Cluster Algebras for Feynman Integrals

Georgios Papathanasiou

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

CORFU2021 Workshop on the Standard Model and Beyond August 24, 2021

Scattering amplitudes

Scattering amplitudes

The arena where perturbative quantum field theory confronts experiment. High precision calculations crucial for ${ }^{[C a n k o ~ T a l k] ~}$

Scattering amplitudes

The arena where perturbative quantum field theory confronts experiment.
High precision calculations crucial for ${ }^{[C a n k o ~ T a l k] ~}$

- Determining Standard Model parameters ${ }^{\text {[De Roeck, Fayard Talks] }}$

Scattering amplitudes

The arena where perturbative quantum field theory confronts experiment.
High precision calculations crucial for ${ }^{[C a n k o ~ T a l k] ~}$

- Determining Standard Model parameters ${ }^{\text {[De Roeck, Fayard Talks] }}$
- Tell apart New Physics from Standard Model background

Scattering amplitudes

The arena where perturbative quantum field theory confronts experiment.
High precision calculations crucial for ${ }^{\text {[Canko Talk] }}$

- Determining Standard Model parameters ${ }^{\text {[De Roeck, Fayard Talks] }}$
- Tell apart New Physics from Standard Model background Especially relevant in light of High-Luminosity LHC 2027-2037. [Zerlauth Talk]

Motivation: From $\mathcal{N}=4$ SYM to the real world
$\mathcal{N}=4$ super Yang-Mills (SYM) theory: an ideal theoretical laboratory for developing new paradigms leading to significant practical applications.

Motivation: From $\mathcal{N}=4$ SYM to the real world
$\mathcal{N}=4$ super Yang-Mills (SYM) theory: an ideal theoretical laboratory for developing new paradigms leading to significant practical applications.

For example,

Motivation: From $\mathcal{N}=4$ SYM to the real world
$\mathcal{N}=4$ super Yang-Mills (SYM) theory: an ideal theoretical laboratory for developing new paradigms leading to significant practical applications.

For example,

- Generalised Unitarity ${ }^{[B e r n, D i x o n, D u n b a r, K o s o w e r . . .] ~}$

Motivation: From $\mathcal{N}=4 \mathrm{SYM}$ to the real world
$\mathcal{N}=4$ super Yang-Mills (SYM) theory: an ideal theoretical laboratory for developing new paradigms leading to significant practical applications.

For example,

- Generalised Unitarity ${ }^{[B e r n, D i x o n, D u n b a r, K o s o w e r . . .] ~}$
- Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]

Motivation: From $\mathcal{N}=4 \mathrm{SYM}$ to the real world
$\mathcal{N}=4$ super Yang-Mills (SYM) theory: an ideal theoretical laboratory for developing new paradigms leading to significant practical applications.

For example,

- Generalised Unitarity ${ }^{[B e r n, D i x o n, D u n b a r, K o s o w e r . . .] ~}$
- Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]
- Canonical Differential Equations

Motivation: From $\mathcal{N}=4$ SYM to the real world
$\mathcal{N}=4$ super Yang-Mills (SYM) theory: an ideal theoretical laboratory for developing new paradigms leading to significant practical applications.

For example,

- Generalised Unitarity ${ }^{[B e r n, D i x o n, D u n b a r, K o s o w e r . . .] ~}$
- Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]
- Canonical Differential Equations ${ }^{[H e n n]}$

All of them vital for recent state of the art calculation of 2-loop 5-point 1-mass planar master integrals, relevant for W -boson production +2 jets, [Abreu,Ita,Moriello,Page,Tschernow,Zeng] [Canko,Papadopoulos,Syrrakos]

Image Credit: 2005.04195

The Role of Cluster Algebras
Tremendously successful in describing singularities of n-particle planar amplitudes \mathcal{A}_{n} in $\mathcal{N}=4$ SYM.
[Golden, Goncharov, Spradlin, Vergu,Volovich] [Drummond,Foster, Gurdogan]

The Role of Cluster Algebras
Tremendously successful in describing singularities of n-particle planar amplitudes \mathcal{A}_{n} in $\mathcal{N}=4 \mathrm{SYM}$.
[Golden, Goncharov, Spradlin,Vergu,Volovich] [Drummond,Foster, Gurdogan]
\Rightarrow results for $n=6,7$ to unprecedented loop order.
[Drummond, GP,Spradlin] [Dixon,Drummond,Harrington,McLeod, GP,Spradlin]
[Drummond,Foster, Gurdogan, GP] [Caron-Huot,Dixon, Dulat,Hippel,McLeod, GP]

The Role of Cluster Algebras
Tremendously successful in describing singularities of n-particle planar amplitudes \mathcal{A}_{n} in $\mathcal{N}=4 \mathrm{SYM}$.
[Golden, Goncharov, Spradlin,Vergu,Volovich] [Drummond,Foster, Gurdogan]
\Rightarrow results for $n=6,7$ to unprecedented loop order.
[Drummond, GP,Spradlin] [Dixon,Drummond,Harrington,McLeod, GP,Spradlin]
[Drummond,Foster, Gurdogan, GP] [Caron-Huot,Dixon, Dulat,Hippel,McLeod, GP]

Could this beautiful and useful structure have wider applicability?

The Role of Cluster Algebras
Tremendously successful in describing singularities of n-particle planar amplitudes \mathcal{A}_{n} in $\mathcal{N}=4 \mathrm{SYM}$.
[Golden, Goncharov, Spradlin, Vergu,Volovich] [Drummond,Foster, Gurdogan]
\Rightarrow results for $n=6,7$ to unprecedented loop order.
[Drummond, GP,Spradlin] [Dixon,Drummond,Harrington,McLeod, GP,Spradlin]
[Drummond,Foster, Gurdogan, GP] [Caron-Huot,Dixon, Dulat,Hippel,McLeod, GP]

Could this beautiful and useful structure have wider applicability?
Searched for it in theory-agnostic Feynman integrals in dimensional regularization.

The Role of Cluster Algebras
Tremendously successful in describing singularities of n-particle planar amplitudes \mathcal{A}_{n} in $\mathcal{N}=4 \mathrm{SYM}$.
[Golden, Goncharov, Spradlin, Vergu, Volovich] [Drummond,Foster, Gurdogan]
\Rightarrow results for $n=6,7$ to unprecedented loop order.
[Drummond,GP,Spradlin] [Dixon,Drummond,Harrington,McLeod,GP,Spradlin]
[Drummond,Foster,Gurdogan,GP] [Caron-Huot,Dixon,Dulat,Hippel,McLeod,GP]

Could this beautiful and useful structure have wider applicability?

Searched for it in theory-agnostic Feynman integrals in dimensional regularization.

Discovered cluster algebras encode singularities of a wealth of physically relevant examples, including QCD corrections to amplitudes for $\mathrm{pp} \rightarrow$ Higgs+jet!

Outline

Introduction: Cluster Algebras and $\mathcal{N}=4$ SYM

Cluster Algebras for Feynman Integrals
$C_{2} \&$ Higgs amplitudes
Further Examples

Conclusions \& Outlook

Cluster algebras ${ }^{[\text {Fomin,Zelevinsky] }}$

Cluster algebras

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates

Cluster algebras

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters

Cluster algebras

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Cluster algebras

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Example: C_{2} Cluster algebra

Cluster algebras

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Example: C_{2} Cluster algebra

- Cluster coordinates: $a_{m}, m \in \mathbb{Z}$

Cluster algebras

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Example: C_{2} Cluster algebra

- Cluster coordinates: $a_{m}, m \in \mathbb{Z}$
- Initial cluster: $\left\{a_{1}, a_{2}\right\}$

Cluster algebras ${ }^{[F o m i n, Z e l e v i n s k y]}$

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Example: C_{2} Cluster algebra

- Cluster coordinates: $a_{m}, m \in \mathbb{Z}$
- Initial cluster: $\left\{a_{1}, a_{2}\right\}$
- Clusters: $\left\{a_{m}, a_{m+1}\right\}, m \in \mathbb{Z}$

Cluster algebras ${ }^{[F o m i n, Z e l e v i n s k y]}$

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$ - $)$ coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Example: C_{2} Cluster algebra

- Cluster coordinates: $a_{m}, m \in \mathbb{Z}$
- Initial cluster: $\left\{a_{1}, a_{2}\right\}$
- Clusters: $\left\{a_{m}, a_{m+1}\right\}, m \in \mathbb{Z}$
- Mutation:

$$
a_{m+1}= \begin{cases}\frac{1+a_{m}}{a_{m}-1} & \text { if } m \text { is odd } \\ \frac{1+a_{m}^{2}}{a_{m-1}} & \text { if } m \text { is even },\end{cases}
$$

Cluster algebras ${ }^{[F o m i n, Z e l e v i n s k y]}$

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$ - $)$ coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Example: C_{2} Cluster algebra

- Cluster coordinates: $a_{m}, m \in \mathbb{Z}$

$$
a_{3}=\frac{1+a_{2}^{2}}{a_{1}}
$$

- Initial cluster: $\left\{a_{1}, a_{2}\right\}$
- Clusters: $\left\{a_{m}, a_{m+1}\right\}, m \in \mathbb{Z}$
- Mutation:

$$
a_{m+1}= \begin{cases}\frac{1+a_{m}}{a_{m}-1} & \text { if } m \text { is odd } \\ \frac{1+a_{m}^{2}}{a_{m-1}} & \text { if } m \text { is even }\end{cases}
$$

Cluster algebras ${ }^{[\text {Fominn,Zelevinsky] }}$

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$ - $)$ coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Example: C_{2} Cluster algebra

- Cluster coordinates: $a_{m}, m \in \mathbb{Z}$

$$
\begin{aligned}
& a_{3}=\frac{1+a_{2}^{2}}{a_{1}} \\
& a_{4}=\frac{1+a_{3}}{a_{2}}=\frac{1+a_{1}+a_{2}^{2}}{a_{1} a_{2}}
\end{aligned}
$$

- Clusters: $\left\{a_{m}, a_{m+1}\right\}, m \in \mathbb{Z}$
- Mutation:

$$
a_{m+1}= \begin{cases}\frac{1+a_{m}}{a_{m}-1} & \text { if } m \text { is odd } \\ \frac{1+a_{m}^{2}}{a_{m-1}} & \text { if } m \text { is even }\end{cases}
$$

Cluster algebras ${ }^{[\text {Fominn,Zelevinsky] }}$

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$ - $)$ coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Example: C_{2} Cluster algebra

- Cluster coordinates: $a_{m}, m \in \mathbb{Z}$

$$
a_{3}=\frac{1+a_{2}^{2}}{a_{1}}
$$

- Initial cluster: $\left\{a_{1}, a_{2}\right\}$
- Clusters: $\left\{a_{m}, a_{m+1}\right\}, m \in \mathbb{Z}$

$$
a_{4}=\frac{1+a_{3}}{a_{2}}=\frac{1+a_{1}+a_{2}^{2}}{a_{1} a_{2}}
$$

- Mutation:

$$
a_{m+1}= \begin{cases}\frac{1+a_{m}}{a_{m}-1} & \text { if } m \text { is odd } \\ \frac{1+a_{m}^{2}}{a_{m-1}} & \text { if } m \text { is even }\end{cases}
$$

$$
a_{5}=\frac{1+2 a_{1}+a_{1}^{2}+a_{2}^{2}}{a_{1} a_{2}^{2}}
$$

Cluster algebras ${ }^{[\text {Fominn,Zelevinsky] }}$

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$ - $)$ coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Example: C_{2} Cluster algebra

- Cluster coordinates: $a_{m}, m \in \mathbb{Z}$

$$
\begin{aligned}
& a_{3}=\frac{1+a_{2}^{2}}{a_{1}}, \\
& a_{4}=\frac{1+a_{3}}{a_{2}}=\frac{1+a_{1}+a_{2}^{2}}{a_{1} a_{2}}, \\
& a_{5}=\frac{1+2 a_{1}+a_{1}^{2}+a_{2}^{2}}{a_{1} a_{2}^{2}} \\
& a_{6}=\frac{1+a_{1}}{a_{2}}, \quad a_{7}=a_{1}
\end{aligned}
$$

Cluster algebras ${ }^{[F o m i n, Z e l e v i n s k y]}$

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Example: C_{2} Cluster algebra

- Cluster coordinates: $a_{m}, m \in \mathbb{Z}$
- Initial cluster: $\left\{a_{1}, a_{2}\right\}$
- Clusters: $\left\{a_{m}, a_{m+1}\right\}, m \in \mathbb{Z}$
- Mutation:

$$
a_{m+1}= \begin{cases}\frac{1+a_{m}}{a_{m-1}} & \text { if } m \text { is odd } \\ \frac{1+a_{m}^{2}}{a_{m-1}} & \text { if } m \text { is even },\end{cases}
$$

Exchange graph: Clusters=vertices, mutations=edges

Geometric Interpretation of Cluster Algebras

Finite cluster algebras classified by Dynkin diagrams. For A_{n} :

- Cluster $=$ triangulation of $(n+3)$-gon by noncrossing diagonals
- Cluster coordinates $=$ diagonals of this triangulation

Example: $A_{3}=$ hexagon

Geometric Interpretation of Cluster Algebras

Finite cluster algebras classified by Dynkin diagrams. For A_{n} :

- Cluster $=$ triangulation of $(n+3)$-gon by noncrossing diagonals
- Cluster coordinates $=$ diagonals of this triangulation
- Mutation $=$ Flipping of diagonal of any rectangle subdiagram

Example: $A_{3}=$ hexagon

Geometric Interpretation of Cluster Algebras

Finite cluster algebras classified by Dynkin diagrams. For A_{n} :

- Cluster $=$ triangulation of $(n+3)$-gon by noncrossing diagonals
- Cluster coordinates $=$ diagonals of this triangulation
- Mutation $=$ Flipping of diagonal of any rectangle subdiagram

Example: $A_{3}=$ hexagon

Geometric Interpretation of Cluster Algebras

Finite cluster algebras classified by Dynkin diagrams. For A_{n} :

- Cluster $=$ triangulation of $(n+3)$-gon by noncrossing diagonals
- Cluster coordinates $=$ diagonals of this triangulation
- Mutation $=$ Flipping of diagonal of any rectangle subdiagram

Example: $A_{3}=$ hexagon

Geometric Interpretation of Cluster Algebras

Finite cluster algebras classified by Dynkin diagrams. For A_{n} :

- Cluster $=$ triangulation of $(n+3)$-gon by noncrossing diagonals
- Cluster coordinates $=$ diagonals of this triangulation
- Mutation $=$ Flipping of diagonal of any rectangle subdiagram

Example: $A_{3}=$ hexagon

Geometric Interpretation of Cluster Algebras

Finite cluster algebras classified by Dynkin diagrams. For A_{n} :

- Cluster $=$ triangulation of $(n+3)$-gon by noncrossing diagonals
- Cluster coordinates $=$ diagonals of this triangulation
- Mutation $=$ Flipping of diagonal of any rectangle subdiagram

Example: $A_{3}=$ hexagon

Geometric Interpretation of Cluster Algebras

Finite cluster algebras classified by Dynkin diagrams. For A_{n} :

- Cluster $=$ triangulation of $(n+3)$-gon by noncrossing diagonals
- Cluster coordinates $=$ diagonals of this triangulation
- Mutation $=$ Flipping of diagonal of any rectangle subdiagram

Example: $A_{3}=$ hexagon exchange graph

Cluster Algebras and $\mathcal{N}=4$ Amplitudes

The function space of multiple polylogarithms (MPLs)

Cluster Algebras and $\mathcal{N}=4$ Amplitudes

The function space of multiple polylogarithms (MPLs)
$(-- \pm+\ldots+) L$-loop amplitudes

Cluster Algebras and $\mathcal{N}=4$ Amplitudes

The function space of multiple polylogarithms (MPLs)
$(-- \pm+\ldots+) L$-loop amplitudes $=$ MPLs of weight $k=2 L$
[Arkani-Hamed,Bourjaily,Cachazo, Goncharov, Postnikov,Trnka] [Duhr,Del Duca,Smirnov] ... [GP]

Cluster Algebras and $\mathcal{N}=4$ Amplitudes
The function space of multiple polylogarithms (MPLs)
$(-- \pm+\ldots+) L$-loop amplitudes $=$ MPLs of weight $k=2 L$
[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka] [Duhr,Del Duca,Smirnov] ... [GP]
f_{k} is a MPL of weight k if its differential obeys

$$
d f_{k}=\sum_{\alpha} f_{k-1}^{(\alpha)} d \log \phi_{\alpha}
$$

over some set of ϕ_{α}, with $f_{k-1}^{(\alpha)}$ functions of weight $k-1$.

Cluster Algebras and $\mathcal{N}=4$ Amplitudes
The function space of multiple polylogarithms (MPLs)
$(-- \pm+\ldots+) L$-loop amplitudes $=$ MPLs of weight $k=2 L$
[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka] [Duhr,Del Duca,Smirnov] ... [GP]
f_{k} is a MPL of weight k if its differential obeys

$$
d f_{k}=\sum_{\alpha} f_{k-1}^{(\alpha)} d \log \phi_{\alpha}
$$

over some set of ϕ_{α}, with $f_{k-1}^{(\alpha)}$ functions of weight $k-1$.
Convenient tool for describing them: Symbol $\mathcal{S}\left(f_{k}\right)$ encapsulating recursive application of above definition (on $f_{k-1}^{(\alpha)}$ etc)

$$
\mathcal{S}\left(f_{k}\right)=\sum_{\alpha_{k}} \mathcal{S}\left(f_{k-1}^{\left(\alpha_{k}\right)}\right) \otimes \phi_{\alpha_{k}}
$$

Cluster Algebras and $\mathcal{N}=4$ Amplitudes
The function space of multiple polylogarithms (MPLs)
$(-- \pm+\ldots+) L$-loop amplitudes $=$ MPLs of weight $k=2 L$
[Arkani-Hamed,Bourjaily,Cachazo, Goncharov, Postnikov, Trnka] [Duhr,Del Duca,Smirnov] ... [GP]
f_{k} is a MPL of weight k if its differential obeys

$$
d f_{k}=\sum_{\alpha} f_{k-1}^{(\alpha)} d \log \phi_{\alpha}
$$

over some set of ϕ_{α}, with $f_{k-1}^{(\alpha)}$ functions of weight $k-1$.
Convenient tool for describing them: Symbol $\mathcal{S}\left(f_{k}\right)$ encapsulating recursive application of above definition (on $f_{k-1}^{(\alpha)}$ etc)

$$
\mathcal{S}\left(f_{k}\right)=\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)}\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right) .
$$

Cluster Algebras and $\mathcal{N}=4$ Amplitudes
The function space of multiple polylogarithms (MPLs)
$(-- \pm+\ldots+) L$-loop amplitudes $=$ MPLs of weight $k=2 L$
[Arkani-Hamed,Bourjaily,Cachazo, Goncharov, Postnikov, Trnka] [Duhr,Del Duca,Smirnov] ... [GP]
f_{k} is a MPL of weight k if its differential obeys

$$
d f_{k}=\sum_{\alpha} f_{k-1}^{(\alpha)} d \log \phi_{\alpha}
$$

over some set of ϕ_{α}, with $f_{k-1}^{(\alpha)}$ functions of weight $k-1$.
Convenient tool for describing them: Symbol $\mathcal{S}\left(f_{k}\right)$ encapsulating recursive application of above definition (on $f_{k-1}^{(\alpha)}$ etc)

$$
\mathcal{S}\left(f_{k}\right)=\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)}\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right) .
$$

Collection of $\phi_{\alpha_{i}}$: symbol alphabet Φ

Cluster Algebras and $\mathcal{N}=4$ Amplitudes

The right variables \& their applications

Cluster Algebras and $\mathcal{N}=4$ Amplitudes

The right variables \& their applications
What is the symbol alphabet describing \mathcal{A}_{n} ?

Cluster Algebras and $\mathcal{N}=4$ Amplitudes
The right variables \& their applications
What is the symbol alphabet describing \mathcal{A}_{n} ? For $n=6,7$,

- variables a_{m} of a Grassmannian $\operatorname{Gr}(4, n)$ cluster algebra [Golden, Goncharov,Spradlin,Vergu,Volovich]

Cluster Algebras and $\mathcal{N}=4$ Amplitudes
The right variables \& their applications
What is the symbol alphabet describing \mathcal{A}_{n} ? For $n=6,7$,

- variables a_{m} of a Grassmannian $\operatorname{Gr}(4, n)$ cluster algebra [Golden, Goncharov,Spradlin,Vergu,Volovich]

$$
G r(4,6) \simeq A_{3}, G r(4,7) \simeq E_{6}
$$

Cluster Algebras and $\mathcal{N}=4$ Amplitudes
The right variables \& their applications
What is the symbol alphabet describing \mathcal{A}_{n} ? For $n=6,7$,

- variables a_{m} of a Grassmannian $\operatorname{Gr}(4, n)$ cluster algebra [Golden, Goncharov,Spradlin, Vergu, Volovich]

$$
G r(4,6) \simeq A_{3}, G r(4,7) \simeq E_{6}
$$

Potential amplitude singularities when cluster coordinates $a_{m}=0, \infty$

Cluster Algebras and $\mathcal{N}=4$ Amplitudes
The right variables \& their applications
What is the symbol alphabet describing \mathcal{A}_{n} ? For $n=6,7$,

- variables a_{m} of a Grassmannian $\operatorname{Gr}(4, n)$ cluster algebra [Golden, Goncharov,Spradlin,Vergu,Volovich]

$$
G r(4,6) \simeq A_{3}, G r(4,7) \simeq E_{6}
$$

Potential amplitude singularities when cluster coordinates $a_{m}=0, \infty$

$$
\Downarrow
$$

Essential information for computing \mathcal{A}_{n} via amplitude bootstrap
[PoS CORFU2019 Review:Caron-Huot,Dixon,Drummond,Dulat,Foster, Gurdogan,Hippel,McLeod,GP]

Cluster Algebras and $\mathcal{N}=4$ Amplitudes
The right variables \& their applications
What is the symbol alphabet describing \mathcal{A}_{n} ? For $n=6,7$,

- variables a_{m} of a Grassmannian $\operatorname{Gr}(4, n)$ cluster algebra [Golden, Goncharov,Spradlin,Vergu,Volovich]

$$
G r(4,6) \simeq A_{3}, G r(4,7) \simeq E_{6}
$$

Potential amplitude singularities when cluster coordinates $a_{m}=0, \infty$

$$
\Downarrow
$$

Essential information for computing \mathcal{A}_{n} via amplitude bootstrap
[PoS CORFU2019 Review:Caron-Huot,Dixon,Drummond,Dulat,Foster, Gurdogan,Hippel,McLeod,GP] Identify \mathcal{A}_{n} within finite set of candidate functions

Cluster Algebras and $\mathcal{N}=4$ Amplitudes
The right variables \& their applications
What is the symbol alphabet describing \mathcal{A}_{n} ? For $n=6,7$,

- variables a_{m} of a Grassmannian $\operatorname{Gr}(4, n)$ cluster algebra [Golden, Goncharov,Spradlin,Vergu,Volovich]

$$
G r(4,6) \simeq A_{3}, G r(4,7) \simeq E_{6}
$$

Potential amplitude singularities when cluster coordinates $a_{m}=0, \infty$

$$
\Downarrow
$$

Essential information for computing \mathcal{A}_{n} via amplitude bootstrap
[PoS CORFU2019 Review:Caron-Huot,Dixon,Drummond,Dulat,Foster, Gurdogan,Hippel,McLeod,GP]
Identify \mathcal{A}_{n} within finite set of candidate functions

- $n=6: 7$ loops (MHV)
- $n=7$: 4 loops

Cluster Adjacency ~ Extended Steinmann Relations

So far seen only cluster coordinates=alphabet relevant for scattering amplitudes. How about clusters, do they also play a role?

Cluster Adjacency ~ Extended Steinmann Relations

So far seen only cluster coordinates=alphabet relevant for scattering amplitudes. How about clusters, do they also play a role? YES:
[Drummond,Foster,Gurdogan]

Two distinct \mathcal{A}-coordinates can appear consecutively in a symbol only if there exists a cluster where they both appear.

Cluster Adjacency ~ Extended Steinmann Relations

So far seen only cluster coordinates=alphabet relevant for scattering amplitudes. How about clusters, do they also play a role? YES:
[Drummond,Foster, Gurdogan]

Two distinct \mathcal{A}-coordinates can appear consecutively in a symbol only if there exists a cluster where they both appear.
E.g. A_{3} : Crossing diagonals forbidden,
$\ldots \otimes(15) \otimes(26) \otimes \ldots, \ldots \otimes(14) \otimes(26) \otimes \ldots, \ldots \otimes(14) \otimes(36) \otimes \ldots$

Cluster Adjacency ~ Extended Steinmann Relations

So far seen only cluster coordinates=alphabet relevant for scattering amplitudes. How about clusters, do they also play a role? YES:
[Drummond,Foster, Gurdogan]

Two distinct \mathcal{A}-coordinates can appear consecutively in a symbol only if there exists a cluster where they both appear.
E.g. A_{3} : Crossing diagonals forbidden,
$\ldots \otimes(15) \otimes(26) \otimes \ldots, \ldots \otimes(14) \otimes(26) \otimes \ldots, \ldots \otimes(14) \otimes(36) \otimes \ldots$

For physical $n=6,7$ functions, equivalent to extended Steinmann relations. Massively reduces size of function space.
[Caron-Huot,Dixon,DulatMcLeod,Hippel, GP]

The Genetic Material of $\mathcal{N}=4$ SYM Amplitudes
Amplitude symbol

The Genetic Material of $\mathcal{N}=4$ SYM Amplitudes
DNA (2)

The Genetic Material of $\mathcal{N}=4$ SYM Amplitudes

DNA

Amplitude symbol

The Genetic Material of $\mathcal{N}=4$ SYM Amplitudes

DNA

The Genetic Material of $\mathcal{N}=4$ SYM Amplitudes

DNA

Bases A,T,G,C

Amplitude symbol

Letters=cluster variables

The Genetic Material of $\mathcal{N}=4$ SYM Amplitudes

DNA

Bases A,T,G,C
Base pairs $A-T, G-C$

Amplitude symbol

Letters=cluster variables
Letter pairs=cluster adjacency

The Genetic Material of $\mathcal{N}=4$ SYM Amplitudes

DNA

Bases A,T,G,C
Base pairs $A-T, G-C$

Amplitude symbol

Letters=cluster variables
Letter pairs=cluster adjacency

Could cluster algebras provide the genetic material of generic quantum field theories?

Searching for Cluster Algebras in QFT

Look at scalar Feynman integrals with massless internal propagators in dimensional regularization.

Searching for Cluster Algebras in QFT

Look at scalar Feynman integrals with massless internal propagators in dimensional regularization.

- Theory-agnostic

Searching for Cluster Algebras in QFT

Look at scalar Feynman integrals with massless internal propagators in dimensional regularization.

- Theory-agnostic
- No loss of generality: tensor integral reduction

Searching for Cluster Algebras in QFT

Look at scalar Feynman integrals with massless internal propagators in dimensional regularization.

- Theory-agnostic
- No loss of generality: tensor integral reduction
- $D=4-2 \epsilon$, finite quantities only at the very end

Searching for Cluster Algebras in QFT

Look at scalar Feynman integrals with massless internal propagators in dimensional regularization.

- Theory-agnostic
- No loss of generality: tensor integral reduction ${ }^{\text {[Passarino, Veltman] [Tarasov] }}$
- $D=4-2 \epsilon$, finite quantities only at the very end
- Simple starting point

Searching for Cluster Algebras in QFT

Look at scalar Feynman integrals with massless internal propagators in dimensional regularization.

- Theory-agnostic
- No loss of generality: tensor integral reduction ${ }^{\text {[Passarino, Veltman] [Tarasov] }}$
- $D=4-2 \epsilon$, finite quantities only at the very end
- Simple starting point

Searching for Cluster Algebras in QFT

Look at scalar Feynman integrals with massless internal propagators in dimensional regularization.

- Theory-agnostic
- No loss of generality: tensor integral reduction ${ }^{[P a s s a r i n o, V e l t m a n] ~[T a r a s o v] ~}$
- $D=4-2 \epsilon$, finite quantities only at the very end
- Simple starting point

For any given process, scalar integrals related by integration-by-parts identities. Basis in the vector space they span=master integrals.
[Chetyrkin, Tkachov]

Main Example: Four-point functions with one leg offshell/massive

$$
p_{i}^{2}=0, \quad P^{2} \neq 0
$$

Main Example: Four-point functions with one leg offshell/massive

$$
p_{i}^{2}=0, \quad P^{2} \neq 0
$$

- Kinematic variables:

$$
z_{1} \equiv \frac{2 p_{1} \cdot p_{2}}{P^{2}}, \quad z_{2} \equiv \frac{2 p_{2} \cdot p_{3}}{P^{2}}, \quad z_{3} \equiv \frac{2 p_{1} \cdot p_{3}}{P^{2}}
$$

with $z_{1}+z_{2}+z_{3}=1$.

Main Example: Four-point functions with one leg offshell/massive

$$
p_{i}^{2}=0, \quad P^{2} \neq 0
$$

- Kinematic variables:

$$
z_{1} \equiv \frac{2 p_{1} \cdot p_{2}}{P^{2}}, \quad z_{2} \equiv \frac{2 p_{2} \cdot p_{3}}{P^{2}}, \quad z_{3} \equiv \frac{2 p_{1} \cdot p_{3}}{P^{2}}
$$

with $z_{1}+z_{2}+z_{3}=1$.

- Alphabet of all known master integrals: [Gehrmann,Remiddi]
[Di Vita, Mastrolia, Schubert, Yundin]

$$
\Phi_{2 \mathrm{dHPL}}=\left\{z_{1}, z_{2}, z_{3}, 1-z_{1}, 1-z_{2}, 1-z_{3}\right\},
$$

"2-dimensional HPLs" [Gehrmann,Remiddi]

Identifying Candidate Cluster Algebras

\# independent variables $\left|\begin{array}{c}2 \mathrm{dHPL} \\ 2\end{array}\right|$

Identifying Candidate Cluster Algebras

\# independent variables	2 dHPL	A_{2}
2	2	

Identifying Candidate Cluster Algebras

	2 dHPL	A_{2}	
\# independent variables	2	2	
\# letters	6	5	

Identifying Candidate Cluster Algebras

	2 dHPL	C_{2}	
\# independent variables	2	2	
\# letters	6	6	©

Identifying Candidate Cluster Algebras

	2 dHPL	C_{2}	
\# independent variables	2	2	
\# letters	6	6	\odot
\# weight-2 symbols	27	27	\odot

Identifying Candidate Cluster Algebras

\# independent variables
\# letters
\# weight-2 symbols \# weight-3 symbols

2 dHPL	C_{2}	
2	2	
6	6	\odot
27	27	\odot
109	109	\odot

$$
\Phi_{2 \mathrm{dHPL}}=\left\{z_{1}, z_{2}, 1-z_{1}-z_{2}, 1-z_{1}, 1-z_{2}, z_{1}+z_{2}\right\},
$$

$$
\Phi_{C_{2}}=\left\{a_{1}, a_{2}, 1+a_{1}, 1+a_{2}^{2}, 1+a_{1}+a_{2}^{2}, 1+2 a_{1}+a_{1}^{2}+a_{2}^{2}\right\} .
$$

Identifying Candidate Cluster Algebras

\# independent variables
\# letters
\# weight-2 symbols \# weight-3 symbols

2 dHPL	C_{2}	
2	2	
6	6	\odot
27	27	\odot
109	109	\odot

$$
\Phi_{2 \mathrm{dHPL}}=\left\{z_{1}, z_{2}, 1-z_{1}-z_{2}, 1-z_{1}, 1-z_{2}, z_{1}+z_{2}\right\},
$$

$$
z_{1}=-\frac{a_{2}^{2}}{1+a_{1}}, \quad z_{2}=-\frac{1+a_{1}+a_{2}^{2}}{a_{1}\left(1+a_{1}\right)} .
$$

$$
\Phi_{C_{2}}=\left\{a_{1}, a_{2}, 1+a_{1}, 1+a_{2}^{2}, 1+a_{1}+a_{2}^{2}, 1+2 a_{1}+a_{1}^{2}+a_{2}^{2}\right\} .
$$

Identifying Candidate Cluster Algebras

\# independent variables
\# letters
\# weight-2 symbols \# weight-3 symbols

2dHPL	C_{2}	
2	2	
6	6	\odot
27	27	\odot
109	109	\odot

$$
\Phi_{2 \mathrm{dHPL}}=\left\{z_{1}, z_{2}, 1-z_{1}-z_{2}, 1-z_{1}, 1-z_{2}, z_{1}+z_{2}\right\},
$$

$$
z_{1}=-\frac{a_{2}^{2}}{1+a_{1}}, \quad z_{2}=-\frac{1+a_{1}+a_{2}^{2}}{a_{1}\left(1+a_{1}\right)} .
$$

$$
\Phi_{C_{2}}=\left\{a_{1}, a_{2}, 1+a_{1}, 1+a_{2}^{2}, 1+a_{1}+a_{2}^{2}, 1+2 a_{1}+a_{1}^{2}+a_{2}^{2}\right\} .
$$

$$
2 \mathrm{dHPLs}=C_{2} \text { polylogarithms! }
$$

Physical Significance

2dHPL master integrals relevant for a wealth of physical processes:

Physical Significance

2dHPL master integrals relevant for a wealth of physical processes:

- $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow 3$ jets
[Garland, Gehrmann, Glover
Koukoutsakis,Remiddi]

Physical Significance

2dHPL master integrals relevant for a wealth of physical processes:

- $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow 3$ jets
[Garland, Gehrmann, Glover
Koukoutsakis,Remiddi]
- $p p \rightarrow Z$-boson + jet [Gehrmann, Tancredi, Weihs]

Physical Significance: C_{2} Cluster Algebra Underlies Higgs Amplitudes!
2dHPL master integrals relevant for a wealth of physical processes:

- $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow 3$ jets [Garland, Gehrmann, Glover Koukoutsakis,Remiddi]
- $p p \rightarrow Z$-boson + jet [Gehrmann,Tancredi,Weihs]
- $p p \rightarrow$ Higgs + jet [Gehrmann, Jaquier, Glover, Koukoutsakis] [Duhr] in heavy top mass limit

What Do Cluster Algebras Buy Us?

Adjacency properties of Feynman integrals
To analyze this, instructive to recall evaluation of master integrals via differential equations: ${ }^{[K o t i k o v][G e h r m a n n, R e m i d d i] ~}$

What Do Cluster Algebras Buy Us?

Adjacency properties of Feynman integrals
To analyze this, instructive to recall evaluation of master integrals via differential equations: ${ }^{[K o t i k o v][G e h r m a n n, R e m i d d i] ~}$

$$
d \mathbf{f}(\vec{z} ; \epsilon)=d \mathbf{M}(\vec{z} ; \epsilon) \cdot \mathbf{f}(\vec{z} ; \epsilon)
$$

where \mathbf{f} a basis vector of Feynman integrals, \mathbf{M} a matrix, and $d=\sum_{j} d z_{j} \partial_{z_{j}}$.

What Do Cluster Algebras Buy Us?

Adjacency properties of Feynman integrals
To analyze this, instructive to recall evaluation of master integrals via differential equations: ${ }^{[K o t i k o v][G e h r m a n n, R e m i d d i] ~}$

$$
d \mathbf{f}(\vec{z} ; \epsilon)=\epsilon d \tilde{\mathbf{A}}(\vec{z}) \cdot \mathbf{f}(\vec{z} ; \epsilon)
$$

where \mathbf{f} a basis vector of Feynman integrals, \mathbf{M} a matrix, and $d=\sum_{j} d z_{j} \partial_{z_{j}}$. For integrals expressible in terms of MPLs, canonical form

$$
\tilde{\mathbf{A}}=\sum_{i} \mathbf{A}_{i} \log \alpha_{i}(\vec{z})
$$

where α_{i} are the letters and \mathbf{A}_{i} constant matrices.

What Do Cluster Algebras Buy Us?

Adjacency properties of Feynman integrals
To analyze this, instructive to recall evaluation of master integrals via differential equations: ${ }^{[K o t i k o v][G e h r m a n n, R e m i d d i] ~}$

$$
d \mathbf{f}(\vec{z} ; \epsilon)=\epsilon d \tilde{\mathbf{A}}(\vec{z}) \cdot \mathbf{f}(\vec{z} ; \epsilon)
$$

where \mathbf{f} a basis vector of Feynman integrals, \mathbf{M} a matrix, and $d=\sum_{j} d z_{j} \partial_{z_{j}}$. For integrals expressible in terms of MPLs, canonical form with

$$
\tilde{\mathbf{A}}=\sum_{i} \mathbf{A}_{i} \log \alpha_{i}(\vec{z})
$$

where α_{i} are the letters and \mathbf{A}_{i} constant matrices.
Any cluster adjacency in this language:

$$
\ldots \otimes \alpha_{i} \otimes \alpha_{j} \otimes \ldots
$$

What Do Cluster Algebras Buy Us?

Adjacency properties of Feynman integrals
To analyze this, instructive to recall evaluation of master integrals via differential equations: [Kotikov][Gehrmann,Remiddi]

$$
d \mathbf{f}(\vec{z} ; \epsilon)=\epsilon d \tilde{\mathbf{A}}(\vec{z}) \cdot \mathbf{f}(\vec{z} ; \epsilon)
$$

where \mathbf{f} a basis vector of Feynman integrals, \mathbf{M} a matrix, and $d=\sum_{j} d z_{j} \partial_{z_{j}}$. For integrals expressible in terms of MPLs, canonical form with

$$
\tilde{\mathbf{A}}=\sum_{i} \mathbf{A}_{i} \log \alpha_{i}(\vec{z})
$$

where α_{i} are the letters and \mathbf{A}_{i} constant matrices.
Any cluster adjacency in this language:

$$
\mathbf{A}_{i} \cdot \mathbf{A}_{j}=0 \Rightarrow \ldots \otimes \alpha_{i} \otimes \alpha_{j} \otimes \ldots
$$

to all orders in ϵ.

What Do Cluster Algebras Buy Us?

Adjacency properties of Feynman integrals
To analyze this, instructive to recall evaluation of master integrals via differential equations: ${ }^{[K o t i k o v][G e h r m a n n, R e m i d d i] ~}$

$$
d \mathbf{f}(\vec{z} ; \epsilon)=\epsilon d \tilde{\mathbf{A}}(\vec{z}) \cdot \mathbf{f}(\vec{z} ; \epsilon)
$$

where \mathbf{f} a basis vector of Feynman integrals, \mathbf{M} a matrix, and $d=\sum_{j} d z_{j} \partial_{z_{j}}$. For integrals expressible in terms of MPLs, canonical form with

$$
\tilde{\mathbf{A}}=\sum_{i} \mathbf{A}_{i} \log \alpha_{i}(\vec{z})
$$

where α_{i} are the letters and \mathbf{A}_{i} constant matrices.
Any cluster adjacency in this language:

$$
\mathbf{A}_{i} \cdot \mathbf{A}_{j}=0 \Rightarrow \ldots \otimes \alpha_{i} \otimes \alpha_{j} \otimes \ldots
$$

to all orders in ϵ. Important structural information for manipulating \mathbf{f}, e.g. analytic continuation.

Observed C_{2} adjacency of 4-point 1-mass integrals

Observed C_{2} adjacency of 4-point 1-mass integrals

Cluster algebra reveals:

$$
\mathbf{A}_{i} \cdot \mathbf{A}_{j}=0, \text { for } i \neq j \in\{1,3,5\}
$$

Observed C_{2} adjacency of 4-point 1-mass integrals

Cluster algebra reveals:

$$
\mathbf{A}_{i} \cdot \mathbf{A}_{j}=0, \text { for } i \neq j \in\{1,3,5\}
$$

Equivalently, for $l \neq m$
$\ldots \otimes 1-z_{t} \otimes 1-\overline{z_{m} \otimes \ldots}$

Observed C_{2} adjacency of 4-point 1-mass integrals

Cluster algebra reveals:

$$
\mathbf{A}_{i} \cdot \mathbf{A}_{j}=0, \text { for } i \neq j \in\{1,3,5\}
$$

Equivalently, for $l \neq m$

$$
\ldots \otimes 1-z_{t} \otimes 1-\overline{z_{m} \otimes \ldots}
$$

Adjacency property significantly reduces size of C_{2} symbol space:

weight	1	2	3	4	5	6	7	8
First entry condition	3	12	45	165	597	2143	7653	27241
Adjacency constraint	3	12	42	138	438	1362	4182	12738

Observed C_{2} adjacency of 4-point 1-mass integrals

Cluster algebra reveals:

$$
\mathbf{A}_{i} \cdot \mathbf{A}_{j}=0, \text { for } i \neq j \in\{1,3,5\}
$$

Equivalently, for $l \neq m$

$$
\cdots \otimes 1-z_{t} \otimes 1-\overline{z_{m} \otimes \ldots}
$$

Adjacency property significantly reduces size of C_{2} symbol space:

weight	1	2	3	4	5	6	7	8
First entry condition	3	12	45	165	597	2143	7653	27241
Adjacency constraint	3	12	42	138	438	1362	4182	12738

Application: In parallel work, used to bootstrap $\mathcal{N}=4$ SYM analogue of Higgs amplitude through 5 loops

More examples of cluster algebras from one-loop Feynman integrals

family	\# variables	\# letters	cluster algebra
	3	9	$\subset A_{3}$
	3	10	$\subset C_{3}$
	4	16	$\subset C_{4}$

More examples of cluster algebras from one-loop Feynman integrals

family	\# variables	\# letters	cluster algebra
	3	9	$\subset A_{3}$
	4	10	$\subset C_{3}$

Finite 6D integrals | \# variables | \# letters | cluster algebra | |
| :---: | :---: | :---: | :---: |
| | 4 | 16 | D_{4} |
| | 5 | 24 | $\subset D_{5}$ |
| | 5 | 27 | $\lim \operatorname{Tr}(4,8)$ |

Beyond Cluster Algebras

From n-particle amplitudes in $\mathcal{N}=4$ SYM know they cannot be the end of story:

Beyond Cluster Algebras

From n-particle amplitudes in $\mathcal{N}=4$ SYM know they cannot be the end of story:

- For $n \geq 8$ associated $\operatorname{Gr}(4, n)$ cluster algebra becomes infinite!

Beyond Cluster Algebras

From n-particle amplitudes in $\mathcal{N}=4$ SYM know they cannot be the end of story:

- For $n \geq 8$ associated $\operatorname{Gr}(4, n)$ cluster algebra becomes infinite!

Beyond Cluster Algebras

From n-particle amplitudes in $\mathcal{N}=4$ SYM know they cannot be the end of story:

- For $n \geq 8$ associated $\operatorname{Gr}(4, n)$ cluster algebra becomes infinite!

Recently, appropriate generalization curing infinity for $n=8$ [Henke, GP'19] [Arkani-Hamed,Lam,Spradlin'19] [Drummond,Foster, Gurdogan,Kalousios'19]

Beyond Cluster Algebras

From n-particle amplitudes in $\mathcal{N}=4$ SYM know they cannot be the end of story:

- For $n \geq 8$ associated $\operatorname{Gr}(4, n)$ cluster algebra becomes infinite!

Recently, appropriate generalization curing infinity for $n=8$ [Henke, GP'19] [Arkani-Hamed,Lam,Spradlin'19] [Drummond,Foster, Gurdogan,Kalousios'19]
from relation of $G r(4, n)$ with (dual of) tropical Grassmanian $\operatorname{Tr}(4, n)$.

Beyond Cluster Algebras

From n-particle amplitudes in $\mathcal{N}=4$ SYM know they cannot be the end of story:

- For $n \geq 8$ associated $\operatorname{Gr}(4, n)$ cluster algebra becomes infinite!

Recently, appropriate generalization curing infinity for $n=8$ [Henke, GP'19] [Arkani-Hamed,Lam,Spradlin'19] [Drummond,Foster, Gurdogan,Kalousios'19]
from relation of $G r(4, n)$ with (dual of) tropical Grassmanian $\operatorname{Tr}(4, n)$.

From appropriately symmetrized limit, obtain all letters appearing in finite (hard) part of two-loop five-gluon amplitude in QCD!

Conclusions

The beautiful mathematics of cluster algebras underlie the analytic structure of several physically relevant Feynman integrals \& processes!

- Higgs+jet amplitudes to all orders in ϵ
- 5-gluon planar amplitudes in QCD to finite part
- Reveal new, potentially useful properties such as adjacency

Next Stage

Very recently, predictions for symbol letters of \mathcal{A}_{9} in $\mathcal{N}=4$ SYM. ${ }^{[H e n k e,}{ }^{\text {GP'21] }} \Rightarrow$ Limit to six-gluon amplitude letters in QCD?

- More examples \& first-principle proof? Bootstrap of QCD quantities?

Conclusions

The beautiful mathematics of cluster algebras underlie the analytic structure of several physically relevant Feynman integrals \& processes!

- Higgs+jet amplitudes to all orders in ϵ
- 5-gluon planar amplitudes in QCD to finite part
- Reveal new, potentially useful properties such as adjacency

Next Stage

Very recently, predictions for symbol letters of \mathcal{A}_{9} in $\mathcal{N}=4$ SYM.
${ }^{[H e n k e,}{ }^{\text {GP }}{ }^{21]} \Rightarrow$ Limit to six-gluon amplitude letters in QCD?

- More examples \& first-principle proof? Bootstrap of QCD quantities?

> Could cluster algebras and generalizations provide an organizing principle ("genetic material") that simplifies future collider physics calculations?

Cluster Algebras and $\mathcal{N}=4$ Amplitudes: The right variables

Cluster Algebras and $\mathcal{N}=4$ Amplitudes: The right variables

What is the symbol alphabet describing \mathcal{A}_{n} ?

Cluster Algebras and $\mathcal{N}=4$ Amplitudes: The right variables
What is the symbol alphabet describing \mathcal{A}_{n} ?

- For $n=6,9$ letters, motivated by analysis of relevant integrals

Cluster Algebras and $\mathcal{N}=4$ Amplitudes: The right variables
What is the symbol alphabet describing \mathcal{A}_{n} ?

- For $n=6,9$ letters, motivated by analysis of relevant integrals
- In general, variables a_{m} of a Grassmannian $\operatorname{Gr}(4, n)$ cluster algebra! $G r(4,6) \simeq A_{3}, G r(4,7) \simeq E_{6}{ }^{\text {[Golden,Goncharov,Spradlin, Vergu, Volovich] }}$

Cluster Algebras and $\mathcal{N}=4$ Amplitudes: The right variables
What is the symbol alphabet describing \mathcal{A}_{n} ?

- For $n=6,9$ letters, motivated by analysis of relevant integrals
- In general, variables a_{m} of a Grassmannian $\operatorname{Gr}(4, n)$ cluster algebra!

$$
G r(4,6) \simeq A_{3}, G r(4,7) \simeq E_{6}{ }^{[\text {Golden,Goncharov,Spradlin,Vergu, Volovich }]}
$$

Emerge when parametrizing planar n-particle massless kinematics in terms of n momentum twistors Z_{i} on $\mathbb{C P}^{3}\left(Z_{i} \sim \lambda Z_{i}\right)$,

$$
\begin{gathered}
p_{i} \equiv x_{i+1}-x_{i}, \quad x_{i} \sim Z_{i-1} \wedge Z_{i} \\
\left(x_{i}-x_{j}\right)^{2} \equiv\left(p_{j}+\ldots+p_{i-1}\right)^{2} \sim \operatorname{det}\left(Z_{i-1} Z_{i} Z_{j-1} Z_{j}\right) \equiv\langle i-1 i j-1 j\rangle
\end{gathered}
$$

Cluster Algebras and $\mathcal{N}=4$ Amplitudes: The right variables
What is the symbol alphabet describing \mathcal{A}_{n} ?

- For $n=6,9$ letters, motivated by analysis of relevant integrals
- In general, variables a_{m} of a Grassmannian $\operatorname{Gr}(4, n)$ cluster algebra!

$$
G r(4,6) \simeq A_{3}, G r(4,7) \simeq E_{6}{ }^{[\text {Golden,Goncharov,Spradlin,Vergu, Volovich }]}
$$

Emerge when parametrizing planar n-particle massless kinematics in terms of n momentum twistors Z_{i} on $\mathbb{C P}^{3}\left(Z_{i} \sim \lambda Z_{i}\right)$,

$$
\begin{gathered}
p_{i} \equiv x_{i+1}-x_{i}, \quad x_{i} \sim Z_{i-1} \wedge Z_{i} \\
\left(x_{i}-x_{j}\right)^{2} \equiv\left(p_{j}+\ldots+p_{i-1}\right)^{2} \sim \operatorname{det}\left(Z_{i-1} Z_{i} Z_{j-1} Z_{j}\right) \equiv\langle i-1 i j-1 j\rangle
\end{gathered}
$$

Cluster \mathcal{A}-coordinates a_{m} : Certain homogeneous polynomials of $\langle i j k l\rangle$

Application: The Steinmann Cluster Bootstrap for $\mathcal{N}=4$ SYM Amplitudes Evade Feynman diagrams by exploiting analytic structure

Computation

Application: The Steinmann Cluster Bootstrap for $\mathcal{N}=4$ SYM Amplitudes Evade Feynman diagrams by exploiting analytic structure

QFT Property	Computation
Physical Branch Cuts [Gaiotto,Maldacena, Sever,Vieira]	$\mathcal{A}_{6}^{(L)}, L=3,4$

Application: The Steinmann Cluster Bootstrap for $\mathcal{N}=4$ SYM Amplitudes Evade Feynman diagrams by exploiting analytic structure

QFT Property	Computation
Physical Branch Cuts	$\mathcal{A}_{6}^{(L)}, L=3,4$
[Gaiotto,Maldacena, Sever,Vieira]	[Dixon, Drummond, (Henn,) Duhr $/$ Hippel,Pennington]
Cluster Algebras	$\mathcal{A}_{7, \text { MHV }}^{(3)}$
[Golden, Goncharov, Spradlin,Vergu,Volovich]	[Drummond, GP, Spradlin]

$$
\begin{aligned}
\mathcal{A}_{\mathrm{MHV}} & =\mathcal{A}(--+\ldots+) \\
\mathcal{A}_{\mathrm{NMHV}} & =\mathcal{A}(---+\ldots+)
\end{aligned}
$$

Application: The Steinmann Cluster Bootstrap for $\mathcal{N}=4$ SYM Amplitudes Evade Feynman diagrams by exploiting analytic structure

QFT Property	Computation
Physical Branch Cuts [Gaiotto,Maldacena, Sever,Vieira]	$\mathcal{A}_{6}^{(L)}, L=3,4$
Cluster Algebras [Dixon, Drummond, (Henn, $)$ Duhr/Hippel,Pennington]	
Spradlin, Vergu, Volovich]	$\mathcal{A}_{7, \text { MHV }}^{(3)}$
Steinmann Relation [Srummond, GP, Spradlin]	

$$
\begin{aligned}
\mathcal{A}_{\mathrm{MHV}} & =\mathcal{A}(--+\ldots+) \\
\mathcal{A}_{\mathrm{NMHV}} & =\mathcal{A}(---+\ldots+)
\end{aligned}
$$

Application: The Steinmann Cluster Bootstrap for $\mathcal{N}=4$ SYM Amplitudes Evade Feynman diagrams by exploiting analytic structure

$$
\begin{aligned}
\mathcal{A}_{\mathrm{MHV}} & =\mathcal{A}(--+\ldots+) \\
\mathcal{A}_{\mathrm{NMHV}} & =\mathcal{A}(---+\ldots+)
\end{aligned}
$$

QFT Property	Computation
Physical Branch Cuts	$\mathcal{A}_{6}^{(L)}, L=3,4$
[Gaiotto,Maldacena, Sever, Vieira]	[Dixon,Drummond, (Henn,) Duhr/Hippel,Pennington]
Cluster Algebras	$\mathcal{A}_{7, \mathrm{MHV}}^{(3)}$
[Golden, Goncharov, Spradlin, Vergu, Volovich]	[Drummond, GP, Spradlin]
Steinmann Relation	$\mathcal{A}_{6}^{(5)}, \mathcal{A}_{7, \mathrm{NMHV}}^{(3)}, \mathcal{A}_{7, \mathrm{MHV}}^{(4)}$
[Steinmann]	[Caron-Huot,Dixon,...] [Dixon,..., GP,Spradlin]
Cluster Adjacency	$\mathcal{A}_{7, \mathrm{NMHV}}^{(4)}$
[Drummond,Foster, Gurdogan]	[Drummond,Foster, Gurdogan, GP]
Extended Steinmann	$\Leftrightarrow \quad \mathcal{A}_{6}^{(6)}, \mathcal{A}_{6, \mathrm{MHV}}^{(7)}$
Coaction Principle	[Caron-Huot,Dixon,Dulat, McLeod,Hippel,GP]

Application: The Steinmann Cluster Bootstrap for $\mathcal{N}=4$ SYM Amplitudes Evade Feynman diagrams by exploiting analytic structure

See also $S\left(A_{n}^{(2)}\right) \rightarrow A_{n}^{(2)}, S\left(\mathcal{A}_{7}\right) \rightarrow \mathcal{A}_{7}$ work

Steinmann Relations

Provide physical backing to cluster adjacency, forbidding double discontinuities in overlapping channels. For A_{3}, equivalent to

$$
(14) \otimes(36) \otimes \ldots
$$

$v s$.

Extended Steinmann Relations

[Caron-Huot,Dixon,DulatMcLeod,Hippel,GP]

Provide physical backing to cluster adjacency, forbidding multiple discontinuities in overlapping channels. For A_{3}, equivalent to

$$
\ldots \otimes(14) \otimes(36) \otimes \ldots
$$

$v s$.

Extended Steinmann Relations

[Caron-Huot,Dixon,DulatMcLeod,Hippel, GP]

Provide physical backing to cluster adjacency, forbidding multiple discontinuities in overlapping channels. For A_{3}, equivalent to

- For physical $n=6,7$ functions, imply remaining cluster adjacency restrictions.

Extended Steinmann Relations

[Caron-Huot,Dixon,DulatMcLeod,Hippel, GP]

Provide physical backing to cluster adjacency, forbidding multiple discontinuities in overlapping channels. For A_{3}, equivalent to

- For physical $n=6,7$ functions, imply remaining cluster adjacency restrictions.
- Recently confirmed in planar 5-pt 1-mass master integrals. [Abreu,Ita,Moriello,Page,Tschernow,Zeng]

Momentum Twistors Z^{I} [Hodges]

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X .
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X .
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

- After complexifying, Z^{I} transform in $S L(4, \mathbb{C})$. Since $Z \sim t Z$, can be viewed as homogeneous coordinates on \mathbb{P}^{3}.

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

- After complexifying, Z^{I} transform in $S L(4, \mathbb{C})$. Since $Z \sim t Z$, can be viewed as homogeneous coordinates on \mathbb{P}^{3}.
- Can show

$$
\left(x-x^{\prime}\right)^{2} \propto 2 X \cdot X^{\prime}=\epsilon_{I J K L} Z^{I} \tilde{Z}^{J} Z^{\prime K} \tilde{Z}^{\prime L}=\operatorname{det}\left(Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right) \equiv\left\langle Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right\rangle
$$

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

- After complexifying, Z^{I} transform in $S L(4, \mathbb{C})$. Since $Z \sim t Z$, can be viewed as homogeneous coordinates on \mathbb{P}^{3}.
- Can show

$$
\begin{aligned}
& \left(x-x^{\prime}\right)^{2} \propto 2 X \cdot X^{\prime}=\epsilon_{I J K L} Z^{I} \tilde{Z}^{J} Z^{\prime K} \tilde{Z}^{\prime L}=\operatorname{det}\left(Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right) \equiv\left\langle Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right\rangle \\
& \cdot\left(x_{i+i}-x_{i}\right)^{2}=0 \quad \Rightarrow X_{i}=Z_{i-1} \wedge Z_{i}
\end{aligned}
$$

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix

$$
\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)
$$

modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix

$$
\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)
$$

modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$\operatorname{Gr}(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space.

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix

$$
\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)
$$

modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$\operatorname{Gr}(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space. Equivalently the space of $k \times n$ matrices modulo $G L(k)$ transformations:

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix

$$
\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)
$$

modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$G r(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space. Equivalently the space of $k \times n$ matrices modulo $G L(k)$ transformations:

- k-plane specified by k basis vectors that span it $\Rightarrow k \times n$ matrix

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix

$$
\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)
$$

modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$G r(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space. Equivalently the space of $k \times n$ matrices modulo $G L(k)$ transformations:

- k-plane specified by k basis vectors that span it $\Rightarrow k \times n$ matrix
- Under $G L(k)$ transformations, basis vectors change, but still span the same plane.

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix

$$
\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)
$$

modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$G r(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space. Equivalently the space of $k \times n$ matrices modulo $G L(k)$ transformations:

- k-plane specified by k basis vectors that span it $\Rightarrow k \times n$ matrix
- Under $G L(k)$ transformations, basis vectors change, but still span the same plane.
Comparing the two matrices,

$$
\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=G r(4, n) /\left(C^{*}\right)^{n-1}
$$

The Rules of the Mutation Game

How does one mutate more generally?

The Rules of the Mutation Game

How does one mutate more generally? Precise rules encoded in $(d+m) \times d$ exchange matrix B, or equivalently (valued) quiver.

The Rules of the Mutation Game

How does one mutate more generally? Precise rules encoded in $(d+m) \times d$ exchange matrix B, or equivalently (valued) quiver.

Mutation on $a_{k}: \quad a_{k}^{\prime}=a_{k}^{-1}\left(\prod_{i=1}^{d+m} a_{i}^{\left[b_{i k}\right]_{+}}+\prod_{i=1}^{d+m} a_{i}^{\left[-b_{i k}\right]_{+}}\right), k \leq n$,
all other a_{j} unchanged. $b_{i j}$ elements of B, which itself mutates as

$$
b_{i j}^{\prime}= \begin{cases}-b_{i j} & \text { for } i=k \text { or } j=k \\ b_{i j}+\left[-b_{i k}\right]_{+} b_{k j}+b_{i k}\left[b_{k j}\right]_{+} & \text {otherwise }\end{cases}
$$

with $[x]_{+}=\max (0, x)$.

Searching for Cluster Algebras in QFT: Which Feynman Integrals?

To hope to detect cluster-algebraic structures, need to have

Searching for Cluster Algebras in QFT: Which Feynman Integrals?

To hope to detect cluster-algebraic structures, need to have

- ≥ 1 dimensionless kinematic variable (not just number times scale)

Searching for Cluster Algebras in QFT: Which Feynman Integrals?

To hope to detect cluster-algebraic structures, need to have

- ≥ 1 dimensionless kinematic variable (not just number times scale)
- $n \geq 4$ if to describe scattering

Searching for Cluster Algebras in QFT: Which Feynman Integrals?

To hope to detect cluster-algebraic structures, need to have

- ≥ 1 dimensionless kinematic variable (not just number times scale)
- $n \geq 4$ if to describe scattering
- Integrals within the class of MPLs

Simplest case:

Searching for Cluster Algebras in QFT: Which Feynman Integrals?

To hope to detect cluster-algebraic structures, need to have

- ≥ 1 dimensionless kinematic variable (not just number times scale)
- $n \geq 4$ if to describe scattering
- Integrals within the class of MPLs

Simplest case:

$$
p_{i}^{2}=0,
$$

Single kinematic variable: $z \equiv \frac{p_{2} \cdot p_{3}}{p_{1} \cdot p_{2}}$
Alphabet of known integrals:
[Henn,Smirnov ${ }^{2}$][Panzer] [Henn,Mistlberger,Smirnov,Wasser]

$$
\Phi=\{z, 1+z\}
$$

(Nonpositive) Harmonic Polylogarithms [Remiddi,Vermaseren]

Instead, consider next-to simplest case as our main example.

Adjacency Interpretation: Embedding C_{2} in A_{3}
Can the $\mathcal{N}=4$ world help us understand the observed C_{2} adjacency?

Adjacency Interpretation: Embedding C_{2} in A_{3}
Can the $\mathcal{N}=4$ world help us understand the observed C_{2} adjacency?

- Hint: In certain limit, $\mathcal{A}_{6} \in A_{3}$ in $\mathcal{N}=4$ SYM becomes equal to the form factor $\in C_{2}$ at two loops! [Brandhuber, Travaglini, Yang]

Perhaps this limit is embedding of C_{2} in A_{3} ?

Adjacency Interpretation: Embedding C_{2} in A_{3}
Can the $\mathcal{N}=4$ world help us understand the observed C_{2} adjacency?

- Hint: In certain limit, $\mathcal{A}_{6} \in A_{3}$ in $\mathcal{N}=4$ SYM becomes equal to the form factor $\in C_{2}$ at two loops! [Brandhuber, Travaglini, Yang]

Perhaps this limit is embedding of C_{2} in A_{3} ? Unfortunately, no

Adjacency Interpretation: Embedding C_{2} in A_{3}

Can the $\mathcal{N}=4$ world help us understand the observed C_{2} adjacency?

- Hint: In certain limit, $\mathcal{A}_{6} \in A_{3}$ in $\mathcal{N}=4 \mathrm{SYM}$ becomes equal to the form factor $\in C_{2}$ at two loops! [Brandhuber, Travaglini, Yang]

Perhaps this limit is embedding of C_{2} in A_{3} ? Unfortunately, no ©

Adjacency Interpretation: Embedding C_{2} in A_{3}

Can the $\mathcal{N}=4$ world help us understand the observed C_{2} adjacency?

- Hint: In certain limit, $\mathcal{A}_{6} \in A_{3}$ in $\mathcal{N}=4$ SYM becomes equal to the form factor $\in C_{2}$ at two loops! [Brandhuber, Travaglini, Yang]

Perhaps this limit is embedding of C_{2} in A_{3} ? Unfortunately, no \cdot

- Nevertheless, C_{2} is parity (=up-down reflection) invariant surface of A_{3} !

Adjacency Interpretation: Embedding C_{2} in A_{3} II Zooming in on A_{3} equator:

Adjacency Interpretation: Embedding C_{2} in A_{3} II
Zooming in on A_{3} equator:

- Only P-invariant combinations of A_{3} coordinates $(i j)$ needed.

$$
P(i j)=P(i+3, j+3), \text { e.g. }\{(35),(36),(26)\} \rightarrow\{(36), \sqrt{(26)(35)}\}
$$

Adjacency Interpretation: Embedding C_{2} in A_{3} II
Zooming in on A_{3} equator:

- Only P-invariant combinations of A_{3} coordinates $(i j)$ needed.

$$
P(i j)=P(i+3, j+3), \text { e.g. }\{(35),(36),(26)\} \rightarrow\{(36), \sqrt{(26)(35)}\}
$$

- $a_{i-2} \sim(i i+3), a_{i} \sim \sqrt{(i i+2)(i+1 i+3)}$ for i odd, even $\Rightarrow C_{2}$ coords!

Adjacency Interpretation: Embedding C_{2} in A_{3} II
Zooming in on A_{3} equator:

- Only P-invariant combinations of A_{3} coordinates $(i j)$ needed.

$$
P(i j)=P(i+3, j+3), \text { e.g. }\{(35),(36),(26)\} \rightarrow\{(36), \sqrt{(26)(35)}\}
$$

- $a_{i-2} \sim(i i+3), a_{i} \sim \sqrt{(i i+2)(i+1 i+3)}$ for i odd, even $\Rightarrow C_{2}$ coords!
C_{2} adjacency $=$ extended Steinmann relations for \mathcal{A}_{6} !

Five-particle scattering from $p \operatorname{Tr}(4,8)$ ।

1. Start from $272+18$ letter $\operatorname{Tr}(4,8)$ alphabet

Five-particle scattering from $p \operatorname{Tr}(4,8)$ I

1. Start from $272+18$ letter $\operatorname{Tr}(4,8)$ alphabet
2. Consider 2 -mass hard hexagon kinematics $\Rightarrow 30+5$ letters

Five-particle scattering from $p \operatorname{Tr}(4,8)$ I

1. Start from $272+18$ letter $\operatorname{Tr}(4,8)$ alphabet
2. Consider 2 -mass hard hexagon kinematics $\Rightarrow 30+5$ letters

3. Taking $x_{7} \rightarrow \infty$, equivalent to 1 -mass pentagon kinematics: All letters contained in (57+1)-letter 1-mass 2-loop planar pentagon alphabet! [Abreu,Ita,Moriello,Page,Tschernow] [Canko,Papadopoulos,Syrrakos]

Five-particle scattering from $p \operatorname{Tr}(4,8)$ I

1. Start from $272+18$ letter $\operatorname{Tr}(4,8)$ alphabet
2. Consider 2 -mass hard hexagon kinematics $\Rightarrow 30+5$ letters

3. Taking $x_{7} \rightarrow \infty$, equivalent to 1 -mass pentagon kinematics: All letters contained in (57+1)-letter 1-mass 2-loop planar pentagon alphabet!
[Abreu,Ita,Moriello,Page,Tschernow] [Canko,Papadopoulos,Syrrakos]
Specifically, 27 letters of $D=6$ 2-mass hard hexagon $=1$-loop 1-mass pentagon alphabet except $\Delta_{3}=\lambda\left(P^{2}, s_{23}, s_{45}\right), \Delta_{5}=\left.\operatorname{det}\left(2 p_{i} \cdot p_{j}\right)\right|_{i, j \leq 4}$ +8 2-loop letters ($\sqrt{\Delta_{5}}$ rationalized by mom.twistors).

Five-particle scattering from $p \operatorname{Tr}(4,8)$ II
4. Taking $P^{2} \rightarrow 0$ limit: 22 letters, or 24 after cyclic symmetrization.

Five-particle scattering from $p \operatorname{Tr}(4,8)$ II
4. Taking $P^{2} \rightarrow 0$ limit: 22 letters, or 24 after cyclic symmetrization. All contained in $(25+1)$-letter massless 2-loop planar pentagon alphabet! [Gehrmann,Henn,Lo Presti][Chicherin,Henn,Mitev]

Five-particle scattering from $p \operatorname{Tr}(4,8)$ II
4. Taking $P^{2} \rightarrow 0$ limit: 22 letters, or 24 after cyclic symmetrization.

All contained in $(25+1)$-letter massless 2-loop planar pentagon alphabet! [Gehrmann,Henn,Lo Presti] [Chicherin,Henn,Mitev]
In particular, single missing letter observed to drop out from finite (hard) part of five-gluon amplitude in QCD! $\left(\sqrt{\Delta}=\left.\sqrt{\operatorname{det}\left(2 p_{i} \cdot p_{j}\right)}\right|_{i, j \leq 4}\right)$

Five-particle scattering from $p \operatorname{Tr}(4,8)$ II

4. Taking $P^{2} \rightarrow 0$ limit: 22 letters, or 24 after cyclic symmetrization.

All contained in $(25+1)$-letter massless 2-loop planar pentagon alphabet!
[Gehrmann,Henn,Lo Presti] [Chicherin,Henn,Mitev]
In particular, single missing letter observed to drop out from finite (hard) part of five-gluon amplitude in QCD! $\left(\sqrt{\Delta}=\left.\sqrt{\operatorname{det}\left(2 p_{i} \cdot p_{j}\right)}\right|_{i, j \leq 4}\right)$

Next Stage

Very recently, framework for predicting rational and squareroot symbol letters of \mathcal{A}_{n} in $\mathcal{N}=4 \mathrm{SYM} \forall n$! [Henke,GP]

Five-particle scattering from $p \operatorname{Tr}(4,8)$ II

4. Taking $P^{2} \rightarrow 0$ limit: 22 letters, or 24 after cyclic symmetrization.

All contained in $(25+1)$-letter massless 2-loop planar pentagon alphabet! [Gehrmann,Henn,Lo Presti] [Chicherin,Henn,Mitev]

In particular, single missing letter observed to drop out from finite (hard) part of five-gluon amplitude in QCD! $\left(\sqrt{\Delta}=\left.\sqrt{\operatorname{det}\left(2 p_{i} \cdot p_{j}\right)}\right|_{i, j \leq 4}\right)$

Next Stage

> Very recently, framework for predicting rational and squareroot symbol letters of \mathcal{A}_{n} in $\mathcal{N}=4 \mathrm{SYM} \forall n$! [Henke,GP]

- Applied to $n=9: 3078$ rational $R_{i}+2349$ square-root letters S_{j} with 324 different radicands Δ_{k} (For R_{i}, Δ_{k}, see also ${ }^{[\text {Ren,Spradlin,Volovich }]}$)

Five-particle scattering from $p \operatorname{Tr}(4,8)$ II

4. Taking $P^{2} \rightarrow 0$ limit: 22 letters, or 24 after cyclic symmetrization.

All contained in $(25+1)$-letter massless 2-loop planar pentagon alphabet! [Gehrmann,Henn,Lo Presti] [Chicherin,Henn,Mitev]

In particular, single missing letter observed to drop out from finite (hard) part of five-gluon amplitude in QCD! $\left(\sqrt{\Delta}=\left.\sqrt{\operatorname{det}\left(2 p_{i} \cdot p_{j}\right)}\right|_{i, j \leq 4}\right)$

Next Stage

> Very recently, framework for predicting rational and squareroot symbol letters of \mathcal{A}_{n} in $\mathcal{N}=4 \mathrm{SYM} \forall n$! [Henke,GP]

- Applied to $n=9: 3078$ rational $R_{i}+2349$ square-root letters S_{j} with 324 different radicands Δ_{k} (For R_{i}, Δ_{k}, see also ${ }^{[\text {Ren,Spradlin,Volovich] }}$)
- Contains 2-loop NMHV $n=9$ alphabet, ${ }^{[H e, L i, Z h a n g]}$ see also ${ }^{[\text {Mago,Schreiber,Spradlin,Yelleshpur Srikant,Volovich] }}$

Five-particle scattering from $p \operatorname{Tr}(4,8)$ II

4. Taking $P^{2} \rightarrow 0$ limit: 22 letters, or 24 after cyclic symmetrization.

All contained in $(25+1)$-letter massless 2-loop planar pentagon alphabet! [Gehrmann,Henn,Lo Presti] [Chicherin,Henn,Mitev]

In particular, single missing letter observed to drop out from finite (hard) part of five-gluon amplitude in QCD! $\left(\sqrt{\Delta}=\left.\sqrt{\operatorname{det}\left(2 p_{i} \cdot p_{j}\right)}\right|_{i, j \leq 4}\right)$

Next Stage

> Very recently, framework for predicting rational and squareroot symbol letters of \mathcal{A}_{n} in $\mathcal{N}=4$ SYM $\forall n$! [Henke,GP]

- Applied to $n=9: 3078$ rational $R_{i}+2349$ square-root letters S_{j} with 324 different radicands Δ_{k} (For R_{i}, Δ_{k}, see also ${ }^{[\text {Ren,Spradlin,Volovich] })}$
- Contains 2-loop NMHV $n=9$ alphabet, see also
- Access to Lorentz-invariant 2-mass pentagon or 1-mass hexagon?

