SM (EW and QCD) measurements in ATLAS and CMS

Kostas KORDASAug. 31, 2021on behalf of ATLAS & CMS

Corfu Summer Institute 21st Hellenic School and Warkshops of Elementary Particle Physics and Gravity Corfu: Greece 2021 Workshop on the Standard Model and Beyond

AUGUST 29 - SEPTEMBER 8, 2021

ARISTOTLE

UNIVERSITY OF

THESSALONIKI

Outline

 Exploring processes spanning a production rate of 9 orders of magnitude: from inclusive jet production to EW production of multibosons

- Precision measurements test higher order QCD & EW calculations and constrain PDFs
- Search for effects of new physics, using the EFT formalism
- Here, will show recent results (most new from this summer).

QCD

Kostas KORDAS, Corfu2021, 31-8-2021

Inclusive & multi-jet production NEW

. CMS-PAS-SMP-20-011

pp @ 5 TeV data (27.4 pb⁻¹) and @ 13 TeV (33.5 fb⁻¹) anti-k_T jets (R=0.4 @ 5TeV, R=0.7 @ 13TeV)

Kostas KORDAS, Corfu2021, 31-8-2021

SM(EW+QCD) ATLAS&CMS

13 TeV

CMS Preliminary

Inclusive & multi-jet production NEW CMS-PAS-SMP-21-006

In either case for the Parton Shower description (Py8 or CA3), lower jet multiplicities are OK, but prediction for high jet multiplicities are low. *CA3 : Parton Branching (PB) transverse momentum dependent (TMD) parton densities and PB-TMD initial state parton shower

Kostas KORDAS, Corfu2021, 31-8-2021

Inclusive & multi-jet production NEW CMS-PAS-SMP-20-011

pp @ 13 TeV (33.5 fb⁻¹)

CMS jet and top cross sections + HERA DIS measurements \rightarrow

Determine: PDFs, a_s, m_{top}, limits on Wilson coefficients for quark Contact Interactions (CI)

Kostas KORDAS, Corfu2021, 31-8-2021

Event shapes JHEP 01 (2021) 188

pp @ 13 TeV data 139 fb⁻¹

Measurements in various event-shape variables, (i.e., transverse thrust, τ_{\perp} , Sphericity, S, and Aplanarity, A) in bins of jet multiplicity (n^{jet}) & in different ranges of H_{T2} (= Σ |pT| of 2 leading jets)

Z + high p_T jets ATLAS-CONF-2021-033

NEW

Z + jets cms-pas-smp-19-009, cms-pas-smp-21-003

pp @ 13 TeV data (35.9 fb⁻¹) (Z \rightarrow ee/µµ combined, leptons from SMP-17-010) Results unfolded to particle-level jet p_T > 30 GeV & |y|<2.5

Differential distributions N_{jets}, $\Delta \phi_{(Z,1;1,2)}$ for p_T(Z) {< 10, 30-50, >100 GeV}

SM(EW+QCD) ATLAS&CMS

Problems for Njets >=3 [TB-TDM (CA3) also tried, scaled by 1.2]

Improved determination of the sea-quark densities at high Bjorken x.

Confirms a strange-quark density similar in size to the up- and down-sea-quark densities in the range $x \approx 0.02$ (as found by previous ATLAS analyses which have produced the PDFs ATLASepWZ16).

Kostas KORDAS, Corfu2021, 31-8-2021

Kostas KORDAS, Corfu2021, 31-8-2021

.AS

NEW

Di-photon (yy) production 2107.09330 NFW

Data

pp @ 13 TeV data (139 fb⁻¹)

Results to particle level.

Photon $p_T > 40$, 30 GeV & $|\eta| < 2.37$ & DR(γ, γ) > 0.4

Differential distributions in agreement with Sherpa MEPS and Fixed Order NNLO

ATLAS

Signal purity ~ 60% (p_{T} dependent)

Main challenge and uncertainty from non-prompt photons; estimated with data-driven methods

 $\sqrt{s} = 13$ TeV, 139 fb⁻¹

 10^{-4}

1.6

1.4 1.2

0.8 0.6 0.4 0.2

10

Theory/Data

100

500

p_{T,γγ} [GeV]

13

EW

Kostas KORDAS, Corfu2021, 31-8-2021

Width of $Z \rightarrow invisible$ CMS-PAS-SMP-18-014 NEW

pp @ 13 TeV data (36.3 fb⁻¹) Simultaneous fit for Z \rightarrow invisible (Missing Energy), ee, $\mu\mu$ channels

The first measurement of the Z invisible width at a hadron collider; the single most precise direct measurement in the world, competitive with the combined direct measurement from LEP

WW $+ \geq 1$ jet production

JHEP 06 (2021) 003

Limits on aTGCS obtained , also in a phase space ($p_T^{jet} > 200 \text{ GeV}$) where linear term (interference bw SM & anomalous amplitude) is enhanced.

100

150

200

250

300

17

Integrated fiducial cross-section [fb]

WVVBS semileptonic NEW CMS-PAS-SMP-20-013

pp @ 13 TeV data (137 fb⁻¹). W+jets : W $\rightarrow e/\mu$ channels. V \rightarrow jets (2 resolved jets or 1 boosted)

Kostas KORDAS, Corfu2021, 31-8-2021

Observation of EW Zy + 2 jets NEW

pp @ 13 TeV data (139 fb⁻¹)

$7 \rightarrow \parallel$

CR for main QCD $Z\gamma$ + jj bkg, and $W\gamma$ + jj. Data-driven non-prompt γ

Fit m_{ii} distribution

10σ (obs), 11σ (exp)

Fiducial cross-sections:

 $\sigma_{FW}(pp \rightarrow Z\gamma + 2 jets) = 4.49 \pm 0.40(stat) \pm 0.42(syst) fb$ $\sigma_{EW+OCD}(pp \rightarrow Z\gamma + 2 jets) = 20.6 \pm 0.6(stat) \pm 1.2(syst) fb$

(important for BSM physics) $Z \rightarrow VV$ Events / Bin **ATLAS** Preliminary Post-fit 160 √s = 13 TeV. 139 fb Data EW $Z(\rightarrow v\overline{v})\gamma$ jj Uncertainty 140F EW $Z+\gamma$ 120 Strong $Z+\gamma$ EW $W+\gamma$ 100 Strong $W+\gamma$ 80 ttγ/Vγγ γ +iet 60 40 $iet \rightarrow \gamma$ jet*→e* 20 Ratio m_{ii} [TeV] $\mu_{EW} = 1.03 \pm 0.25$

 $N W/Z/\gamma$

Observation significance: 5.2σ (obs), 5.1σ (exp)

Fiducial cross-sections:

 $\sigma_{EW}(pp \rightarrow Z\gamma + 2 jets) = 1.31 \pm 0.20(stat) \pm 0.20(syst) fb$

SM(EW+QCD) ATLAS&CMS

Kostas KORDAS, Corfu2021, 31-8-2021

2 SameSign (SS) leptons (e/μ) + 2jets, or 3 leptons (no OS SameFlavor pairs)

 σ_{WWW} = 850 ± 100 (stat.) ± 80 (syst.) fb signal includes off shell WH(WW*)

First observation of WWW production with a significance of 8.2σ (5.4 σ expected)

Fit	Observed (expected) significances $[\sigma]$	$\mu(WWW)$
$e^{\pm}e^{\pm}$	2.3(1.4)	1.69 ± 0.79
$e^{\pm}\mu^{\pm}$	4.6(3.1)	1.57 ± 0.40
$\mu^{\pm}\mu^{\pm}$	5.6(2.8)	2.13 ± 0.47
2ℓ	6.9(4.1)	1.80 ± 0.33
3ℓ	4.8(3.7)	1.33 ± 0.39
Combined	8.2(5.4)	1.66 ± 0.28

Combined EFT fit ATL-PHYS-PUB-2021-022

pp @ 13 TeV data (36-139 fb⁻¹) 6 Differential distributions:

WW (36fb⁻¹) : leading lepton pT WZ (36fb⁻¹) : mT(WZ) 4 ℓ (139fb⁻¹) : m(Z2) in 3 m(4 ℓ) regions VBF Z (139fb⁻¹) : $\Delta \varphi$ (jj)

33 dimension-6 operators(Warsaw basis↔ SMEFT interpretation)

Considered: Dim6 contributions from Linear-only & including quadratic terms

Results in individual Wilson coefficients & in 15 linear combinations *Individual (i.e., with the rest kept at 0), and also with the rest profiled*

Kostas KORDAS, Corfu2021, 31-8-2021

 $c_{0.21}^{[3]} \approx -0.27 c_{1.2}^{(1)} + 0.79 c_{1.2} - 0.39 c_{1.2} + 0.26 c_{2.2} - 0.22 c_{2.2} - 0.16 c_{2.2}$

tZ & ttZ EFT limits CMS-PAS-TOP-21-001 NEW

pp @ 13 TeV data (138 fb⁻¹) 3 or 4 leptons, b-jets, $p_T(miss)$, extra jets

Dedicated CRs for WZ, ZZ bkgs Data-driven estimates: non-prompt leptons

BSM $C_{\phi Q}$ coefficient as deeper minimum at non-SM value, (SM minimum at 0 is still OK, within 95% C.L.)

Conclusions

- Showed recent SM results from ATLAS and CMS (most are new from this summer)
 - Investigate processes spanning 9 orders of magnitude in cross-section: inclusive jets \rightarrow multi-bosons \rightarrow vector-boson-scattering
- Run 2 dataset (~140 fb⁻¹) has allowed precision measurements in both ATLAS and CMS
 - Test higher order QCD & EW calculations and constrain PDFs
 - Search for effects of new physics, using the EFT formalism
- Run 3 (starting soon) will double the data sample
 - Reducing systematic uncertainties (theoretical & experimental) is important
- Precision measurements can lead to (indirect) discoveries

Thank you!

pp @ 13 TeV data (139 fb⁻¹) eµ events (no extra charged particles from the *same pp vertex*)

	Signal region		Control regions	
n _{trk}	$n_{\rm trk}=0$		$1 \leq n_{ m trk} \leq 4$	
$p_{\mathrm{T}}^{e\mu}$	> 30 GeV	< 30 GeV	> 30 GeV	< 30 GeV
$\gamma\gamma \to WW$	174 ± 20	45 ± 6	95 ± 19	24 ± 5
$\gamma\gamma ightarrow \ell\ell$	5.5 ± 0.3	39.6 ± 1.9	5.6 ± 1.2	32 ± 7
Drell-Yan	4.5 ± 0.9	280 ± 40	106 ± 19	4700 ± 400
$qq \rightarrow WW$ (incl. gg and VBS)	101 ± 17	55 ± 10	1700 ± 270	970 ± 150
Non-prompt	14 ± 14	36 ± 35	220 ± 220	500 ± 400
Other backgrounds	7.1 ± 1.7	1.9 ± 0.4	311 ± 76	81 ± 15
Total	305 ± 18	459 ± 19	2460 ± 60	6320 ± 130
Data	307	449	2458	6332

cross section for the $\gamma\gamma \rightarrow WW$ process of 3.13 ± 0.31 (stat.) ± 0.28 (syst.) fb

Observation significane (i.e., bkg-only excluded at) 8.4 σ

Kostas KORDAS, Corfu2021, 31-8-2021

Event shapes JHEP 01 (2021) 188

b fragmentation STDM-2018-52

pp @ 13 TeV data (139 fb⁻¹)

Measurement of *b*-quark fragmentation properties in jets using the decay $B^{\pm} \rightarrow J/\psi K^{\pm}$ in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

NEW

* + Sherpa & OpenLoops gg→WW

200

150

100

WW $+ \geq 1$ jet production

[fb/GeV]

dσ/dm_{eu}

10

10-

0.8

0.6

90 10²

 2×10^{2}

3×10²

Prediction/Data

300

Integrated fiducial cross-section [fb]

250

ATLAS

√s = 13 TeV, 139 fb

 $pp \rightarrow e^{\pm} \nu \mu^{\mp} \nu j$

JHEP 06 (2021) 003

Fiducial selection requirements					
p_{T}^ℓ	>	27 GeV			
$ \eta^\ell $	<	2.5			
$m_{e\mu}$	>	85 GeV			
p_{T}^{j}	>	30 GeV			
$ y^{j} $	<	4.5			

	Signal regio	on	$p_{\rm T}^{\rm lead.jet} > 200{ m GeV}$		
Data	89 239		5825		
Total SM	91600 ± 2500		5980 ± 150		
WW	28100 ± 1200	31%	2480 ± 60	42%	
Total bkg.	63500 ± 1800	69%	3500 ± 140	58%	
Тор	55800 ± 1500	61%	3030 ± 110	51%	
Drell–Yan	2200 ± 700	2%	66 ± 9	1%	
Fake leptons	2700 ± 1100	3%	140 ± 70	2%	
$WZ, ZZ, V\gamma$	2800 ± 500	3%	270 ± 70	4%	

Test of pQCD and EW theory Sensitive to EW boson self-interactions

Limits on aTGCS obtained , also in a phase space ($p_{T}^{jet} > 200 \text{ GeV}$) where linear term (interference bw SM & anomalous amplitude) is enhanced.

10²

Data and Stat. Uncertainty Total Uncertainty

Linear EFT Prediction, cw=1

Lin.+Quad. EFT Pred., cw=1

* plus Sherpa+OL gg \rightarrow WW

≥4×10²

m_{eμ} [GeV]

Sherpa 2.2.2 *

