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Motvation : Divergence of perturbative expansions

Perturbative expansion in QFT over Feynman graphs
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G Feynman graph

The perturbative expansion is a divergent power series (otherwise
Z defined for Re(g) < 0, g = 0 boundary of analyticity domain).

Perturbative expansion only valid as an asymptotic series for
g — 0 but does not allow for a definition of a QFT.
Origins of the divergence : Y 4o 0 A(G) ~ n!

e too many graphs of given order (instantons)

e too large graph amplitudes at given order (renormalons)

Construction of QFT from its perturbative expansion usually
addressed using Borel summation.



Combinatorial approach : Loop Vertex Expansion

Basic idea (V. Rivasseau, arxiv 0706.1224) : expand the
partition function over forests (= not necessarily connected
graphs without loops) over instead of graphs and logarithm
expanded over trees (connected components)
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Convergence of the expansion possible because of power law
growth (solving the "too many graphs" issue)
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and power law bounds on tree amplitudes |A1(g)| < C"|g|"

Usual perturbative expansion recovered by further expanding
At(g) in powers of g (addition of loops to T)

Open question in QFT but interesting results for random matrices.


https://arxiv.org/abs/0706.1224

Random Matrices

Topological ribbon graph expansion of matrix integral
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G ribbon graph

with x = 2 — genus = #(vertices) — #(edges) + #(faces)
Ribbon Feynman graph (double line) dual to trianagulations
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Multiple occurence in physics as random Hamiltonians (spectra of
heavy nuclei, JT gravity in the Schwarzian limit, ..) or topological
expansion (large N QCD, 2d gravity, ...).



Main result : Uniform analyticity in a "Pacman" domain
For any € > 0 there exists 7 > 0 such that the LVE expansion
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Ttree

defines an analytic function of g € {0 < |g| < 7, |argA\| <7 —€}.
and is bounded by a constant independent of N.
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See arxiv 1712.05670 and 1910.13261(Rivasseau, Sazonov, and K.)


https://arxiv.org/abs/1712.05670
https://arxiv.org/abs/1910.13261

Forest Formula (Abdesselam, Brydges, Kennedy, Rivasseau)
¢ function of M variables x;; € [0, 1](edges between n vertices)

#(edges in F)
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on n vertices

where vj; is the infimum of vy along the path from from i to j in F
if it exists and O otherwise
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Tree expansion of the matrix integral
Partial expansion of the potential and introduction of n copies of A
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Conclusion from the forest formula with x;; = Cj; and sum over
trees from logarithm (connected parts)



Bounds from a change of variables
Change of variable A= My/1 + gM?P—1 in the partition function
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with effective potential computed from the Jacobian
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with T Fuss-Catalan function such that T(z) =1+ zTP(z).

Derivative of log = resolvent and analytic properties of T(z) lead
to useful bounds on tree amplitudes establishing the theorem.



Towards a similar approach in Quantum Field Theory

Change of variables from Morse-Palais lemma : reduction of a
functional around a critical point in Hilbert space to a quadratic

form S[¢] = (x(¢), x(¢))

[{Goor+ T+ Lo} = [{dovr+ T

leading to the non local effective potential (Jacobian)

Vesi[x] = log det 5—¢ = Tr log 6—¢
ox

ox
Difficulty : find suitable cut-off independent bounds.

Matrix model with kinetic term (Grosse-Wulkenhaar model)

/ DM exp —{Tr KM? + gTr M“}

2d case by V. Rivasseau and Z.T. Wang arxiv1805.06365.


https://arxiv.org/abs/1805.06365

