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Formulating Pole Inflation SUGRA Framework Inflationary Scenarios Conclusions

FromMinimal to non-Minimal CI

Observational Status of Minimal Chaotic Inflation (CI)

• Motivation: The Power-Law Potentials, Employed in Modes of CI, of the form
VI = λ2φn or VI = λ2(φ2 − M2)n/2 For M � mP = 1.

are Very Common in Physics and so It is Easy the Identification of the Inflaton φ With a Field Already Present in the Theory;
E.g., Within Higgs Inflation (HI) the Inflaton Could Play, At The End Of Inflation, The Role Of A Higgs Field.

• However, For n = 2, 4 The Theoretically Derived Values For Spectral Index ns and/or Tensor-to-Scalar Ratio r Are Not
ConsistentWith the Observational Ones.

• The Combined Bicep2/Keck Array and Planck Results Require, for Fitted As and N? – see Below –,
ns = 0.968 ± 0.009 and r = 0.028+0.026

−0.025 ⇒ 0.003 . r . 0.054 at 68% c.l. or r . 0.07 at 95% c.l.
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FromMinimal to non-Minimal CI

Introducing A non-Minimal Kinetic Mixing In the Inflaton Sector

• Observational Requirements Indicate thatWe have to Invoke Some non-Minimality to (Or Reconcile) CI With Data
– c.f. Starobisky Model and α Attractors
• Actually, There are two Sources of non-Minimality in Constructing Models of CI.

• One due to non-Minimal Coupling of φ to the Ricci Scalar Curvature, R, fR , 1. HereWe take fR = 1
• One due to the non-Minimal Kinetic Mixing, fK(φ) , 1.

Under This Assumption, The Action Of the (initial real) inflaton φ is

S =

∫
d4 x
√
−g

(
−

1
2
R +

fK(φ)
2

gµν∂µφ∂νφ − V (φ)
)
, Where

we set mP = 1 and g is the Determinant Of The Background Metric gµν.

• If we Introduce the Canonically Normalized Field, φ̂, Defined As Follows: dφ̂
dφ

2

= J2 = fK ⇒ φ̂ =

∫
dφJ(φ) with J = +

√
fK

the Action S in terms of φ̂ Takes the Form

S =

∫
d4 x
√
−g

(
−

1
2
R +

1
2
gµν∂µφ̂∂νφ̂ − VI

(
φ̂
))

With VI(φ̂) = VI

(
φ̂(φ)

)
·

•We can Show that for a Suitable Choice of fK Including A Pole1 the Potential VI(φ̂) Develops A Plateau, and so it
Becomes Suitable to Drive Observationally Acceptable CI.

• The Analysis of CI Can Be Performed Exclusively in terms of VI and φ̂ Using The Standard Slow-Roll Approximation.

1B.J. Broy et al. (2015); T. Terada (2016); T. Kobayashi et al. (2017).
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FromMinimal to non-Minimal CI

Inflationary Observables and Requirements

• The Number of e-foldings, N?, that the Scale k? = 0.05/Mpc Underwent During CI has to be Sufficient to Resolve
the Horizon and Flatness Problems of Standard Big Bang:

N̂? =

∫ φ̂?

φ̂f

dφ̂
VI

VI,̂φ
=

∫ φ?

φf

dφ J2 VI

VI,φ
' 52 − 56

Where φ? [φ̂?] is The Value of φ [φ̂] When k? Crosses Outside The Inflationary Horizon;
φf [φ̂f ] is the Value of φ [φ̂] at the end of HI Which Can Be Found From The Condition:

max{̂ε(φf ), |̂η(φf )|} = 1, With ε̂ =
1
2

( VI,̂φ

VI

)2

=
1

2J2

(
VI,φ

VI

)2

and η̂ =
VI,̂φφ̂

V
=

1
J2

(
VI,φφ

VI
−

VI,φ

VI

J,φ
J

)
·

• The Amplitude As of the Power Spectrum of the Curvature Perturbations is To Be Consistent with Planck Data:

A1/2
s =

1

2
√

3 π

VI(φ̂?)3/2

|VI,̂φ(φ̂?)|
=
|J(φ?)|

2
√

3 π

VI(φ?)3/2

|VI,φ(φ?)|
= 4.588 · 10−5

• The Remaining Observables are found as:

ns = 1 − 6̂ε? + 2̂η?, αs = 2
(
4̂η2

? − (ns − 1)2
)
/3 − 2̂ξ? and r = 16̂ε?,

Where ξ̂ = VI,̂φVI,̂φφ̂φ̂/V
2
I = VI,φ η̂,φ/VI J2 + 2̂η̂ε And The VariablesWith Subscript ? Are Evaluated at φ = φ?.

• We Have To Check The Hierarchy Between The Ultraviolet Cut-off ΛUV ∼ mP, of the Effective Theory And The
Inflationary Scale. In Particular, The Validity Of The Effective Theory Implies:

(a) VI(φ∗)1/4 ≤ ΛUV for (b) φ ≤ ΛUV
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Non-SUSY Pole Inflation

Pole of Order Two (T-Model CI)

• Pole CI Is Most Usually Realized IfWe Introduce a Pole of Order Two in fK2 I.e.,:

fK = 2N/ f 2
2P with f2P = 1 − φ2 and VI = VHI = λ2

(
φ2 − M2

)2
/16 With M � 1 & N > 0 .

• Canonically Normalizing φ, we Obtain φ ∼ tanh φ̂ and hence the Name T-Model (TM4) HI

φ̂ =
√

N/2 ln ((1 + φ)/(1 − φ)) or φ = tanh
(
φ̂/
√

2N
)

• VI in Terms of φ̂ Experiences A Stretching For φ̂ > 1 Which Results To A Plateau, i.e., VI = λ2 tanh4(φ̂/
√

2N)/16.
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Here, ε ' 16 f2P
2/Nφ2 and η ' 8 f2P(3 − 5φ2)/Nφ2. Therefore, N? ' Nφ2

?/ f2p? ⇒ φ? =
√

4N?/
√

4N? + N ∼ 1 � φf .

• The Constraint on As Yields A1/2
s '

√
2λN?/

√
3Nπ = 4.588 · 10−5 ⇒ λ ' 4

√
6NAsπ/N? ⇒ λ ∼ 10−5 for N? ' 55

• The Other Observables Are ns ' 1 − 2/N? ' 0.965, αs ' −2/N2
? = 9.5 · 10−4 and r ' N/N2

? ≤ 0.07 ⇒ N . 211.

2R. Kallosh and A. Linde (2013); J. Ellis, D.V. Nanopoulos and K.A. Olive (2013).
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Non-SUSY Pole Inflation

Pole of Order One

• The Simplest Choice It would be The Pole in fK to be of Order One. I.e.,:

fK = N/2 f 2
1P with f1P = 1 − φ and VI = VCI = λ2φn/n With N > 0 .

• Canonically Normalizing φ, we Obtain

φ̂ = −
√

N/2 ln (1 − φ) or φ = 1 − e−
√

N/2φ̂

• VI in Terms of φ̂ Experiences A Stretching For φ̂ > 1 Which Results To A Plateau, i.e., VI = λ2(1 − e−
√

N/2φ̂)n/n
– E.g., For n = 2 we Obtain theWell-Known Starobinsky Model and the Plots Below.
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Here, ε ' n f1P
2/2Nφ2 and η ' n f1P(n f1P − 1)/Nφ2. Therefore, N? ' Nφ2

?/n f1p? ⇒ φ? =
√

nN?/(nN? + N) ∼ 1 � φf .

• The Constraint on As Yields A1/2
s ' λN?/2

√
3nNπ = 4.588 · 10−5 ⇒ λ ' 2
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Non-SUSY Pole Inflation

Pole of Order One

• The Simplest Choice It would be The Pole in fK to be of Order One. I.e.,:

fK = N/2 f 2
1P with f1P = 1 − φ and VI = VCI = λ2φn/n With N > 0 .

• Canonically Normalizing φ, we Obtain

φ̂ = −
√
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• VI in Terms of φ̂ Experiences A Stretching For φ̂ > 1 Which Results To A Plateau, i.e., VI = λ2(1 − e−
√

N/2φ̂)n/n
– E.g., For n = 2 we Obtain theWell-Known Starobinsky Model and the Plots Below.
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Formulating Pole Inflation SUGRA Framework Inflationary Scenarios Conclusions

Gauge Singlet Vs Non-Singlet Inflaton

SUGRA Scalar Potential

• HowWe Can Formulate Pole-InflationWithin SUGRA?

• The General Action For The Scalar Fields zα Plus Gravity In Four Dimensional, N = 1 SUGRA is:

S =

∫
d4 x
√
−g

(
−

1
2
R + Kαβ̄g

µνDµzαDνz∗β̄ − V
)

Where V = VF + VD With

VD = g2D2
a/2

VF = eK
(
Kαβ̄FαF∗

β̄
− 3|W |2

)
Also Kαβ̄ =

∂2K
∂zα∂z∗β̄

> 0 and K β̄αKαγ̄ = δ
β̄
γ̄; Dµzα = ∂µzα + igAa

µT a
αβzβ, Fα = W,zα + K,zαW and Da = zα (Ta)αβ K,zβ

Aa
µ is The Vector Gauge Fields, g is the Gauge Coupling and Ta are the Generators of the Gauge Transformations Of zα.

• The Kinetic Mixing is Controlled by The Kähler Potential K Which Affects Also V. This Consists a ComplicationWith
Respect the non-SUSY case AndWe Show Below HowWe Arrange it in twoWays. V Depends on Superpotential W Too.
•We Concentrate on CI Driven by VF – As we show BelowWe Can Easily Assure VD = 0 During CI.

Introduction of the Stabilizer Field

• Pole CI Can be Systematically Formulated in SUGRA IfWe Introduce A Gauge Singlet Superfield z1 = S called Stabilizer
or Goldstino. Its Introduction is Necessary For the Following Reasons:

• It Generates the non-SUSY Potential From the term |W,S |
2 for S = 0. E.g., For W = λS Φn/2 We Obtain

VF = eK KS S ∗ |W,S |
2 ∈ Vnon−SUSY = λ2φn with φ = Re(Φ) the (initial) inflaton.

• It Assures the Boundedness of VF: IfWe set S = 0 During Inflation, the Terms K,zαW, α , 1, and −3|W |2 Vanish. The
2nd one May Render VF Unbounded From Below.

• It can be Stabilized at S = 0 Without Invoking Higher Order Terms, if we Select 3:
K2 = NS ln

(
1 + |S |2/NS

)
⇒ KS S ∗

2 = 1 With 0 < NS < 6 Which Parameterizes the Compact Manifold S U(2)/U(1).

3C.P. and N. Toumbas (2016).
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Gauge Singlet Vs Non-Singlet Inflaton

Gauge Singlet Inflaton

• Generation of Inflaton Kinetic Mixing: If we Adopt
K1s = −N ln

(
1 − (Φ + Φ∗)/2

)
,

We Obtain A Pole Of order 1 in the Kinetic Terms

I.e., S =

∫
d4 x
√
−g

(
KΦΦ∗ Φ̇Φ̇∗ + · · ·

)
Where KΦΦ∗ = ∂Φ∂Φ∗K =

N
4

1
(1 − (Φ + Φ∗)/2)2 =

N
4

1
(1 − φ)2 for Φ = Φ∗ = φ

• Cancellation of Denominator: Due to Factor eK , the Adopted K Results to a Disturbing Denominator, I.e.,

VF = eK KS S ∗ |W,S | =
Vnon−SUSY

(1 − (Φ + Φ∗)/2)N =
λ2φn

(1 − φ)N with K = K2 + K1s

The Avoidance of this Denominator Is Obtained Using One of the Following Two Methods:
• Tuning the Form of W So that the Denominator Is Cancelled. E.g., If W = λS (Φ − Φ2) and N = 2, then

VF = eK KS S ∗ |W,S | =
λ2(φ − φ2)2

(1 − φ)2 =
λ2φ2(1 − φ)2

(1 − φ)2 = λ2φ2

• Modifying K So that the new (“tilded") one,
K̃1s(Φ,Φ∗) = K1s(Φ,Φ∗) − KH(Φ) − KA(Φ∗) = K1s + N ln(1 − Φ)/2 + N ln(1 − Φ∗)/2,

yields the Desired Kinetic Mixing But not Denominator, I.e., ∂Φ∂Φ∗ K̃1s = ∂Φ∂Φ∗K1s But eK = 1 for Φ = Φ∗.
Working Models

• Superpotential W = λS (Φ − M2) − λ′S Φ2.
It is the Most General W ConsistentWith an R Symmetry UnderWhich R(S ) = R(W).

• Model 1 (CI1): K = K1s = K2 + K1s with N = 2 and M � 1 and λ′ ' λ(1 + δλ) with δλ = O(10−5).
• Model 2 (CI2): K = K̃1s = K2 + K̃1s with Free N and M � 1 in W (λ′/λ is Free).
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Gauge non-Singlet Inflaton

•We Use 2 Superfields z2 = Φ, z3 = Φ̄, Charged Under a Local Symmetry, e.g. U(1)B−L, and the “Stabilizer” z1 = S .
• Superpotential W = λS

(
Φ̄Φ − M2/2

)
/2 − λ′S (Φ̄Φ)2

• W Is Uniquely Determined Using U(1)B−L and an R Symmetry
and Leads to a Grand Unified Theory (GUT) Phase Transition

At The SUSY Vacuum 〈S 〉 = 0, |〈Φ〉| = |〈Φ̄〉| ∼ M/
√

2

Charge Assignments
Superfields: S Φ Φ̄

U(1)R 1 0 0
U(1)B−L 0 1 −1

Since in The SUSY Limit, After HI, We Expect Veff '
1
2
λ2

∣∣∣∣∣Φ̄Φ + 2
λ′

λ
(Φ̄Φ)2 −

1
2

M2
∣∣∣∣∣2 + |S |2 (· · ·) + D-terms

• To Assure The Presence Of The Pole in Kαβ̄ we Select One Of The Following Kähler Potentials

K21 = −N ln
(
1 − |Φ|2 − |Φ̄|2

)
Or K̃21 = K21 + N ln (1 − 2Φ̄Φ)/2 + N ln (1 − 2Φ̄∗Φ∗)/2

•We Observe that ∂α∂β̄ K̃21 = ∂α∂β̄K21 Since ∂β̄KH = ∂αKA = 0 where KH and KA Are defined as follows

KH = N ln(1 − 2Φ̄Φ)/2 and KA = N ln(1 − 2Φ̄∗Φ∗)/2.

• For Both K’s, the D term Due to B − L Symmetry is DBL = N
(
|Φ|2 − |Φ̄|2

)
/
(
1 − |Φ|2 − |Φ̄|2

)
⇒ VD = 0 If |Φ| = |Φ̄|

I.e., D-term Can Be Eliminated During HI, if we identify inflatonWith The Radial Parts Of Φ and Φ̄.

• The Difference Between K21 and K̃21 Arises from eK in VHI. Along the Inflationary Path, |Φ| = |Φ̄|,

• K = K21 Yields a Denominator in VF Which Can be Almost Cancelled Out by Tuning λ′/λ in W
• K = K̃21 does not Lead to a Denominator and soWe can Use λ′ = 0.

Working Models

• Model 1 (HI1): K = K221 = K2 + K21 with N = 2 and λ′ = λ(1 + δλ) in W with δλ = O(10−5);
• Model 2 (HI2): K = K̃221 = K2 + K̃21 with Free N and λ′ = 0 in W;
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Kähler Potentials Vs KählerManifolds

Geometry of K1s and K̃1s

• The Geometry of K1s and K̃1s is Determined by Riemannian Metric And The Scalar Curvature, RK , calculated by

ds2
K = KΦΦ∗dΦdΦ∗ and RK = −KΦΦ∗∂Φ∂Φ∗ ln (KΦΦ∗ ) .

• For K = K1s and K̃1s, We Obtain the Line Element and the Scalar Curvature

ds2
1s =

N
4

dΦdΦ∗

(1 − (Φ + Φ∗)/2)2 and R1s = −
2
N
.

• ds2
1s Remains Invariant under the Transformations

Φ

2
→

aΦ/2 + b
cΦ/2 + d

Represented By M =

a b
c d

, Provided that b = 0, c = 2a, d = −1/a∗ and |a|2 = 1. (T1)

• The MatrixM Has the Following Forms and Properties Respectively

M =

 a 0
2a −1/a∗

 and M†ΩM = −Ω with Ω =

 0 1
−1 0

.
Therefore, the MatricesM Are not Elements of a Subgroup of GL(2,C).

• The Iwasawa Decomposition ofM is

M = KAN with K =
1
√

5

1 −2
2 1

, A =

√5a 0
0 −a/

√
5

 and N =

1 −2/5
0 1

.
Where the Matrices K, A and N Parametrize The Compact, Abelian And Nilpotent Transformations of the Möbius Group.

• In Addition K1s (but not K̃1s) Remains Invariant Under Eq. (T1), up to a Kähler transformation, i.e.,

K → K + Λ + Λ∗ and W → We−Λ with Λ = N ln(aΦ − a∗−1).
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• In Addition K1s (but not K̃1s) Remains Invariant Under Eq. (T1), up to a Kähler transformation, i.e.,

K → K + Λ + Λ∗ and W → We−Λ with Λ = N ln(aΦ − a∗−1).

C. Pallis Pole Inflation in SUGRA 10 / 18



Formulating Pole Inflation SUGRA Framework Inflationary Scenarios Conclusions

Kähler Potentials Vs KählerManifolds

The Kähler Manifold Corresponding to K21 and K̃21

• The Geometry of the Kähler Manifolds is Determined by Riemannian Metric And The Scalar Curvature, RK , calculated by

ds2
K = Kαβ̄dzαdz∗β̄ and RK = −Kαβ̄∂α∂β̄ ln

(
det MΦ̄Φ

)
, zα,β = Φ, Φ̄

Here MΦΦ̄ Expresses The Kinetic Mixing In The Inflationary Sector.
• For K = K21 and K̃21, We Obtain the Bergmann Metric, Which Parameterize the S U(2, 1)/(S U(2) × U(1)) Manifold. I.e.,

ds2
21 = N

 |dΦ|2 + |dΦ̄|2

1 − |Φ|2 − |Φ|2
+
|Φ∗dΦ + Φ̄∗dΦ̄|2(
1 − |Φ|2 − |Φ̄|2

)2

 and R21 = −
6
N
.

• Proof: An Element U of S U(2, 1) Satisfies The Relations U†η21U = η21 and det U = 1 with η21 = diag (1, 1,−1) ,
And Depends On Eight (4+4) Free Parameters. We may Parameterize U in Terms of a, b, d, f ∈ C, γ ∈ R+, ϑ ∈ R as Follows

U = UP with U =

 1/Na 0 a
Naba∗ Naγ b
Naγa∗ Nab∗ γ

 and P = eiϑ


d f 0
− f ∗ d∗ 0

0 0 e−3iϑ

, where


Na = 1/
√

1 + |a|2

|a|2 + |b|2 − γ2 = −1
|d|2 + | f |2 = 1.

∈ S U(2, 1)/(S U(2) × U(1)) ∈ S U(2) × U(1)
• ActingWith the Parameters of the lines ofU† on Φ and Φ̄ We Can Be Define The Isometric Transformations

Φ→
(1/Na)Φ + Nab∗aΦ̄ + Naaγ

a∗Φ + b∗Φ̄ + γ
and Φ̄→

NaγΦ̄ + Nab
a∗Φ + b∗Φ̄ + γ

, with (B − L)(a, b, γ) = (1,−1, 0) (: T)

Which Let Invariant ds2
21
and so, we Conclude That K21 and K̃21 Parameterize S U(2, 1)/(S U(2) × U(1)).

• In Addition K21 In Remains Invariant Under Eq. (T), up to a Kähler transformation, i.e.,

K → K + Λ + Λ∗ and W → We−Λ with Λ = N ln(a∗Φ + b∗Φ̄ + γ).

Whereas K̃21 does not Enjoy such an Invariance.
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And Depends On Eight (4+4) Free Parameters. We may Parameterize U in Terms of a, b, d, f ∈ C, γ ∈ R+, ϑ ∈ R as Follows

U = UP with U =

 1/Na 0 a
Naba∗ Naγ b
Naγa∗ Nab∗ γ

 and P = eiϑ


d f 0
− f ∗ d∗ 0

0 0 e−3iϑ

, where


Na = 1/
√

1 + |a|2

|a|2 + |b|2 − γ2 = −1
|d|2 + | f |2 = 1.

∈ S U(2, 1)/(S U(2) × U(1)) ∈ S U(2) × U(1)

• ActingWith the Parameters of the lines ofU† on Φ and Φ̄ We Can Be Define The Isometric Transformations

Φ→
(1/Na)Φ + Nab∗aΦ̄ + Naaγ

a∗Φ + b∗Φ̄ + γ
and Φ̄→

NaγΦ̄ + Nab
a∗Φ + b∗Φ̄ + γ

, with (B − L)(a, b, γ) = (1,−1, 0) (: T)

Which Let Invariant ds2
21
and so, we Conclude That K21 and K̃21 Parameterize S U(2, 1)/(S U(2) × U(1)).

• In Addition K21 In Remains Invariant Under Eq. (T), up to a Kähler transformation, i.e.,

K → K + Λ + Λ∗ and W → We−Λ with Λ = N ln(a∗Φ + b∗Φ̄ + γ).

Whereas K̃21 does not Enjoy such an Invariance.
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The Kähler Manifold Corresponding to K21 and K̃21
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Inflationary Potentials

Gauge Singlet Inflaton

• Expanding Φ and S as Follows:
Φ = φeiθ and S = (s1 + is2)/

√
2,

We Can Introduce The Canonically Normalized Fields,

dφ̂/dφ = J '
√

N/2/ f1P, θ̂ ' Jφθ and ŝi = si with i = 1, 2 (Recall f1P = 1 − φ)
WhereWe observe thatWe Established the Correct Non-Minimal Kinetic Mixing.

• For S = 0 and θ = 0, the only Surviving term of VF is

VCI = eK KS S ∗ |W,S |
2 = λ2 ·


(
φ − (1 + δλ)φ2 − M2

)2
/ f N

1P ' λ2φ2 for N = 2 and M = δλ = 0 (CI1),(
φ − λ′φ2/λ − M2

)2
' λ2φ2 for λ′ = M = 0 (CI2)

Scalar Mass-Squared Spectrum for K = K1s and K̃1s Along The Inflationary Trajectory

Fields Eigen- Masses Squared

states K = K1s K = K̃1s

1 real scalar θ̂ m̂2
θ 6H2

CI

2 real scalars ŝ1, ŝ2 m̂2
s 6H2

CI/NS

2 Weyl spinors ψ̂± =
ψ̂Φ±ψ̂S√

2
m̂2
ψ±

√
6(1 − φ)H2

CI/
√

Nφ

We Observe the Following:
• All mass2 > 0. Especially m2

Ŝ
> 0 ⇔ NS < 6;

• All mass2 > H2
CI and So Any Inflationary Perturbations Of The Fields Other Than The Inflaton Are Safely Eliminated.

• The One-Loop Radiative Corrections Have No Significant Effect.
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Inflationary Potentials

Gauge Non-Singlet Inflaton

• IfWe Use The Parametrizations: Φ = φeiθ cos θΦ and Φ̄ = φeiθ̄ sin θΦ with 0 ≤ θΦ ≤ π/2 and S = (s + is̄) /
√

2

We Can Show That A D-Flat Direction Is θ = θ̄ = 0, θΦ = π/4 and S = 0 (: P) Which Is Qualified as Inflationary Path.

• The only Surviving term of VF Along the Path in Eq. (P) is

VHI = eK KS S ∗ |W,S |
2 =

λ2

16
·


(
φ2 − (1 + δλ)φ4 − M2

)2
/ f N

2P ' λ2φ4/16 for N = 2 and M = δλ = 0 (HI1),(
φ2 − M2

)2
' λ2φ4/16 for λ′ = M = 0 (HI2)

• To Obtain TM4, We Have to Establish the Correct Non-Minimal Kinetic Mixing.

• To This EndWe Compute The Kähler Metric Kαβ̄ Along the Path in Eq. (P) Which Takes The Form(
Kαβ̄

)
= diag

(
MΦΦ̄,KS S ∗

)
with MΦΦ̄ =

κφ2

2

2/φ2 − 1 1
1 2/φ2 − 1

, κ = N/ f 2
2P and KS S ∗ = 1.

And Diagonalize MΦΦ̄ Via A Similarity Transformation As Follows:

UΦΦ̄ MΦΦ̄UT
ΦΦ̄

= diag (κ+, κ−) , where UΦΦ̄ =
1
√

2

 1 1
−1 1

 and κ+ = κ, κ− = κ f2P

• The EF Canonically Normalized Fields, Which Are Denoted By Hat, Can Be Obtained As Follows:

dφ̂
dφ

= J =
√

2κ+ ⇒ φ = tanh
φ̂

2
√

N
, θ̂+ =

√
κ+φθ+, θ̂− =

√
κ−φθ−, and θ̂Φ = φ

√
2κ− (θΦ − π/4) ,

(̂
s,̂̄s) = (s, s̄) ·

•We Have, Also, to Check the Stability of the Trajectory in Eq. (P) w.r.t the Fluctuations Of The Various Fields, i.e.
∂V
∂̂zα

∣∣∣∣∣
Eq. (P)

= 0 and m̂2
zα > 0 Where m̂2

zα = Egv
[
M̂2
αβ

]
With M̂2

αβ =
∂2V
∂̂zα∂̂zβ

∣∣∣∣∣∣
Eq. (P)

and zα = θ−, θ+, θΦ, s, s̄.

Here Egv are the Eigenvalues of the Matrix M̂2
αβ.
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• The EF Canonically Normalized Fields, Which Are Denoted By Hat, Can Be Obtained As Follows:

dφ̂
dφ

= J =
√

2κ+ ⇒ φ = tanh
φ̂

2
√

N
, θ̂+ =

√
κ+φθ+, θ̂− =

√
κ−φθ−, and θ̂Φ = φ

√
2κ− (θΦ − π/4) ,

(̂
s,̂̄s) = (s, s̄) ·

•We Have, Also, to Check the Stability of the Trajectory in Eq. (P) w.r.t the Fluctuations Of The Various Fields, i.e.
∂V
∂̂zα

∣∣∣∣∣
Eq. (P)

= 0 and m̂2
zα > 0 Where m̂2

zα = Egv
[
M̂2
αβ

]
With M̂2

αβ =
∂2V
∂̂zα∂̂zβ

∣∣∣∣∣∣
Eq. (P)

and zα = θ−, θ+, θΦ, s, s̄.

Here Egv are the Eigenvalues of the Matrix M̂2
αβ.
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Inflationary Potentials

Stability of The Inflationary Direction

Scalar Mass-Squared Spectrum for K = K221 and K̃221 Along The Inflationary Trajectory

Fields Eigen- Masses Squared

states K = K221 K = K̃221

2 real θ̂+ m2
θ̂+

3H2
HI

scalars θ̂Φ m̂2
θΦ

M2
BL + 6H2

HI(1 + 1/N − 1/Nφ2)

1 complex s, s̄ m̂2
s 6H2

HI(1/NS − 4(1 − φ2)/N + Nφ2 6H2
HI(1/NS − 2/N

scalar +2(1 − 2φ2) + 4φ2/N) +1/Nφ2 + φ2/N)

1 gauge boson ABL M2
BL 4Ng2φ2/ f 2

2P

4 Weyl ψ̂± m̂2
ψ± 3 f 2

2PH2
HI/N

2φ2

spinors λBL, ψ̂Φ− M2
BL 4Ng2φ2/ f 2

2P

•We can Obtain ∀α, m̂2
χα

> 0. Especially m̂2
s > 0 ⇔ NS < 6.

•We can Obtain ∀α, m̂2
χα

> H2
HI and So Any Inflationary Perturbations Of The Fields Other Than φ Are Safely Eliminated;

• MBL , 0 Signals the Fact that That U(1)B−L Is Broken and so, no Topological Defects are Produced.

•We Determine M Demanding That The Unification Scale MGUT ' 2/2.433 × 10−2 is Identified with MBL at the Vacuum, I.e.,

〈MBL〉 =
√

2NgM/〈 f2P〉 = MGUT ⇒ M ' MGUT/g
√

2N with g ' 0.7 (GUT Gauge Coupling).

• The One-Loop Radiative Corrections à la Coleman-Weinberg to VI Can Be Kept Under Control.
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Inflationary Observables - Results

Testing Against The Inflationary Data

• Enforcing N? ' 52 − 56 and
√

As = 4.588 · 10−5, we Obtain the Allowed Curves for Our Models In the ns − r0.002 Plane

• In Both Models φ? ∼ 1 and the Relevant Tuning can be Qualified by Computing ∆? = (1 − φ?) /1.

Gauge Singlet Inflaton

• Our Inflationary Scenaria Depend On The Parameters: M, λ and δλ for CI1, and N for CI2. We Take M ≤ 0.01.
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δλ −9 · 10−6 −1
N 2 10

φ?/0.1 9.9106 9.598
∆?(%) 0.89 4
φf/0.1 5.9 3.9
λ/10−5 1 1.95
ns/0.1 9.67 9.64
−αs/10−4 8.37 6.8

r/10−2 0.3 1.1

• For CI1 theWhole Observationally Favored Range Can Be Covered For δλ ’s close to 10−5 and r Remaining Below 0.01.

−22 .
δλ

10−6 . 7, 8.5 &
∆?

10−3 & 9.5, 7.7 &
−αs

10−4 & 5.3 and 3.9 &
r

10−3 & 2.5 .

For ns = 0.967 We find δλ = −9 · 10−6 And r = 0.003.

• For CI2 and Using 0 ≤ λ′/λ ≤ 0.1 we see that r . 0.07 IncreasesWith N and ∆? Yielding Upper Bounds
I.e., 0.96 . ns . 0.968, 0.5 . N . 800, 0.24 & ∆?/10−2 & 52 and 0.00076 . r . 0.07 .
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Inflationary Observables - Results

Gauge non-Singlet Inflaton

• Our Inflationary Scenaria Depends On The Parameters: M, λ and δλ for HI1, or N for HI2.

• M is Determined Requiring 〈MBL〉 = MGUT. For HI2 We Use only Renormalizable terms in W.
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For ns = 0.967 We find δλ = −4 · 10−5 And r = 0.0028.

• For HI2 ns is Concentrated A Little Lower Than Its Central Value And r . 0.07 IncreasesWith N . 80 and ∆?

0.962 . ns . 0.964, 1 . N . 80, 0.45 & ∆?/10−2 & 13.6 and 0.0025 . r . 0.07 .
• In the case of Gauge Singlet Inflaton, We obtain Less Tuning Regarding ∆?
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• For HI1 theWhole Observationally Favored Range Can Be Covered For δλ ’s close to 10−5 and r Remaining Below 0.01.

I.e., 2.4 .
−δλ

10−5 . 5.2, 4.6 &
∆?

10−3 & 4.1, 5.4 .
−αs

10−4 . 8.6 and 2.1 .
r

10−3 . 3.4 .

For ns = 0.967 We find δλ = −4 · 10−5 And r = 0.0028.

• For HI2 ns is Concentrated A Little Lower Than Its Central Value And r . 0.07 IncreasesWith N . 80 and ∆?

0.962 . ns . 0.964, 1 . N . 80, 0.45 & ∆?/10−2 & 13.6 and 0.0025 . r . 0.07 .

• In the case of Gauge Singlet Inflaton, We obtain Less Tuning Regarding ∆?
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Inflationary Observables - Results
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Conclusions

•We Proposed Two Types of Models Implementing Pole InflationWithin SUGRA:
• One where K has one Logarithm and the Pole Appears not only in the Inflationary Kinetic term but also in VI.

Mildly Tuning two W termsWe can Almost Eliminate the Pole from VI.
• One where K has three logarithmic terms and the Pole Appears Only in the Inflationary Kinetic term.

• Both Types of Models work for Both Gauge Singlet and non-Singlet Inflatons.

Comparison of the The Proposed Inflationary Models

Model Quantity Inflaton-Type

Gauge Singlet (M � 1) Gauge non-Singlet (〈MBL〉 = MGUT)

1 (N = 2) K = K2(S )+ K1s = −N ln(1 − (Φ + Φ∗)/2) K21 = −N ln
(
1 − |Φ̄|2 − |Φ|2

)
W = λS

(
Φ − (1 + δλ)Φ2 − M2

)
λS

(
Φ̄Φ − 2(1 + δλ)(Φ̄Φ)2 − M2/2

)
/2

ns = 0.96 − 0.974
δλ/10−5 ' ((−22) − 7) · 10−1 (−5.2) − (−2.4)
r/10−3 ' 2.2 − 3.9 2.1 − 3.4

2 K = K2(S )+ K̃1s = K1s + (N ln(1 − Φ)/2 + c.c.) K̃21 = K21 +
(
N ln

(
1 − Φ̄Φ

)
/2 + c.c.

)
W = λS

(
Φ − λ′Φ2/λ − M2

)
λS

(
Φ̄Φ − M2/2

)
/2

r = 0.00076 − 0.07
N ≤ 800, (0 ≤ λ′/λ ≤ 0.1) 80
ns ' 0.96 − 0.968 0.961 − 0.963

Thank You!
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Supplementary Material: CI With Pole of Order 2

• CI can be also Realized with Pole of Order 24, Using One of The Following K’s for the Inflaton Sector:

K11 = −N ln
(
1 − |Φ|2

)
or K̃11 = K11 + N ln

(
1 − Φ2

)
/2 + N ln

(
1 − Φ∗2

)
/2

Which lead to the Kinetic Mixing J =
√

2N/ f2P with f2P = 1 − φ2 and Φ = φeiθ for θ = 0.

• For K = K11 and K̃11, We Obtain ds2
11 = N |dΦ|2/

(
1 − |Φ|2

)2
and R11 = −2/N.

• ds2
11 Remains Invariant under the Transformations

Φ→
αΦ + b
b∗Φ + α

Represented By U =

α b
b∗ α

, Provided that α2 − |b|2 = 1. (T2)

Therefore, U Provides Representation Of The S U(1, 1)/U(1) Kähler Manifold, since U†σ3U = σ3 with σ3 = diag (1,−1).

• In Addition, K11 (but not K̃11) Remains Invariant Under Eq. (T2), up to a Kähler transformation, i.e.,

K → K + Λ + Λ∗ and W → We−Λ with Λ = N ln(b∗Φ + α).

• CI can be Implemented by the Following Combinations (K,W)

• K = K2 + K11 and W2 = λS (Φ − λ′Φ3/λ − M2) or W4 = λS (Φ2 − λ′Φ4/λ − M2).
If we use N = 2 and λ′ ' λ(1 + δλ) , 0 with δλ ' 0 We Obtain

VI = eK KS S ∗ |Wn,S |
2 ' λ2φn (1 − φ2)2

(1 − φ2)2 ' λ
2φn, n = 2, 4

The Form of W may be Motivated from the Breaking of the Conformal Symmetry4.
• K = K2 + K̃11 and Wn = λS Φn. We obtain

VI = eK KS S ∗ |W,S |
2 = λ2φ2n

4J.J.M. Carrasco, R. Kallosh, A. Linde and D. Roest

C. Pallis Pole Inflation in SUGRA 18 / 18



Formulating Pole Inflation SUGRA Framework Inflationary Scenarios Conclusions

Supplementary Material: CI With Pole of Order 2

• CI can be also Realized with Pole of Order 24, Using One of The Following K’s for the Inflaton Sector:

K11 = −N ln
(
1 − |Φ|2

)
or K̃11 = K11 + N ln

(
1 − Φ2

)
/2 + N ln

(
1 − Φ∗2

)
/2

Which lead to the Kinetic Mixing J =
√

2N/ f2P with f2P = 1 − φ2 and Φ = φeiθ for θ = 0.

• For K = K11 and K̃11, We Obtain ds2
11 = N |dΦ|2/

(
1 − |Φ|2

)2
and R11 = −2/N.

• ds2
11 Remains Invariant under the Transformations

Φ→
αΦ + b
b∗Φ + α

Represented By U =

α b
b∗ α

, Provided that α2 − |b|2 = 1. (T2)

Therefore, U Provides Representation Of The S U(1, 1)/U(1) Kähler Manifold, since U†σ3U = σ3 with σ3 = diag (1,−1).
• In Addition, K11 (but not K̃11) Remains Invariant Under Eq. (T2), up to a Kähler transformation, i.e.,

K → K + Λ + Λ∗ and W → We−Λ with Λ = N ln(b∗Φ + α).

• CI can be Implemented by the Following Combinations (K,W)

• K = K2 + K11 and W2 = λS (Φ − λ′Φ3/λ − M2) or W4 = λS (Φ2 − λ′Φ4/λ − M2).
If we use N = 2 and λ′ ' λ(1 + δλ) , 0 with δλ ' 0 We Obtain

VI = eK KS S ∗ |Wn,S |
2 ' λ2φn (1 − φ2)2

(1 − φ2)2 ' λ
2φn, n = 2, 4

The Form of W may be Motivated from the Breaking of the Conformal Symmetry4.
• K = K2 + K̃11 and Wn = λS Φn. We obtain

VI = eK KS S ∗ |W,S |
2 = λ2φ2n

4J.J.M. Carrasco, R. Kallosh, A. Linde and D. Roest

C. Pallis Pole Inflation in SUGRA 18 / 18



Formulating Pole Inflation SUGRA Framework Inflationary Scenarios Conclusions

Supplementary Material: CI With Pole of Order 2

• CI can be also Realized with Pole of Order 24, Using One of The Following K’s for the Inflaton Sector:

K11 = −N ln
(
1 − |Φ|2

)
or K̃11 = K11 + N ln

(
1 − Φ2

)
/2 + N ln

(
1 − Φ∗2

)
/2

Which lead to the Kinetic Mixing J =
√

2N/ f2P with f2P = 1 − φ2 and Φ = φeiθ for θ = 0.

• For K = K11 and K̃11, We Obtain ds2
11 = N |dΦ|2/

(
1 − |Φ|2

)2
and R11 = −2/N.

• ds2
11 Remains Invariant under the Transformations

Φ→
αΦ + b
b∗Φ + α

Represented By U =

α b
b∗ α

, Provided that α2 − |b|2 = 1. (T2)

Therefore, U Provides Representation Of The S U(1, 1)/U(1) Kähler Manifold, since U†σ3U = σ3 with σ3 = diag (1,−1).
• In Addition, K11 (but not K̃11) Remains Invariant Under Eq. (T2), up to a Kähler transformation, i.e.,

K → K + Λ + Λ∗ and W → We−Λ with Λ = N ln(b∗Φ + α).

• CI can be Implemented by the Following Combinations (K,W)

• K = K2 + K11 and W2 = λS (Φ − λ′Φ3/λ − M2) or W4 = λS (Φ2 − λ′Φ4/λ − M2).
If we use N = 2 and λ′ ' λ(1 + δλ) , 0 with δλ ' 0 We Obtain

VI = eK KS S ∗ |Wn,S |
2 ' λ2φn (1 − φ2)2

(1 − φ2)2 ' λ
2φn, n = 2, 4

The Form of W may be Motivated from the Breaking of the Conformal Symmetry4.
• K = K2 + K̃11 and Wn = λS Φn. We obtain

VI = eK KS S ∗ |W,S |
2 = λ2φ2n

4J.J.M. Carrasco, R. Kallosh, A. Linde and D. Roest

C. Pallis Pole Inflation in SUGRA 18 / 18


	Formulating Pole Inflation
	From Minimal to non-Minimal CI
	Non-SUSY Pole Inflation

	SUGRA Framework
	Gauge Singlet Vs Non-Singlet Inflaton
	Kähler Potentials Vs Kähler Manifolds

	Inflationary Scenarios
	Inflationary Potentials
	Inflationary Observables - Results

	Conclusions

