves

The addition law: P+ Q (left).
(P,Q = rational — P + Q rational.)
The opposite element P + (—P) = O (right)




Mordell Theorem

$
The Rational Points on Elliptic Curve constitute a finitely

generated Abelian Group

Y
Mordell - Weil Group

In elliptic fibration:

The Rational Points Rational Sections




* A new class of Abelian Symmetries associated with Rational

Sections of elliptic curves

Mordell-Weil group ... finitely generated:

ZOLS---OLEG

T

Abelian group: Rank - r (unknown). Torsion part: G — :

7/ n=1,2...,10,12
T X Zg k=2.4,6,8

g =

(Cwetic et al 1210.6094,1307.6425; Mayhofer et al, 1211.6742;
Borchmann et al 1307.2902; Krippendorf et al, 1401.7844. For
some aspects see I. Antoniadis and G.K.L., PLB735 (2014)226)




to wrap things up:
In F-Theory, Abelian gauge symmetries (other than those
embedded in Eg) are encoded in rational sections of the Elliptic

Fibration and constitute the so called Mordell-Weil group.

Simplest (and perhaps most viable) Case:
Rank-1 Mordell-Weil




&

F-theory Model Building
(Original papers :Vafa et al, arXiv:0802.3391, 0806.0102

Donagi et al 0808.2223, 0904.1218)

A Class of ‘semi-local’ constructions

, Fluxes & Monodromies




AV The role of the manifold: A

A Candidate GUT embedded in maximal exceptional group:

58 — GGUT x C

Example: Assuming a Manifold with SU(5) divisor:

Es — SU(B)x SU(B) L

— SU(B) x U(1)%

Matter descends from the Adjoint:

248 — (24,1) + (1,24) + (10,5) + (5,10) + (10,5) + (5,10)




AV The role of fluxes: A&

Three important implications

SU(5) Chirality
SU(5) Symmetry Breaking

( fluxes act as the surrogate of the Higgs vev )
Splitting of SU(5)-reps

Two types of fluxes:

i) Mg, Ms5: (associated with U(1), s )
determine the chirality of complete 10,5 € SU(5)
ii) Ny: (turned on along U(1)y € SU(5))

.. split SU(5)-representations



SU(5) chirality from U(1); Flux
U(1),—Flux on € 10’s:

#10 —#10 = Mg

U(1), — Flux on € §’s:

#5—#5 = M;




SM chirality form Hypercharge Flux
U(1)y —Flux-splitting of 10’s:

n(3,2)% - n(3,2)_%

n(§71)_% o n(371)%

n(171)1 B n(lvl)—l
U(1)y — Flux-splitting of 5’s:
n(371)_% - n(gvl)%

n(172)l o n(172)_l
2 2




For the i particular:
Hyper-Flux Doublet-Triplet splitting :
U(1)y — Flux-splitting of 5y :
nE_1 16,
3 3
n(172)l o n(1a2)_l
2 2

U(1)y — Flux-splitting of 5y, —:

n(371)_% - n(gal)%

’”(1,2)% - n(1,2)_%




General Property

by virtue of Hyperflux, members of the same family, may no longer
be components of the same 5-plet

simple way to realise:

Doublet-Triplet splitting




Flipped SU(5) from F-theory
(with V. Basiouris )

It follows according to the following breaking pattern:

Fs D SO(10) x SU4) 1 O [SU(5) x U(L)] x SUM4) L, (2)

focusing on SU(4) . — locally described by Cartan roots:

4
t; = SU(4), — roots — Zti:()

1=1




SU (5)qur representations in Effective Theory transform according

to:

(10, 4) — 1Ot7, (5, 6) — 5t¢+tj

roots t; obey a 4"-degree polynomial (SU(4) spectral cover)

4
Z btk =0
k=0

with by, ‘conveying’ topological properties to the effective model

Solving for ¢; = t;(bx) = possible branchcuts: — Monodromies

Minimum case :

Tyt ¢t 2 U((1)5 = U((1)




A few remarks

A , Higgs adjoints cannot be accommodated.
Georgi-Glashow SU(5) can break only with U(1)y flux.

Flipped SU(5) needs only 10 + 10 for symmetry breaking.
No need to turn on U(1)y, € SU(5) flur which requires special
conditions to keep U(1)y,-boson massless. Under these
assumptions:

A “Flipped” SU(5) one of the few possible viable choices!

10¢, = Fy, 5¢, — fiy 1oy, — €5,

10753 — H, E—M — ﬁ,

1753 — Efn, 1_754 — Eg,




The model predictes the existence of singlets
1ti—tj — eija @7,7 — 17 27 374

(modulo the Z5 monodromy t; <+ t5), dubbed here:

0120 =021 =5, 013 =X, 031 = X,
014 — 0, 041 =, O34 — (, 043 — C

The Z5 monodromy allows a tree-level top-Yukawa coupling.

The superpotential terms are

W = NSFfih+ XL FFhap + X e fih + k, HF;S o

—|—ozm]EC e} ) + BrnES E° ¢ + Y Er, f]hQ= (7)

+AgHHRC + Mg HHWC (X 4 C) + Ay (x + NC)hh

Issue: fine-tuning or extra symmetries required to deal with p term.




Mechanisms for Fermion mass hierarchy

Vv If families are distributed on different matter curves:
Implementation of Froggatt-Nielsen mechanism (Nucl. Phys. B147
(1979) 277) in F-models:

Dudas and Palti, 0912.0853
GKL and G.G. Ross, 1009.6000

v If all three families are on the same matter curve, masses to
lighter families can be generated by:
i) non-commutative fluxes Cecotti et al, 0910.0477

i1) non-perturbative effects, Aparicio et al, 1104.2609

Using Modular Invariance to derive the mass textures

(with Charalambous, SF King, Ye-Ling Zhou, to appear )

We adopt the second mechanism since:

All families reside on the same matter curve




Mass terms

)\%Fif_’jﬁ — Quhy + 0 h, — mg = My X N (Dy)

NLF; Fihp — mg = X (hy)

HHh+ HHh — (H)d$ D + (H)d% D

see-saw with extra (sterile) ‘neutrino’ .S:




v Conclusions %




e in F-theory d interesting connections between:
GUT Symmetry and FElliptically fibred Internal Manifold
Abelian Symmetries and Rational sections
e Interesting Predictions of Effective String F-Theory Models

Flipped (SU(5) x U(1) ) model encompasses interesting features
BSM Physics predictions:
e Vector-like E¢ + E¢, D + D - -

7' bosons non-universaly coupled to families, possibly related to

potential SM-deviations (B-meson anomalies, ...)




Thank you for your attention
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