Minimal Flipped $S U(5)$ from F-theory
$\mathcal{G e o r g e} \mathcal{K} . \operatorname{Leontaris}$

University of Ioannina
I $\omega \alpha \nu \nu \iota \nu \alpha$
$\mathcal{G R E E C E}$

Outline of the Talk

© Introductory remarks
© \mathcal{F}-Theory basics
© Building \mathcal{F}-Theory GUTs
© Minimal \mathcal{F} lipped \mathcal{F}-SU(5)

- Some Low Energy Implications
© Concluding Remarks

Ordinary GUTs vs F-GUTs

* Old GUTs: Interesting features

\triangle Gauge coupling unification
\triangle Assembling of SM fermions in a few irreps.
$(\in \overline{5}, 10 \supset \underline{16}, \underline{10} \subset \underline{27} \cdots$.
\triangle Charge Quantisation

$$
\star \text { Deficiencies }
$$

© fermion mass hierarchy and mixing not predicted

- Yukawa Lagrangian poorly constrained
- Baryon number non-conservation
... Solution requires new insights ... such as:
Discrete and $U(1)$ symmetry extensions

F-GUTs: New Ingredients from F-theory

* Discrete and $U(1)$ symmetries:
- necessary tools to suppress or eliminate undesired superpotential terms
* Fluxes:
- induce chirality, ... truncate GUT irreps, ..., symmetry breaking
* "Internal" Geometry :
- ... determines SM arbitrary parameters from a handful of topological properties
\star F-theory and Elliptic Fibration \star
\Downarrow

F-theory: Type II-B superstring with 7-branes

II-B: closed string spectrum obtained by combining left and right moving open strings with $N S$ and R-boundary conditions:

$$
\left(N S_{+}, N S_{+}\right),\left(R_{-}, R_{-}\right),\left(N S_{+}, R_{-}\right),\left(R_{-}, N S_{+}\right)
$$

Bosonic spectrum, notation:
$\left(N S_{+}, N S_{+}\right)$: graviton, dilaton and 2-form KB-field:

$$
g_{\mu \nu}, \phi, B_{\mu \nu} \rightarrow B_{2}
$$

$\left(R_{-}, R_{-}\right)$: scalar, 2- and 4-index fields (p-form potentials)

$$
C_{0}, C_{\mu \nu}, C_{\kappa \lambda \mu \nu} \rightarrow C_{p}, p=0,2,4
$$

Notations and Definitions (bosonic part)

1. The dilaton ϕ determines the string coupling:

$$
g_{I I B}=e^{\phi}
$$

2. The $R R$ axion C_{0}, and the dilaton ϕ are combined to one modulus, the axion-dilaton field:

$$
\tau=C_{0}+i e^{-\phi} \rightarrow C_{0}+\frac{i}{g_{I I B}}
$$

3. The importance of τ is that it can be used to write the type IIB action in an $S L(2, Z)$ invariant way

$$
\begin{aligned}
S_{I I B} \propto & \int d^{10} x \sqrt{-g}\left(R-\frac{1}{2} \frac{\partial_{\mu} \tau \partial^{\mu} \bar{\tau}}{(\operatorname{Im} \tau)^{2}}-\frac{1}{2} \frac{\left|G_{3}\right|^{2}}{\operatorname{Im} \tau}-\frac{1}{4}\left|F_{5}\right|^{2}\right) \\
& -\frac{i}{4} \int \frac{1}{\operatorname{Im} \tau} C_{4}+G_{3} \wedge \tilde{G}_{3}
\end{aligned}
$$

4. Indeed, it can be observed that this action in invariant under the trasformations:

$$
\tau \rightarrow \frac{a \tau+b}{c \tau+d}
$$

5. Due to $S L(2, Z)$ invariace, τ can vary accordingly, while leaving the action invariant.
6. Recall that the imaginary part is

$$
\operatorname{Im} \tau=\frac{1}{g_{I I B}}
$$

which implies that there exist values of τ leading to strongly coupled regions.

A few words about Elliptic Curves \& Elliptic Fibration

An extremely important implication of the variation of the axion-dilaton τ is that it gives rise to an elliptic fibration over the physical space-time
In order to see this, let's start with II-B theory which is defined in 10-d space described by:

$$
\mathcal{R}^{3,1} \times \mathcal{B}_{3}
$$

where
$\Delta \mathcal{R}^{3,1}$ is the usual 4-d space-time
$\Delta \mathcal{B}_{3}$ Calabi-Yau (CY) manifold of 3 complex dimensions (3-fold)
\triangle IIB on: $\mathcal{R}^{3,1} \times \mathcal{B}_{3}$

$\Delta \Delta$ F-theory is compactified on an elliptically fibered manifold where \mathcal{B}_{3} is the base of the fibration.

Mathematically, the Elliptic Fibration is described by the \mathcal{W} eierstraß \mathcal{E} quation
the latter being a cubic equation with a rational point on it.

$$
\text { Recall that } \Rightarrow
$$

* Weierstraß equation with complex coefficients defines a Torus

$$
y^{\wedge} 2=x^{\wedge} 3+f x+g
$$

Real

$$
\Delta \neq 0
$$

Complex

non-singular elliptic curve

$$
\Delta=0
$$

singular elliptic curve
Non-singular curve "upgrades" to normal torus
Singular curve corresponds to torus with a pinched radius.

Recall now that the axion-dilaton modulus $\tau=C_{0}+\imath e^{-\phi}$ can be thought as describing a torus

Motivated by this, we make a continuous mapping of τ to the points of the base B_{3}. We say that:
\triangle F-theory is defined on $\mathcal{R}^{3,1} \times \mathcal{X}$ where \mathcal{X}, elliptically fibered $\mathbf{C Y} 4$-fold over B_{3}

CY 4-fold: Red points: pinched torus

In \mathcal{W} eierstraß Form the Elliptic Curve is described by the vanishing locus of the polynomial

$$
y^{2}-\left(x^{3}+f(z) x w^{4}+g(z) w^{6}\right)=0
$$

... with properties:

1. equivalence relations of homogeneous (projective) coordinates $x, y, w \simeq\left(\lambda^{2} x, \lambda^{3} y, \lambda w\right)$
2. $f(z), g(z) \rightarrow 8^{t h}$ and $12^{\text {th }}$ degree polynomials.

Two Important Quantities characterise the fibration:

1. Discriminant: $\Delta(z)=4 f^{3}+27 g^{2}$
2. and j-invariant: $j(\tau)=\frac{4(24 f(z))^{3}}{\Delta(z)}$

- The zeros of the discriminant determine fiber singularities:

$$
\Delta=\prod_{i=1}^{24}\left(z-z_{i}\right)=0 \Rightarrow 24 \text { roots } z_{i}
$$

Coordinate z and modulus τ related through:

$$
\begin{align*}
j(\tau) & =4 \frac{(24 f(z))^{3}}{\Delta(z)} \propto e^{-2 \pi i \tau}+744+\mathcal{O}\left(e^{2 \pi i \tau}\right) \tag{1}\\
& \propto e^{2 \pi / g_{s}} e^{-2 \pi i C_{0}}+744+\cdots
\end{align*}
$$

Solution gives τ around the zeros z_{i} of Δ :

$$
\tau \approx \frac{1}{2 \pi i} \log \left(z-z_{i}\right)
$$

Due to multivalued \log function, circling around z_{i} roots, τ shifts:

$$
\tau \rightarrow \tau+1 \Rightarrow C_{0} \rightarrow C_{0}+1 \rightarrow
$$

In other words, τ, C_{0} undergo Monodromy.

Interpretation:

At $z=z_{i} \exists$ source of RR-flux which is interpreted as a: $D 7$-brane at $z=z_{i}$, normal to the "tangent plane"

Figure 1: Moving around $z_{i}, \log (z) \rightarrow \log |z|+i(2 \pi+\theta)$ and $\tau \rightarrow \tau+1$
$D 7$ branes are magnetic sources for the type IIB RR axion C_{0}

Geometric Singularities \& Kodaira Classification:

- Type of Manifold singularity is specified by the vanishing order of Δ and the polynomials $f(z), g(z)$ of Weierstrass eq:

$$
y^{2}=x^{3}+f(z) x+g(z)
$$

- Singularities are classified in terms of $\mathcal{A D} \mathcal{E}$ Lie groups. Interpretation of geometric singularities

$$
\begin{array}{|c}
\Downarrow \\
\hline C Y_{4} \text {-Singularities } \rightleftarrows \text { gauge symmetries } \\
\hline
\end{array}
$$

$$
\text { Groups } \rightarrow\left\{\begin{array}{c}
S U(n) \\
S O(m) \\
\mathcal{E}_{n}
\end{array}\right.
$$

The Non Abelian Sector

Rôle of Geometric Singularities on EFTs

The Kodaira classification: w.r.t. vanishing order of $f(z), g(z)$ and $\Delta(z)=4 f(z)^{3}+27 g(z)^{2} .($ see Morrison, Vafa hep-th/9603161)

$\operatorname{ord}(f(z))$	$\operatorname{ord}(g(z))$	$\operatorname{ord}(\Delta(z))$	fiber type	Singularity
0	0	n	I_{n}	A_{n-1}
≥ 1	1	2	$I I$	none
1	≥ 2	3	$I I I$	A_{1}
≥ 2	2	4	$I V$	A_{2}
2	≥ 3	$n+6$	I_{n}^{*}	D_{n+4}
≥ 2	3	$n+6$	I_{n}^{*}	D_{n+4}
≥ 3	4	8	$I V^{*}$	\mathcal{E}_{6}
3	≥ 5	9	$I I I^{*}$	\mathcal{E}_{7}
≥ 4	5	10	$I I^{*}$	\mathcal{E}_{8}

Tate's Algorithm

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

Table: Classification of Elliptic Singularities w.r.t. vanishing order of Tate's form coefficients a_{i} :

Group	a_{1}	a_{2}	a_{3}	a_{4}	a_{6}	Δ
$S U(2 n)$	0	1	n	n	$2 n$	$2 n$
$S U(2 n+1)$	0	1	n	$n+1$	$2 n+1$	$2 n+1$
$S U(5)$	0	1	2	3	5	5
$S O(10)$	1	1	2	3	5	7
\mathcal{E}_{6}	1	2	3	3	5	8
\mathcal{E}_{7}	1	2	3	3	5	9
\mathcal{E}_{8}	1	2	3	4	5	10

$\mathcal{E X} \mathcal{A M P \mathcal { L E }}$

Choose "Tate" coefficients as follows:

$$
a_{1}=-b_{5}, a_{2}=b_{4} z, a_{3}=-b_{3} z^{2}, a_{4}=b_{2} z^{3}, a_{6}=b_{0} z^{5}
$$

Vanishing orders of $a_{i}{ }^{\prime} s: z^{0}, z^{1}, z^{2}, z^{3}, z^{5} \& \Delta \sim z^{7}$
\Rightarrow Weierstraß' equation for the $S U(5)$ singularity

$$
y^{2}=x^{3}+b_{0} z^{5}+b_{2} x z^{3}+b_{3} y z^{2}+b_{4} x^{2} z+b_{5} x y
$$

Associated spectral cover obtained by defining homogeneous coordinates $z \rightarrow U, x \rightarrow V^{2}, y \rightarrow V^{3}$ and affine parameter $s=\frac{U}{V}, \Rightarrow$

$$
\mathcal{C}_{5}: 0=b_{0} s^{5}+b_{2} s^{3}+b_{3} s^{2}+b_{4} s+b_{5}
$$

D

The Abelian Sector

Rôle of Rational Points on Elliptic Curves

The Group Law on Elliptic Curves

The addition law: $P+Q$ (left).
($P, Q=$ rational $\rightarrow P+Q$ rational.)
The opposite element $P+(-P)=\mathcal{O}$ (right)

Mordell Theorem \Downarrow

The Rational Points on Elliptic Curve constitute a finitely generated Abelian Group \Downarrow Mordell - Weil Group

In elliptic fibration:

The Rational Points \Rightarrow Rational Sections
\star A new class of Abelian Symmetries associated with Rational Sections of elliptic curves

Mordell-Weil group ... finitely generated:

$$
\underbrace{\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{r} \oplus \mathcal{G}
$$

Abelian group: Rank - r (unknown). Torsion part: $\mathcal{G} \rightarrow$:

$$
\mathcal{G}= \begin{cases}\mathbb{Z}_{n} & n=1,2, \ldots, 10,12 \\ \mathbb{Z}_{k} \times \mathbb{Z}_{2} & k=2,4,6,8\end{cases}
$$

(Cvetic et al 1210.6094,1307.6425; Mayhofer et al, 1211.6742;
Borchmann et al 1307.2902; Krippendorf et al, 1401.7844. For some aspects see I. Antoniadis and G.K.L., PLB735 (2014)226)
to wrap things up:
In \mathcal{F}-Theory, Abelian gauge symmetries (other than those embedded in E_{8}) are encoded in rational sections of the Elliptic Fibration and constitute the so called Mordell-Weil group.

> Simplest (and perhaps most viable) Case: Rank-1 Mordell-Weil

F-theory Model Building

(Original papers :Vafa et al, arXiv:0802.3391, 0806.0102 Donagi et al 0808.2223, 0904.1218)

A Class of 'semi-local' constructions
Manifold, Fluxes \& Monodromies
Δ The role of the manifold:
© Candidate GUT embedded in maximal exceptional group:

$$
\mathcal{E}_{8} \rightarrow \mathbf{G}_{\mathrm{GUT}} \times \mathcal{C}
$$

Example: Assuming a Manifold with $S U(5)$ divisor:

$$
\begin{aligned}
\mathcal{E}_{8} & \rightarrow S U(5) \times S U(5)_{\perp} \\
& \rightarrow S U(5) \times U(1)_{\perp}^{4}
\end{aligned}
$$

Matter descends from the Adjoint:

$$
248 \rightarrow(24,1)+(1,24)+(10,5)+(\overline{5}, 10)+(\overline{10}, \overline{5})+(5, \overline{10})
$$

Δ The role of fluxes:
Three important implications
$\Delta S U(5)$ Chirality
$\triangle S U(5)$ Symmetry Breaking
(fluxes act as the surrogate of the Higgs vev)
Δ Splitting of $S U(5)$-reps
Two types of fluxes:
Δ i) M_{10}, M_{5} : (associated with $U(1)_{\perp}$'s) determine the chirality of complete $10,5 \in S U(5)$
Δ ii) N_{Y} : (turned on along $U(1)_{Y} \in S U(5)$)
... split $S U(5)$-representations
$S U(5)$ chirality from $U(1)_{\perp}$ Flux
$U(1)_{\perp}-$ Flux on \in 10's:

$$
\# 10-\# \overline{10}=M_{10}
$$

$U(1)_{\perp}$ - Flux on $\in 5$'s:

$$
\# 5-\# \overline{5}=M_{5}
$$

SM chirality form Hypercharge Flux

$U(1)_{Y}$-Flux-splitting of $\mathbf{1 0}$'s:

$$
\begin{aligned}
n_{(3,2)_{\frac{1}{6}}}-n_{(\overline{3}, 2)_{-\frac{1}{6}}} & =M_{10} \\
n_{(\overline{3}, 1)_{-\frac{2}{3}}}-n_{(3,1)_{\frac{2}{3}}} & =M_{10}-N_{Y_{10}} \\
n_{(1,1)_{1}}-n_{(1,1)_{-1}} & =M_{10}+N_{Y_{10}}
\end{aligned}
$$

$U(1)_{Y}-$ Flux-splitting of 5 's:

$$
\begin{aligned}
& n_{(3,1)_{-\frac{1}{3}}}-n_{(\overline{3}, 1)_{\frac{1}{3}}}=M_{5} \\
& n_{(1,2)_{\frac{1}{2}}}-n_{(1,2)_{-\frac{1}{2}}}=M_{5}+N_{Y_{5}}
\end{aligned}
$$

For the Higgs 'curve' in particular:
Hyper-Flux Doublet-Triplet splitting :
$U(1)_{Y}-$ Flux-splitting of $\mathbf{5}_{\mathbf{H}_{\mathbf{u}}}$:

$$
\begin{aligned}
& n_{(3,1)_{-\frac{1}{3}}}-n_{(\overline{3}, 1)_{\frac{1}{3}}}=M_{5}=0 \\
& n_{(1,2)_{\frac{1}{2}}}-n_{(1,2)_{-\frac{1}{2}}}=M_{5}+N_{Y_{5}}=0+1=1\left(H_{u}\right)
\end{aligned}
$$

$U(1)_{Y}-$ Flux-splitting of $\overline{\mathbf{5}}_{\mathbf{H}_{\mathbf{d}}} \rightarrow$:

$$
\begin{aligned}
& n_{(3,1)_{-\frac{1}{3}}}-n_{(\overline{3}, 1)_{\frac{1}{3}}}=M_{5}=0 \\
& n_{(1,2)_{\frac{1}{2}}}-n_{(1,2)_{-\frac{1}{2}}}=M_{5}+N_{Y_{5}}=0-1=-1\left(H_{d}\right)
\end{aligned}
$$

General Property

by virtue of Hyperflux, members of the same family, may no longer be components of the same 5 -plet
simple way to realise:
Doublet-Triplet splitting

> Flipped $S U(5)$ from F-theory $\quad($ with V. Basiouris $)$

It follows according to the following breaking pattern:

$$
\begin{equation*}
E_{8} \supset S O(10) \times S U(4)_{\perp} \supset\left[S U(5) \times U(1)_{\chi}\right] \times S U(4)_{\perp}, \tag{2}
\end{equation*}
$$

focusing on $S U(4)_{\perp} \rightarrow$ locally described by Cartan roots:

$$
t_{i}=S U(4)_{\perp}-\text { roots } \rightarrow \sum_{i=1}^{4} t_{i}=0
$$

$S U(5)_{G U T}$ representations in Effective Theory transform according to:

$$
(10,4) \rightarrow 10_{t_{i}} \quad(\overline{5}, 6) \rightarrow \overline{5}_{t_{i}+t_{j}}
$$

roots t_{i} obey a $4^{\text {th }}$-degree polynomial $(S U(4)$ spectral cover $)$

$$
\sum_{k=0}^{4} b_{k} t^{4-k}=0
$$

with b_{k} 'conveying' topological properties to the effective model
Solving for $t_{i}=t_{i}\left(b_{k}\right) \Rightarrow$ possible branchcuts: \rightarrow Monodromies Minimum case :

$$
Z_{2}: t_{1} \leftrightarrow t_{2} \Rightarrow U(1)_{\perp}^{3} \rightarrow U(1)_{\perp}^{2}
$$

A few remarks

© In del Pezzo surfaces, Higgs adjoints cannot be accommodated. Georgi-Glashow $S U(5)$ can break only with $U(1)_{Y}$ flux.
Δ Flipped $S U(5)$ needs only $10+\overline{10}$ for symmetry breaking.
Δ No need to turn on $U(1)_{Y_{0}} \in S U(5)$ flux which requires special conditions to keep $U(1)_{Y_{0}}$-boson massless. Under these assumptions:
^"Flipped" $S U(5)$ one of the few possible viable choices!

$$
\begin{gather*}
10_{t_{1}} \rightarrow F_{i}, \overline{5}_{t_{1}} \rightarrow \bar{f}_{i}, 1_{t_{1}} \rightarrow e_{j}^{c}, \tag{3}\\
5_{-\mathrm{t}_{1}-\mathrm{t}_{4}} \rightarrow \mathrm{~h}, \overline{5}_{\mathrm{t}_{3}+\mathrm{t}_{4}} \rightarrow \overline{\mathrm{~h}} \tag{4}\\
10_{t_{3}} \rightarrow H, \overline{10}_{-t_{4}} \rightarrow \bar{H}, \tag{5}\\
1_{t_{3}} \rightarrow E_{m}^{c}, 1_{-t_{4}} \rightarrow \bar{E}_{n}^{c}, \tag{6}
\end{gather*}
$$

The model predictes the existence of singlets

$$
1_{t_{i}-t_{j}} \rightarrow \theta_{i j}, i, j=1,2,3,4
$$

(modulo the $Z_{2} \underline{\text { monodromy }} t_{1} \leftrightarrow t_{2}$), dubbed here:

$$
\begin{gathered}
\theta_{12} \equiv \theta_{21}=S, \theta_{13}=\chi, \theta_{31}=\bar{\chi} \\
\theta_{14} \rightarrow \psi, \theta_{41}=\bar{\psi}, \theta_{34} \rightarrow \zeta, \theta_{43} \rightarrow \bar{\zeta}
\end{gathered}
$$

The Z_{2} monodromy allows a tree-level top-Yukawa coupling. The superpotential terms are

$$
\begin{align*}
\mathcal{W}= & \lambda_{i j}^{u} F_{i} \bar{f}_{j} \bar{h}+\lambda_{i j}^{d} F_{i} F_{j} h \bar{\psi}+\lambda_{i j}^{e} e_{i}^{c} \bar{f}_{j} h \bar{\psi}+\kappa_{i} \bar{H} F_{i} S \bar{\psi} \\
& +\alpha_{m j} \bar{E}_{m}^{c} e_{j}^{c} \bar{\psi}+\beta_{m n} \bar{E}_{m}^{c} E_{n}^{c} \bar{\zeta}+\gamma_{n j} E_{n}^{c} \bar{f}_{j} h \bar{\zeta} \tag{7}\\
& +\lambda_{\bar{H}} \overline{H H} \bar{h} \bar{\zeta}+\lambda_{H} H H h \bar{\zeta}(\chi+\bar{\zeta} \psi)+\lambda_{\mu}\left(\chi+\lambda^{\prime} \bar{\zeta} \psi\right) \bar{h} h
\end{align*}
$$

Issue: fine-tuning or extra symmetries required to deal with μ term.

Mechanisms for Fermion mass hierarchy

V If families are distributed on different matter curves: Implementation of Froggatt-Nielsen mechanism (Nucl.Phys. B147 (1979) 277) in F-models:

Dudas and Palti, 0912.0853
GKL and G.G. Ross, 1009.6000
V If all three families are on the same matter curve, masses to lighter families can be generated by:
i) non-commutative fluxes Cecotti et al, 0910.0477
ii) non-perturbative effects, Aparicio et al, 1104.2609
∇ Using Modular Invariance to derive the mass textures (with Charalambous, SF King, Ye-Ling Zhou, to appear)
$\Delta \triangle$ We adopt the second mechanism since:
All families reside on the same matter curve

Mass terms

$$
\begin{aligned}
\lambda_{i j}^{u} F_{i} \bar{f}_{j} \bar{h} & \rightarrow Q u^{c} h_{u}+\ell \nu^{c} h_{u} \rightarrow m_{D}^{T}=m_{u} \propto \lambda^{u}\left\langle h_{u}\right\rangle \\
\lambda_{i j}^{d} F_{i} F_{j} h \bar{\psi} & \rightarrow m_{d}=\lambda^{d}\left\langle h_{d}\right\rangle \\
H H h+\bar{H} \bar{H} \bar{h} & \rightarrow\langle H\rangle d_{H}^{c} D+\langle\bar{H}\rangle \bar{d}_{H}^{c} \bar{D}
\end{aligned}
$$

see-saw with extra (sterile) 'neutrino' S :

$$
\mathcal{M}_{\nu}=\left(\begin{array}{ccc}
0 & m_{\nu_{D}} & 0 \tag{8}\\
m_{\nu_{D}}^{T} & 0 & M_{\nu^{c} S} \\
0 & M_{\nu^{c} S}^{T} & M_{S}
\end{array}\right)
$$

\star Conclusions \star

- in F-theory \exists interesting connections between:

GUT Symmetry and Elliptically fibred Internal Manifold
Abelian Symmetries and Rational sections

- Interesting Predictions of Effective String F-Theory Models Flipped $(S U(5) \times U(1))$ model encompasses interesting features BSM Physics predictions:
- Vector-like $E^{c}+\bar{E}^{c}, D+\bar{D} \cdots$
Z^{\prime} bosons non-universaly coupled to families, possibly related to potential SM-deviations (B-meson anomalies, ...)
\star Thank you for your attention \star

University of Ioannina
SUSY 2022 Conference
27 June- 1 July 2022 (pre-SUSY school 24-26 June)

