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The arena where perturbative quantum field theory confronts experiment.

High precision calculations crucial for [Canko Talk]

▸ Determining Standard Model parameters [De Roeck, Fayard Talks]

▸ Tell apart New Physics from Standard Model background

Especially relevant in light of High-Luminosity LHC 2027-2037. [Zerlauth Talk]

GP — Cluster Algebras for Feynman Integrals 2/20



Scattering amplitudes

An

k1

k2

k3

kn

The arena where perturbative quantum field theory confronts experiment.

High precision calculations crucial for [Canko Talk]

▸ Determining Standard Model parameters [De Roeck, Fayard Talks]

▸ Tell apart New Physics from Standard Model background

Especially relevant in light of High-Luminosity LHC 2027-2037. [Zerlauth Talk]

GP — Cluster Algebras for Feynman Integrals 2/20



Scattering amplitudes

An

k1

k2

k3

kn

The arena where perturbative quantum field theory confronts experiment.

High precision calculations crucial for [Canko Talk]

▸ Determining Standard Model parameters [De Roeck, Fayard Talks]

▸ Tell apart New Physics from Standard Model background

Especially relevant in light of High-Luminosity LHC 2027-2037. [Zerlauth Talk]

GP — Cluster Algebras for Feynman Integrals 2/20



Scattering amplitudes

An

k1

k2

k3

kn

The arena where perturbative quantum field theory confronts experiment.

High precision calculations crucial for [Canko Talk]

▸ Determining Standard Model parameters [De Roeck, Fayard Talks]

▸ Tell apart New Physics from Standard Model background

Especially relevant in light of High-Luminosity LHC 2027-2037. [Zerlauth Talk]

GP — Cluster Algebras for Feynman Integrals 2/20



Scattering amplitudes

An

k1

k2

k3

kn

The arena where perturbative quantum field theory confronts experiment.

High precision calculations crucial for [Canko Talk]

▸ Determining Standard Model parameters [De Roeck, Fayard Talks]

▸ Tell apart New Physics from Standard Model background

Especially relevant in light of High-Luminosity LHC 2027-2037. [Zerlauth Talk]

GP — Cluster Algebras for Feynman Integrals 2/20



Motivation: From N = 4 SYM to the real world

N = 4 super Yang-Mills (SYM) theory: an ideal theoretical laboratory for
developing new paradigms leading to significant practical applications.

For example,

▸ Generalised Unitarity [Bern,Dixon,Dunbar,Kosower. . . ]

▸ Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]

▸ Canonical Differential Equations [Henn]

All of them vital for recent state of the art calculation of 2-loop 5-point
1-mass planar master integrals, relevant for W-boson production + 2 jets,
[Abreu,Ita,Moriello,Page,Tschernow,Zeng][Canko,Papadopoulos,Syrrakos]

Image Credit: 2005.04195
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The Role of Cluster Algebras

Tremendously successful in describing singularities of n-particle planar
amplitudes An in N = 4 SYM.
[Golden,Goncharov, Spradlin,Vergu,Volovich][Drummond,Foster,Gurdogan]

⇒ results for n = 6,7 to unprecedented loop order.
[Drummond,GP,Spradlin][Dixon,Drummond,Harrington,McLeod,GP,Spradlin]

[Drummond,Foster,Gurdogan,GP] [Caron-Huot,Dixon,Dulat,Hippel,McLeod,GP]

Could this beautiful and useful structure have wider applicability?

Searched for it in theory-agnostic Feynman integrals in dimensional
regularization.

Discovered cluster algebras encode singularities of
a wealth of physically relevant examples, including
QCD corrections to amplitudes for pp→ Higgs+jet!
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Cluster algebras [Fomin,Zelevinsky]

They consist of

▸ A set of variables ai, the cluster (A-)coordinates

▸ Grouped into overlapping subsets {a1, . . . , ad} of rank d, the clusters

▸ Constructed recursively from initial cluster via mutations

Example: C2 Cluster algebra

▸ Cluster coordinates: am, m ∈ Z
▸ Initial cluster: {a1, a2}
▸ Clusters: {am, am+1}, m ∈ Z
▸ Mutation:

am+1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1+am
am−1 if m is odd ,

1+a2m
am−1 if m is even ,

Exchange graph: Clusters=vertices, mutations=edges
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Geometric Interpretation of Cluster Algebras

Finite cluster algebras classified by Dynkin diagrams. For An:

▸ Cluster = triangulation of (n + 3)-gon by noncrossing diagonals

▸ Cluster coordinates = diagonals of this triangulation

▸ Mutation = Flipping of diagonal of any rectangle subdiagram

Example: A3 = hexagon

exchange graph

Adapted from 1810.08149
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Cluster Algebras and N = 4 Amplitudes
The function space of multiple polylogarithms (MPLs)

(− − ± + . . .+) L-loop amplitudes = MPLs of weight k = 2L
[Arkani-Hamed,Bourjaily,Cachazo,Goncharov,Postnikov,Trnka][Duhr,Del Duca,Smirnov]...[GP]

fk is a MPL of weight k if its differential obeys

dfk =∑
α

f
(α)
k−1 d logφα

over some set of φα, with f
(α)
k−1 functions of weight k − 1.

Convenient tool for describing them: Symbol S(fk) encapsulating

recursive application of above definition (on f
(α)
k−1 etc)

S(fk) =

Collection of φαi : symbol alphabet Φ
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Cluster Algebras and N = 4 Amplitudes
The right variables & their applications

What is the symbol alphabet describing An? For n = 6,7,
▸ variables am of a Grassmannian Gr(4, n) cluster algebra

[Golden,Goncharov,Spradlin,Vergu,Volovich]

Gr(4,6) ≃ A3, Gr(4,7) ≃ E6

Potential amplitude singularities when cluster coordinates am = 0,∞

⇓

Essential information for computing An via amplitude bootstrap
[PoS CORFU2019 Review:Caron-Huot,Dixon,Drummond,Dulat,Foster,Gurdogan,Hippel,McLeod,GP]

An

Identify An within finite set of candidate functions

▸ n = 6: 7 loops (MHV)

▸ n = 7: 4 loops
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Cluster Adjacency ∼ Extended Steinmann Relations

So far seen only cluster coordinates=alphabet relevant for scattering
amplitudes. How about clusters, do they also play a role?

YES:
[Drummond,Foster,Gurdogan]

Two distinct A-coordinates can appear consecutively in a
symbol only if there exists a cluster where they both appear.

E.g. A3: Crossing diagonals forbidden,

(((((((((((
. . .⊗ (15)⊗ (26)⊗ . . . ,

(((((((((((
. . .⊗ (14)⊗ (26)⊗ . . . ,

(((((((((((
. . .⊗ (14)⊗ (36)⊗ . . .

1

2

3 4

5

6 1

2

3 4

5

6 1

2

3 4

5

6

For physical n = 6,7 functions, equivalent to extended Steinmann relations.
Massively reduces size of function space. [Caron-Huot,Dixon,DulatMcLeod,Hippel,GP]
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The Genetic Material of N = 4 SYM Amplitudes

DNA Amplitude symbol

Bases A,T,G,C

Base pairs A-T, G-C

Letters=cluster variables

Letter pairs=cluster adjacency

Could cluster algebras provide the genetic
material of generic quantum field theories?
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Searching for Cluster Algebras in QFT

Look at scalar Feynman integrals with massless internal propagators in
dimensional regularization.

▸ Theory-agnostic

▸ No loss of generality: tensor integral reduction [Passarino,Veltman][Tarasov]

▸ D = 4 − 2ε, finite quantities only at the very end

▸ Simple starting point

= ∫
dDk

k2(k + p1)2(k + p1 + p2)2(k − P )2

For any given process, scalar integrals related by integration-by-parts
identities. Basis in the vector space they span=master integrals.
[Chetyrkin,Tkachov]
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Main Example: Four-point functions with one leg offshell/massive

p2i = 0 , P 2 ≠ 0

▸ Kinematic variables:

z1 ≡
2p1 ⋅ p2
P 2

, z2 ≡
2p2 ⋅ p3
P 2

, z3 ≡
2p1 ⋅ p3
P 2

,

with z1 + z2 + z3 = 1.

▸ Alphabet of all known master integrals: [Gehrmann,Remiddi]

[Di Vita, Mastrolia, Schubert, Yundin]

Φ2dHPL = {z1, z2, z3,1 − z1,1 − z2,1 − z3} ,

“2-dimensional HPLs” [Gehrmann,Remiddi]
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Identifying Candidate Cluster Algebras

2dHPL
# independent variables 2

2
# letters 6
# weight-2 symbols 27 27 ,
# weight-3 symbols 109 109 ,

Φ2dHPL = {z1, z2,1 − z1 − z2,1 − z1,1 − z2, z1 + z2} ,

z1 = −
a22

1 + a1
, z2 = −

1 + a1 + a22
a1(1 + a1)

.

ΦC2 = {a1, a2,1 + a1,1 + a22,1 + a1 + a22,1 + 2a1 + a21 + a22} .

2dHPLs = C2 polylogarithms!
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Physical Significance

: C2 Cluster Algebra Underlies Higgs Amplitudes!

2dHPL master integrals relevant for a wealth of physical processes:

▸ e+e− → γ∗ → 3 jets
[Garland,Gehrmann,Glover

Koukoutsakis,Remiddi]

▸ pp→ Z-boson + jet
[Gehrmann,Tancredi,Weihs]

▸ pp→ Higgs + jet
[Gehrmann, Jaquier, Glover,

Koukoutsakis] [Duhr]

in heavy top mass limit
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What Do Cluster Algebras Buy Us?
Adjacency properties of Feynman integrals

To analyze this, instructive to recall evaluation of master integrals via
differential equations: [Kotikov][Gehrmann,Remiddi]

where f a basis vector of
Feynman integrals, M a matrix, and d = ∑j dzj∂zj . For integrals
expressible in terms of MPLs, canonical form

with

[Henn]

Ã =∑
i

Ai logαi(z⃗) ,

where αi are the letters and Ai constant matrices.

Any cluster adjacency in this language:

Ai.Aj = 0⇒

(((((((((
. . .⊗ αi ⊗ αj ⊗ . . .

to all orders in ε. Important structural information for manipulating f , e.g.
analytic continuation.
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d f(z⃗; ε) = ε dÃ(z⃗) ⋅ f(z⃗; ε)

where f a basis vector of Feynman integrals, M a matrix, and
d = ∑j dzj∂zj . For integrals expressible in terms of MPLs, canonical form
with [Henn]
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Observed C2 adjacency of 4-point 1-mass integrals

a1, a2

a4, a5

a2, a3

a3, a4a5, a6

a6, a1

Cluster algebra reveals:

Ai.Aj = 0 , for i ≠ j ∈ {1,3,5}

Equivalently, for l ≠m

((((((((((((
. . .⊗ 1 − zl ⊗ 1 − zm ⊗ . . .

Adjacency property significantly reduces size of C2 symbol space:

weight 1 2 3 4 5 6 7 8

First entry condition 3 12 45 165 597 2143 7653 27241

Adjacency constraint 3 12 42 138 438 1362 4182 12738

Application: In parallel work, used to bootstrap N = 4 SYM analogue of
Higgs amplitude through 5 loops [Dixon,Mcleod,Wilhelm]
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More examples of cluster algebras from one-loop Feynman integrals

family # variables # letters cluster algebra

3 9 ⊂ A3

3 10 ⊂ C3

4 16 ⊂ C4

Finite 6D integrals # variables # letters cluster algebra

4 16 D4

5 24 ⊂D5

5 27 lim Tr(4,8)

See also follow-up work by [He,Li,Yang]
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Beyond Cluster Algebras

From n-particle amplitudes in N = 4 SYM know they cannot be the end of
story:

▸ For n ≥ 8 associated Gr(4, n) cluster algebra becomes infinite!

Recently, appropriate generalization curing infinity for n = 8
[Henke,GP’19][Arkani-Hamed,Lam,Spradlin’19][Drummond,Foster,Gurdogan,Kalousios’19]

from relation of Gr(4, n) with (dual of) tropical Grassmanian Tr(4, n).

1 + a1 + a22
a1a2

, 1 + 2a1 + a21 + a22
a1a22

p2
p3

p4
p5

P

p1
p8

p7
p6

x1 x2

x3

x4x5

x7
x7→∞ÔÔÔÔ⇒

pi≡xi+1−xi

1 + a1 + a22
a1a2

, 1 + 2a1 + a21 + a22
a1a22

p1p2

p3 P

p2

p3

p1

p4

P

Z2

Z4

Z5

Z3

Z1 Z6
Z8 Z7

p2
p3

p4
p5

P

From appropriately symmetrized limit, obtain all letters appearing in finite
(hard) part of two-loop five-gluon amplitude in QCD!
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Conclusions

The beautiful mathematics of cluster algebras underlie the analytic
structure of several physically relevant Feynman integrals & processes!

▸ Higgs+jet amplitudes to all orders in ε

▸ 5-gluon planar amplitudes in QCD to finite part

▸ Reveal new, potentially useful properties such as adjacency

Next Stage

Very recently, predictions for symbol letters of A9 in N = 4 SYM.
[Henke,GP’21] ⇒ Limit to six-gluon amplitude letters in QCD?

▸ More examples & first-principle proof? Bootstrap of QCD quantities?

Could cluster algebras and generalizations provide
an organizing principle (“genetic material”) that
simplifies future collider physics calculations?
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Cluster Algebras and N = 4 Amplitudes: The right variables

What is the symbol alphabet describing An?

▸ For n = 6, 9 letters, motivated by analysis of relevant integrals

▸ In general, variables am of a Grassmannian Gr(4, n) cluster algebra!
Gr(4,6) ≃ A3, Gr(4,7) ≃ E6

[Golden,Goncharov,Spradlin,Vergu,Volovich]

Emerge when parametrizing planar n-particle massless kinematics in terms
of n momentum twistors Zi on CP3 (Zi ∼ λZi), [Hodges]

pi ≡ xi+1 − xi , xi ∼ Zi−1 ∧Zi
(xi − xj)2 ≡ (pj + . . . + pi−1)2 ∼ det(Zi−1ZiZj−1Zj) ≡ ⟨i − 1ij − 1j⟩

Cluster A-coordinates am: Certain homogeneous polynomials of ⟨ijkl⟩
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Application: The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes
Evade Feynman diagrams by exploiting analytic structure

AMHV = A(− − + . . .+)
ANMHV = A(− − − + . . .+)

QFT Property Computation

Physical Branch Cuts A(L)
6 , L = 3,4

[Gaiotto,Maldacena,

Sever,Vieira]

[Dixon,Drummond, (Henn,)

Duhr/Hippel,Pennington]

Cluster Algebras A(3)
7,MHV

[Golden,Goncharov,

Spradlin,Vergu,Volovich]

[Drummond, GP,

Spradlin]

Steinmann Relation A(5)
6 ,A(3)

7,NMHV,A
(4)
7,MHV

[Steinmann] [Caron-Huot,Dixon,. . . ]

[Dixon,. . . , GP,Spradlin]

Cluster Adjacency A(4)
7,NMHV

[Drummond,Foster,

Gurdogan]

[Drummond,Foster,

Gurdogan, GP]

Extended Steinmann ⇔ A(6)
6 ,A(7)

6,MHV

Coaction Principle
[Caron-Huot,Dixon,Dulat,

McLeod,Hippel,GP]

See also S(A(2)
n )→ A

(2)
n , S(A7)→ A7 work [Golden(,Paulos),Spradlin(,Volovich)]

[Dixon,Liu] [Golden,McLeod]
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Extended

Steinmann Relations

[Caron-Huot,Dixon,DulatMcLeod,Hippel,GP]

Provide physical backing to cluster adjacency, forbidding double
discontinuities in overlapping channels. For A3, equivalent to

(((((((((14)⊗ (36)⊗ . . .

1

2

3 4

5

6

vs.

1

2

3 4

5

6s345∼(14) s234∼(36)

▸ For physical n = 6,7 functions, imply remaining cluster adjacency
restrictions.

▸ Recently confirmed in planar 5-pt 1-mass master integrals.
[Abreu,Ita,Moriello,Page,Tschernow,Zeng]
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Momentum Twistors ZI [Hodges]

▸ Represent dual space variables xµ ∈ R1,3 as projective null vectors

XM ∈ R2,4 , X2 = 0 , X ∼ λX.

▸ Repackage vector XM of SO(2,4) into antisymmetric representation

XIJ = −XJI = of SU(2,2)

▸ Can build latter from two copies of the fundamental ZI = ,

XIJ = Z[I Z̃J] = (ZI Z̃J −ZJ Z̃I)/2 or X = Z ∧ Z̃

▸ After complexifying, ZI transform in SL(4,C). Since Z ∼ tZ, can be
viewed as homogeneous coordinates on P3.

▸ Can show

(x−x′)2 ∝ 2X ⋅X ′ = εIJKLZI Z̃JZ ′KZ̃ ′L = det(ZZ̃Z′Z̃ ′) ≡ ⟨ZZ̃Z ′Z̃ ′⟩

▸ (xi+i − xi)2 = 0 ⇒Xi = Zi−1 ∧Zi
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Confn(P3) and Graßmannians

Can realize Confn(P3) as 4 × n matrix

(Z1∣Z2∣ . . . ∣Zn)

modulo rescalings of the n columns and SL(4) transformations, which
resembles a Graßmannian Gr(4, n).

Gr(k,n): The space of k-dimensional planes passing through the origin in
an n-dimensional space. Equivalently the space of k × n matrices modulo
GL(k) transformations:

▸ k-plane specified by k basis vectors that span it ⇒ k × n matrix

▸ Under GL(k) transformations, basis vectors change, but still span the
same plane.

Comparing the two matrices,

Confn(P3) = Gr(4, n)/(C∗)n−1
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The Rules of the Mutation Game

How does one mutate more generally?

Precise rules encoded in
(d +m) × d exchange matrix B, or equivalently (valued) quiver.

Mutation on ak ∶ a′k = a−1k (
d+m

∏
i=1

a
[bik]+
i +

d+m

∏
i=1

a
[−bik]+
i ) , k ≤ n ,

all other aj unchanged. bij elements of B, which itself mutates as

b′ij =
⎧⎪⎪⎨⎪⎪⎩

−bij for i = k or j = k
bij + [−bik]+ bkj + bik [bkj]+ otherwise

,

with [x]
+
= max (0, x).

GP — Cluster Algebras for Feynman Integrals Conclusions & Outlook 27/20



The Rules of the Mutation Game

How does one mutate more generally? Precise rules encoded in
(d +m) × d exchange matrix B, or equivalently (valued) quiver.

Mutation on ak ∶ a′k = a−1k (
d+m

∏
i=1

a
[bik]+
i +

d+m

∏
i=1

a
[−bik]+
i ) , k ≤ n ,

all other aj unchanged. bij elements of B, which itself mutates as

b′ij =
⎧⎪⎪⎨⎪⎪⎩

−bij for i = k or j = k
bij + [−bik]+ bkj + bik [bkj]+ otherwise

,

with [x]
+
= max (0, x).

GP — Cluster Algebras for Feynman Integrals Conclusions & Outlook 27/20



The Rules of the Mutation Game

How does one mutate more generally? Precise rules encoded in
(d +m) × d exchange matrix B, or equivalently (valued) quiver.

Mutation on ak ∶ a′k = a−1k (
d+m

∏
i=1

a
[bik]+
i +

d+m

∏
i=1

a
[−bik]+
i ) , k ≤ n ,

all other aj unchanged. bij elements of B, which itself mutates as

b′ij =
⎧⎪⎪⎨⎪⎪⎩

−bij for i = k or j = k
bij + [−bik]+ bkj + bik [bkj]+ otherwise

,

with [x]
+
= max (0, x).

GP — Cluster Algebras for Feynman Integrals Conclusions & Outlook 27/20



Searching for Cluster Algebras in QFT: Which Feynman Integrals?

To hope to detect cluster-algebraic structures, need to have

▸ ≥ 1 dimensionless kinematic variable (not just number times scale)

▸ n ≥ 4 if to describe scattering

▸ Integrals within the class of MPLs

Simplest case:
p4

p2 p1

p3 p2i = 0 ,

Single kinematic variable: z ≡ p2⋅p3
p1⋅p2

Alphabet of known integrals:
[Henn,Smirnov2][Panzer][Henn,Mistlberger,Smirnov,Wasser]

Φ = {z,1 + z}

(Nonpositive) Harmonic Polylogarithms
[Remiddi,Vermaseren]

Instead, consider next-to simplest case as our main example.
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Adjacency Interpretation: Embedding C2 in A3

Can the N = 4 world help us understand the observed C2 adjacency?

▸ Hint: In certain limit, A6 ∈ A3 in N = 4 SYM becomes equal to the
form factor ∈ C2 at two loops! [Brandhuber,Travaglini,Yang]

Perhaps this limit is embedding of C2 in A3? Unfortunately, no /

▸ Nevertheless, C2 is parity (=up-down reflection) invariant surface of
A3!

GP — Cluster Algebras for Feynman Integrals Conclusions & Outlook 29/20



Adjacency Interpretation: Embedding C2 in A3

Can the N = 4 world help us understand the observed C2 adjacency?

▸ Hint: In certain limit, A6 ∈ A3 in N = 4 SYM becomes equal to the
form factor ∈ C2 at two loops! [Brandhuber,Travaglini,Yang]

Perhaps this limit is embedding of C2 in A3?

Unfortunately, no /

▸ Nevertheless, C2 is parity (=up-down reflection) invariant surface of
A3!

GP — Cluster Algebras for Feynman Integrals Conclusions & Outlook 29/20



Adjacency Interpretation: Embedding C2 in A3

Can the N = 4 world help us understand the observed C2 adjacency?

▸ Hint: In certain limit, A6 ∈ A3 in N = 4 SYM becomes equal to the
form factor ∈ C2 at two loops! [Brandhuber,Travaglini,Yang]

Perhaps this limit is embedding of C2 in A3? Unfortunately, no /

▸ Nevertheless, C2 is parity (=up-down reflection) invariant surface of
A3!

GP — Cluster Algebras for Feynman Integrals Conclusions & Outlook 29/20



Adjacency Interpretation: Embedding C2 in A3

Can the N = 4 world help us understand the observed C2 adjacency?

▸ Hint: In certain limit, A6 ∈ A3 in N = 4 SYM becomes equal to the
form factor ∈ C2 at two loops! [Brandhuber,Travaglini,Yang]

Perhaps this limit is embedding of C2 in A3? Unfortunately, no /

▸ Nevertheless, C2 is parity (=up-down reflection) invariant surface of
A3!

GP — Cluster Algebras for Feynman Integrals Conclusions & Outlook 29/20



Adjacency Interpretation: Embedding C2 in A3

Can the N = 4 world help us understand the observed C2 adjacency?

▸ Hint: In certain limit, A6 ∈ A3 in N = 4 SYM becomes equal to the
form factor ∈ C2 at two loops! [Brandhuber,Travaglini,Yang]

Perhaps this limit is embedding of C2 in A3? Unfortunately, no /
▸ Nevertheless, C2 is parity (=up-down reflection) invariant surface of
A3!

GP — Cluster Algebras for Feynman Integrals Conclusions & Outlook 29/20



Adjacency Interpretation: Embedding C2 in A3 II

Zooming in on A3 equator: (35), (25), (26)

(35), (36), (26)

(46), (36), (13) (46), (14), (13)

(15), (14), (24)

(15), (25), (24)

▸ Only P-invariant combinations of A3 coordinates (ij) needed.

P (ij) = P (i + 3, j + 3), e.g. {(35), (36), (26)}→ {(36),
√

(26)(35)}

▸ ai−2 ∼ (ii + 3), ai ∼
√

(ii + 2)(i + 1i + 3) for i odd, even ⇒ C2 coords!

C2 adjacency = extended Steinmann relations for A6!
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Five-particle scattering from pTr(4,8) I

1. Start from 272+18 letter Tr(4,8) alphabet

2. Consider 2-mass hard hexagon kinematics ⇒ 30+5 letters

1 + a1 + a22
a1a2

, 1 + 2a1 + a21 + a22
a1a22

p2
p3

p4
p5

P

p1
p8

p7
p6

x1 x2

x3

x4x5

x7

x7→∞ÔÔÔÔ⇒
pi≡xi+1−xi

1 + a1 + a22
a1a2

, 1 + 2a1 + a21 + a22
a1a22

p1p2

p3 P

p2

p3

p1

p4

P

Z2

Z4

Z5

Z3

Z1 Z6
Z8 Z7

p2
p3

p4
p5

P

3. Taking x7 →∞, equivalent to 1-mass pentagon kinematics: All letters
contained in (57+1)-letter 1-mass 2-loop planar pentagon alphabet!
[Abreu,Ita,Moriello,Page,Tschernow][Canko,Papadopoulos,Syrrakos]

Specifically, 27 letters of D = 6 2-mass hard hexagon = 1-loop 1-mass
pentagon alphabet except ∆3 = λ(P 2, s23, s45),∆5 = det(2pi ⋅ pj)∣i,j≤4
+ 8 2-loop letters (

√
∆5 rationalized by mom.twistors).
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Five-particle scattering from pTr(4,8) II

4. Taking P 2 → 0 limit: 22 letters, or 24 after cyclic symmetrization.

All contained in (25+1)-letter massless 2-loop planar pentagon alphabet!
[Gehrmann,Henn,Lo Presti][Chicherin,Henn,Mitev]

In particular, single missing letter observed to drop out from finite (hard)
part of five-gluon amplitude in QCD! (

√
∆ =

√
det(2pi ⋅ pj)∣i,j≤4)

Next Stage

Very recently, framework for predicting rational and square-
root symbol letters of An in N = 4 SYM ∀ n! [Henke,GP]

▸ Applied to n = 9: 3078 rational Ri + 2349 square-root letters Sj with
324 different radicands ∆k (For Ri,∆k, see also [Ren,Spradlin,Volovich])

▸ Contains 2-loop NMHV n = 9 alphabet, [He,Li,Zhang]

see also [Mago,Schreiber,Spradlin,Yelleshpur Srikant,Volovich]

▸ Access to Lorentz-invariant 2-mass pentagon or 1-mass hexagon?
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