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Motivation:

* The Standard Model is renormalizable
* Gravity is not renormalizable

Non-renormalizable theories are not accepted due to:

* UV divergences are not under control - infinite number of new types of divergences
* The amplitudes increase with energy (in PT) and violate unitarity

However:

* R-operation equally works for NR theories and leads to local counter terms
* Due to locality all higher order divergences are related to the lower ones

B These properties allow one to write down the RG equations for the
scattering amplitudes which sum up the leading divergences (logarithms)
and to find out the high energy behaviour



Workshop on the Standard Model and Beyond T

AUGUST 29 - SEPTEMBER 8, 2021

Based on: Phys. Lett. B734 (2014), arXiv:1404.6998 [hep-th]
JHEP 1511 (2015) 059, arXiv:1508.05570 [hep-th]
JHEP 1612 (2016) 154, arXiv:1610.05549v2 [hep-th]
Phys.Rev. D95 (2017) no.4, 045006 arXiv:1603.05501 [hep-th]
Phys.Rev. D97 (2018) no.12, 125008, arXiv:1712.04348 [hep-th],
Phys.Lett. B786 (2018) 327-331, arXiv:1804.08387 [hep-th]
Phys.Lett.B 797 (2019) 134801, arXiv:1904.08690 [hep-th]
Tpyobl MaT. NHcT. nm. B.A. Cteknosa, 2020, 1. 308, c. 1-8

In collaboration with L.Bork, A.Borlakov, D.Tolkachev and D.Vlasenko



[ ] [ ]
Bogoliubov v Laboratory of
Theoretical Physics

Bogolyubov-Parasiuk Theorem: In any local quantum field theory to get the UV
finite S-matrix one has to introduce local counter terms to the Lagrangian in each
order of perturbation theory - R-operation

L=L+AL

In renormalizable case this is equivalent to the operation of multiplication by a
renormalization constant Z

Consider 2->2 scattering amplitude on shell

Duls, by = REEle, 0,0 7

Renormalization (dimensional regularization)
BPHZ R-operation

) = RN Bl S S RG =(1- K)R'G

)\bare ey ,LLGZZL()\))\
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In non-renormalizable case the BP theorem is still valid and the counter terms are
also local (at maximum are polynomial over momenta)

Kazakov,18

* Multiplication operation is replaced by acting of an operator / — Z

A

/ is a function (polynomial) of momenta (s,t,u for the 4-point case)

A

* When acting on the diagram the / factor has to inserted inside the diagram and
integrated over the internal loop

Example (taken from D=8 YM theory) Exactly follows the BPHZ R-operation

A st
et > e[ el > )

Either s or t are to be inserted into the loop and integrated




BPHZ R-operation B

Agn) 2\ne A(n) 2\(n—1)e
RG. — ()™ | Ana () i

€ el
+ lower pole terms

A,g"’) (1?)"¢  terms appear after subtraction of (n-k) loop counter terms

Statement: R'G, is local,i.e.terms like log" ?/e™ should cancel for any k and m

A(n)
Consequence: AW = (—1)"H12L
n
n_ 4 A’ , A()
KR/Gn — k el A,,(ln) R | n+1A7(1n) b Bl

A™ is the contribution to the leading pole in n-loops from the diagrams
appearing in due corse of R-operation after subtraction of (n-1) loop
counter terms

The leading divergences are governed by | loop diagrams!



Two loop example B
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4 A(2) A(Q) lu2
:< g ><5>2€
A(Q) A(Q) ,LL2 A(l) M2 A(l)

/ ><<) - ><()_ >©< PG ey 1 B y2e 4 e 1
R O ( 62 —|_ € ( S ) € ( S ) €

(1)y2
A(Q) A(l) 2 A<2) A(l) 2 o 1 (Al )
R 12) +2%10g(u2/8)—( 1) log(p*/s) = T3~

€2 € €

non-local terms to be cancelled

: : ger Il
Leading divergence is given by the one-loop term A = §(A§1))2

¢411-7 - These statements are universal and are valid in non-renormalizable theories as well.
- The only difference is that the counter term A%U depends on kinematics and has to be
integrated through the remaining one-loop graph.
« As aresult A§2) IS not the square of Agl) anymore but is the integrated square (see below).

- This last statement is the general feature of any QFT irrespective of renormalizability



Leading divergences

Quartic vertices

i
R () - () >xi;

n-loop (n-1)-loop (n-1)-loop k-loop (n-k-1)-loop

o terms with higher loop remaining diagrams

e 4 Af

Cubic vertices

n-loop (n-1)-loop (n-1)-loop k-loop (n-k-1)-loop

— terms with higher loop remaining diagrams
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The Recurrence Relation
Kazakov,20

@D - D> @D Y @ O @

* This is the general recurrence relation that reflects the locality of the counter
terms in any theory

* In renormalizable theories A n is a constant and this relation is reduced to the
algebraic one

* In non-renormalizable theories A_n depends on kinematics and one has to
integrate through the one loop diagrams

Taking the sum Z An(—2)" = A(2) one can transform the recurrence relation

into integro-diff equation

This is the generalized RG equation valid in any (even non-renormalizable) theory!
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Examples:

- Maximally supersymmetric gauge theory in D=6,8,10 dimensions SYM
: . . : 4

 Scalar field theory in D=4,6,8,10 dimensions ¢D

- Gauge theory in D=4,6,8 dimensions YM D

- Supersymmetric Wess-Zumino model with quartic superpotential in D=4 (I)i

These are the toy models for (super) gravity - our aim



The Scalar theory example i
4
¢D 1= 4’ 6’ 87 10 [)\] S D/2 Kazakov,19
2->2 scattering amplitude on shell m =0 s+t+u=0

Ca(s,t,u) = A1+ Ts(s, t,u) + Ti(s, t,u) +Ty(s, t,u))

PT: I's = Z(—Z)nsn, Fn— Z(—Z)nTn, = Z(_Z)nUna P — %
=l =1l =L
\\

PT expansion (only s-channel is shown)
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N
Jegetes

n-loop (n-1)-loop (n-1)-loop (n-k-1)-loop
- e terms with higher loop remaining diagrams
A®Y
KR' : b
; €
k-loop
SD/2—2 1 ¥
nSn(S,t,’LL) e F(D/Q 1)/d$[$(1—33)]D/2_2 (Sn—l(satla )+Tn—1(37tlau/)+Un—1(87tlau,))
2 0
Dot n—2(D/2-2)k p
i d 1 D/2 2
3 2F(D/2—1)/ Aol Z ? Y p+D/2—2)
dP d?

(Sp—t-1+Tn -1+ Up g_1)sP[z(l — z)]Pt'uP

(Sk + T + Uk)

dt't du/P—! At du/'P—!




Differential Equation

Summing up the recurrence relation Y _(—2)" one gets the diff equation
=2
dls(s,t,u) 1I'(D/2-1) D/2—2 I's(z

B 2D 2

gD /22 1
B 1)/Odfv[:c(1—x>]D/ “5° [Ta(s,t, )4 Tal syt )=, (shie | Re 7

Il e )|D/2-2
% §F(D/2—1)/d:€[ it ZZ p+D/2—2)

p=0 [= O

dp : P pl p—l
— (T + T+ Tu)l = [2(1 - @)t

iy OEe)
) S o -3
d log 12 2T(D/2 - 1) o U p+D/2—2)

[ u 2 l l
dt" du/r—! ‘ t' = —xs, sP [513(1 T Qf)]pt uf~




Perturbation Expansion for the 4-point
SYM_D Amplitudes for any D

T. Dennen Yu-yin Huang 10,
S.Caron-Huot D.O'Connell 10

v
tree -9 2
gl it + st o
No bubbles

No Triangles ety i) i IR o2 L, 4

FirstUVdivat & jhee EE A a
L=[6/(D-4)] loops s 15

IR finite
_glo ssr s s4r | g 5 531“ H u I srs

4 2 60

Universal expansion for any D in maximal SYM due to Dual conformal invariance



Bork,Kazakov,Kompaneets,Vlasenko, 13
Borlakov,,Kazakov,Tolkachev,Vlasenko, 15 S Y M D

S-channel S, (s,t) T-channel i) T, (s, 0 =TS {ms)

Exact all-loop recurrence relation S3 = —s/3, T3 = —t/3

1 T
nSy(s,t) = —2s / dx / dy (Sp—1(s,t") + Tr-1(s,1"))
0 0

D=8 N=1
S-channel S, (S, t) T-channel s (3, t) T, (s, 1 =05}
Exact all-loop recurrence relation B = 1—12 T = 1—12

1 x
o MisE ) — —252/ d:z:/ dy y(1 — z) (Sp_1(s,t') + T, 1(s, ¢ )= e

n—22k—2 dp

+ /da;:z; Qw5 p+2' 7 (Sk(5,t) + Tk (s, 1)) x

klpO

dp
P

(Sno1_r(s,t) + Ty 1 p(8, 1)) =z s (s G




RG Equation
SYM_D D=6 N=2 X(s,t,2) =2 i(—z)“’s

d

2 1 X
d_z(satv Z) T _Z(Svtv Z) Bl 25/ dill'/ dy (E(S7t,7 Z) i E(tlv S, Z))‘t’:azt—kyu
Z Z 0 0

Linear equation

D=8 N=1 (s,t,2) = ) (~=
n=1
d / /
EZ(S b :———|—23 / dx/ dy y(1 —x) (X(s,t,2) + (1t 8, 2)) |t =tz yu

/ i & ) 2 Z pl(p+2)! dt/p (2(87t e E(t Sy ))‘t’Z—Sw)Q (tsx(1 — x))P.

Non-linear equation
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® YM D Both cubic and quartic vertices

Equation is more complicated but has the same main features

@ \Wess-Zumino modern in D=4 *

i /d29c12§ ci><1>+/d29‘ %@4 +/d29 %@4,

C=<®Pdd >, C =< PPP >, M =< ®PPD >. C=CS+CT+CU, M+MS+MT+MU

RG Equations

d
c(ljzs = s5¢°MS ® (CS +CT + CU),
dM 1
sz - 5[sg?(MS@MSJrMT@MT+MU®MU)

+CS®CS+CT ®CT + CU ® CUJ,

1 oo P
=4 1 dp / / dp / / D D
A(S,t,U) & B(S7t7 u) e /0 dx § , E ,p'pl dt’ldu’p—l A(Svt , U )W B(S7t , U )’ = e, S [I(]. Al ZL‘)} [

p=0 [=0 u =—(1—1x)s




Solution of RG Equations - Genaral Case

d
£ A(2) = bof~1 - 2/

AG) - [ 4)
A ®
In the r.h.s. one has a second degree polynomial:
* Two real roots - solution is an exponent (decreasing or increasing depending on a

theory and kinematics) SYM 6

* Degenerate real root - solution with a pole at low (Asymptotic Freedom) or high

4
(Zero Charge) energies depending on a kinematics ¢D

* Two complex roots - solution with infinite number of periodic poles in both
directions SYM 8



Solution of RG Equation o
D)=
s~ t~u~ E?
dl'y B R = 1
SICET.2 = —)A= F4, IV iloeyi—— 0)r—"1 - 4 EESNL (0

General Solution for any D

= 1

ISt — P
L+ LED2ZU N (s0/2-2 1 D/2-2 1 4 D/2-2) log 2/ E?)

P is the symbol of ordering in a sense of recurrence relation

A
['4(s,t,u) =P £ P E n] 2 /B2 A(l) n
e ) 1+ )\Agl) log(u?/E?) o el

/

P(AD)n _/ dch P(A <1> AW P(Au))n -k




High Energy Behaviour of the scattering
amplitude in gb% theory
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e — P 2
et T(D)/2=1 & 7 a
e % lg(lé_2)))\(SD/2 2 4 ¢D/2=2 4 yD/2-2)]og(pu2/E?)
s~te~u~ E?
e— 3/2>0 As a result one has a Landau poleas £ — o©
D=6 s+t+u=0 All the leading divergences (logs) cancel in all loops
One can explicitly check that S, given above vanishes
1= s+t +u>0 has a Landau poleas £ — o0
BRSS9ty > () s> 0,t,u <0 hasa Landau pole as

Conclusion: ¢% has a Landau poleas E — oo

E — o



Solution of RG equation D=6 N=2

Horizontal ladder + tennis court s
Ladder Lddder 2
2 52 22
PIES ) — oy
(5,2) = =5 =)

g i t 1 1
: i —|—2—)—(ez—1—sz—522—623)

1 Z
el e
2 i o r o

In general case - numerical solution similar to the ladder approximation

ZS =F Zt ~/ G(S—l_t)z

s+t=—-—u>0 X—>
s+tu=-1t>0 X—>

Z — 00
t+u=—s5<0, 2 — const

2|



Solution of RG equation D=8 N=1

Borlakov,Kazakov,Tolkachev,Vlasenko, 16

Horizontal ladder

d 1 % 2
Diffequation EZA — —g = EZA = 52124 Z = 9282/6

e 4tan(z/(8v/15)) s sin(z/(8v/15))
A Y e 8V 578 s/ (V) —

$(2) = —(2/6 + 22 /144 + 232880 + 724 /414720 + ... ) 2o = arcsin(+/3/8)
infinite number of poles

In general case - numerical solution similar to the ladder approximation
possessing infinite number of poles in both directions

Dk
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Resume
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¢ The UV divergences in nhon-renormalizable theories are local and can be
removed by local counter terms like in renormalizable ones
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Resume

¢ The UV divergences in nhon-renormalizable theories are local and can be
removed by local counter terms like in renormalizable ones

¢ The main difference is that the renormalization constant Z depends on
kinematics and acts like an operator rather than simple multiplication

¢ Based on locality of the counter terms due to the Bogoliubov-Parasiuk
theorem one can construct the recurrence relations that define all loop
divergences starting from one loop

¢ The recurrence relations can be converted into the generalized RG
equations just like in renormalizable theories

¢ The RG equations allow one to sum up the leading (subleading, etc)
divergences in all loops and define the high-energy behaviour

i



