Inflationary Scenarios

POLE INFLATION IN SUPERGRAVITY

C. PALLIS

FACULTY OF ENGINEERING ARISTOTLE UNIVERSITY OF THESSALONIKI

BASED ON:

- C.P., J. Cosmol. Astropart. Phys. 05, 043 (2021) [arXiv:2103.05534].
- C.P., to appear.

OUTLINE

FORMULATING POLE INFLATION

FROM MINIMAL TO NON-MINIMAL CI NON-SUSY POLE INFLATION

SUGRA FRAMEWORK

Gauge Singlet Vs Non-Singlet Inflaton Kähler Potentials Vs Kähler Manifolds

INFLATIONARY SCENARIOS

Inflationary Potentials Inflationary Observables - Results

CONCLUSIONS

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

CORFU SUMMER INSTITUTE 2021: WORKSHOP ON THE STANDARD MODEL AND BEYOND 29 August - 7 September 2021, Corfu, Greece

3

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
• 0 0 0	000	000 00	

OBSERVATIONAL STATUS OF MINIMAL CHAOTIC INFLATION (CI)

• MOTIVATION: THE POWER-LAW POTENTIALS, EMPLOYED IN MODES OF CI, OF THE FORM

 $V_{\rm I}=\lambda^2\phi^n \quad {\rm or} \quad V_{\rm I}=\lambda^2(\phi^2-M^2)^{n/2} \quad {\rm For} \quad M\ll m_{\rm P}=1.$

TORMOLATING TOLE IN LATION DO OTOT TRAMEWORK	INFLATIONART SCENARIOS	CONCLUSIONS
•00 00 00	000 00	

OBSERVATIONAL STATUS OF MINIMAL CHAOTIC INFLATION (CI)

• MOTIVATION: THE POWER-LAW POTENTIALS, EMPLOYED IN MODES OF CI, OF THE FORM

$$V_{\rm I}=\lambda^2\phi^n \quad {\rm or} \quad V_{\rm I}=\lambda^2(\phi^2-M^2)^{n/2} \quad {\rm For} \quad M\ll m_{\rm P}=1.$$

ARE VERY COMMON IN PHYSICS AND SO IT IS EASY THE **IDENTIFICATION** OF THE **INFLATON** ϕ WITH A FIELD ALREADY PRESENT IN THE THEORY; E.G., WITHIN HIGGS INFLATION (**HI**) THE INFLATON COULD PLAY, AT THE END OF INFLATION, THE ROLE OF A HIGGS FIELD.

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
	000 00	000	

OBSERVATIONAL STATUS OF MINIMAL CHAOTIC INFLATION (CI)

• MOTIVATION: THE POWER-LAW POTENTIALS, EMPLOYED IN MODES OF CI, OF THE FORM

$$V_{\rm I}=\lambda^2\phi^n \quad {\rm or} \quad V_{\rm I}=\lambda^2(\phi^2-M^2)^{n/2} \quad {\rm For} \quad M\ll m_{\rm P}=1.$$

ARE VERY COMMON IN PHYSICS AND SO IT IS EASY THE **IDENTIFICATION** OF THE **INFLATON** ϕ WITH A FIELD ALREADY PRESENT IN THE THEORY; E.G., WITHIN HIGGS INFLATION (HI) THE INFLATON COULD PLAY, AT THE END OF INFLATION, THE ROLE OF A HIGGS FIELD.

• However, For n = 2, 4 The Theoretically Derived Values For Spectral Index n_s and/or Tensor-to-Scalar Ratio r Are Not Consistent With the Observational Ones.

• THE COMBINED BICEP2/Keck Array and Planck Results Require, for Fitted $A_{\rm s}$ and N_{\star} - see Below -,

 $n_{\rm s} = 0.968 \pm 0.009$ and $r = 0.028^{+0.026}_{-0.025} \Rightarrow 0.003 \lesssim r \lesssim 0.054$ at 68% c.l. or $r \lesssim 0.07$ at 95% c.l.

3

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	Inflationary Scenarios	Conclusions
	000	000 00	

INTRODUCING A NON-MINIMAL KINETIC MIXING IN THE INFLATON SECTOR

- Observational Requirements Indicate that We have to Invoke Some non-Minimality to (Or Reconcile) CI With Data
- C.F. STAROBISKY MODEL AND α Attractors
- ACTUALLY, THERE ARE TWO SOURCES OF NON-MINIMALITY IN CONSTRUCTING MODELS OF CI.
 - One due to non-Minimal Coupling of ϕ to the Ricci Scalar Curvature, \mathcal{R} , $f_{\mathcal{R}} \neq 1$. Here We take $f_{\mathcal{R}} = 1$
 - One due to the non-Minimal Kinetic Mixing, $f_{\rm K}(\phi) \neq 1$.

Under This Assumption, The Action Of the (initial real) inflaton ϕ is

$$S = \int d^4x \sqrt{-\mathfrak{g}} \left(-\frac{1}{2} \mathcal{R} + \frac{f_{\mathrm{K}}(\phi)}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right), \quad \text{Where}$$

We set $m_{\rm P}=1$ and g is the Determinant Of The Background Metric $g^{\mu\nu}.$

¹ B.J. Broy et al. (2015); T. Terada (2016); T. Kobayashi et al. (2017).

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	000	
00			

INTRODUCING A NON-MINIMAL KINETIC MIXING IN THE INFLATON SECTOR

- Observational Requirements Indicate that We have to Invoke Some non-Minimality to (Or Reconcile) CI With Data
- C.F. STAROBISKY MODEL AND α Attractors
- ACTUALLY, THERE ARE TWO SOURCES OF NON-MINIMALITY IN CONSTRUCTING MODELS OF CI.
 - One due to non-Minimal Coupling of ϕ to the Ricci Scalar Curvature, \mathcal{R} , $f_{\mathcal{R}} \neq 1$. Here We take $f_{\mathcal{R}} = 1$
 - One due to the non-Minimal Kinetic Mixing, $f_{\rm K}(\phi) \neq 1$.

Under This Assumption, The Action Of the (initial real) inflaton ϕ is

$$S = \int d^{4}x \sqrt{-g} \left(-\frac{1}{2}\mathcal{R} + \frac{f_{K}(\phi)}{2} g^{\mu\nu} \partial_{\mu}\phi \partial_{\nu}\phi - V(\phi) \right), \quad \text{Where}$$

We set $m_{
m P}=1$ and g is the Determinant Of The Background Metric $g^{\mu\nu}.$

• IF WE INTRODUCE THE CANONICALLY NORMALIZED FIELD, $\widehat{\phi}$, Defined As Follows:

$$\left(\frac{d\widehat{\phi}}{d\phi}\right)^2 = J^2 = f_{\rm K} \ \Rightarrow \ \widehat{\phi} = \int d\phi J(\phi) \ \text{ with } \ J = +\sqrt{f_{\rm K}}$$

The Action ${\mathcal S}$ in terms of $\widehat{\phi}$ Takes the Form

$$\mathcal{S} = \int d^4x \, \sqrt{-\mathfrak{g}} \left(-\frac{1}{2} \mathcal{R} + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \widehat{\phi} \partial_{\nu} \widehat{\phi} - V_{\mathrm{I}}\left(\widehat{\phi} \right) \right) \quad \text{With} \quad V_{\mathrm{I}}(\widehat{\phi}) = V_{\mathrm{I}}\left(\widehat{\phi}(\phi) \right) \cdot$$

• We can Show that for a Suitable Choice of f_K Including A Pole¹ the Potential $V_I(\widehat{\phi})$ Develops A Plateau, and so it Becomes Suitable to Drive Observationally Acceptable CI.

ullet The Analysis of CI Can Be Performed Exclusively in terms of $V_{
m I}$ and $\widehat{\phi}$ Using The Standard Slow-Roll Approximation.

¹ B.J. Broy et al. (2015); T. Terada (2016); T. Kobayashi et al. (2017).

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
	000	000	
FROM MINIMAL TO NON-MINIMAL CI			

• The Number of e-foldings, N_{\star} , that the Scale $k_{\star} = 0.05/Mpc$ Underwent During CI has to be Sufficient to Resolve the Horizon and Flatness Problems of Standard Big Bang:

$$\widehat{N}_{\star} = \int_{\widehat{\phi}_{\rm f}}^{\widehat{\phi}_{\star}} d\widehat{\phi} \, \frac{V_{\rm I}}{V_{{\rm I}, \widehat{\phi}}} = \int_{\phi_{\rm f}}^{\phi_{\star}} d\phi \, J^2 \frac{V_{\rm I}}{V_{{\rm I}, \phi}} \simeq 52 - 56$$

Where $\phi_{\star}[\widehat{\phi}_{\star}]$ is The Value of $\phi[\widehat{\phi}]$ When k_{\star} Crosses Outside The Inflationary Horizon; $\phi_{f}[\widehat{\phi}_{f}]$ is the Value of $\phi[\widehat{\phi}]$ at the end of HI Which Can Be Found From The Condition:

$$\max\{\widehat{\epsilon}(\phi_{\mathrm{f}}), [\widehat{\eta}(\phi_{\mathrm{f}})]\} = 1, \quad \text{With} \quad \widehat{\epsilon} = \frac{1}{2} \left(\frac{V_{\mathrm{L}\widehat{\phi}}}{V_{\mathrm{I}}}\right)^2 = \frac{1}{2J^2} \left(\frac{V_{\mathrm{L}\phi}}{V_{\mathrm{I}}}\right)^2 \quad \text{and} \quad \widehat{\eta} = \frac{V_{\mathrm{L}\widehat{\phi}\widehat{\phi}}}{V} = \frac{1}{J^2} \left(\frac{V_{\mathrm{L}\phi}}{V_{\mathrm{I}}} - \frac{V_{\mathrm{L}\phi}}{V_{\mathrm{I}}} \frac{J_{\phi}}{J}\right) \cdot \frac{1}{2J^2} \left(\frac{V_{\mathrm{L}\widehat{\phi}}}{V_{\mathrm{I}}} - \frac{V_{\mathrm{L}\widehat{\phi}}}{V_{\mathrm{I}}} - \frac{V_{\mathrm{L}\widehat{\phi}}}{V_{\mathrm{I}}} \frac{J_{\phi}}{J}\right)$$

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
	000	000	
FROM MINIMAL TO NON-MINIMAL CI			

• The Number of e-foldings, N_{\star} , that the Scale $k_{\star} = 0.05/Mpc$ Underwent During CI has to be Sufficient to Resolve the Horizon and Flatness Problems of Standard Big Bang:

$$\widehat{N}_{\star} = \int_{\widehat{\phi}_{\rm f}}^{\widehat{\phi}_{\star}} d\widehat{\phi} \, \frac{V_{\rm I}}{V_{{\rm I}, \widehat{\phi}}} = \int_{\phi_{\rm f}}^{\phi_{\star}} d\phi \, J^2 \frac{V_{\rm I}}{V_{{\rm I}, \phi}} \simeq 52 - 56$$

Where $\phi_{\star}[\widehat{\phi}_{\star}]$ is The Value of $\phi[\widehat{\phi}]$ When k_{\star} Crosses Outside The Inflationary Horizon; $\phi_{f}[\widehat{\phi}_{f}]$ is the Value of $\phi[\widehat{\phi}]$ at the end of HI Which Can Be Found From The Condition:

$$\max\{\widehat{\epsilon}(\phi_{\mathrm{f}}), |\widehat{\eta}(\phi_{\mathrm{f}})|\} = 1, \quad \text{With} \quad \widehat{\epsilon} = \frac{1}{2} \left(\frac{V_{\mathrm{I},\widehat{\phi}}}{V_{\mathrm{I}}}\right)^2 = \frac{1}{2J^2} \left(\frac{V_{\mathrm{I},\phi}}{V_{\mathrm{I}}}\right)^2 \quad \text{and} \quad \widehat{\eta} = \frac{V_{\mathrm{I},\widehat{\phi}\widehat{\phi}}}{V} = \frac{1}{J^2} \left(\frac{V_{\mathrm{I},\phi}}{V_{\mathrm{I}}} - \frac{V_{\mathrm{I},\phi}}{V_{\mathrm{I}}}\frac{J_{,\phi}}{J}\right)^2$$

The Amplitude As of the Power Spectrum of the Curvature Perturbations is To Be Consistent with Planck Data:

$$A_{\rm s}^{1/2} = \frac{1}{2\sqrt{3}\pi} \frac{V_{\rm I}(\widehat{\phi}_{\star})^{3/2}}{|V_{\rm I}_{\phi}(\widehat{\phi}_{\star})|} = \frac{|J(\phi_{\star})|}{2\sqrt{3}\pi} \frac{V_{\rm I}(\phi_{\star})^{3/2}}{|V_{\rm I}_{\phi}(\phi_{\star})|} = 4.588 \cdot 10^{-5}$$

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
	000	000	
FROM MINIMAL TO NON-MINIMAL CI			

• The Number of e-foldings, N_{\star} , that the Scale $k_{\star} = 0.05/Mpc$ Underwent During CI has to be Sufficient to Resolve the Horizon and Flatness Problems of Standard Big Bang:

$$\widehat{N}_{\star} = \int_{\widehat{\phi}_{\rm f}}^{\widehat{\phi}_{\star}} d\widehat{\phi} \, \frac{V_{\rm I}}{V_{{\rm I}, \widehat{\phi}}} = \int_{\phi_{\rm f}}^{\phi_{\star}} d\phi \, J^2 \frac{V_{\rm I}}{V_{{\rm I}, \phi}} \simeq 52 - 56$$

Where $\phi_{\star}[\widehat{\phi}_{\star}]$ is The Value of $\phi[\widehat{\phi}]$ When k_{\star} Crosses Outside The Inflationary Horizon; $\phi_{f}[\widehat{\phi}_{f}]$ is the Value of $\phi[\widehat{\phi}]$ at the end of HI Which Can Be Found From The Condition:

$$\max\{\widehat{\epsilon}(\phi_{\mathrm{f}}), |\widehat{\eta}(\phi_{\mathrm{f}})|\} = 1, \quad \text{With} \quad \widehat{\epsilon} = \frac{1}{2} \left(\frac{V_{\mathrm{I},\widehat{\phi}}}{V_{\mathrm{I}}}\right)^2 = \frac{1}{2J^2} \left(\frac{V_{\mathrm{I},\phi}}{V_{\mathrm{I}}}\right)^2 \quad \text{and} \quad \widehat{\eta} = \frac{V_{\mathrm{I},\widehat{\phi}\widehat{\phi}}}{V} = \frac{1}{J^2} \left(\frac{V_{\mathrm{I},\phi}}{V_{\mathrm{I}}} - \frac{V_{\mathrm{I},\phi}}{V_{\mathrm{I}}}\frac{J_{,\phi}}{J}\right)^2$$

The Amplitude As of the Power Spectrum of the Curvature Perturbations is To Be Consistent with Planck Data:

$$A_{s}^{1/2} = \frac{1}{2\sqrt{3}\pi} \frac{V_{I}(\widehat{\phi}_{\star})^{3/2}}{|V_{I,\widehat{\phi}}(\widehat{\phi}_{\star})|} = \frac{|J(\phi_{\star})|}{2\sqrt{3}\pi} \frac{V_{I}(\phi_{\star})^{3/2}}{|V_{I,\phi}(\phi_{\star})|} = 4.588 \cdot 10^{-5}$$

• THE REMAINING OBSERVABLES ARE FOUND AS:

$$n_{\rm s}=\ 1-6\widehat{\epsilon_{\star}}\ +\ 2\widehat{\eta}_{\star}, \quad \alpha_{\rm s}=\ 2\left(4\widehat{\eta}_{\star}^2-(n_{\rm s}-1)^2\right)/3-2\widehat{\xi}_{\star} \quad \text{and} \quad r=16\widehat{\epsilon_{\star}},$$

 $\text{Where } \widehat{\xi} = V_{I,\widehat{\phi}} V_{I,\widehat{\phi\phi\phi}} / V_{I}^{2} = V_{I,\phi} \, \widehat{\eta_{,\phi}} / V_{I} \, J^{2} + 2 \widehat{\eta \epsilon} \, \text{And The Variables With Subscript} \star \text{Are Evaluated at } \phi = \phi_{\star} \, . \\$

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
	000	000	
FROM MINIMAL TO NON-MINIMAL CI			

• The Number of e-foldings, N_{\star} , that the Scale $k_{\star} = 0.05/Mpc$ Underwent During CI has to be Sufficient to Resolve the Horizon and Flatness Problems of Standard Big Bang:

$$\widehat{N}_{\star} = \int_{\widehat{\phi}_{\rm f}}^{\overline{\phi}_{\star}} d\widehat{\phi} \, \frac{V_{\rm I}}{V_{{\rm I}, \widehat{\phi}}} = \int_{\phi_{\rm f}}^{\phi_{\star}} d\phi \, J^2 \frac{V_{\rm I}}{V_{{\rm I}, \phi}} \simeq 52 - 56$$

Where $\phi_{\star}[\widehat{\phi}_{\star}]$ is The Value of $\phi[\widehat{\phi}]$ When k_{\star} Crosses Outside The Inflationary Horizon; $\phi_{f}[\widehat{\phi}_{f}]$ is the Value of $\phi[\widehat{\phi}]$ at the end of HI Which Can Be Found From The Condition:

$$\max\{\widehat{\epsilon}(\phi_{\mathrm{f}}), |\widehat{\eta}(\phi_{\mathrm{f}})|\} = 1, \quad \text{With} \quad \widehat{\epsilon} = \frac{1}{2} \left(\frac{V_{\mathrm{I},\widehat{\phi}}}{V_{\mathrm{I}}}\right)^2 = \frac{1}{2J^2} \left(\frac{V_{\mathrm{I},\phi}}{V_{\mathrm{I}}}\right)^2 \quad \text{and} \quad \widehat{\eta} = \frac{V_{\mathrm{I},\widehat{\phi}\widehat{\phi}}}{V} = \frac{1}{J^2} \left(\frac{V_{\mathrm{I},\phi}}{V_{\mathrm{I}}} - \frac{V_{\mathrm{I},\phi}}{V_{\mathrm{I}}}\frac{J_{,\phi}}{J}\right)^2$$

The Amplitude As of the Power Spectrum of the Curvature Perturbations is To Be Consistent with Planck Data:

$$A_{s}^{1/2} = \frac{1}{2\sqrt{3}\pi} \frac{V_{I}(\widehat{\phi}_{\star})^{3/2}}{|V_{I,\widehat{\phi}}(\widehat{\phi}_{\star})|} = \frac{|J(\phi_{\star})|}{2\sqrt{3}\pi} \frac{V_{I}(\phi_{\star})^{3/2}}{|V_{I,\phi}(\phi_{\star})|} = 4.588 \cdot 10^{-5}$$

• THE REMAINING OBSERVABLES ARE FOUND AS:

$$n_{\rm s}=\ 1-6\widehat{\epsilon_{\star}}\ +\ 2\widehat{\eta_{\star}}, \quad \alpha_{\rm s}=\ 2\left(4\widehat{\eta_{\star}}^2-(n_{\rm s}-1)^2\right)/3-2\widehat{\xi}_{\star} \quad \text{and} \quad r=16\widehat{\epsilon_{\star}},$$

 $\text{Where } \widehat{\xi} = V_{\mathrm{I},\widehat{\phi}} V_{\mathrm{I},\widehat{\phi\phi\phi}} / V_{\mathrm{I}}^2 = V_{\mathrm{I},\phi} \, \widehat{\eta}_{,\phi} / V_{\mathrm{I}} \, J^2 + 2 \widehat{\eta \epsilon} \, \text{And The Variables With Subscript} \, \star \, \text{Are Evaluated at } \phi = \phi_{\star} \, . \\$

• We Have To Check The Hierarchy Between The Ultraviolet Cut-off $\Lambda_{UV} \sim m_{P_1}$ of the Effective Theory And The Inflationary Scale. In Particular, The Validity Of The Effective Theory Implies:

(a)
$$V_{\rm I}(\phi_*)^{1/4} \leq \Lambda_{\rm UV}$$
 for (b) $\phi \leq \Lambda_{\rm UV}$

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ ○ ○

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
	000	000	
NON-SUSY POLE INFLATION			

POLE OF ORDER TWO (T-MODEL CI)

• Pole CI is Most Usually Realized IF We introduce a Pole of Order Two in $f_{\rm K}{}^2$ I.e.,:

$$f_{\rm K} = 2N/f_{\rm 2P}^2 \quad \text{with} \quad f_{\rm 2P} = 1 - \phi^2 \quad \text{and} \quad V_{\rm I} = V_{\rm HI} = \lambda^2 \left(\phi^2 - M^2\right)^2 / 16 \quad \text{With} \quad M \ll 1 \quad \& \quad N > 0 \, .$$

² R. Kallosh and A. Linde (2013); J. Ellis, D.V. Nanopoulos and K.A. Olive (2013).

Formulating Pole Inflation	SUGRA Framework	INFLATIONARY SCENARIOS	Conclusions
000 •0	000	000	
NON-SUSY POLE INFLATION			

POLE OF ORDER TWO (T-MODEL CI)

• Pole CI is Most Usually Realized IF We Introduce a Pole of Order Two in $f_{\rm K}{}^2$ I.e.,:

$$f_{\rm K} = 2N/f_{\rm 2P}^2 \quad \text{with} \quad f_{\rm 2P} = 1 - \phi^2 \quad \text{and} \quad V_{\rm I} = V_{\rm HI} = \lambda^2 \left(\phi^2 - M^2\right)^2 / 16 \quad \text{With} \quad M \ll 1 \quad \& \quad N > 0 \, .$$

• Canonically Normalizing ϕ , we Obtain $\phi \sim \tanh{\widehat{\phi}}$ and hence the Name T-Model (TM₄) HI

$$\widehat{\phi} = \sqrt{N/2} \ln \left((1+\phi)/(1-\phi) \right)$$
 or $\phi = \tanh \left(\widehat{\phi} / \sqrt{2N} \right)$

² R. Kallosh and A. Linde (2013); J. Ellis, D.V. Nanopoulos and K.A. Olive (2013).

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
	000	000	
NON-SUSY POLE INFLATION			

POLE OF ORDER TWO (T-MODEL CI)

• Pole CI Is Most Usually Realized If We Introduce a Pole of Order Two in $f_{\rm K}{}^2$ I.e.,:

$$f_{\rm K} = 2N/f_{
m 2P}^2$$
 with $f_{
m 2P} = 1 - \phi^2$ and $V_{\rm I} = V_{\rm HI} = \lambda^2 \left(\phi^2 - M^2\right)^2 / 16$ With $M \ll 1$ & $N > 0$.

• Canonically Normalizing ϕ , we Obtain $\phi \sim \tanh \widehat{\phi}$ and hence the Name T-Model (TM₄) HI

$$\widehat{\phi} = \sqrt{N/2} \ln \left((1+\phi)/(1-\phi) \right) \quad \text{or} \quad \phi = \tanh \left(\widehat{\phi} / \sqrt{2N} \right)$$

• $V_{\rm I}$ in Terms of $\widehat{\phi}$ Experiences A Stretching For $\widehat{\phi} > 1$ Which Results To A Plateau, i.e., $V_{\rm I} = \lambda^2 \tanh^4(\widehat{\phi}/\sqrt{2N})/16$.

Here, $\epsilon \simeq 16 f_{2P}^2 / N\phi^2$ and $\eta \simeq 8 f_{2P}(3 - 5\phi^2) / N\phi^2$. Therefore, $N_\star \simeq N\phi_\star^2 / f_{2P\star} \Rightarrow \phi_\star = \sqrt{4N_\star} / \sqrt{4N_\star + N} \sim 1 \gg \phi_f$. • The Constraint on A_s Yields $A_s^{1/2} \simeq \sqrt{2\lambda}N_\star / \sqrt{3N\pi} = 4.588 \cdot 10^{-5} \Rightarrow \lambda \simeq 4\sqrt{6NA_s}\pi / N_\star \Rightarrow \underline{\lambda} \simeq 10^{-5}$ For $N_\star \simeq 55$ • The Other Observables Are $n_s \simeq 1 - 2/N_\star \simeq 0.965$, $\alpha_s \simeq -2/N_\star^2 = 9.5 \cdot 10^{-4}$ and $r \simeq N/N_\star^2 \le 0.07 \Rightarrow N \le 211$. ²*R*. Kallosh and *A*. Linde (2013): *L* Ellis, D.V. Nanopoulos and K.A. Olive (2013).

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000 0●	000	000	
NON-SUSY POLE INFLATION			

POLE OF ORDER ONE

• The Simplest Choice It would be The Pole in $f_{\rm K}$ to be of Order One. I.e.,:

 $f_{\rm K}=N/2f_{\rm IP}^2 \quad {\rm with} \quad f_{\rm IP}=1-\phi \ \ {\rm and} \ \ V_{\rm I}=V_{\rm CI}=\lambda^2\phi^n/n \ \ {\rm With} \ \ N>0\,.$

▲□▶▲□▶▲≡▶▲≡▶ ▲□▶ ● ●

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000 0•	000	000	
Nov SUSV Pour Iver strong			

POLE OF ORDER ONE

• The Simplest Choice It would be The Pole in f_K to be of Order One. I.e.,:

$$f_{\rm K}=N/2f_{\rm 1P}^2 \quad {\rm with} \quad f_{\rm 1P}=1-\phi \ \ {\rm and} \ \ V_{\rm I}=V_{\rm CI}=\lambda^2\phi^n/n \ \ {\rm With} \ \ N>0\,.$$

• Canonically Normalizing ϕ , we Obtain

$$\widehat{\phi} = -\sqrt{N/2}\ln\left(1-\phi\right) \quad \text{or} \quad \phi = 1-e^{-\sqrt{N/2}\widehat{\phi}}$$

Formulating Pole Inflation	SUGRA Framework 000 00	Inflationary Scenarios 000 00	Conclusions
NON-SUSY POLE INFLATION			

POLE OF ORDER ONE

• The Simplest Choice It would be The Pole in f_K to be of Order One. I.e.,:

$$f_{\rm K}=N/2f_{\rm 1P}^2 \quad {\rm with} \quad f_{\rm 1P}=1-\phi \ \ {\rm and} \ \ V_{\rm I}=V_{\rm CI}=\lambda^2\phi^n/n \ \ {\rm With} \ \ N>0\,.$$

• CANONICALLY NORMALIZING ϕ , WE OBTAIN

$$\widehat{\phi} = -\sqrt{N/2}\ln\left(1-\phi\right) \quad \text{or} \quad \phi = 1-e^{-\sqrt{N/2}\widehat{\phi}}$$

• $V_{\rm I}$ in Terms of $\widehat{\phi}$ Experiences A Stretching For $\widehat{\phi} > 1$ Which Results To A Plateau, i.e., $V_{\rm I} = \lambda^2 (1 - e^{-\sqrt{N/2}\widehat{\phi}})^n/n - \text{E.g.}$, For n = 2 we Obtain the Well-Known Starobinsky Model and the Plots Below.

Here, $\epsilon \simeq nf_{1P}^{2}/2N\phi^{2}$ and $\eta \simeq nf_{1P}(nf_{1P}-1)/N\phi^{2}$. Therefore, $N_{\star} \simeq N\phi_{\star}^{2}/nf_{1P^{\star}} \Rightarrow \phi_{\star} = \sqrt{nN_{\star}}/(nN_{\star} + N) \sim 1 \gg \phi_{f}$. • The Constraint on A_{s} Yields $A_{s}^{1/2} \simeq \lambda N_{\star}/2\sqrt{3nN\pi} = 4.588 \cdot 10^{-5} \Rightarrow \lambda \simeq 2\sqrt{3nNA_{s}}\pi/N_{\star} \Rightarrow \lambda \simeq 10^{-6}$ for $N_{\star} \simeq 55$. • The Other Observables Are $n_{s} \simeq 1 - 2/N_{\star} \simeq 0.965$, $\alpha_{s} \simeq -2/N_{\star}^{2} = 9.5 \cdot 10^{-4}$ and $r \simeq 8N/N_{\star}^{2} \le 0.07 \Rightarrow N \le 26.5$.

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	• •••	000	

SUGRA SCALAR POTENTIAL

- How WE CAN FORMULATE POLE-INFLATION WITHIN SUGRA?
- THE GENERAL ACTION FOR THE SCALAR FIELDS z^{α} Plus Gravity In Four Dimensional, $\mathcal{N} = 1$ SUGRA is:

$$\mathcal{S} = \int d^4x \sqrt{-\mathfrak{g}} \left(-\frac{1}{2} \mathcal{R} + K_{a\bar{\beta}} g^{\mu\nu} D_{\mu} z^{\alpha} D_{\nu} z^{*\bar{\beta}} - V \right) \quad \text{Where} \quad V = V_{\text{F}} + V_{\text{D}} \quad \text{With} \quad \begin{cases} V_{\text{D}} = g^2 \mathcal{D}_a^2 / 2 \\ V_{\text{F}} = e^K \left(K^{a\bar{\beta}} F_a F_{\bar{\beta}}^* - 3 |W|^2 \right) \end{cases}$$

 $\mathsf{Also} \ K_{a\bar{\beta}} = \frac{\partial^2 K}{\partial z^{\alpha} \partial z^{z\bar{\beta}}} > 0 \quad \mathsf{and} \quad K^{\bar{\beta}\alpha} K_{a\bar{\gamma}} = \delta^{\bar{\beta}}_{\bar{\gamma}}; \quad D_{\mu} z^{\alpha} = \partial_{\mu} z^{\alpha} + ig A^a_{\mu} T^a_{\alpha\beta} z^{\beta}, \quad \mathbf{F}_{\alpha} = W_{,z^{\alpha}} + K_{,z^{\alpha}} W \quad \mathsf{and} \quad \mathbf{D}_a = z_{\alpha} \left(T_a\right)^{\alpha}_{\beta} K_{,z^{\beta}} = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\alpha}} \left(T_a + \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\alpha}} \right) = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\alpha}} \left(T_a + \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\alpha}} \right) = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\alpha}} \left(T_a + \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\alpha}} \right)$

 A^a_μ is The Vector Gauge Fields, g is the Gauge Coupling and T_a are the Generators of the Gauge Transformations OF z^{lpha} .

³C.P. and N. Toumbas (2016).

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000 00	• 00 00	000	

SUGRA SCALAR POTENTIAL

- How WE CAN FORMULATE POLE-INFLATION WITHIN SUGRA?
- THE GENERAL ACTION FOR THE SCALAR FIELDS z^{α} Plus Gravity In Four Dimensional, $\mathcal{N} = 1$ SUGRA is:

$$\mathcal{S} = \int d^4x \sqrt{-g} \left(-\frac{1}{2} \mathcal{R} + K_{a\bar{\beta}} g^{\mu\nu} D_{\mu} z^{\alpha} D_{\nu} z^{*\bar{\beta}} - V \right) \quad \text{Where} \quad V = V_{\text{F}} + V_{\text{D}} \quad \text{With} \quad \begin{cases} V_{\text{D}} = g^2 \mathcal{D}_a^2 / 2 \\ V_{\text{F}} = e^K \left(K^{a\bar{\beta}} F_a F_{\bar{\beta}}^* - 3 |W|^2 \right) \end{cases}$$

$$\text{Also } K_{a\bar{\beta}} = \frac{\partial^2 K}{\partial z^{\alpha} \partial z^{\ast \bar{\beta}}} > 0 \quad \text{and} \quad K^{\bar{\beta}\alpha} K_{a\bar{\gamma}} = \delta^{\bar{\beta}}_{\bar{\gamma}}; \quad D_{\mu} z^{\alpha} = \partial_{\mu} z^{\alpha} + ig A^a_{\mu} T^a_{\alpha\beta} z^{\beta}, \quad \mathbf{F}_{\alpha} = W_{,z^{\alpha}} + K_{,z^{\alpha}} W \quad \text{and} \quad \mathbf{D}_a = z_{\alpha} \left(T_a\right)^{\alpha}_{\beta} K_{,z^{\beta}} = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\ast \beta}} = \frac{\partial^2 K_{,z^{\alpha}}}}{\partial z^{\ast \beta}} = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\ast \beta}} = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\ast \beta}} = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\ast \beta}} = \frac{\partial^2 K_{,z^{\alpha}}}}{\partial z^{\ast \beta}} = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\ast \beta}} = \frac{\partial^2 K_{,z^{\alpha}}}}{\partial z^{\ast \beta}} = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\ast \beta}} = \frac{\partial^2 K_{,z^{\alpha}}}}{\partial z^{\ast \beta}} = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\ast \beta}} = \frac{\partial^2 K_{,z^{\alpha}}}}{\partial z^{\ast \beta}}$$

 A^a_μ is The Vector Gauge Fields, g is the Gauge Coupling and T_a are the Generators of the Gauge Transformations OF z^a . • The Kinetic Mixing is Controlled by The Kähler Potential K Which Affects Also V. This Consists a Complication With Respect the non-SUSY case And We Show Below How We Arrange it in two Ways. V Depends on Superpotential W Too. • We Concentrate on CI Driven by V_F – As we show Below We Can Easily Assure $V_D = 0$ During CI.

³C.P. and N. Toumbas (2016).

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000 00	• • • • • • • • • • • • • • • • • • •	000 00	

SUGRA SCALAR POTENTIAL

- How WE CAN FORMULATE POLE-INFLATION WITHIN SUGRA?
- THE GENERAL ACTION FOR THE SCALAR FIELDS z^{α} Plus Gravity In Four Dimensional, $\mathcal{N} = 1$ SUGRA is:

$$\mathcal{S} = \int d^4x \sqrt{-\mathfrak{g}} \left(-\frac{1}{2} \mathcal{R} + K_{a\bar{\beta}} g^{\mu\nu} D_{\mu} z^{\alpha} D_{\nu} z^{*\bar{\beta}} - V \right) \quad \text{Where} \quad V = V_{\text{F}} + V_{\text{D}} \quad \text{With} \quad \begin{cases} V_{\text{D}} = g^2 \mathcal{D}_a^2 / 2 \\ V_{\text{F}} = e^K \left(K^{a\bar{\beta}} \mathcal{F}_a \mathcal{F}_{\bar{\beta}}^* - 3 |W|^2 \right) \end{cases}$$

 $\mathsf{Also} \ K_{a\bar{\beta}} = \frac{\partial^2 K}{\partial z^{\alpha} \partial z^{z\bar{\beta}}} > 0 \quad \mathsf{and} \quad K^{\bar{\beta}\alpha} K_{a\bar{\gamma}} = \delta^{\bar{\beta}}_{\bar{\gamma}}; \quad D_{\mu} z^{\alpha} = \partial_{\mu} z^{\alpha} + ig A^a_{\mu} T^a_{\alpha\beta} z^{\beta}, \quad \mathbf{F}_{\alpha} = W_{,z^{\alpha}} + K_{,z^{\alpha}} W \quad \mathsf{and} \quad \mathbf{D}_a = z_{\alpha} \left(T_a\right)^{\alpha}_{\beta} K_{,z^{\beta}} = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\alpha}} \left(T_a + \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\alpha}} \right) = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\alpha}} \left(T_a + \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\alpha}} \right) = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\alpha}} \left(T_a + \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\alpha}} \right)$

 A^a_{μ} is The Vector Gauge Fields, g is the Gauge Coupling and T_a are the Generators of the Gauge Transformations OF z^a . • The Kinetic Mixing is Controlled by The Kähler Potential K Which Affects Also V. This Consists a Complication With Respect the non-SUSY case And We Show Below How We Arrange it in two Ways. V Depends on Superpotential W Too. • We Concentrate on CI Driven by V_F – As we show Below We Can Easily Assure $V_D = 0$ During CI.

INTRODUCTION OF THE STABILIZER FIELD

• POLE CI CAN BE SYSTEMATICALLY FORMULATED IN SUGRA IF WE INTRODUCE A GAUGE SINGLET SUPERFIELD $z^1 = S$ called Stabilizer or Goldstino. Its Introduction is Necessary For the Following Reasons:

³C.P. and N. Toumbas (2016).

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	Inflationary Scenarios	Conclusions
000	• •• • ••	000	

SUGRA SCALAR POTENTIAL

- How WE CAN FORMULATE POLE-INFLATION WITHIN SUGRA?
- THE GENERAL ACTION FOR THE SCALAR FIELDS z^{α} Plus Gravity In Four Dimensional, $\mathcal{N} = 1$ SUGRA is:

$$S = \int d^4x \sqrt{-g} \left(-\frac{1}{2} \mathcal{R} + K_{\alpha\bar{\beta}} g^{\mu\nu} D_{\mu} z^{\alpha} D_{\nu} z^{*\bar{\beta}} - V \right) \quad \text{Where} \quad V = V_{\text{F}} + V_{\text{D}} \quad \text{With} \quad \begin{cases} V_{\text{D}} = g^2 D_a^2 / 2 \\ V_{\text{F}} = e^K \left(K^{\alpha\bar{\beta}} F_{\alpha} F_{\beta}^* - 3 |W|^2 \right) \end{cases}$$

 $\text{Also } K_{a\bar{\beta}} = \frac{\partial^2 K}{\partial z^{\alpha} \partial z^{z\bar{\beta}}} > 0 \quad \text{and} \quad K^{\bar{\beta}\alpha} K_{a\bar{\gamma}} = \delta^{\bar{\beta}}_{\bar{\gamma}}; \quad D_{\mu} z^{\alpha} = \partial_{\mu} z^{\alpha} + ig A^a_{\mu} T^a_{\alpha\beta} z^{\beta}, \quad \mathbf{F}_{\alpha} = W_{,z^{\alpha}} + K_{,z^{\alpha}} W \quad \text{and} \quad \mathbf{D}_a = z_{\alpha} \left(T_a\right)^{\alpha}_{\beta} K_{,z^{\beta}} = \frac{\partial^2 K_{,z^{\alpha}}}{\partial z^{\alpha}} = \frac{\partial^2 K_{,z^{\alpha}}}{$

 A^a_{μ} is The Vector Gauge Fields, g is the Gauge Coupling and T_a are the Generators of the Gauge Transformations OF z^a . • The Kinetic Mixing is Controlled by The Kähler Potential K Which Affects Also V. This Consists a Complication With Respect the non-SUSY case And We Show Below How We Arrange it in two Ways. V Depends on Superpotential W Too. • We Concentrate on CI Driven by V_F – As we show Below We Can Easily Assure $V_D = 0$ During CI.

INTRODUCTION OF THE STABILIZER FIELD

• POLE CI CAN BE SYSTEMATICALLY FORMULATED IN SUGRA IF WE INTRODUCE A GAUGE SINGLET SUPERFIELD $z^1 = S$ called Stabilizer or Goldstino. Its Introduction is Necessary For the Following Reasons:

• It Generates the non-SUSY Potential From the term $|W_S|^2$ for S = 0. E.g., For $W = \lambda S \Phi^{n/2}$ We Obtain

$$V_{\mathrm{F}} = e^{K} K^{SS^{*}} |W_{,S}|^{2} \in V_{\mathrm{non-SUSY}} = \lambda^{2} \phi^{n} \quad \text{with} \quad \phi = \mathrm{Re}(\Phi) \quad \text{the (initial) inflaton.}$$

- It Assures the Boundedness of V_F : If We set S = 0 During Inflation, the Terms $K_{z}^{\alpha}W$, $\alpha \neq 1$, and $-3|W|^2$ Vanish. The 2nd one May Render V_F Unbounded From Below.
- It can be **Stabilized** at S = 0 Without Invoking Higher Order Terms, if we Select ³:

 $K_2 = N_S \ln \left(1 + |S|^2 / N_S\right) \Rightarrow K_2^{SS^*} = 1$ With $0 < N_S < 6$ Which Parameterizes the Compact Manifold SU(2)/U(1).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

³C.P. and N. Toumbas (2016).

Formulating Pole Inflation	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	CONCLUSIONS
000 00	000 00	000 00	

GAUGE SINGLET INFLATON

• GENERATION OF INFLATON KINETIC MIXING: IF WE ADOPT

$$K_{1s} = -N \ln (1 - (\Phi + \Phi^*)/2),$$

WE OBTAIN A POLE OF ORDER 1 IN THE KINETIC TERMS

$$\mathsf{l.e.}, \ \ \mathcal{S} = \int d^4x \sqrt{-\mathfrak{g}} \Big(K_{\Phi\Phi^*} \dot{\Phi} \dot{\Phi}^* + \cdots \Big) \quad \mathsf{Where} \quad K_{\Phi\Phi^*} = \partial_\Phi \partial_{\Phi^*} K = \frac{N}{4} \frac{1}{(1 - (\Phi + \Phi^*)/2)^2} = \frac{N}{4} \frac{1}{(1 - \phi)^2} \text{ for } \Phi = \Phi^* = \phi$$

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	CONCLUSIONS
000 00	000 00	000 00	

GAUGE SINGLET INFLATON

• GENERATION OF INFLATON KINETIC MIXING: IF WE ADOPT

$$K_{1s} = -N\ln(1 - (\Phi + \Phi^*)/2),$$

WE OBTAIN A POLE OF ORDER 1 IN THE KINETIC TERMS

$$\mathsf{l.e.}, \ \mathcal{S} = \int d^4x \sqrt{-\mathfrak{g}} \Big(K_{\Phi\Phi^*} \Phi \Phi^* + \cdots \Big) \quad \mathsf{Where} \quad K_{\Phi\Phi^*} = \partial_\Phi \partial_{\Phi^*} K = \frac{N}{4} \frac{1}{(1 - (\Phi + \Phi^*)/2)^2} = \frac{N}{4} \frac{1}{(1 - \phi)^2} \text{ for } \Phi = \Phi^* = \phi$$

• Cancellation of Denominator: Due to Factor e^{K} , the Adopted K Results to a Disturbing Denominator, I.e.,

$$V_{\rm F} = e^K K^{SS^*} |W_{,S}| = \frac{V_{\rm non-SUSY}}{(1-(\Phi+\Phi^*)/2)^N} = \frac{\lambda^2 \phi^n}{(1-\phi)^N} \quad {\rm with} \quad K = K_2 + K_{12} + K_{1$$

THE AVOIDANCE OF THIS DENOMINATOR IS OBTAINED USING ONE OF THE FOLLOWING TWO METHODS:

• Tuning the Form of W So that the Denominator Is Cancelled. E.g., If $W = \lambda S (\Phi - \Phi^2)$ and N = 2, then

$$V_{\rm F} = e^K K^{SS^*} |W_{,S}| = \frac{\lambda^2 (\phi - \phi^2)^2}{(1 - \phi)^2} = \frac{\lambda^2 \phi^2 (1 - \phi)^2}{(1 - \phi)^2} = \lambda^2 \phi^2$$

• MODIFYING K SO THAT THE NEW ("TILDED") ONE,

$$\widetilde{K}_{1s}(\Phi, \Phi^*) = K_{1s}(\Phi, \Phi^*) - K_{\rm H}(\Phi) - K_{\rm A}(\Phi^*) = K_{1s} + N\ln(1-\Phi)/2 + N\ln(1-\Phi^*)/2,$$

YIELDS THE DESIRED KINETIC MIXING BUT NOT DENOMINATOR, I.E., $\partial_{\Phi}\partial_{\Phi^*}\tilde{K}_{1s} = \partial_{\Phi}\partial_{\Phi^*}K_{1s}$ But $e^K = 1$ for $\Phi = \Phi^*$.

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	CONCLUSIONS
000 00	000 00	000 00	

GAUGE SINGLET INFLATON

• GENERATION OF INFLATON KINETIC MIXING: IF WE ADOPT

$$K_{1s} = -N \ln (1 - (\Phi + \Phi^*)/2),$$

We Obtain A Pole Of order $1 \mbox{ in the Kinetic Terms}$

$$\mathsf{I.e.}, \ \mathcal{S} = \int d^4x \sqrt{-\mathfrak{g}} \Big(K_{\Phi\Phi^*} \Phi \Phi^* + \cdots \Big) \quad \mathsf{Where} \quad K_{\Phi\Phi^*} = \partial_\Phi \partial_{\Phi^*} K = \frac{N}{4} \frac{1}{(1 - (\Phi + \Phi^*)/2)^2} = \frac{N}{4} \frac{1}{(1 - \phi)^2} \text{ for } \Phi = \Phi^* = \phi$$

• CANCELLATION OF DENOMINATOR: DUE TO FACTOR e^{K} , THE ADOPTED K RESULTS TO A DISTURBING DENOMINATOR, I.E.,

$$V_{\rm F} = e^K K^{SS^*} |W_{,S}| = \frac{V_{\rm non-SUSY}}{(1 - (\Phi + \Phi^*)/2)^N} = \frac{\lambda^2 \phi^n}{(1 - \phi)^N} \quad {\rm with} \quad K = K_2 + K_{12} + K_{12}$$

THE AVOIDANCE OF THIS DENOMINATOR IS OBTAINED USING ONE OF THE FOLLOWING TWO METHODS:

• Tuning the Form of W So that the Denominator Is Cancelled. E.g., If $W = \lambda S (\Phi - \Phi^2)$ and N = 2, then

$$V_{\rm F} = e^K K^{SS^*} |W_{,S}| = \frac{\lambda^2 (\phi - \phi^2)^2}{(1 - \phi)^2} = \frac{\lambda^2 \phi^2 (1 - \phi)^2}{(1 - \phi)^2} = \lambda^2 \phi^2$$

• MODIFYING K SO THAT THE NEW ("TILDED") ONE,

$$\widetilde{K}_{1s}(\Phi, \Phi^*) = K_{1s}(\Phi, \Phi^*) - K_{\rm H}(\Phi) - K_{\rm A}(\Phi^*) = K_{1s} + N\ln(1-\Phi)/2 + N\ln(1-\Phi^*)/2,$$

yields the Desired Kinetic Mixing But not Denominator, I.e., $\partial_{\Phi}\partial_{\Phi^*}\tilde{K}_{1s} = \partial_{\Phi}\partial_{\Phi^*}K_{1s}$ But $e^K = 1$ for $\Phi = \Phi^*$.

WORKING MODELS

• Superpotential $W = \lambda S(\Phi - M^2) - \lambda' S \Phi^2$. It is the Most General W Consistent With an **R** Symmetry Under Which R(S) = R(W).

• Model 1 (CI1): $K = K_{1s} = K_2 + K_{1s}$ with N = 2 and $M \ll 1$ and $\lambda' \simeq \lambda(1 + \delta_{\lambda})$ with $\delta_{\lambda} = O(10^{-5})$.

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	CONCLUSIONS
000 00	000 00	000 00	

GAUGE SINGLET INFLATON

• GENERATION OF INFLATON KINETIC MIXING: IF WE ADOPT

$$K_{1s} = -N \ln (1 - (\Phi + \Phi^*)/2),$$

We Obtain A Pole Of order $1 \mbox{ in the Kinetic Terms}$

$$\mathsf{I.e.}, \ \mathcal{S} = \int d^4x \sqrt{-\mathfrak{g}} \Big(K_{\Phi\Phi^*} \Phi \Phi^* + \cdots \Big) \quad \mathsf{Where} \quad K_{\Phi\Phi^*} = \partial_\Phi \partial_{\Phi^*} K = \frac{N}{4} \frac{1}{(1 - (\Phi + \Phi^*)/2)^2} = \frac{N}{4} \frac{1}{(1 - \phi)^2} \text{ for } \Phi = \Phi^* = \phi$$

• CANCELLATION OF DENOMINATOR: DUE TO FACTOR e^{K} , THE ADOPTED K RESULTS TO A DISTURBING DENOMINATOR, I.E.,

$$V_{\rm F} = e^K K^{SS^*} |W_{,S}| = \frac{V_{\rm non-SUSY}}{(1 - (\Phi + \Phi^*)/2)^N} = \frac{\lambda^2 \phi^n}{(1 - \phi)^N} \quad {\rm with} \quad K = K_2 + K_{12} + K_{12}$$

THE AVOIDANCE OF THIS DENOMINATOR IS OBTAINED USING ONE OF THE FOLLOWING TWO METHODS:

• Tuning the Form of W So that the Denominator Is Cancelled. E.g., If $W = \lambda S (\Phi - \Phi^2)$ and N = 2, then

$$V_{\rm F} = e^K K^{SS^*} |W_{,S}| = \frac{\lambda^2 (\phi - \phi^2)^2}{(1 - \phi)^2} = \frac{\lambda^2 \phi^2 (1 - \phi)^2}{(1 - \phi)^2} = \lambda^2 \phi^2$$

• MODIFYING K SO THAT THE NEW ("TILDED") ONE,

$$\widetilde{K}_{1s}(\Phi, \Phi^*) = K_{1s}(\Phi, \Phi^*) - K_{\rm H}(\Phi) - K_{\rm A}(\Phi^*) = K_{1s} + N\ln(1-\Phi)/2 + N\ln(1-\Phi^*)/2,$$

yields the Desired Kinetic Mixing But not Denominator, I.e., $\partial_{\Phi}\partial_{\Phi^*}\tilde{K}_{1s} = \partial_{\Phi}\partial_{\Phi^*}K_{1s}$ But $e^K = 1$ for $\Phi = \Phi^*$.

WORKING MODELS

• Superpotential $W = \lambda S (\Phi - M^2) - \lambda' S \Phi^2$. It is the Most General W Consistent With an **R** Symmetry Under Which R(S) = R(W).

- Model 1 (CI1): $K = K_{1s} = K_2 + K_{1s}$ with N = 2 and $M \ll 1$ and $\lambda' \simeq \lambda(1 + \delta_{\lambda})$ with $\delta_{\lambda} = O(10^{-5})$.
- Model 2 (Cl2): $K = \widetilde{K}_{1s} = K_2 + \widetilde{K}_{1s}$ with Free N and $M \ll 1$ in $W(\lambda'/\lambda$ is Free).

Formulating Pole Inflation	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000 00	00	000	

GAUGE NON-SINGLET INFLATON

• We Use 2 Superfields $z^2 = \Phi$, $z^3 = \overline{\Phi}$, **Charged** Under a Local Symmetry, e.g. $U(1)_{B-L}$, and the "Stabilizer" $z^1 = S$.

• Superpotential
$$W = \lambda S \left(\bar{\Phi} \Phi - M^2 / 2 \right) / 2 - \lambda' S (\bar{\Phi} \Phi)^2$$

• W IS UNIQUELY DETERMINED USING $U(1)_{B-L}$ and an R Symmetry and Leads to a Grand Unified Theory (GUT) Phase Transition

At the SUSY Vacuum $\langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| \sim M/\sqrt{2}$

CHARGE ASSIGNMENTS

SUPERFIELDS:	S	Φ	$\overline{\Phi}$
$U(1)_R$	1	0	0
$U(1)_{B-L}$	0	1	-1

 $\label{eq:Since in The SUSY Limit, After HI, We Expect \quad V_{eff} \simeq \frac{1}{2}\lambda^2 \left|\bar{\Phi}\Phi + 2\frac{\lambda'}{\lambda}(\bar{\Phi}\Phi)^2 - \frac{1}{2}M^2\right|^2 + |S|^2 \left(\cdots\right) + \mbox{D-terms}$

Formulating Pole Inflation 000 00	SUGRA Framework ○○●	Inflationary Scenarios 000 00	Conclusions
GAUGE SINGLET VS NON-SINGLET INFLATON			

• We Use 2 Superfields $z^2 = \Phi$, $z^3 = \overline{\Phi}$, Charged Under a Local Symmetry, e.g. $U(1)_{R-I}$, and the "Stabilizer" $z^1 = S$.

• Superpotential
$$W = \lambda S \left(\bar{\Phi} \Phi - M^2/2 \right) / 2 - \lambda' S (\bar{\Phi} \Phi)^2$$

• W Is Uniquely Determined Using $U(1)_{B-L}$ and an R Symmetry AND LEADS TO A GRAND UNIFIED THEORY (GUT) PHASE TRANSITION

At The SUSY Vacuum
$$\langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| \sim M/\sqrt{2}$$

CHARGE ASSIGNMENTS

SUPERFIELDS:	S	Φ	$\overline{\Phi}$
$U(1)_R$	1	0	0
$U(1)_{B-L}$	0	1	-1

Since in The SUSY Limit, After HI, We Expect $V_{\rm eff} \simeq \frac{1}{2}\lambda^2 \left|\bar{\Phi}\Phi + 2\frac{\lambda'}{2}(\bar{\Phi}\Phi)^2 - \frac{1}{2}M^2\right|^2 + |S|^2(\cdots) + \text{D-terms}$

• TO ASSURE THE **PRESENCE OF THE POLE** IN $K_{a\bar{b}}$ we Select One Of The Following Kähler Potentials

$$K_{21} = -N\ln\left(1 - |\Phi|^2 - |\bar{\Phi}|^2\right) \text{ Or } \widetilde{K}_{21} = K_{21} + N\ln\left(1 - 2\bar{\Phi}\Phi\right)/2 + N\ln\left(1 - 2\bar{\Phi}^*\Phi^*\right)/2$$

• We Observe that $\partial_{\alpha}\partial_{\bar{\beta}}\tilde{K}_{21} = \partial_{\alpha}\partial_{\bar{\beta}}K_{21}$ Since $\partial_{\bar{\alpha}}K_{H} = \partial_{\alpha}K_{A} = 0$ where K_{H} and K_{A} are defined as follows

 $K_{\rm H} = N \ln(1 - 2\bar{\Phi}\Phi)/2$ and $K_{\rm A} = N \ln(1 - 2\bar{\Phi}^*\Phi^*)/2$.

• For Both K's, the D term Due to B - L Symmetry is $D_{BL} = N\left(|\Phi|^2 - |\bar{\Phi}|^2\right) / \left(1 - |\Phi|^2 - |\bar{\Phi}|^2\right) \Rightarrow V_D = 0$ IF $|\Phi| = |\bar{\Phi}|$

I.e., D-term Can Be Eliminated During HI, if we identify inflaton With The Radial Parts Of Φ and $ar{\Phi}$.

Formulating Pole Inflation	SUGRA Framework	Inflationary Scenario 000 00	S			CONCLUSIONS
GAUGE SINGLET VS NON-SINGLET INFLATON						
Gauge non-Singlet Inflaton • We Use 2 Superfields $z^2 = \Phi$, $z^3 = \Phi$ • Superpotential $W = \lambda S (\overline{\Phi} \Phi - M^2)$	$\bar{\Phi}$, Charged Under a Local Symmetry $/2 / 2 - \lambda' S (\bar{\Phi} \Phi)^2$, e.g. $U(1)_{B-L}$, and Charge .	the " <mark>S</mark> Assigni	TABILIZ MENTS	er" z ¹ =	= <i>S</i> .
W Is Uniquely Determined Using U(AND Leads to a Grand Unified Theory	1_{B-L} and an R Symmetry (GUT) Phase Transition	SUPERFIELDS:	S 1	Φ	Φ 0	
At The SUSY Vacuum $\langle S \rangle = 0, \langle$	$ \langle \Phi \rangle = \langle \bar{\Phi} \rangle \sim M/\sqrt{2}$	$U(1)_{B-L}$	0	1	-1	I
Since in The SUSY Limit, After	a HI, We Expect $V_{\rm eff} \simeq {1\over 2} \lambda^2 \left \bar{\Phi} \Phi + \right $	$2\frac{\lambda'}{\lambda}(\bar{\Phi}\Phi)^2 - \frac{1}{2}M^2$	$^{2} + S $	$^{2}(\cdot \cdot \cdot)$	+ D-теі	RMS
• To Assure The Presence Of The Pol	LE IN $K_{\alpha\bar{\beta}}$ we Select One Of The Foli	LOWING KÄHLER POTER	NTIALS			

$$K_{21} = -N\ln\left(1 - |\Phi|^2 - |\bar{\Phi}|^2\right) \ \, \text{Or} \ \, \widetilde{K}_{21} = K_{21} + N\ln\left(1 - 2\bar{\Phi}\Phi\right)/2 + N\ln\left(1 - 2\bar{\Phi}^*\Phi^*\right)/2$$

• We Observe that $\partial_{\alpha}\partial_{\hat{\beta}}\tilde{K}_{21} = \partial_{\alpha}\partial_{\hat{\beta}}K_{21}$ Since $\partial_{\hat{\beta}}K_{H} = \partial_{\alpha}K_{A} = 0$ where K_{H} and K_{A} are defined as follows $K_{H} = N \ln(1 - 2\bar{\Phi}\Phi)/2$ and $K_{A} = N \ln(1 - 2\bar{\Phi}^{*}\Phi^{*})/2$.

• For Both K's, the D term Due to B - L Symmetry is $D_{BL} = N \left(|\Phi|^2 - |\bar{\Phi}|^2 \right) / \left(1 - |\Phi|^2 - |\bar{\Phi}|^2 \right) \Rightarrow V_D = 0$ if $|\Phi| = |\bar{\Phi}|$

I.E., D-term Can Be Eliminated During HI, if we identify inflaton With The Radial Parts Of Φ and $\bar{\Phi}$.

• The Difference Between K_{21} and \tilde{K}_{21} Arises from e^K in V_{HI} . Along the Inflationary Path, $|\Phi| = |\bar{\Phi}|$,

- $K = K_{21}$ Yields a Denominator in $V_{\rm F}$ Which Can be Almost Cancelled Out by Tuning λ'/λ in W
- $K = \widetilde{K}_{21}$ does not Lead to a Denominator and so We can Use $\lambda' = 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Formulating Pole Inflation	SUGRA Framework ○○● ○○	Inflationary Scenarios	Conclusions
GAUGE SINGLET VS NON-SINGLET INFLATON			
Gauge non-Singlet Inflaton • We Use 2 Superfields $z^2 = \Phi$, $z^3 = -$	$\bar{\mathbb{P}},$ Charged Under a Local Symmetry,	e.g. $U(1)_{B-L},$ and the "Stabilizer"	$z^{1} = S$.
• Superpotential $W = \lambda S \left(\bar{\Phi} \Phi - M^2 \right)$	$(2)/2 - \lambda' S (\bar{\Phi}\Phi)^2$	CHARGE ASSIGNMENTS	
• W Is Uniquely Determined Using $U($ and Leads to a Grand Unified Theory	$1)_{B-L}$ and an R Symmetry (GUT) Phase Transition	SUPERFIELDS:S Φ $U(1)_R$ 10	$\frac{\overline{\Phi}}{0}$
At The SUSY Vacuum $\langle S angle = 0, e$	$ \Phi\rangle = \langle \bar{\Phi} \rangle \sim M/\sqrt{2}$	$U(1)_{B-L}$ 0 1	-1
Since in The SUSY Limit, After	HI, WE EXPECT $V_{\text{eff}} \simeq \frac{1}{2}\lambda^2 \left \bar{\Phi} \Phi + 2 \right $	$\left(\frac{\lambda'}{\lambda}(\bar{\Phi}\Phi)^2 - \frac{1}{2}M^2\right)^2 + S ^2(\cdots) + $	D-terms
• To Assure The Presence Of The Po	E IN $K_{lphaareta}$ we Select One Of The Follo	OWING KÄHLER POTENTIALS	
$K_{21} = -N \ln (1 - \Phi)$	$ ^2 - \bar{\Phi} ^2$) Or $\widetilde{K}_{21} = K_{21} + N \ln (1 - 1)$	$(2\bar{\Phi}\Phi)/2 + N\ln(1 - 2\bar{\Phi}^*\Phi^*)/2$	

• We Observe that $\partial_{\alpha}\partial_{\overline{\beta}}\widetilde{K}_{21} = \partial_{\alpha}\partial_{\overline{\beta}}K_{21}$ Since $\partial_{\overline{\beta}}K_{H} = \partial_{\alpha}K_{A} = 0$ where K_{H} and K_{A} are defined as follows $K_{H} = N \ln(1 - 2\bar{\Phi}\Phi)/2$ and $K_{A} = N \ln(1 - 2\bar{\Phi}^{*}\Phi^{*})/2$.

• For Both K's, the D term Due to B - L Symmetry is $D_{BL} = N \left(|\Phi|^2 - |\bar{\Phi}|^2 \right) / \left(1 - |\Phi|^2 - |\bar{\Phi}|^2 \right) \Rightarrow V_D = 0$ if $|\Phi| = |\bar{\Phi}|$

I.e., D-term Can Be Eliminated During HI, if we identify inflaton With The Radial Parts Of Φ and $\overline{\Phi}$.

• The Difference Between K_{21} and \tilde{K}_{21} Arises from e^K in V_{HI} . Along the Inflationary Path, $|\Phi| = |\bar{\Phi}|$,

• $K = K_{21}$ Yields a Denominator in V_F Which Can be Almost Cancelled Out by Tuning λ'/λ in W

• $K = \widetilde{K}_{21}$ does not Lead to a Denominator and so We can Use $\lambda' = 0$.

WORKING MODELS

• Model 1 (H11): $K = K_{221} = K_2 + K_{21}$ with N = 2 and $\lambda' = \lambda(1 + \delta_{\lambda})$ in W with $\delta_{\lambda} = O(10^{-5})$;

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Formulating Pole Inflation	SUGRA Framework ○○● ○○	Inflationary Scenarios	Conclusions
GAUGE SINGLET VS NON-SINGLET INFLATON			
Gauge non-Singlet Inflaton • We Use 2 Superfields $z^2 = \Phi$, $z^3 = 0$	$\bar{\Phi}$, Charged Under a Local Sy	'mmetry, e.g. $U(1)_{B-L},$ and the "Stabilizer	$z^1 = S$.
• SUPERPOTENTIAL $W = \lambda S \left(\bar{\Phi} \Phi - M^2 \right)$	$(\lambda/2)/2 - \lambda' S (\bar{\Phi}\Phi)^2$	Charge Assignments	
• W is Uniquely Determined Using U and Leads to a Grand Unified Theory	$(1)_{B-L}$ and an R Symmetry (GUT) Phase Transition	Superfields:S Φ $U(1)_R$ 10 $U(1)$ 01	$\overline{\Phi}$ 0
At The SUSY Vacuum $\langle S \rangle = 0$,	$\langle \Phi \rangle = \langle \bar{\Phi} \rangle \sim M / \sqrt{2}$	$U(1)_{B-L}$ 0 1	-1
Since in The SUSY Limit, Afte	r HI, We Expect $V_{\mathrm{eff}} \simeq rac{1}{2}\lambda^2$	$\left \bar{\Phi}\Phi+2\frac{\lambda'}{\lambda}(\bar{\Phi}\Phi)^2-\frac{1}{2}M^2\right ^2+ S ^2(\cdots)+$	D-terms
• To Assure The Presence Of The Po	LE IN $K_{lphaareta}$ we Select One Of T	he Following Kähler Potentials	
$K_{21} = -N \ln (1 - 0)$	$ \Phi ^2 - \bar{\Phi} ^2$) Or $\tilde{K}_{21} = K_{21} + \Lambda$	$\ln(1 - 2\bar{\Phi}\Phi)/2 + N\ln(1 - 2\bar{\Phi}^*\Phi^*)/2$	

• We Observe that $\partial_{\alpha}\partial_{\tilde{\beta}}\tilde{K}_{21} = \partial_{\alpha}\partial_{\tilde{\beta}}K_{21}$ Since $\partial_{\tilde{\beta}}K_{H} = \partial_{\alpha}K_{A} = 0$ where K_{H} and K_{A} are defined as follows $K_{H} = N \ln(1 - 2\bar{\Phi}\Phi)/2$ and $K_{A} = N \ln(1 - 2\bar{\Phi}^{*}\Phi^{*})/2$.

• For Both K's, the D term Due to B - L Symmetry is $D_{BL} = N \left(|\Phi|^2 - |\bar{\Phi}|^2 \right) / \left(1 - |\Phi|^2 - |\bar{\Phi}|^2 \right) \Rightarrow V_D = 0$ if $|\Phi| = |\bar{\Phi}|$

I.e., D-term Can Be Eliminated During HI, if we identify inflaton With The Radial Parts Of Φ and $\bar{\Phi}$.

• The Difference Between K_{21} and \widetilde{K}_{21} Arises from e^K in $V_{\rm HI}$. Along the Inflationary Path, $|\Phi| = |\overline{\Phi}|$,

• $K = K_{21}$ Yields a Denominator in V_F Which Can be Almost Cancelled Out by Tuning λ'/λ in W

• $K = \widetilde{K}_{21}$ does not Lead to a Denominator and so We can Use $\lambda' = 0$.

WORKING MODELS

- Model 1 (H11): $K = K_{221} = K_2 + K_{21}$ with N = 2 and $\lambda' = \lambda(1 + \delta_{\lambda})$ in W with $\delta_{\lambda} = O(10^{-5})$;

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	Inflationary Scenarios	Conclusions
000		000 00	

Geometry of K_{1s} and \widetilde{K}_{1s}

• The Geometry of K_{1s} and \widetilde{K}_{1s} is Determined by **Riemannian Metric And The Scalar Curvature**, \mathcal{R}_K , calculated by

$$ds_K^2 = K_{\Phi\Phi^*} d\Phi d\Phi^* \quad \text{and} \quad \mathcal{R}_K = -K^{\Phi\Phi^*} \partial_\Phi \partial_{\Phi^*} \ln\left(K_{\Phi\Phi^*}\right).$$

• For $K = K_{1s}$ and \widetilde{K}_{1s} , We Obtain the Line Element and the Scalar Curvature

$$ds_{1s}^2 = \frac{N}{4} \frac{d\Phi d\Phi^*}{\left(1 - (\Phi + \Phi^*)/2)^2\right)} \text{ and } \mathcal{R}_{1s} = -\frac{2}{N}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	Inflationary Scenarios	CONCLUSIONS
000	000	000	
00	•0	00	

Geometry of K_{1s} and \widetilde{K}_{1s}

• The Geometry of K_{1s} and \widetilde{K}_{1s} is Determined by **Riemannian Metric And The Scalar Curvature**, \mathcal{R}_K , calculated by

$$ds_K^2 = K_{\Phi\Phi^*} d\Phi d\Phi^* \quad \text{and} \quad \mathcal{R}_K = -K^{\Phi\Phi^*} \partial_\Phi \partial_{\Phi^*} \ln\left(K_{\Phi\Phi^*}\right).$$

• For $K = K_{1s}$ and \widetilde{K}_{1s} , We Obtain the Line Element and the Scalar Curvature

$$ds_{1s}^2 = \frac{N}{4} \frac{d\Phi d\Phi^*}{\left(1 - (\Phi + \Phi^*)/2\right)^2} \text{ and } \mathcal{R}_{1s} = -\frac{2}{N}$$

• ds_{1s}^2 Remains Invariant under the Transformations

$$\frac{\Phi}{2} \rightarrow \frac{a\Phi/2+b}{c\Phi/2+d} \quad \text{Represented By} \quad \mathcal{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \text{Provided that } b = 0, \ c = 2a, \ d = -1/a^* \text{ and } |a|^2 = 1. \quad \textbf{(T_1)}$$

• The Matrix ${\mathcal M}$ Has the Following Forms and Properties Respectively

$$\mathcal{M} = \begin{pmatrix} a & 0 \\ 2a & -1/a^* \end{pmatrix} \quad \text{and} \quad \mathcal{M}^{\dagger} \Omega \mathcal{M} = -\Omega \quad \text{with} \quad \Omega = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Therefore, the Matrices \mathcal{M} Are not Elements of a Subgroup of $GL(2, \mathbb{C})$.

• The Iwasawa Decomposition of $\mathcal M$ is

$$\mathcal{M} = KAN \text{ with } K = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} \sqrt{5}a & 0 \\ 0 & -a/\sqrt{5} \end{pmatrix} \text{ and } N = \begin{pmatrix} 1 & -2/5 \\ 0 & 1 \end{pmatrix}.$$

Where the Matrices K, A and N Parametrize The Compact, Abelian And Nilpotent Transformations of the Möbius Group.

Formulating Pole Inflation	SUGRA Framework	Inflationary Scenarios	Conclusions
00	•••	00	

Geometry of K_{1s} and \widetilde{K}_{1s}

• The Geometry of K_{1s} and \widetilde{K}_{1s} is Determined by **Riemannian Metric And The Scalar Curvature**, \mathcal{R}_K , calculated by

$$ds_K^2 = K_{\Phi\Phi^*} d\Phi d\Phi^* \quad \text{and} \quad \mathcal{R}_K = -K^{\Phi\Phi^*} \partial_\Phi \partial_{\Phi^*} \ln\left(K_{\Phi\Phi^*}\right).$$

• For $K = K_{1s}$ and \widetilde{K}_{1s} , We Obtain the Line Element and the Scalar Curvature

$$ds_{1s}^2 = \frac{N}{4} \frac{d\Phi d\Phi^*}{\left(1 - (\Phi + \Phi^*)/2)^2\right)} \text{ and } \mathcal{R}_{1s} = -\frac{2}{N}$$

• ds_{1s}^2 Remains Invariant under the Transformations

$$\frac{\Phi}{2} \rightarrow \frac{a\Phi/2+b}{c\Phi/2+d} \quad \text{Represented By} \quad \mathcal{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \text{Provided that } b = 0, \ c = 2a, \ d = -1/a^* \text{ and } |a|^2 = 1. \quad (T_1)$$

• The Matrix ${\mathcal M}$ Has the Following Forms and Properties Respectively

$$\mathcal{M} = \begin{pmatrix} a & 0 \\ 2a & -1/a^* \end{pmatrix} \quad \text{and} \quad \mathcal{M}^{\dagger} \Omega \mathcal{M} = -\Omega \quad \text{with} \quad \Omega = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Therefore, the Matrices \mathcal{M} Are not Elements of a Subgroup of $GL(2, \mathbb{C})$.

• The Iwasawa Decomposition of $\mathcal M$ is

$$\mathcal{M} = KAN \quad \text{with} \quad K = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2\\ 2 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} \sqrt{5}a & 0\\ 0 & -a/\sqrt{5} \end{pmatrix} \quad \text{and} \quad N = \begin{pmatrix} 1 & -2/5\\ 0 & 1 \end{pmatrix}.$$

Where the Matrices K, A and N Parametrize The Compact, Abelian And Nilpotent Transformations of the Möbius Group. • In Addition K_{1s} (but not \widetilde{K}_{1s}) Remains Invariant Under Eq. (T_1) , up to a Kähler transformation, i.e.,

$$K \to K + \Lambda + \Lambda^* \text{ and } W \to We^{-\Lambda} \text{ with } \Lambda = N \ln(a\Phi - a^{*-1}).$$

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	CONCLUSIONS
000	000	000	
00	0.	00	

The Kähler Manifold Corresponding to K_{21} and \widetilde{K}_{21}

• The Geometry of the Kähler Manifolds is Determined by Riemannian Metric And The Scalar Curvature, \mathcal{R}_K , calculated by

$$ds_K^2 = K_{a\bar{\beta}} dz^{\alpha} dz^{\ast\bar{\beta}} \text{ and } \mathcal{R}_K = -K^{\alpha\bar{\beta}} \partial_{\alpha} \partial_{\bar{\beta}} \ln\left(\det M_{\bar{\Phi}\Phi}\right), \quad z^{\alpha\beta} = \Phi, \bar{\Phi}$$

Here $M_{\Phi \tilde{\Phi}}$ Expresses The Kinetic Mixing In The Inflationary Sector.

• For $K = K_{21}$ and \widetilde{K}_{21} , We Obtain the Bergmann Metric, Which Parameterize the $SU(2, 1)/(SU(2) \times U(1))$ Manifold. I.e.,

$$ds_{21}^2 = N \left(\frac{|d\Phi|^2 + |d\bar{\Phi}|^2}{1 - |\Phi|^2 - |\Phi|^2} + \frac{|\Phi^* d\Phi + \bar{\Phi}^* d\bar{\Phi}|^2}{\left(1 - |\Phi|^2 - |\bar{\Phi}|^2\right)^2} \right) \text{ and } \mathcal{R}_{21} = -\frac{6}{N}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	CONCLUSIONS
000 00		000	

The Kähler Manifold Corresponding to K_{21} and \widetilde{K}_{21}

• The Geometry of the Kähler Manifolds is Determined by Riemannian Metric And The Scalar Curvature, \mathcal{R}_K , calculated by

$$ds_K^2 = K_{\alpha\bar{\beta}} dz^{\alpha} dz^{*\bar{\beta}} \text{ and } \mathcal{R}_K = -K^{\alpha\bar{\beta}} \partial_{\alpha} \partial_{\bar{\beta}} \ln\left(\det M_{\bar{\Phi}\Phi}\right), \quad z^{\alpha,\beta} = \Phi, \bar{\Phi}$$

Here $M_{\Phi \tilde{\Phi}}$ Expresses The Kinetic Mixing In The Inflationary Sector.

• For $K = K_{21}$ and \widetilde{K}_{21} , We Obtain the Bergmann Metric, Which Parameterize the $SU(2, 1)/(SU(2) \times U(1))$ Manifold. I.e.,

$$ds_{21}^2 = N \left(\frac{|d\Phi|^2 + |d\bar{\Phi}|^2}{1 - |\Phi|^2 - |\Phi|^2} + \frac{|\Phi^* d\Phi + \bar{\Phi}^* d\bar{\Phi}|^2}{\left(1 - |\Phi|^2 - |\bar{\Phi}|^2\right)^2} \right) \text{ and } \mathcal{R}_{21} = -\frac{6}{N}$$

• Proof: An Element U of SU(2, 1) Satisfies The Relations $U^{\dagger}\eta_{21}U = \eta_{21}$ and $\det U = 1$ with $\eta_{21} = \operatorname{diag}(1, 1, -1)$, And Depends On Eight (4+4) Free Parameters. We may Parameterize U in Terms of $a, b, d, f \in \mathbb{C}, \gamma \in \mathbb{R}_+, \vartheta \in \mathbb{R}$ as Follows

$$\begin{split} U &= \mathcal{U}\mathcal{P} \text{ with } \mathcal{U} = \begin{pmatrix} 1/N_a & 0 & a \\ N_a ba^* & N_a \gamma & b \\ N_a \gamma a^* & N_a b^* & \gamma \end{pmatrix} \quad \text{and } \mathcal{P} = e^{i\theta} \begin{pmatrix} d & f & 0 \\ -f^* & d^* & 0 \\ 0 & 0 & e^{-3i\theta} \end{pmatrix}, \text{ where } \begin{cases} N_a = 1/\sqrt{1 + |a|^2} \\ |a|^2 + |b|^2 - \gamma^2 = -1 \\ |d|^2 + |f|^2 = 1. \end{cases}$$

$$\in S U(2, 1)/(S U(2) \times U(1)) \quad \in S U(2) \times U(1)$$

Formulating Pole Inflation	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	000	
00	0.	00	

The Kähler Manifold Corresponding to K_{21} and \widetilde{K}_{21}

• The Geometry of the Kähler Manifolds is Determined by Riemannian Metric And The Scalar Curvature, \mathcal{R}_{K} , calculated by

$$ds_K^2 = K_{\alpha\bar{\beta}} dz^{\alpha} dz^{*\bar{\beta}} \text{ and } \mathcal{R}_K = -K^{\alpha\bar{\beta}} \partial_{\alpha} \partial_{\bar{\beta}} \ln\left(\det M_{\bar{\Phi}\Phi}\right), \quad z^{\alpha\beta} = \Phi, \bar{\Phi}$$

Here $M_{\Phi \tilde{\Phi}}$ Expresses The Kinetic Mixing In The Inflationary Sector.

• For $K = K_{21}$ and \widetilde{K}_{21} , We Obtain the Bergmann Metric, Which Parameterize the $SU(2, 1)/(SU(2) \times U(1))$ Manifold. I.e.,

$$ds_{21}^2 = N \left(\frac{|d\Phi|^2 + |d\bar{\Phi}|^2}{1 - |\Phi|^2 - |\Phi|^2} + \frac{|\Phi^* d\Phi + \bar{\Phi}^* d\bar{\Phi}|^2}{\left(1 - |\Phi|^2 - |\bar{\Phi}|^2\right)^2} \right) \text{ and } \mathcal{R}_{21} = -\frac{6}{N}$$

• Proof: An Element U of SU(2, 1) Satisfies The Relations $U^{\dagger}\eta_{21}U = \eta_{21}$ and $\det U = 1$ with $\eta_{21} = \operatorname{diag}(1, 1, -1)$, And Depends On Eight (4+4) Free Parameters. We may Parameterize U in Terms of $a, b, d, f \in \mathbb{C}, \gamma \in \mathbb{R}_+, \vartheta \in \mathbb{R}$ as Follows

$$\begin{split} U &= \mathcal{UP} \text{ with } \mathcal{U} = \begin{pmatrix} 1/N_a & 0 & a \\ N_a ba^* & N_a \gamma & b \\ N_a \gamma a^* & N_a b^* & \gamma \end{pmatrix} \quad \text{and } \mathcal{P} = e^{i\theta} \begin{pmatrix} d & f & 0 \\ -f^* & d^* & 0 \\ 0 & 0 & e^{-3i\theta} \end{pmatrix}, \quad \text{where } \begin{cases} N_a = 1/\sqrt{1 + |a|^2} \\ |a|^2 + |b|^2 - \gamma^2 = -1 \\ |d|^2 + |f|^2 = 1. \end{cases}$$

$$&\in SU(2, 1)/(SU(2) \times U(1)) \quad \quad \in SU(2) \times U(1)$$

• Acting With the Parameters of the lines of ${\cal U}^\dagger$ on Φ and $ar \Phi$ We Can Be Define The Isometric Transformations

$$\Phi \rightarrow \frac{(1/N_a)\Phi + N_ab^*a\bar{\Phi} + N_aa\gamma}{a^*\Phi + b^*\bar{\Phi} + \gamma} \quad \text{and} \quad \bar{\Phi} \rightarrow \frac{N_a\gamma\bar{\Phi} + N_ab}{a^*\Phi + b^*\bar{\Phi} + \gamma}, \quad \text{with} \quad (B-L)(a,b,\gamma) = (1,-1,0) \quad (:\mathbf{T})$$

Which Let Invariant ds_{21}^2 and so, we Conclude That K_{21} and \widetilde{K}_{21} Parameterize $SU(2,1)/(SU(2) \times U(1))$.

- * ロ * * @ * * 差 * * 差 * ・ 差 ・ の < @

Formulating Pole Inflation	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	000	
00	0.	00	

The Kähler Manifold Corresponding to K_{21} and \widetilde{K}_{21}

• The Geometry of the Kähler Manifolds is Determined by Riemannian Metric And The Scalar Curvature, \mathcal{R}_K , calculated by

$$ds_K^2 = K_{\alpha\bar{\beta}} dz^{\alpha} dz^{*\bar{\beta}} \text{ and } \mathcal{R}_K = -K^{\alpha\bar{\beta}} \partial_{\alpha} \partial_{\bar{\beta}} \ln\left(\det M_{\bar{\Phi}\Phi}\right), \quad z^{\alpha\beta} = \Phi, \bar{\Phi}$$

Here $M_{\Phi \tilde{\Phi}}$ Expresses The Kinetic Mixing In The Inflationary Sector.

• For $K = K_{21}$ and \widetilde{K}_{21} , We Obtain the Bergmann Metric, Which Parameterize the $SU(2, 1)/(SU(2) \times U(1))$ Manifold. I.e.,

$$ds_{21}^2 = N \left(\frac{|d\Phi|^2 + |d\bar{\Phi}|^2}{1 - |\Phi|^2 - |\Phi|^2} + \frac{|\Phi^* d\Phi + \bar{\Phi}^* d\bar{\Phi}|^2}{\left(1 - |\Phi|^2 - |\bar{\Phi}|^2\right)^2} \right) \text{ and } \mathcal{R}_{21} = -\frac{6}{N}$$

• Proof: An Element U of SU(2, 1) Satisfies The Relations $U^{\dagger}\eta_{21}U = \eta_{21}$ and $\det U = 1$ with $\eta_{21} = \operatorname{diag}(1, 1, -1)$, And Depends On Eight (4+4) Free Parameters. We may Parameterize U in Terms of $a, b, d, f \in \mathbb{C}, \gamma \in \mathbb{R}_+, \vartheta \in \mathbb{R}$ as Follows

$$\begin{split} U &= \mathcal{UP} \text{ with } \mathcal{U} = \begin{pmatrix} 1/N_a & 0 & a \\ N_a ba^* & N_a \gamma & b \\ N_a \gamma a^* & N_a b^* & \gamma \end{pmatrix} \quad \text{and } \mathcal{P} = e^{i\theta} \begin{pmatrix} d & f & 0 \\ -f^* & d^* & 0 \\ 0 & 0 & e^{-3i\theta} \end{pmatrix}, \quad \text{where } \begin{cases} N_a = 1/\sqrt{1 + |a|^2} \\ |a|^2 + |b|^2 - \gamma^2 = -1 \\ |d|^2 + |f|^2 = 1. \end{cases}$$

$$\in S U(2, 1)/(S U(2) \times U(1)) \quad \in S U(2) \times U(1)$$

• Acting With the Parameters of the lines of ${\cal U}^\dagger$ on Φ and $ar \Phi$ We Can Be Define The Isometric Transformations

$$\Phi \rightarrow \frac{(1/N_a)\Phi + N_a b^* a \bar{\Phi} + N_a a \gamma}{a^* \Phi + b^* \bar{\Phi} + \gamma} \quad \text{and} \quad \bar{\Phi} \rightarrow \frac{N_a \gamma \bar{\Phi} + N_a b}{a^* \Phi + b^* \bar{\Phi} + \gamma}, \quad \text{with} \quad (B - L)(a, b, \gamma) = (1, -1, 0) \quad (:\mathbf{T})$$

Which Let Invariant ds_{21}^2 and so, we Conclude That K_{21} and \widetilde{K}_{21} Parameterize $SU(2,1)/(SU(2) \times U(1))$.

• IN Addition K_{21} In Remains Invariant Under Eq. (T), up to a Kähler transformation, i.e.,

$$K \to K + \Lambda + \Lambda^* \quad \text{and} \quad W \to W e^{-\Lambda} \quad \text{with} \quad \Lambda = N \ln(a^* \Phi + b^* \bar{\Phi} + \gamma).$$

Whereas \widetilde{K}_{21} does not Enjoy such an Invariance.

ヘロア 人間 アメヨア 人口 ア

Formulating Pole Inflation	SUGRA Framework 000 00	Inflationary Scenarios	Conclusions
INFLATIONARY POTENTIALS			

• Expanding Φ and S as Follows:

$$\Phi = \phi e^{i\theta} \quad \text{and} \quad S = (s_1 + is_2)/\sqrt{2},$$

WE CAN INTRODUCE THE CANONICALLY NORMALIZED FIELDS,

$$d\widehat{\phi}/d\phi = J \simeq \sqrt{N/2}/f_{1P}, \quad \widehat{\theta} \simeq J\phi\theta \text{ and } \widehat{s_i} = s_i \text{ with } i = 1,2 \text{ (Recall } f_{1P} = 1 - \phi)$$

WHERE WE OBSERVE THAT WE ESTABLISHED THE CORRECT NON-MINIMAL KINETIC MIXING.

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	000	
00	00	00	
I D			

GAUGE SINGLET INFLATON

• Expanding Φ and S as Follows:

$$\Phi = \phi e^{i\theta} \text{ and } S = (s_1 + is_2)/\sqrt{2},$$

WE CAN INTRODUCE THE CANONICALLY NORMALIZED FIELDS,

$$d\widehat{\phi}/d\phi = J \simeq \sqrt{N/2}/f_{1P}, \ \widehat{\theta} \simeq J\phi\theta$$
 and $\widehat{s_i} = s_i$ with $i = 1, 2$ (Recall $f_{1P} = 1 - \phi$)

WHERE WE OBSERVE THAT WE ESTABLISHED THE CORRECT NON-MINIMAL KINETIC MIXING.

• For S = 0 and $\theta = 0$, the only Surviving term of $V_{\rm F}$ is

$$V_{\text{CI}} = e^{K} K^{SS^{*}} \left| W_{,S} \right|^{2} = \lambda^{2} \cdot \begin{cases} \left(\phi - (1 + \delta_{\lambda})\phi^{2} - M^{2} \right)^{2} / f_{1\text{P}}^{N} & \simeq \lambda^{2} \phi^{2} & \text{for } N = 2 \text{ and } M = \delta_{\lambda} = 0 \text{ (Cl1)}, \\ \left(\phi - \lambda' \phi^{2} / \lambda - M^{2} \right)^{2} & \simeq \lambda^{2} \phi^{2} & \text{for } \lambda' = M = 0 \text{ (Cl2)} \end{cases}$$

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000		
INFLATIONARY POTENTIALS			

• Expanding Φ and S as Follows:

$$\Phi = \phi e^{i\theta} \text{ and } S = (s_1 + is_2)/\sqrt{2},$$

WE CAN INTRODUCE THE CANONICALLY NORMALIZED FIELDS,

$$d\widehat{\phi}/d\phi = J \simeq \sqrt{N/2}/f_{1P}, \ \widehat{\theta} \simeq J\phi\theta$$
 and $\widehat{s_i} = s_i$ with $i = 1, 2$ (Recall $f_{1P} = 1 - \phi_i$)

WHERE WE OBSERVE THAT WE ESTABLISHED THE CORRECT NON-MINIMAL KINETIC MIXING.

• For S=0 and $\theta=0,$ the only Surviving term of $V_{\rm F}$ is

$$V_{\text{CI}} = e^{K} K^{SS^{*}} |W_{,S}|^{2} = \lambda^{2} \cdot \begin{cases} \left(\phi - (1 + \delta_{\lambda})\phi^{2} - M^{2}\right)^{2} / f_{\text{IP}}^{N} &\simeq \lambda^{2}\phi^{2} & \text{for } N = 2 \text{ and } M = \delta_{\lambda} = 0 \text{ (Cl1)}, \\ \left(\phi - \lambda'\phi^{2}/\lambda - M^{2}\right)^{2} &\simeq \lambda^{2}\phi^{2} & \text{for } \lambda' = M = 0 \text{ (Cl2)} \end{cases}$$

Scalar Mass-Squared Spectrum for $K = K_{1s}$ and \widetilde{K}_{1s} Along The Inflationary Trajectory

Fields	Eigen-	Masses Squared		
	STATES		$K = K_{1s}$	$K = \widetilde{K}_{1s}$
1 REAL SCALAR	$\widehat{\theta}$	\widehat{m}_{θ}^2	$6H_{\rm CI}^2$	
2 REAL SCALARS	$\widehat{s}_1, \ \widehat{s}_2$	\widehat{m}_s^2	$6H_{\mathrm{CI}}^2/N_S$	
2 WEYL SPINORS	$\widehat{\psi}_{\pm} = \frac{\widehat{\psi}_{\Phi} \pm \widehat{\psi}_{S}}{\sqrt{2}}$	$\widehat{m}^2_{\psi\pm}$	$\sqrt{6}(1-\phi)$	$H_{\rm CI}^2/\sqrt{N}\phi$

WE OBSERVE THE FOLLOWING:

• All mass² > 0. Especially $m_{\widehat{S}}^2 > 0 \iff N_S < 6;$

• All mass² > H_{CI}^2 and So Any Inflationary Perturbations Of The Fields Other Than The Inflaton Are Safely Eliminated.

THE ONE-LOOP RADIATIVE CORRECTIONS HAVE NO SIGNIFICANT EFFECT.

イロト イロト イヨト イヨト

Formulating Pole Inflation 000 00	SUGRA Framework 000 00	Inflationary Scenarios	CONCLUSIONS
			(
INFLATIONARY POTENTIALS			

• If We Use The Parametrizations: $\Phi = \phi e^{i\theta} \cos \theta_{\Phi}$ and $\bar{\Phi} = \phi e^{i\bar{\theta}} \sin \theta_{\Phi}$ with $0 \le \theta_{\Phi} \le \pi/2$ and $S = (s + i\bar{s})/\sqrt{2}$

We Can Show That A D-Flat Direction Is $\theta = \overline{\theta} = 0$, $\theta_{\Phi} = \pi/4$ and S = 0 (: P) Which Is Qualified as Inflationary Path.

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	000	
00	00	00	

GAUGE NON-SINGLET INFLATON

• IF WE USE THE PARAMETRIZATIONS: $\Phi = \phi e^{i\theta} \cos \theta_{\Phi}$ and $\bar{\Phi} = \phi e^{i\bar{\theta}} \sin \theta_{\Phi}$ with $0 \le \theta_{\Phi} \le \pi/2$ and $S = (s + i\bar{s}) / \sqrt{2}$ We Can Show That A D-Flat Direction Is $\theta = \bar{\theta} = 0$, $\theta_{\Phi} = \pi/4$ and S = 0 (: P) Which Is Qualified as Inflationary Path.

• The only Surviving term of $V_{\rm F}$ Along the Path in Eq. (P) is

$$V_{\rm HI} = e^{K} K^{SS^{*}} |W_{,S}|^{2} = \frac{\lambda^{2}}{16} \cdot \begin{cases} \left(\phi^{2} - (1 + \delta_{\lambda})\phi^{4} - M^{2}\right)^{2} / f_{\rm 2P}^{N} &\simeq \lambda^{2} \phi^{4} / 16 \text{ for } N = 2 \text{ and } M = \delta_{\lambda} = 0 \text{ (HI1)}, \\ \left(\phi^{2} - M^{2}\right)^{2} &\simeq \lambda^{2} \phi^{4} / 16 \text{ for } \lambda' = M = 0 \text{ (HI2)} \end{cases}$$

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	000	
00	00	00	

GAUGE NON-SINGLET INFLATON

• IF WE USE THE PARAMETRIZATIONS: $\Phi = \phi e^{i\theta} \cos \theta_{\Phi}$ and $\bar{\Phi} = \phi e^{i\bar{\theta}} \sin \theta_{\Phi}$ with $0 \le \theta_{\Phi} \le \pi/2$ and $S = (s + i\bar{s}) / \sqrt{2}$ We Can Show That A D-Flat Direction is $\underline{\theta} = \bar{\theta} = 0$, $\theta_{\Phi} = \pi/4$ and S = 0 (; P) Which is Qualified as Inflationary Path.

• The only Surviving term of $V_{\rm F}$ Along the Path in Eq. (P) is

$$V_{\rm HI} = e^{K} K^{SS^{*}} |W_{,S}|^{2} = \frac{\lambda^{2}}{16} \cdot \begin{cases} \left(\phi^{2} - (1 + \delta_{\lambda})\phi^{4} - M^{2}\right)^{2} / f_{\rm 2P}^{N} &\simeq \lambda^{2} \phi^{4} / 16 \text{ for } N = 2 \text{ and } M = \delta_{\lambda} = 0 \text{ (HI1)}, \\ \left(\phi^{2} - M^{2}\right)^{2} &\simeq \lambda^{2} \phi^{4} / 16 \text{ for } \lambda' = M = 0 \text{ (HI2)} \end{cases}$$

• To Obtain TM₄, We Have to Establish the Correct Non-Minimal Kinetic Mixing.

• TO THIS END WE COMPUTE THE KÄHLER METRIC $K_{\alpha\bar{\beta}}$ Along the Path in Eq. (P) Which Takes The Form

$$\left(K_{\alpha\bar{\beta}} \right) = \text{diag} \left(M_{\Phi\bar{\Phi}}, K_{SS^*} \right) \text{ with } M_{\Phi\bar{\Phi}} = \frac{\kappa \phi^2}{2} \, \begin{pmatrix} 2/\phi^2 - 1 & 1 \\ 1 & 2/\phi^2 - 1 \end{pmatrix}, \quad \kappa = N/f_{\text{2P}}^2 \text{ and } K_{SS^*} = 1.$$

And Diagonalize $M_{\Phi\Phi}$ Via A Similarity Transformation As Follows:

$$U_{\Phi\bar{\Phi}}M_{\Phi\bar{\Phi}}U_{\Phi\bar{\Phi}}^{\mathsf{T}} = \operatorname{diag}\left(\kappa_{+},\kappa_{-}\right), \quad \text{where} \quad U_{\Phi\bar{\Phi}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2\mathrm{F}} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \end{pmatrix}$$

13 / 18

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	000	
00	00	00	

GAUGE NON-SINGLET INFLATON

• IF WE USE THE PARAMETRIZATIONS: $\Phi = \phi e^{i\theta} \cos \theta_{\Phi}$ and $\bar{\Phi} = \phi e^{i\bar{\theta}} \sin \theta_{\Phi}$ with $0 \le \theta_{\Phi} \le \pi/2$ and $S = (s + i\bar{s})/\sqrt{2}$ We Can Show That A D-Flat Direction Is $\theta = \bar{\theta} = 0$, $\theta_{\Phi} = \pi/4$ and S = 0 (: P) Which Is Qualified as Inflationary Path.

• The only Surviving term of $V_{\rm F}$ Along the Path in Eq. (P) is

$$V_{\rm HI} = e^{K} K^{SS^{*}} |W_{,S}|^{2} = \frac{\lambda^{2}}{16} \cdot \begin{cases} \left(\phi^{2} - (1 + \delta_{\lambda})\phi^{4} - M^{2}\right)^{2} / f_{\rm 2P}^{N} &\simeq \lambda^{2} \phi^{4} / 16 \text{ for } N = 2 \text{ and } M = \delta_{\lambda} = 0 \text{ (H11)}, \\ \left(\phi^{2} - M^{2}\right)^{2} &\simeq \lambda^{2} \phi^{4} / 16 \text{ for } \lambda' = M = 0 \text{ (H12)} \end{cases}$$

• To Obtain TM₄, We Have to Establish the Correct Non-Minimal Kinetic Mixing.

• To This End We Compute The Kähler Metric $K_{\alpha\bar{\beta}}$ Along the Path in Eq. (P) Which Takes The Form

$$\begin{pmatrix} K_{a\bar{\beta}} \end{pmatrix} = \text{diag} \left(M_{\Phi\bar{\Phi}}, K_{SS^*} \right) \quad \text{with} \quad M_{\Phi\bar{\Phi}} = \frac{\kappa \phi^2}{2} \quad \begin{pmatrix} 2/\phi^2 - 1 & 1 \\ 1 & 2/\phi^2 - 1 \end{pmatrix}, \quad \kappa = N/f_{\text{2P}}^2 \quad \text{and} \quad K_{SS^*} = 1.$$

And Diagonalize $M_{\Phi\Phi}$ Via A Similarity Transformation As Follows:

$$U_{\Phi\bar{\Phi}}M_{\Phi\bar{\Phi}}U_{\Phi\bar{\Phi}}^{\mathsf{T}} = \operatorname{diag}\left(\mathbf{k}_{+},\mathbf{k}_{-}\right), \quad \text{where} \quad U_{\Phi\bar{\Phi}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{k}_{+} = \mathbf{k}, \quad \mathbf{k}_{-} = \mathbf{k}f_{2P}$$

• THE EF CANONICALLY NORMALIZED FIELDS, WHICH ARE DENOTED BY HAT, CAN BE OBTAINED AS FOLLOWS:

$$\frac{d\widehat{\phi}}{d\phi} = J = \sqrt{2\kappa_+} \implies \phi = \tanh \frac{\widehat{\phi}}{2\sqrt{N}}, \quad \widehat{\theta}_+ = \sqrt{\kappa_+}\phi\theta_+, \quad \widehat{\theta}_- = \sqrt{\kappa_-}\phi\theta_-, \quad \text{and} \quad \widehat{\theta}_\Phi = \phi\sqrt{2\kappa_-}(\theta_\Phi - \pi/4), \quad \left(\widehat{s}, \widehat{s}\right) = (s, \overline{s}) + \frac{\delta}{2\sqrt{N}}, \quad \widehat{\theta}_+ = \sqrt{\kappa_+}\phi\theta_+, \quad \widehat{\theta}_- = \sqrt{\kappa_-}\phi\theta_-, \quad \widehat{\theta}_+ = \sqrt{\kappa_+}\phi\theta_+, \quad \widehat{\theta}_- = \sqrt{\kappa_+}\phi\theta_-, \quad \widehat{\theta}_- = \sqrt{\kappa_+}\phi\theta_-,$$

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	000	
00	00	00	

GAUGE NON-SINGLET INFLATON

• IF WE USE THE PARAMETRIZATIONS: $\Phi = \phi e^{i\theta} \cos \theta_{\Phi}$ and $\bar{\Phi} = \phi e^{i\bar{\theta}} \sin \theta_{\Phi}$ with $0 \le \theta_{\Phi} \le \pi/2$ and $S = (s + i\bar{s}) / \sqrt{2}$ We Can Show That A D-Flat Direction Is $\theta = \bar{\theta} = 0$, $\theta_{\Phi} = \pi/4$ and S = 0 (: P) Which Is Qualified as Inflationary Path.

• The only Surviving term of $V_{\rm F}$ Along the Path in Eq. (P) is

$$V_{\rm HI} = e^{K} K^{SS^{*}} |W_{,S}|^{2} = \frac{\lambda^{2}}{16} \cdot \begin{cases} \left(\phi^{2} - (1 + \delta_{\lambda})\phi^{4} - M^{2}\right)^{2} / f_{\rm 2P}^{N} &\simeq \lambda^{2} \phi^{4} / 16 \text{ for } N = 2 \text{ and } M = \delta_{\lambda} = 0 \text{ (H11)}, \\ \left(\phi^{2} - M^{2}\right)^{2} &\simeq \lambda^{2} \phi^{4} / 16 \text{ for } \lambda' = M = 0 \text{ (H12)} \end{cases}$$

• To Obtain TM₄, We Have to Establish the Correct Non-Minimal Kinetic Mixing.

• TO THIS END WE COMPUTE THE KÄHLER METRIC Kaß ALONG THE PATH IN EQ. (P) WHICH TAKES THE FORM

$$\left(K_{a\bar{\beta}} \right) = \text{diag} \left(M_{\Phi\bar{\Phi}}, K_{SS^*} \right) \quad \text{with} \quad M_{\Phi\bar{\Phi}} = \frac{\kappa \phi^2}{2} \quad \begin{pmatrix} 2/\phi^2 - 1 & 1 \\ 1 & 2/\phi^2 - 1 \end{pmatrix}, \quad \kappa = N/f_{2P}^2 \quad \text{and} \quad K_{SS^*} = 1.$$

And Diagonalize $M_{\Phi\Phi}$ Via A Similarity Transformation As Follows:

$$U_{\Phi\bar{\Phi}}M_{\Phi\bar{\Phi}}U_{\Phi\bar{\Phi}}^{\mathsf{T}} = \operatorname{diag}\left(\kappa_{+},\kappa_{-}\right), \quad \text{where} \quad U_{\Phi\bar{\Phi}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_{+} = \kappa, \quad \kappa_{-} = \kappa f_{2P}$$

• THE EF CANONICALLY NORMALIZED FIELDS, WHICH ARE DENOTED BY HAT, CAN BE OBTAINED AS FOLLOWS:

$$\frac{d\widehat{\phi}}{d\phi} = J = \sqrt{2\kappa_+} \implies \phi = \tanh \frac{\widehat{\phi}}{2\sqrt{N}}, \quad \widehat{\theta}_+ = \sqrt{\kappa_+}\phi\theta_+, \quad \widehat{\theta}_- = \sqrt{\kappa_-}\phi\theta_-, \quad \text{and} \quad \widehat{\theta}_\Phi = \phi\sqrt{2\kappa_-}\left(\theta_\Phi - \pi/4\right), \quad \left(\widehat{s}, \widehat{s}\right) = (s, \overline{s}) + \frac{\delta}{2\sqrt{N}} = (s, \overline{s}) + \frac$$

• WE HAVE, ALSO, TO CHECK THE STABILITY OF THE TRAJECTORY IN EQ. (P) W.R.T THE FLUCTUATIONS OF THE VARIOUS FIELDS, I.E.

$$\frac{\partial V}{\partial \mathcal{Z}^{\prime\prime}}\Big|_{\mathrm{Eq.}~(\mathrm{P})} = 0 \quad \mathrm{and} \quad \widehat{m}^2_{\underline{z}^\alpha} > 0 \quad \mathrm{Where} \quad \widehat{m}^2_{\underline{z}^\alpha} = \mathrm{Egv}\left[\widehat{M}^2_{\alpha\beta}\right] \quad \mathrm{With} \quad \widehat{M}^2_{\alpha\beta} = \left.\frac{\partial^2 V}{\partial \overline{z}^{\prime\prime\prime}} \frac{1}{\partial \overline{z}^{\prime\prime\prime}} \right|_{\mathrm{Eq.}~(\mathrm{P})} \quad \mathrm{and} \quad z^\alpha = \theta_-, \theta_+, \theta_\Phi, s, \bar{s}.$$

Here EgV are the Eigenvalues of the Matrix $\widehat{M}^2_{\alpha\beta}$.

イロト イロト イヨト イヨト 三日

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	000 00	
INFLATIONARY POTENTIALS			

Scalar Mass-Squared Spectrum for $K = K_{221}$ and \widetilde{K}_{221} Along The Inflationary Trajectory

FIELDS	Eigen-	Masses Squared		
	STATES		$K = K_{221}$	$K = \widetilde{K}_{221}$
2 real	$\widehat{\theta}_{+}$	$m_{\widehat{\theta}+}^2$	$3H_{\mathrm{HI}}^2$	
SCALARS	$\widehat{\theta}_{\Phi}$	$\widehat{m}_{\theta_{\Phi}}^2$	$M_{BL}^2 + 6H_{\rm HI}^2(1+1/N -$	$1/N\phi^2$)
1 COMPLEX	s, \bar{s}	\widehat{m}_s^2	$6H_{\rm HI}^2(1/N_S-4(1-\phi^2)/N+N\phi^2$	$6H_{\rm HI}^2(1/N_S - 2/N$
SCALAR			$+2(1-2\phi^2)+4\phi^2/N)$	$+1/N\phi^2+\phi^2/N)$
1 gauge boson	A_{BL}	M_{BL}^2	$4Ng^2\phi^2/f_{\rm 2P}^2$	
4 Weyl	$\widehat{\psi}_{\pm}$	$\widehat{m}_{\psi\pm}^2$	$3f_{2P}^2H_{\rm HI}^2/N^2\phi^2$	
SPINORS	$\lambda_{BL}, \widehat{\psi}_{\Phi-}$	M_{BL}^2	$4Ng^2\phi^2/f_{2P}^2$	

• We can Obtain $\forall \alpha, \ \widehat{m}^2_{\chi^{\alpha}} > 0.$ Especially $\widehat{m}^2_s > 0 \iff N_S < 6.$

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	00	
INFLATIONARY POTENTIALS			

Scalar Mass-Squared Spectrum for $K = K_{221}$ and \widetilde{K}_{221} Along The Inflationary Trajectory

FIELDS	Eigen-	Masses Squared			
	STATES		$K = K_{221}$	$K = \widetilde{K}_{221}$	
2 real	$\widehat{\theta}_{+}$	$m_{\widehat{\theta}+}^2$	$3H_{\rm HI}^2$		
SCALARS	$\widehat{\theta}_{\Phi}$	$\widehat{m}_{\theta_{\Phi}}^2$	$M_{BL}^2 + 6H_{\rm HI}^2(1+1/N-$	$1/N\phi^2$)	
1 COMPLEX	s, \bar{s}	\widehat{m}_s^2	$6H_{\rm HI}^2(1/N_S - 4(1-\phi^2)/N + N\phi^2$	$6H_{\rm HI}^2(1/N_S - 2/N$	
SCALAR			$+2(1-2\phi^2)+4\phi^2/N)$	$+1/N\phi^2+\phi^2/N)$	
1 gauge boson	A_{BL}	M_{BL}^2	$4Ng^2\phi^2/f_{2P}^2$		
4 Weyl	$\widehat{\psi}_{\pm}$	$\widehat{m}_{\psi\pm}^2$	$3f_{2P}^2H_{\rm HI}^2/N^2\phi^2$		
SPINORS	$\lambda_{BL}, \widehat{\psi}_{\Phi-}$	M_{BL}^2	$4Ng^2\phi^2/f_{2P}^2$		

• We can Obtain $\forall \alpha, \ \widehat{m}_{y^{\alpha}}^2 > 0.$ Especially $\widehat{m}_s^2 > 0 \iff N_S < 6.$

• We can Obtain $\forall \alpha, \widehat{m}_{y^{\alpha}}^2 > H_{\text{HI}}^2$ and So Any Inflationary Perturbations Of The Fields Other Than ϕ Are Safely Eliminated;

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	00	
INFLATIONARY POTENTIALS			

Scalar Mass-Squared Spectrum for $K = K_{221}$ and \widetilde{K}_{221} Along The Inflationary Trajectory

FIELDS	Eigen-	Masses Squared			
	STATES		$K = K_{221}$	$K = \widetilde{K}_{221}$	
2 real	$\widehat{\theta}_{+}$	$m_{\widehat{\theta}+}^2$	$3H_{\rm HI}^2$		
SCALARS	$\widehat{\theta}_{\Phi}$	$\widehat{m}_{\theta_{\Phi}}^2$	$M_{BL}^2 + 6H_{\rm HI}^2(1+1/N-$	$1/N\phi^2$)	
1 COMPLEX	s, \bar{s}	\widehat{m}_s^2	$6H_{\rm HI}^2(1/N_S - 4(1-\phi^2)/N + N\phi^2$	$6H_{\rm HI}^2(1/N_S - 2/N$	
SCALAR			$+2(1-2\phi^2)+4\phi^2/N)$	$+1/N\phi^2+\phi^2/N)$	
1 gauge boson	A_{BL}	M_{BL}^2	$4Ng^2\phi^2/f_{2P}^2$		
4 Weyl	$\widehat{\psi}_{\pm}$	$\widehat{m}_{\psi\pm}^2$	$3f_{2P}^2H_{\rm HI}^2/N^2\phi^2$		
SPINORS	$\lambda_{BL}, \widehat{\psi}_{\Phi-}$	M_{BL}^2	$4Ng^2\phi^2/f_{2P}^2$		

• We can Obtain $\forall \alpha, \ \widehat{m}_{y^{\alpha}}^2 > 0$. Especially $\widehat{m}_s^2 > 0 \iff N_S < 6$.

• We can Obtain $\forall \alpha, \widehat{m}_{\nu \alpha}^2 > H_{\text{HI}}^2$ and So Any Inflationary Perturbations Of The Fields Other Than ϕ Are Safely Eliminated;

• $M_{BL} \neq 0$ Signals the Fact that That $U(1)_{B-L}$ Is Broken and so, no Topological Defects are Produced.

▲□▶▲□▶▲□▶▲□▶▲□▶ ▲□

Formulating Pole Inflation	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
õõ	õõ	ŏŏ	
INFLATIONARY POTENTIALS			

Scalar Mass-Squared Spectrum for $K = K_{221}$ and \widetilde{K}_{221} Along The Inflationary Trajectory

FIELDS	Eigen-	Masses Squared			
	STATES		$K = K_{221}$	$K = \widetilde{K}_{221}$	
2 real	$\widehat{\theta}_{+}$	$m_{\widehat{\theta}+}^2$	$3H_{\rm HI}^2$		
SCALARS	$\widehat{\theta}_{\Phi}$	$\widehat{m}_{\theta_{\Phi}}^2$	$M_{BL}^2 + 6H_{\rm HI}^2(1+1/N -$	$1/N\phi^2$)	
1 COMPLEX	s, \bar{s}	\widehat{m}_s^2	$6H_{\rm HI}^2(1/N_S - 4(1-\phi^2)/N + N\phi^2$	$6H_{\rm HI}^2(1/N_S - 2/N$	
SCALAR			$+2(1-2\phi^2)+4\phi^2/N)$	$+1/N\phi^2+\phi^2/N)$	
1 gauge boson	A_{BL}	M_{BL}^2	$4Ng^2\phi^2/f_{2P}^2$		
4 Weyl	$\widehat{\psi}_{\pm}$	$\widehat{m}_{\psi\pm}^2$	$3f_{2P}^2H_{\rm HI}^2/N^2\phi^2$		
SPINORS	$\lambda_{BL}, \widehat{\psi}_{\Phi-}$	M_{BL}^2	$4Ng^2\phi^2/f_{2P}^2$		

• We can Obtain $\forall \alpha, \ \widehat{m}_{y^{\alpha}}^2 > 0$. Especially $\widehat{m}_s^2 > 0 \iff N_S < 6$.

• We can Obtain $\forall \alpha, \widehat{m}_{\nu \alpha}^2 > H_{\text{HI}}^2$ and So Any Inflationary Perturbations Of The Fields Other Than ϕ Are Safely Eliminated;

- $M_{BL} \neq 0$ Signals the Fact that That $U(1)_{B-L}$ is Broken and so, no Topological Defects are Produced.
- We Determine M Demanding That The Unification Scale $M_{GUT} \simeq 2/2.433 \times 10^{-2}$ is Identified with M_{BL} at the Vacuum, i.e.,

$$\langle M_{BL}
angle = \sqrt{2N}gM/\langle f_{2P}
angle = M_{\rm GUT} \Rightarrow M \simeq M_{\rm GUT}/g\sqrt{2N}$$
 with $g \simeq 0.7$ (GUT Gauge Coupling).

イロト イロト イヨト イヨト 三日

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	00	
INFLATIONARY POTENTIALS			

SCALAR MASS-SQUARED	SPECTRUM FOR K	$K = K_{221}$	AND Kan	ALONG	THE INFLATIONARY	TRAJECTORY
OUALAIT MIAOO OGUAITED	Of Lothow Forth	$r = m_{221}$	AND 11 221	7 120110		

FIELDS	Eigen-	Masses Squared			
	STATES		$K = K_{221}$	$K = \widetilde{K}_{221}$	
2 real	$\widehat{\theta}_{+}$	$m_{\widehat{\theta}+}^2$	$3H_{\rm HI}^2$		
SCALARS	$\widehat{\theta}_{\Phi}$	$\widehat{m}_{\theta_{\Phi}}^2$	$M_{BL}^2 + 6H_{\rm HI}^2(1+1/N -$	$1/N\phi^2$)	
1 COMPLEX	s, \bar{s}	\widehat{m}_s^2	$6H_{\rm HI}^2(1/N_S - 4(1-\phi^2)/N + N\phi^2$	$6H_{\rm HI}^2(1/N_S - 2/N$	
SCALAR			$+2(1-2\phi^2)+4\phi^2/N)$	$+1/N\phi^2+\phi^2/N)$	
1 gauge boson	A_{BL}	M_{BL}^2	$4Ng^2\phi^2/f_{2P}^2$		
4 Weyl	$\widehat{\psi}_{\pm}$	$\widehat{m}_{\psi\pm}^2$	$3f_{2P}^2H_{\rm HI}^2/N^2\phi^2$		
SPINORS	$\lambda_{BL}, \widehat{\psi}_{\Phi-}$	M_{BL}^2	$4Ng^2\phi^2/f_{2P}^2$		

• We can Obtain $\forall \alpha, \ \widehat{m}_{y^{\alpha}}^2 > 0$. Especially $\widehat{m}_s^2 > 0 \iff N_S < 6$.

• We can Obtain $\forall \alpha, \widehat{m}_{\nu \alpha}^2 > H_{\text{HI}}^2$ and So Any Inflationary Perturbations Of The Fields Other Than ϕ Are Safely Eliminated;

- $M_{BL} \neq 0$ Signals the Fact that That $U(1)_{B-L}$ is Broken and so, no Topological Defects are Produced.
- We Determine M Demanding That The Unification Scale $M_{\rm GUT} \simeq 2/2.433 \times 10^{-2}$ is Identified with M_{BL} at the Vacuum, I.e.,

$$\langle M_{BL}
angle = \sqrt{2N}gM / \langle f_{2P}
angle = M_{\rm GUT} \implies M \simeq M_{\rm GUT} / g \sqrt{2N}$$
 with $g \simeq 0.7$ (GUT Gauge Coupling).

• The One-Loop Radiative Corrections à la Coleman-Weinberg to $V_{\rm I}$ Can Be Kept Under Control.

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	000	
00	00	•0	

TESTING AGAINST THE INFLATIONARY DATA

- Enforcing $N_{\star} \simeq 52 56$ and $\sqrt{A_s} = 4.588 \cdot 10^{-5}$, we Obtain the Allowed Curves for Our Models In the $n_s r_{0.002}$ Plane
- In Both Models $\phi_{\star} \sim 1$ and the Relevant Tuning can be Qualified by Computing $\Delta_{\star} = (1 \phi_{\star})/1$.

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	000	
00	00	•0	

TESTING AGAINST THE INFLATIONARY DATA

- Enforcing $N_{\star} \simeq 52 56$ and $\sqrt{A_s} = 4.588 \cdot 10^{-5}$, we Obtain the Allowed Curves for Our Models In the $n_s r_{0.002}$ Plane
- In Both Models $\phi_{\star} \sim 1$ and the Relevant Tuning can be Qualified by Computing $\Delta_{\star} = (1 \phi_{\star})/1$.

GAUGE SINGLET INFLATON

• Our Inflationary Scenaria Depend On The Parameters: M, λ and δ_{λ} for C11, and N for C12. We Take $M \leq 0.01$.

• For CI1 the Whole Observationally Favored Range Can Be Covered For δ_{λ} 's close to 10^{-5} and r Remaining Below 0.01.

$$-22 \lesssim \frac{\delta_{\lambda}}{10^{-6}} \lesssim 7, \quad 8.5 \gtrsim \frac{\Delta_{\star}}{10^{-3}} \gtrsim 9.5, \quad 7.7 \gtrsim \frac{-\alpha_{\rm s}}{10^{-4}} \gtrsim 5.3 \quad \text{and} \quad 3.9 \gtrsim \frac{r}{10^{-3}} \gtrsim 2.5 \times 10^{-6}, \quad 10^{-6} \approx 10^{-6}, \quad 10^{-6}$$

- * ロ * * @ * * 差 * * 差 * うへぐ

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	000	
00	00	•0	

TESTING AGAINST THE INFLATIONARY DATA

- Enforcing $N_{\star} \simeq 52 56$ and $\sqrt{A_s} = 4.588 \cdot 10^{-5}$, we Obtain the Allowed Curves for Our Models In the $n_s r_{0.002}$ Plane
- In Both Models $\phi_{\star} \sim 1$ and the Relevant Tuning can be Qualified by Computing $\Delta_{\star} = (1 \phi_{\star})/1$.

GAUGE SINGLET INFLATON

• Our Inflationary Scenaria Depend On The Parameters: M, λ and δ_{λ} for CI1, and N for CI2. We Take $M \leq 0.01$.

• For CI1 the Whole Observationally Favored Range Can Be Covered For δ_{λ} 's close to 10^{-5} and r Remaining Below 0.01.

$$-22 \lesssim \frac{\delta_{l}}{10^{-6}} \lesssim 7, \quad 8.5 \gtrsim \frac{\Delta_{\star}}{10^{-3}} \gtrsim 9.5, \quad 7.7 \gtrsim \frac{-\alpha_{\rm s}}{10^{-4}} \gtrsim 5.3 \quad \text{and} \quad 3.9 \gtrsim \frac{r}{10^{-3}} \gtrsim 2.5 \,.$$

For $n_{\rm s} = 0.967$ We find $\delta_{\lambda} = -9 \cdot 10^{-6}$ And r = 0.003.

• For CI2 and Using $0 \le \lambda'/\lambda \le 0.1$ we see that $r \le 0.07$ Increases With N and Δ_{\star} Yielding Upper Bounds

 $\text{I.e., } 0.96 \lesssim n_{\text{s}} \lesssim 0.968, \quad 0.5 \lesssim N \lesssim 800, \quad 0.24 \gtrsim \Delta_{\star}/10^{-2} \gtrsim 52 \text{ and } 0.00076 \lesssim \overline{r} \lesssim 0.075, \quad \overline{z} \simeq 0$

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	Conclusions
000	000	000	
00	00	•0	

TESTING AGAINST THE INFLATIONARY DATA

- Enforcing $N_{\star} \simeq 52 56$ and $\sqrt{A_s} = 4.588 \cdot 10^{-5}$, we Obtain the Allowed Curves for Our Models In the $n_s r_{0.002}$ Plane
- In Both Models $\phi_{\star} \sim 1$ and the Relevant Tuning can be Qualified by Computing $\Delta_{\star} = (1 \phi_{\star})/1$.

GAUGE SINGLET INFLATON

• Our Inflationary Scenaria Depend On The Parameters: M, λ and δ_{λ} for CI1, and N for CI2. We Take $M \leq 0.01$.

• For CI1 the Whole Observationally Favored Range Can Be Covered For δ_{λ} 's close to 10^{-5} and r Remaining Below 0.01.

$$-22 \lesssim \frac{\delta_{l}}{10^{-6}} \lesssim 7, \quad 8.5 \gtrsim \frac{\Delta_{\star}}{10^{-3}} \gtrsim 9.5, \quad 7.7 \gtrsim \frac{-\alpha_{\rm s}}{10^{-4}} \gtrsim 5.3 \quad \text{and} \quad 3.9 \gtrsim \frac{r}{10^{-3}} \gtrsim 2.5 \,.$$

For $n_{\rm s} = 0.967$ We find $\delta_{\lambda} = -9 \cdot 10^{-6}$ And r = 0.003.

• For CI2 and Using $0 \le \lambda'/\lambda \le 0.1$ we see that $r \le 0.07$ Increases With N and Δ_{\star} Yielding Upper Bounds

 $\text{I.e., } 0.96 \lesssim n_{\text{s}} \lesssim 0.968, \quad 0.5 \lesssim N \lesssim 800, \quad 0.24 \gtrsim \Delta_{\star}/10^{-2} \gtrsim 52 \text{ and } 0.00076 \lesssim \overline{r} \lesssim 0.075, \quad \overline{z} \simeq 0$

Formulating Pole Inflation	SUGRA Framework 000 00	Inflationary Scenarios	Conclusions
INFLATIONARY OBSERVABLES - RESULTS			

- Our Inflationary Scenaria Depends On The Parameters: M, λ and δ_{λ} for HI1, or N for HI2.
- *M* is Determined Requiring $\langle M_{BL} \rangle = M_{GUT}$. For HI2 We Use only **Renormalizable** terms in *W*.

• For H11 the Whole Observationally Favored Range Can Be Covered For δ_{λ} 's close to 10^{-5} and r Remaining Below 0.01.

$$\text{I.e.,} \quad 2.4 \lesssim \frac{-\delta_{\lambda}}{10^{-5}} \lesssim 5.2, \quad 4.6 \gtrsim \frac{\Delta_{\star}}{10^{-3}} \gtrsim 4.1, \quad 5.4 \lesssim \frac{-\alpha_{\mathrm{s}}}{10^{-4}} \lesssim 8.6 \quad \text{and} \quad 2.1 \lesssim \frac{r}{10^{-3}} \lesssim 3.4 \, .$$

Formulating Pole Inflation	SUGRA Framework 000 00	Inflationary Scenarios ○○○ ○●	Conclusions
INFLATIONARY OBSERVABLES - RESULTS			

- Our Inflationary Scenaria Depends On The Parameters: M, λ and δ_{λ} for H11, or N for H12.
- *M* is Determined Requiring $\langle M_{BL} \rangle = M_{GUT}$. For HI2 We Use only **Renormalizable** terms in *W*.

• For HI1 the Whole Observationally Favored Range Can Be Covered For δ_{λ} 's close to 10^{-5} and r Remaining Below 0.01.

$$\text{l.e.,} \quad 2.4 \lesssim \frac{-\delta_{\lambda}}{10^{-5}} \lesssim 5.2, \quad 4.6 \gtrsim \frac{\Delta_{\star}}{10^{-3}} \gtrsim 4.1, \quad 5.4 \lesssim \frac{-\alpha_{\rm s}}{10^{-4}} \lesssim 8.6 \quad \text{and} \quad 2.1 \lesssim \frac{r}{10^{-3}} \lesssim 3.4 \, .$$

For $n_s = 0.967$ We find $\delta_{\lambda} = -4 \cdot 10^{-5}$ And r = 0.0028.

• For H12 $n_{\rm s}$ is Concentrated A Little Lower Than Its Central Value And $r \lesssim 0.07$ Increases With $N \lesssim 80$ and $\Delta_{\star} 0.962 \lesssim n_{\rm s} \lesssim 0.964, \ 1 \lesssim N \lesssim 80, \ 0.45 \gtrsim \Delta_{\star}/10^{-2} \gtrsim 13.6$ and $0.0025 \lesssim r \lesssim 0.07$.

イロン イロン イヨン イヨン 二日二

Formulating Pole Inflation	SUGRA Framework 000 00	Inflationary Scenarios	Conclusions
INFLATIONARY OBSERVABLES - RESULTS			

- Our Inflationary Scenaria Depends On The Parameters: M, λ and δ_{λ} for H11, or N for H12.
- *M* is Determined Requiring $\langle M_{BL} \rangle = M_{GUT}$. For HI2 We Use only **Renormalizable** terms in *W*.

• For HI1 the Whole Observationally Favored Range Can Be Covered For δ_{λ} 's close to 10^{-5} and r Remaining Below 0.01.

$$\text{l.e.,} \quad 2.4 \lesssim \frac{-\delta_{\lambda}}{10^{-5}} \lesssim 5.2, \quad 4.6 \gtrsim \frac{\Delta_{\star}}{10^{-3}} \gtrsim 4.1, \quad 5.4 \lesssim \frac{-\alpha_{\rm s}}{10^{-4}} \lesssim 8.6 \quad \text{and} \quad 2.1 \lesssim \frac{r}{10^{-3}} \lesssim 3.4 \, .$$

For $n_s = 0.967$ We find $\delta_{\lambda} = -4 \cdot 10^{-5}$ And r = 0.0028.

- For HI2 $n_{\rm s}$ is Concentrated A Little Lower Than Its Central Value And $r \lesssim 0.07$ Increases With $N \lesssim 80$ and Δ_{\star} $0.962 \lesssim n_{\rm s} \lesssim 0.964, ~~1 \lesssim N \lesssim 80, ~~0.45 \gtrsim \Delta_{\star}/10^{-2} \gtrsim 13.6$ and $0.0025 \lesssim r \lesssim 0.07$.
- In the case of Gauge Singlet Inflaton, We obtain Less Tuning Regarding Δ_\star . If \Box is a B is a B is Ξ . \mathfrak{H}

Formulating Pole Inflation	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	CONCLUSIONS
000 00	000 00	000 00	
			(

CONCLUSIONS

- WE PROPOSED TWO TYPES OF MODELS IMPLEMENTING POLE INFLATION WITHIN SUGRA:
 - One where K has one Logarithm and the Pole Appears not only in the Inflationary Kinetic term but also in V_1 . Mildly Tuning two W terms We can Almost Eliminate the Pole from V_1 .
 - One where K has three logarithmic terms and the Pole Appears Only in the Inflationary Kinetic term.

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	CONCLUSIONS
000 00	000 00	000 00	
			(

CONCLUSIONS

- WE PROPOSED TWO TYPES OF MODELS IMPLEMENTING POLE INFLATION WITHIN SUGRA:
 - One where K has one Logarithm and the Pole Appears not only in the Inflationary Kinetic term but also in V_1 . Mildly Tuning two W terms We can Almost Eliminate the Pole from V_1 .
 - One where K has three logarithmic terms and the Pole Appears Only in the Inflationary Kinetic term.
- BOTH TYPES OF MODELS WORK FOR BOTH GAUGE SINGLET AND NON-SINGLET INFLATONS.

Model	QUANTITY	Inflaton-Type		
		Gauge Singlet $(M \ll 1)$	Gauge non-Singlet ($\langle M_{BL} \rangle = M_{\rm GUT}$)	
1 (N = 2)	$K = K_2(S) +$	$K_{1s} = -N\ln(1 - (\Phi + \Phi^*)/2)$	$K_{21} = -N\ln(1 - \bar{\Phi} ^2 - \Phi ^2)$	
	W =	$\lambda S \left(\Phi - (1 + \delta_{\lambda}) \Phi^2 - M^2 \right)$	$\lambda S \left(\bar{\Phi} \Phi - 2(1 + \delta_{\lambda})(\bar{\Phi} \Phi)^2 - M^2/2 \right)/2$	
	$n_{\rm s} =$	0.96	- 0.974	
	$\delta_\lambda/10^{-5}\simeq$	$((-22) - 7) \cdot 10^{-1}$	(-5.2) - (-2.4)	
	$r/10^{-3} \simeq$	2.2 - 3.9	2.1 - 3.4	
2	$K = K_2(S) +$	$\widetilde{K}_{1s} = K_{1s} + (N \ln(1 - \Phi)/2 + \text{c.c.})$	$\widetilde{K}_{21} = K_{21} + \left(N\ln\left(1 - \bar{\Phi}\Phi\right)/2 + \text{c.c.}\right)$	
	W =	$\lambda S \left(\Phi - \lambda' \Phi^2 / \lambda - M^2 \right)$	$\lambda S \left(\bar{\Phi} \Phi - M^2/2 \right)/2$	
	<i>r</i> =	0.00076 - 0.07		
	$N \leq$	800, $(0 \le \lambda' / \lambda \le 0.1)$	80	
	$n_{\rm s} \simeq$	0.96 - 0.968	0.961 - 0.963	

COMPARISON OF THE THE PROPOSED INFLATIONARY MODELS

THANK YOU!

<ロト < 部 > < 注 > < 注 > < 注 < の <</p>

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	CONCLUSIONS
000	000 00	000 00	

SUPPLEMENTARY MATERIAL: CI WITH POLE OF ORDER 2

• CI CAN BE ALSO REALIZED WITH POLE OF ORDER 2⁴, USING ONE OF THE FOLLOWING K'S FOR THE INFLATON SECTOR:

$$K_{11} = -N\ln\left(1 - |\Phi|^2\right) \text{ or } \widetilde{K}_{11} = K_{11} + N\ln\left(1 - \Phi^2\right)/2 + N\ln\left(1 - \Phi^{*2}\right)/2$$

Which lead to the Kinetic Mixing $J = \sqrt{2N}/f_{2P}$ with $f_{2P} = 1 - \phi^2$ and $\Phi = \phi e^{i\theta}$ for $\theta = 0$. • For $K = K_{11}$ and \widetilde{K}_{11} , We Obtain $ds_{11}^2 = N|d\Phi|^2/(1 - |\Phi|^2)^2$ and $\mathcal{R}_{11} = -2/N$.

• ds_{11}^2 Remains Invariant under the Transformations

$$\Phi \to \frac{\alpha \Phi + b}{b^* \Phi + \alpha} \quad \text{Represented By} \quad U = \begin{pmatrix} \alpha & b \\ b^* & \alpha \end{pmatrix}, \quad \text{Provided that} \quad \alpha^2 - |b|^2 = 1. \quad \textbf{(T_2)}$$

Therefore, U Provides Representation Of The S U(1,1)/U(1) Kähler Manifold, since $U^{\dagger}\sigma_{3}U = \sigma_{3}$ with $\sigma_{3} = \text{diag}(1,-1)$.

⁴ J.J.M. Carrasco, R. Kallosh, A. Linde and D. Roest

FORMULATING POLE INFLATION	SUGRA FRAMEWORK	INFLATIONARY SCENARIOS	CONCLUSIONS
000	000 00	000 00	

SUPPLEMENTARY MATERIAL: CI WITH POLE OF ORDER 2

• CI CAN BE ALSO REALIZED WITH POLE OF ORDER 2⁴, USING ONE OF THE FOLLOWING K'S FOR THE INFLATON SECTOR:

$$K_{11} = -N\ln\left(1 - |\Phi|^2\right) \text{ or } \widetilde{K}_{11} = K_{11} + N\ln\left(1 - \Phi^2\right)/2 + N\ln\left(1 - \Phi^{*2}\right)/2$$

Which lead to the Kinetic Mixing $J = \sqrt{2N}/f_{2P}$ with $f_{2P} = 1 - \phi^2$ and $\Phi = \phi e^{i\theta}$ for $\theta = 0$. • For $K = K_{11}$ and \widetilde{K}_{11} . We Obtain $ds_{11}^2 = N|d\Phi|^2/(1 - |\Phi|^2)^2$ and $\mathcal{R}_{11} = -2/N$.

- FOR $\mathbf{K} = \mathbf{K}_{11}$ and \mathbf{K}_{11} , we obtain $as_{11} = i \sqrt{a \Phi \phi} / (1 |\Phi|)$ and $\mathbf{K}_{11} = i \sqrt{a \Phi \phi}$
- ds_{11}^2 Remains Invariant under the Transformations

$$\Phi \to \frac{\alpha \Phi + b}{b^* \Phi + \alpha} \quad \text{Represented By} \quad U = \begin{pmatrix} \alpha & b \\ b^* & \alpha \end{pmatrix}, \quad \text{Provided that } \alpha^2 - |b|^2 = 1. \quad (T_2)$$

Therefore, U Provides Representation OF The SU(1,1)/U(1) Kähler Manifold, since $U^{\dagger}\sigma_{3}U = \sigma_{3}$ with $\sigma_{3} = \text{diag}(1,-1)$. • In Addition, K_{11} (but not \widetilde{K}_{11}) Remains Invariant Under Eq. (T_{2}) , up to a Kähler transformation, i.e.,

$$K \to K + \Lambda + \Lambda^* \text{ and } W \to W e^{-\Lambda} \text{ with } \Lambda = N \ln(b^* \Phi + \alpha).$$

⁴J.J.M. Carrasco, R. Kallosh, A. Linde and D. Roest

FORMULATING POLE INFLATION SU	UGRA Framework	INFLATIONARY SCENARIOS	CONCLUSIONS
000 00 00	000	000	

SUPPLEMENTARY MATERIAL: CI WITH POLE OF ORDER 2

CI can be also Realized with Pole of Order 2⁴. Using One of The Following K's for the Inflaton Sector:

$$K_{11} = -N\ln\left(1 - |\Phi|^2\right) \text{ or } \widetilde{K}_{11} = K_{11} + N\ln\left(1 - \Phi^2\right)/2 + N\ln\left(1 - \Phi^{*2}\right)/2$$

Which lead to the Kinetic Mixing $J = \sqrt{2N}/f_{2P}$ with $f_{2P} = 1 - \phi^2$ and $\Phi = \phi e^{i\theta}$ for $\theta = 0$. • For $K = K_{11}$ and \widetilde{K}_{11} , We Obtain $ds_{11}^2 = N|d\Phi|^2/(1-|\Phi|^2)^2$ and $\mathcal{R}_{11} = -2/N$.

- ds_{11}^2 Remains Invariant under the Transformations

$$\Phi \to \frac{\alpha \Phi + b}{b^* \Phi + \alpha} \quad \text{Represented By} \quad U = \begin{pmatrix} \alpha & b \\ b^* & \alpha \end{pmatrix}, \quad \text{Provided that} \quad \alpha^2 - |b|^2 = 1. \quad (T_2)$$

Therefore, U Provides Representation OF The SU(1,1)/U(1) Kähler Manifold, since $U^{\dagger}\sigma_{3}U = \sigma_{3}$ with $\sigma_{3} = \text{diag}(1,-1)$. • IN ADDITION, K_{11} (but not \widetilde{K}_{11}) Remains Invariant Under Eq. (T₂), up to a Kähler transformation, i.e.,

$$K \to K + \Lambda + \Lambda^* \quad \text{and} \quad W \to W e^{-\Lambda} \quad \text{with} \quad \Lambda = N \ln(b^* \Phi + \alpha).$$

• CI can be Implemented by the Following Combinations (K, W)

• $K = K_2 + K_{11}$ and $W_2 = \lambda S(\Phi - \lambda' \Phi^3 / \lambda - M^2)$ or $W_4 = \lambda S(\Phi^2 - \lambda' \Phi^4 / \lambda - M^2)$. If we use N = 2 and $\lambda' \simeq \lambda(1 + \delta_{\lambda}) \neq 0$ with $\delta_{\lambda} \simeq 0$ We Obtain

$$V_{1} = e^{K} K^{SS^{*}} |W_{n,S}|^{2} \simeq \lambda^{2} \phi^{n} \frac{(1-\phi^{2})^{2}}{(1-\phi^{2})^{2}} \simeq \lambda^{2} \phi^{n}, \ n = 2, 4$$

The FORM OF W MAY BE MOTIVATED FROM THE BREAKING OF THE CONFORMAL SYMMETRY⁴

• $K = K_2 + \widetilde{K}_{11}$ and $W_n = \lambda S \Phi^n$. We obtain

$$V_{\rm I} = e^K K^{SS^*} |W_{,S}|^2 = \lambda^2 \phi^{2n}$$

(日)

⁴.J.J.M. Carrasco, R. Kallosh, A. Linde and D. Roest