Signature change of the emergent space-time in the IKKT matrix model

#### Jun Nishimura (KEK, SOKENDAI)

#### Talk at Corfu2021

Workshop on Quantum Geometry, Field Theory and Gravity September 20-27, 2021

Ref.) J.N. and Asato Tsuchiya, JHEP 1906 (2019) 077 [arXiv:1904.05919 [hep-th]] Anagnostopoulos-Azuma-Hatakeyama-Hirasawa-Ito-J.N.-Tsuchiya-Papadoudis, work in progress

#### IKKT matrix model

a conjectured nonperturbative formulation of superstring theory

$$S_{\mathsf{b}} = -\frac{1}{4g^2} \operatorname{tr}([A_{\mu}, A_{\nu}][A^{\mu}, A^{\nu}])$$
  
$$S_{\mathsf{f}} = -\frac{1}{2g^2} \operatorname{tr}(\Psi_{\alpha}(\mathcal{C} \Gamma^{\mu})_{\alpha\beta}[A_{\mu}, \Psi_{\beta}])$$

SO(9,1) symmetry

 $N \times N$  Hermitian matrices

Wick rotation  $(A_0 = -iA_{10}, \Gamma^0 = i\Gamma_{10})$ Euclidean matrix model SO(10) symmetry Anagnostopoulos, et al. JHEP 06 (2020) 069, arXiv: 2002.07410 [hep-th] Crucial properties of the IKKT matrix model as a nonperturbative formulation of superstring theory

• The connection to perturbative formulations can be seen manifestly by considering type IIB superstring theory in 10d.

worldsheet action, light-cone string field Hamiltonian, etc.

 It is expected to be a nonperturbative formulation of the unique theory underlying the web of string dualities.



Μ

Het Es x Es

IIA

In the SUSY algebra, translation is realized as  $~A_{\mu}\mapsto A_{\mu}+lpha_{\mu}{f 1}$  ,

which suggests that the space-time is represented as the eigenvalue distribution of  $A_{\mu}$  .

#### Geometry emerges from matrix degrees of freedom dynamically in this approach .

# Plan of the talk

- 0. Introduction
- 1. Brief review of the Euclidean IKKT model
- 2. How to define the Lorentzian IKKT model
- 3. How to investigate the model
- 4. Results of the CL simulations
- 5. Summary and discussions

#### 1. Brief review of the Euclidean IKKT model

### the Euclidean IKKT model

"Wick rotation":  $A_0 = -iA_{10}$   $S_b \propto \text{tr} (F_{\mu\nu})^2$  positive semi-definite!  $F_{\mu\nu} = -i[A_{\mu}, A_{\nu}]$ 

The flat direction :  $[A_{\mu}, A_{\nu}] \sim 0$ 

Lifted in the bosonic case due to quantum effects. Bhanot-Heller-Neuberger '82

It survives in the SUSY case if one neglects the fermionic zero modes.

In the original IKKT paper : |eigenvalues of  $A_{\mu}| < \Lambda$ 

In fact, fermionic zero modes lift the flat directions.

Aoki-Iso-Kawai-Kitazawa-Tada '99

Euclidean model is well defined without any cutoff.

Krauth-Nicolai-Staudacher ('98), Austing-Wheater ('01)

#### Results for the Euclidean IKKT model $SO(10) \xrightarrow{SSB} SO(3)$

SSB of SO(10) observed by decreasing the deformation parameter  $m_{\rm f}$ .



JHEP 06 (2020) 069 , arXiv: 2002.07410 [hep-th]

#### 2. How to define the Lorentzian IKKT model

#### Partition function of the Lorentzian IKKT model

partition function

$$Z = \int dA \, d\Psi \, e^{i(S_{b} + S_{f})} = \int dA \, e^{iS_{b}} \mathsf{Pf}\mathcal{M}(A)$$
  
This seems to be natural from the connection to the worldsheet theory.

c.f.) 
$$S = \int d^2 \xi \sqrt{g} \left( \frac{1}{4} \{ X^{\mu}, X^{\nu} \}^2 + \frac{1}{2} \bar{\Psi} \gamma^{\mu} \{ X^{\mu}, \Psi \} \right)$$

$$\xi_0 \equiv -i\xi_2$$

(The worldsheet coordinates should also be Wick-rotated.)

# Regularizing the Lorentzian model

 Unlike the Euclidean model, the Lorentzian model is NOT well defined as it is.

$$Z = \int dA \, d\Psi \, e^{i(S_{b} + S_{f})} = \int dA \, e^{iS_{b}} \Pr \mathcal{M}(A)$$
pure phase factor polynomial in A

Wick rotation

(Yuhma Asano '19, private communication)

$$S_{b} \mapsto \tilde{S}_{b} = N e^{i\frac{\pi}{2}s} \left\{ \frac{1}{2} e^{-i\pi k} \operatorname{tr} [\tilde{A}_{0}, \tilde{A}_{i}]^{2} - \frac{1}{4} \operatorname{tr} [\tilde{A}_{i}, \tilde{A}_{j}]^{2} \right\}$$
  
on the worldsheet in the target space

This corresponds to deforming the integration contour in the Lorentzian model.

$$\begin{cases} A_0 = e^{i\frac{\pi}{8}s - i\frac{\pi}{2}k}\tilde{A}_0 = e^{-i\frac{3\pi}{8}u}\tilde{A}_0 \\ A_i = e^{i\frac{\pi}{8}s}\tilde{A}_i = e^{i\frac{\pi}{8}u}\tilde{A}_i \\ s = k(=u) \end{cases} \qquad \begin{array}{c} u = 0 : \text{ Lorentzian} \\ u = 1 : \text{ Euclidean} \\ \end{array}$$

#### Path deformed theory is well-defined for 0 $< u \leq$ 1

(Yuhma Asano '19, private communication)

$$e^{iS_{b}(A)} = e^{-S(\tilde{A})} \begin{cases} A_{0} = e^{-i\frac{3}{8}\pi u}\tilde{A}_{0} \\ A_{i} = e^{i\frac{1}{8}\pi u}\tilde{A}_{i} \end{cases} \quad \tilde{F}_{\mu\nu} = -i[\tilde{A}_{\mu}, \tilde{A}_{\nu}]$$

$$S(\tilde{A}) \sim 2e^{i\frac{\pi}{2}(1-u)} \operatorname{tr}(\tilde{F}_{0i})^{2} + e^{-i\frac{\pi}{2}(1-u)} \operatorname{tr}(\tilde{F}_{ij})^{2}$$

$$\int_{\text{positive real part for } 0 < u \leq 1 \end{cases} \quad \operatorname{Re} S(\tilde{A}) \geq 0$$

$$S(\tilde{A}) : \text{ real positive at } u = 1 \text{ (Euclidean).}$$

According to Cauchy's theorem,  $\langle \mathcal{O}(e^{-i\frac{3}{8}\pi u}\tilde{A}_0, e^{i\frac{1}{8}\pi u}\tilde{A}_i) \rangle_u$  is independent of u.

If we define the Lorentzian model by taking the  $u \rightarrow +0$  limit,

 $\langle \mathcal{O}(A_0, A_i) \rangle_{\mathsf{L}} = \langle \mathcal{O}(\mathsf{e}^{-i\frac{3\pi}{8}}\tilde{A}_0, \mathsf{e}^{i\frac{\pi}{8}}\tilde{A}_i) \rangle_{\mathsf{E}}$ 

# Confirmation of the equivalence by CL simulation 10D bosonic model



The emergent space-time should be interpreted as being Euclidean !

Can we introduce some "boundary condition" ?

#### 3. How to investigate the model

## **Complex Langevin equation**

J.N. and Asato Tsuchiya, JHEP 1906 (2019) 077 [arXiv:1904.05919 [hep-th]]

The effective action

$$S_{\text{eff}} = -iN\left\{\frac{1}{2}\text{tr}\left[A_{0}, A_{i}\right]^{2} - \frac{1}{4}\text{tr}\left[A_{i}, A_{j}\right]^{2}\right\}$$
$$-\log\Delta(\alpha) - \sum_{a=1}^{N-1}\tau_{a}$$

**Complex Langevin equation** 

$$\begin{bmatrix} \frac{d\tau_a}{dt} &= -\frac{\partial S_{\text{eff}}}{\partial \tau_a} + \eta_a \\ \frac{d(\mathcal{A}_i)_{ab}}{dt} &= -\frac{\partial S_{\text{eff}}}{\partial (\mathcal{A}_i)_{ba}} + (\eta_i)_{ab} \end{bmatrix}$$

 $au_a$  : complex variables,  $\mathcal{A}_i$  : general complex matrices.

In this work, we omit the fermionic matrices to reduce computation time



#### Defining "time" in the IKKT model in complex Langevin simulation

J.N. and Asato Tsuchiya, JHEP 1906 (2019) 077 [arXiv:1904.05919 [hep-th]]

Fixing the U(N) symmetry:  $A_{\mu} \mapsto UA_{\mu}U^{\dagger}$  $Z = \int dA_0 \, dA_i \, e^{-S} = \int d\alpha \, dA_i (\Delta(\alpha)) e^{-S}$   $A_0 = \text{diag}(\alpha_1, \cdots, \alpha_N)$   $\alpha_1 < \alpha_2 < \cdots < \alpha_N$ 

 $\Delta(\alpha) = \prod_{a>b} (\alpha_a - \alpha_b)^2$  : van der Monde determinant

We make the change of variables

$$\alpha_1 = 0$$
,  $\alpha_2 = e^{\tau_1}$ ,  $\alpha_3 = e^{\tau_1} + e^{\tau_2}$ , ...,  $\alpha_N = \sum_{a=1}^{N-1} e^{\tau_a}$ ,

to introduce the "time ordering" respecting holomorphicity.

The expectation value of the time coordinates

$$\langle \mathcal{O}(A_0, A_i) \rangle_{\mathsf{L}} = \langle \mathcal{O}(\mathrm{e}^{-i\frac{3\pi}{8}}\tilde{A}_0, \mathrm{e}^{i\frac{\pi}{8}}\tilde{A}_i) \rangle_{\mathsf{E}}$$
$$\langle \alpha_i \rangle_{\mathsf{L}} = e^{-i\frac{3\pi}{8}} \langle \tilde{\alpha}_i \rangle_{\mathsf{E}} \in \mathbb{R}$$

#### We introduce a constraint : $lpha_N - lpha_1 = \sqrt{\kappa} \in \mathbb{C}$

One cannot deform the contour as we did above. The model is not equivalent to the Euclidean model any more.



How about space ?

#### Extracting time-evolution from the Lorentzian model

Kim-J.N.-Tsuchiya PRL 108 (2012) 011601 [arXiv:1108.1540]



The extent of space  $R^{2}(t) = \left\langle \frac{1}{n} \operatorname{tr} \left( \bar{A}_{i}(t) \right)^{2} \right\rangle$  $\langle \mathcal{O}(A_{0}, A_{i}) \rangle_{\mathsf{L}} = \langle \mathcal{O}(\mathrm{e}^{-i\frac{3\pi}{8}}\tilde{A}_{0}, \mathrm{e}^{i\frac{\pi}{8}}\tilde{A}_{i}) \rangle_{\mathsf{E}}$  $\left\langle \frac{1}{N} \operatorname{tr}(A_{i})^{2} \right\rangle_{\mathsf{L}} = e^{i\frac{\pi}{4}} \left\langle \frac{1}{N} \operatorname{tr}(\tilde{A}_{i})^{2} \right\rangle_{\mathsf{E}}$ This is not true any more

once we introduce the constraint  $\alpha_N - \alpha_1 = \sqrt{\kappa} \in \mathbb{C}$ 

$$R^{2}(t) = \left\langle \frac{1}{n} \operatorname{tr} \left( \bar{A}_{i}(t) \right)^{2} \right\rangle$$
$$\propto e^{i\frac{\pi}{4}} \text{ (Euclidean regime)}$$
$$> 0 \text{ (Lorentzian regime)}$$

Thus, the signature of the space time can change dynamically in the IKKT model.

previous work based on classical solutions: Cheney-Lu-Stern ('17) Sperling-Steinacker ('18)

## 4. Results of the CL simulations

Eigenvalues of  $A_0$ 

N = 128

(preliminary results)



## the time evolution of space



## 5. Summary and Discussions

# Summary

- IKKT matrix model = a nonperturbative formulation of superstring theory
- The Euclidean model exhibits SSB of SO(10) to SO(3) due to the phase of the fermion determinant (or Pfaffian).
- In fact, the Lorentzian model becomes equivalent to Euclidean model if we define it by deformation of the integration contour.
- We introduce a "boundary condition" on both ends of the eigenvalue spectrum of  $A_0$ .
- Signature change from Euclidean to Lorentzian may naturally occur.
   (a bouncing universe scenario unlike Hartle-Hawking's no boundary)
- Can we make the duration of the real time regime longer by the boundary condition at larger N ?

Does the space become "real" at late times ? Does the expanding behavior (like inflation) show up ?

## Discussions

 The expanding behavior observed in the solution to the EOM of the Lorentzian model with the IR cutoffs.



Hatakeyama-Matsumoto-J.N.-Tsuchiya-Yosprakob, PTEP 2020 (2020) 4, 043B10

 Including fermionic matrices (SUSY model).
 Does the SSB in the Euclidean model imply that SO(3) is realized in the present model as well ?

## 6. Backup slides

3. Complex Langevin method

The complex Langevin method  
Parisi ('83), Klauder ('83)
$$Z = \int dx w(x)$$
 $x \in \mathbb{R}$ MC methods inapplicable  
due to sign problem !

Complexify the dynamical variables, and consider their (fictitious) time evolution :

$$z^{(\eta)}(t) = x^{(\eta)}(t) + i y^{(\eta)}(t)$$

defined by the complex Langevin equation

$$\frac{d}{dt}z^{(\eta)}(t) = v(z^{(\eta)}(t)) + \eta(t)$$
  
Gaussian noise (real)  
probability  $\propto e^{-\frac{1}{4}\int dt \, \eta(t)^2}$   
 $\langle \mathcal{O} \rangle \stackrel{?}{=} \lim_{t \to \infty} \langle \mathcal{O}(z^{(\eta)}(t)) \rangle_{\eta}$   
 $v(x) \equiv \frac{1}{w(x)} \frac{\partial w(x)}{\partial x}$ 

Rem 1: When w(x) is real positive, it reduces to one of the usual MC methods. Rem 2: The drift term  $v(x) \equiv \frac{1}{w(x)} \frac{\partial w(x)}{\partial x}$  and the observables  $\mathcal{O}(x)$  should be evaluated for complexified variables by analytic continuation.

## **Complex Langevin equation**

J.N. and Asato Tsuchiya, JHEP 1906 (2019) 077 [arXiv:1904.05919 [hep-th]]

The effective action

$$S_{\text{eff}} = -iN\left\{\frac{1}{2}\text{tr} [A_0, A_i]^2 - \frac{1}{4}\text{tr} [A_i, A_j]^2\right\} \\ -\log\Delta(\alpha) - \sum_{a=1}^{N-1} \tau_a + \frac{1}{4}\gamma_\alpha (\alpha_N - \sqrt{\kappa})^4$$

Complex Langevin equation

constraint for our "boundary condition"

$$\begin{bmatrix} \frac{d\tau_a}{dt} &= -\frac{\partial S_{\text{eff}}}{\partial \tau_a} + \eta_a \\ \frac{d(\mathcal{A}_i)_{ab}}{dt} &= -\frac{\partial S_{\text{eff}}}{\partial (\mathcal{A}_i)_{ba}} + (\eta_i)_{ab} \end{bmatrix}$$

 $au_a$  : complex variables,  $\mathcal{A}_i$  : general complex matrices.

In this work, we omit the fermionic matrices to reduce computation time



#### 5. Comments on our previous work

#### A phase diagram of the IKKT model



#### Emergence of (3+1)-dim. expanding behavior



SSB : SO(5)  $\rightarrow$  SO(3) occurs at some point in time.

#### But the space is not continuous



Only 2 Evs of Q become large suggesting the Pauli-matrix structure.

Recent development : the condition for correct convergence



Nagata-J.N.-Shimasaki, Phys.Rev. D94 (2016) no.11, 114515.

In the Lorenzian case, adding a small "mass" term in the Dirac operator can cure the problem !

The Dirac operator in the Lorentzian model has real eigenvalues for Hermitian configurations !

6D SUSY model with deformation parameter  $m_{\rm f} = 1.0$ N = 32,  $\beta = 1.4$ ,  $\kappa = 1.0$ 

