A Short Glimpse into the Loop Vertex Expansion

Thomas Krajewski
Centre de Physique Théorique Aix-Marseille University thomas.krajewski@cpt.univ-mrs.fr

Joint work with Vincent Rivasseau and Vasily Sazonov

Workshop on Quantum Geometry, Field Theory and Gravity
Corfu Summer Institute
25 septembre 2021

Motvation: Divergence of perturbative expansions

Perturbative expansion in QFT over Feynman graphs

$$
\begin{aligned}
\log Z & =\int[\mathcal{D} \phi] \exp -\int\left\{\frac{1}{2}(\partial \phi)^{2}+\frac{m^{2}}{2} \phi^{2}+\frac{g}{4!} \phi^{4}\right\} \\
" & =" \sum_{G \text { Feynman graph }} \mathcal{A}(G) g^{\# \text { vertices }}
\end{aligned}
$$

The perturbative expansion is a divergent power series (otherwise Z defined for $\operatorname{Re}(g)<0, g=0$ boundary of analyticity domain).
Perturbative expansion only valid as an asymptotic series for $g \rightarrow 0$ but does not allow for a definition of a QFT.

Origins of the divergence : $\sum_{G \text { order } n} \mathcal{A}(G) \sim n$!

- too many graphs of given order (instantons)
- too large graph amplitudes at given order (renormalons)

Construction of QFT from its perturbative expansion usually addressed using Borel summation.

Combinatorial approach: Loop Vertex Expansion

Basic idea (V. Rivasseau, arxiv 0706.1224) : expand the partition function over forests (= not necessarily connected graphs without loops) over instead of graphs and logarithm expanded over trees (connected components)

$$
Z=\sum_{F \text { forest }} \mathcal{A}_{F}(g) \quad \Leftrightarrow \quad \log Z=\sum_{T \text { tree }} \mathcal{A}_{T}(g)
$$

Convergence of the expansion possible because of power law growth (solving the "too many graphs" issue)

$$
\#\binom{\text { trees of }}{\text { order } n} \underset{n \rightarrow+\infty}{\sim} \kappa^{n} \quad \text { vs } \#\binom{\text { graphs of }}{\text { order } n} \underset{n \rightarrow+\infty}{\sim} n!
$$

and power law bounds on tree amplitudes $\left|\mathcal{A}_{T}(g)\right| \leq C^{n}|g|^{n}$
Usual perturbative expansion recovered by further expanding $\mathcal{A}_{T}(g)$ in powers of g (addition of loops to T)

Open question in QFT but interesting results for random matrices.

Random Matrices

Topological ribbon graph expansion of matrix integral

$$
\begin{aligned}
\frac{1}{N^{2}} \log \int D M \exp -N\left\{\operatorname{Tr} M^{2}+g \operatorname{Tr} M^{2 p}\right\} & = \\
& \sum_{G \text { ribbon graph }} \mathcal{A}_{G} g^{\#(\text { vertices })} N^{\chi(G)}
\end{aligned}
$$

with $\chi=2-$ genus $=\#($ vertices $)-\#($ edges $)+\#($ faces $)$
Ribbon Feynman graph (double line) dual to trianagulations

$$
\operatorname{Tr} M^{3}=\sum_{i, j, k} M_{i j} M_{j k} M_{k i} \rightarrow
$$

Multiple occurence in physics as random Hamiltonians (spectra of heavy nuclei, JT gravity in the Schwarzian limit, ..) or topological expansion (large N QCD, 2d gravity, ...).

Main result: Uniform analyticity in a "Pacman" domain

 For any $\epsilon>0$ there exists $\eta>0$ such that the LVE expansion$$
\frac{1}{N^{2}} \log \int D M \exp -N\left\{\operatorname{Tr} M^{2}+g \operatorname{Tr} M^{2 p}\right\}=\sum_{T \text { tree }} \mathcal{A}_{T}(g, N)
$$

defines an analytic function of $g \in\{0<|g|<\eta,|\arg \lambda|<\pi-\epsilon\}$. and is bounded by a constant independent of N.

See arxiv 1712.05670 and 1910.13261(Rivasseau, Sazonov, and K.

Forest Formula (Abdesselam, Brydges, Kennedy, Rivasseau)

 ϕ function of $\frac{n(n-1)}{2}$ variables $x_{i j} \in[0,1]$ (edges between n vertices)$$
\phi(1, \ldots, 1)=\sum_{\substack{F \text { forest } \\ \text { on } n \text { vertices }}} \int_{0}^{1} \prod_{\substack{(i, j) \in F}} d u_{i j}\left(\frac{\partial^{\#(\text { edges in } F)} \phi}{\prod_{(i, j) \in F} \partial x_{i j}}\right)\left(v_{i j}\right),
$$

where $v_{i j}$ is the infimum of $u_{k l}$ along the path from from i to j in F if it exists and 0 otherwise

- $n=2: 2$ forests (1) (2), (1)-(2),

$$
\begin{equation*}
\phi(1)=\phi(0)+\int_{0}^{1} d u_{12}\left(\frac{\partial \phi}{\partial x_{12}}\right)\left(u_{12}\right) \tag{2}
\end{equation*}
$$

- $n=3$:

(3) (3)

$$
\begin{aligned}
& \phi(1,1,1)=\phi(0,0,0)+\int_{[0,1]} d u_{12}\left(\frac{\partial \phi}{\partial x_{12}}\right)\left(u_{12}, 0,0\right)+\text { perm. } \\
+ & \int_{[0,1]^{2}} d u_{12} d u_{23}\left(\frac{\partial^{2} \phi}{\partial x_{12} \partial x_{23}}\right)\left(u_{12}, u_{23}, \inf \left(u_{12}, u_{23}\right)\right)+\text { perm. }
\end{aligned}
$$

Tree expansion of the matrix integral

Partial expansion of the potential and introduction of n copies of A

$$
\begin{aligned}
& \int D A \exp -\left\{N \operatorname{Tr} A^{2}+V(A)\right\} \\
& =\int D A \exp -\left\{N \operatorname{Tr} A^{2}\right\}\left(\sum_{n}(-1)^{n} \frac{[V(A)]^{n}}{n!}\right) \\
& =\sum_{n} \frac{(-1)^{n}}{n!} \int D A_{1} \cdots D A_{n} \exp -\left\{N \sum_{1 \leq i, j \leq n} C_{i j}^{-1} \operatorname{Tr}\left(A_{i} A_{j}\right)\right\} \\
& V\left(A_{1}\right) \cdots V\left(A_{1}\right) \underbrace{C_{i j=1}}_{\text {sets } A_{i}=A_{j}} \\
& =\sum_{F \text { forest }} \mathcal{A}_{F}
\end{aligned}
$$

Conclusion from the forest formula with $x_{i j}=C_{i j}$ and sum over trees from logarithm (connected parts)

Bounds from a change of variables

Change of variable $A=M \sqrt{1+g M^{2 p-1}}$ in the partition function

$$
\begin{aligned}
& \int D M \exp -N\left\{\operatorname{Tr} M^{2}+g \operatorname{Tr} M^{2 p}\right\}= \\
& \qquad \int D A \exp -\left\{N \operatorname{Tr} A^{2}+V_{e f f}(A)\right\}
\end{aligned}
$$

with effective potential computed from the Jacobian

$$
\begin{aligned}
V_{\text {eff }}(A) & =\operatorname{Tr}_{\otimes} \log \frac{\partial M}{\partial A}= \\
& \operatorname{Tr}_{\otimes} \log \left\{\frac{A \sqrt{T\left(-g A^{p-2}\right)} \otimes 1-1 \otimes A \sqrt{T\left(-g A^{p-2}\right)}}{A \otimes 1-1 \otimes A}\right\}
\end{aligned}
$$

with T Fuss-Catalan function such that $T(z)=1+z T^{p}(z)$.
Derivative of $\log =$ resolvent and analytic properties of $T(z)$ lead to useful bounds on tree amplitudes establishing the theorem.

Towards a similar approach in Quantum Field Theory

Change of variables from Morse-Palais lemma : reduction of a functional around a critical point in Hilbert space to a quadratic form $S[\phi]=\langle\chi(\phi), \chi(\phi)\rangle$

$$
\int\left\{\frac{1}{2}(\partial \phi)^{2}+\frac{m^{2}}{2} \phi^{2}+\frac{g}{4!} \phi^{4}\right\}=\int\left\{\frac{1}{2}(\partial \chi)^{2}+\frac{m^{2}}{2} \chi^{2}\right\}
$$

leading to the non local effective potential (Jacobian)

$$
V_{\text {eff }}[\chi]=\log \operatorname{det} \frac{\delta \phi}{\delta \chi}=\operatorname{Tr} \log \frac{\delta \phi}{\delta \chi}
$$

Difficulty : find suitable cut-off independent bounds.
Matrix model with kinetic term (Grosse-Wulkenhaar model)

$$
\int D M \exp -\left\{\operatorname{Tr} K M^{2}+g \operatorname{Tr} M^{4}\right\}
$$

2d case by V. Rivasseau and Z.T. Wang arxiv1805.06365.

