M

UNIVERSITY OF MICHIGAN

Soft Limits and the Double-Copy

Based on

Arxiv:2106.12600 with Chi, A. Herderschee, C. Jones, S. Paranjape
and Arxiv:1611.07534 w/ C. Jones and S. Naculich

Henriette Elvang University of Michigan

Leinweber Center for Theoretical Physics

Celestial Amplitudes from Soft Limits

When $p^{\mu} \rightarrow \epsilon p^{\mu}$ with $\epsilon \rightarrow 0$

The soft factors are UNIVERSAL.

Celestial Amplitudes from Soft Limits

When $\quad p^{\mu} \rightarrow \epsilon p^{\mu} \quad$ with $\quad \epsilon \rightarrow 0$
Photons $\quad A_{n+1}^{\mathrm{ph}}=\left(\frac{S^{(0)}}{\epsilon^{2}}+\frac{S^{(1)}}{\epsilon}\right) A_{n}+\frac{\tilde{S}^{(1)}}{\epsilon} \tilde{A}_{n}^{\pi}+O\left(\epsilon^{0}\right)$
Gravity $\quad A_{n+1}^{\text {grav }}=\left(\frac{\mathcal{S}^{(0)}}{\epsilon^{3}}+\frac{\mathcal{S}^{(1)}}{\epsilon^{2}}+\frac{\mathcal{S}^{(2)}}{\epsilon}\right) A_{n}+\frac{\tilde{\mathcal{S}}^{(2)}}{\epsilon} \tilde{A}_{n}+O\left(\epsilon^{0}\right)$

New terms from certain-cubic field
EFT operators

Jones, Naculich, HE (2016)
Motivated by the question of
Ioop-corrections:

The soft factors are UNIVERSAL.

Divergent Soft Limit Master Formula

In 4d, the universal soft limits can be derived from a Master Formula

$$
\hat{A}_{n+1}(z, \epsilon)=\sum_{k, h_{P}, c} \frac{g_{H_{k}}[s k]^{2 h_{s}-\mathrm{a}}\langle X s\rangle^{1-\mathrm{a}} \hat{A}_{n}^{(k)}(z)}{\epsilon z^{\mathrm{a}-1}\langle s k\rangle^{2-\mathrm{a}}\left(1-\frac{z}{\epsilon} \frac{\langle X k\rangle}{\langle s k\rangle}\right)}+O\left(\epsilon^{0}\right)
$$

Jones, Naculich, HE (2016)

$$
\mathrm{a} \equiv h_{s}-h_{k}-h_{P}+1
$$

where we use 4d spinor helicity formalism $p=-|p\rangle[p \mid$ and a positive-helicity particle s is taken soft holomorphically: $p_{s}=-|s\rangle[s|\rightarrow-\epsilon| s\rangle[s \mid \quad$ with $\quad|s\rangle \rightarrow \epsilon|s\rangle \quad$ and $\left.\quad \mid s] \rightarrow \mid s\right]$

The formula is derived from very basic principles (locality \& unitarity)

- Only cubic interactions can give rise to divergent soft limits
- Tree amplitudes factorize on their simple poles

- 3-pt amplitudes of massless particles are uniquely fixed by the particle helicities h

Above X is a reference spinor and z is an auxiliary variable.

Divergent Soft Limit Master Formula

There can be no poles at $z=0$
=>

- charge conservation
- equivalence principle
- Massless spin > 2 cannot couple consistently gravitons
- Massless spin 3/2 must couple supersymmetrically to gravitons

Well-known statements, but derived from same compact formula.

The order $O\left(z^{0}\right)$ terms in the Master Formula
=>
the universal soft theorems
and
specify precisely which 3-field EFT operators contribute at subleading order to the soft photon theorem and at subsubleading order to the soft graviton theorem

Soft behavior

Under the holomorphic shift of a massless soft particle,

$$
\left.p_{s}=-|s\rangle[s \mid \quad \text { with } \quad|s\rangle \rightarrow \epsilon|s\rangle \quad \text { and } \quad \mid s] \rightarrow \mid s\right]
$$

a (tree) amplitude generally behaves as

$$
A_{n} \rightarrow O\left(\epsilon^{\sigma}\right)
$$

where σ is the soft weight

We saw divergent soft limits
Photons: $\quad \sigma=-2$
Gravitons: $\sigma=-3$
Also
Gluons: $\quad \sigma=-2$

Soft behavior

Under the holomorphic shift of a massless soft particle,

$$
\left.p_{s}=-|s\rangle[s \mid \quad \text { with } \quad|s\rangle \rightarrow \epsilon|s\rangle \quad \text { and } \quad \mid s] \rightarrow \mid s\right]
$$

a (tree) amplitude generally behaves as

$$
A_{n} \rightarrow O\left(\epsilon^{\sigma}\right)
$$

where σ is the soft weight

When $\sigma>0$ the amplitude has vanishing soft limits.
Often (but not always) the case for Goldstone bosons (Adler zeros)
Examples: \quad NLSM (such as chiral perturbation theory) $\sigma=1$ DBI (Dirac-Born-Infeld) $\sigma=2$

Special Galileon $\quad \sigma=3$

Soft behavior

Under the holomorphic shift of a massless soft particle,

$$
\left.p_{s}=-|s\rangle[s \mid \quad \text { with } \quad|s\rangle \rightarrow \epsilon|s\rangle \quad \text { and } \quad \mid s] \rightarrow \mid s\right]
$$

a (tree) amplitude generally behaves as

$$
A_{n} \rightarrow O\left(\epsilon^{\sigma}\right)
$$

where σ is the soft weight

When $\sigma>0$ the amplitude has vanishing soft limits.
Often (but not always) the case for Goldstone bosons (Adler zeros)
Examples: \quad NLSM (such as chiral perturbation theory) $\sigma=1$ DBI (Dirac-Born-Infeld) $\sigma=2$

Special Galileon $\quad \sigma=3$

We saw divergent soft limits
Photons: $\quad \sigma=-2$

Gravitons: $\sigma=-3$

Also

Gluons: $\quad \sigma=-2$

Also models with $\sigma=0$ e.g.
Born-Infeld (BI)
N=2 SUSY CP ${ }^{1}$ NLSM
Conformal-DBI

Soft behavior

Under the holomorphic shift of a massless soft particle,

$$
\left.p_{s}=-|s\rangle[s \mid \quad \text { with } \quad|s\rangle \rightarrow \epsilon|s\rangle \quad \text { and } \quad \mid s] \rightarrow \mid s\right]
$$

a (tree) amplitude generally behaves as

$$
A_{n} \rightarrow O\left(\epsilon^{\sigma}\right)
$$

where σ is the soft weight

When $\sigma>0$ the amplitude has vanishing soft limits.
Often (but not always) the case for Goldstone bosons (Adler zeros)
Examples: \quad NLSM (such as chiral perturbation theory) $\sigma=1$ DBI (Dirac-Born-Infeld) $\sigma=2$

Special Galileon $\quad \sigma=3$

We saw divergent soft limits
Photons: $\quad \sigma=-2$

Gravitons: $\sigma=-3$
Also
Gluons: $\quad \sigma=-2$

Double-Copy

The double-copy maps gluon amplitudes to gravity amplitudes

$$
\text { gravity }^{+}=(\text {Yang-Mills }) \times(\text { Yang Mills })
$$

So.... How can it be that Gravitons: $\sigma=-3$
Gluons: $\quad \sigma=-2$
When naively one might have expected

$$
\sigma_{\text {grav }} ?=? \sigma_{\mathrm{YM}}+\sigma_{\mathrm{YM}}
$$

Double-Copy

The double-copy maps gluon amplitudes to gravity amplitudes

$$
\text { gravity }^{+}=(\text {Yang-Mills }) \times(\text { Yang Mills })
$$

So.... How can it be that Gravitons: $\sigma=-3$
 Gluons: $\quad \sigma=-2$

Answer: DOUBLE-COPY KERNEL

$$
\begin{aligned}
M_{4} & =-5 A_{4}[1234] A_{4}[1243] \\
\sigma_{\text {grav }} & =1+\sigma_{\mathrm{YM}}+\sigma_{\mathrm{YM}}
\end{aligned}
$$

When naively one might have expected

$$
\sigma_{\text {grav }} ?=? \sigma_{\mathrm{YM}}+\sigma_{\mathrm{YM}}
$$

Mandelstam variables

$$
\begin{aligned}
s & =\left(p_{1}+p_{2}\right)^{2} \\
t & =\left(p_{1}+p_{3}\right)^{2} \\
u & =\left(p_{1}+p_{4}\right)^{2}
\end{aligned}
$$

The double-copy in field theory: KLT form

KLT kernel a function of Mandelstams
Ex 4pt: $\quad A_{4}^{\text {gravity }}=A_{4}^{\mathrm{YM}}[1234] S_{4}[1234 \mid 1243] A_{4}^{\mathrm{YM}}[1243]$
with $S_{4}[1234 \mid 1243]=-s$

It remarkable that this works!!

Color-ordered YM gluon amplitudes: $\quad A_{4}[1234]$ has simple poles in s and u, but not t. $\quad s=\left(p_{1}+p_{2}\right)^{2}$ $A_{4}[1243]$ has simple poles in s and t, but not $u . \quad \begin{aligned} & t=\left(p_{1}+p_{3}\right)^{2} \\ & u=\left(p_{1}+p_{4}\right)^{2}\end{aligned}$

Graviton amplitudes have no color-structure, so $M_{4}(1234)$ has simple poles in the s, t and u channels.

How can a product of A_{4} 's possibly get even the pole structure of M_{4} right??? And avoid double-poles?

It remarkable that this works!!

Color-ordered YM gluon amplitudes: $\quad A_{4}[1234]$ has simple poles in s and u, but not $t . \quad s=\left(p_{1}+p_{2}\right)^{2}$ $A_{4}[1243]$ has simple poles in s and t, but not $u . \quad \begin{aligned} & t=\left(p_{1}+p_{3}\right)^{2} \\ & u=\left(p_{1}+p_{4}\right)^{2}\end{aligned}$

Graviton amplitudes have no color-structure, so $M_{4}(1234)$ has simple poles in the s, t and u channels.

How can a product of A_{4} 's possibly get even the pole structure of M_{4} right??? And avoid double-poles?

Answer: DOUBLE-COPY KERNEL

$$
\begin{aligned}
& M_{4}=-s A_{4}[1234] A_{4}[1243] \\
& M_{4}=-\frac{s u}{t} A_{4}[1234] A_{4}[1234]
\end{aligned}
$$

It remarkable that this works!!

Color-ordered YM gluon amplitudes: $\quad A_{4}[1234]$ has simple poles in s and u, but not $t . \quad s=\left(p_{1}+p_{2}\right)^{2}$

$$
A_{4}[1243] \text { has simple poles in } s \text { and } t, \text { but not } u . \quad \begin{aligned}
& t=\left(p_{1}+p_{3}\right)^{2} \\
& u=\left(p_{1}+p_{4}\right)^{2}
\end{aligned}
$$

Graviton amplitudes have no color-structure, so $M_{4}(1234)$ has simple poles in the s, t and u channels.

How can a product of A_{4} 's possibly get even the pole structure of M_{4} right??? And avoid double-poles?

Answer: DOUBLE-COPY KERNEL

$$
\begin{aligned}
& M_{4}=-s A_{4}[1234] A_{4}[1243] \\
& M_{4}=-\frac{s u}{t} A_{4}[1234] A_{4}[1234]
\end{aligned}
$$

The double-copy kernel:

1) Eliminates double-poles from $A_{4} * A_{4}$
2) Provides "missing" poles

Another important aspect of field theory KLT: KKBCJ relations

$$
M_{4}=-s A_{4}[1234] A_{4}[1243] \quad \text { and } \quad M_{4}=-\frac{s u}{t} A_{4}[1234] A_{4}[1234]
$$

then their difference must be zero, i.e.

$$
0=A_{4}[1243]-\frac{u}{t} A_{4}[1234]
$$

And this is true for YM amplitudes.
This is an example of a BCJ (Bern-Carrasco-Johansson) relation at 4-point.

A n-point

$$
A_{n}^{\mathrm{L} \otimes \mathrm{R}}=\sum_{a, b} A_{n}^{\mathrm{L}}[a] S_{n}[a \mid b] A_{n}^{\mathrm{R}}[b]
$$

choices of ($n-3$)! color orderings
and associated KKBCJ relations that ensure that the result of the double-copy is independent of the choice of ($n-3$)! color-orders out of the ($n-1$)! possible in the KLT sum.

Field theory double-copy `selection criterium'

In order to be "double-copyable", a theory's tree amplitudes must obey the KK and BCJ relations.

```
reduces the number of color-orderings from (n-1)! to (n-2)! reduces the number of color-orderings from (n-2)! to (n-3)!
```

A new way to explore the landscape of field theories: which theories can be input/output of the double-copy?

Which theories obey the field theory KK\&BCJ relations?
YM theory $\checkmark \quad$ Chiral perturbation theory \checkmark

Super YM theory \checkmark

Which theories obey the field theory KK\&BCJ relations?

YM theory
Chiral perturbation theory

$$
\begin{array}{ll}
\text { Helicity maps as } & h_{\mathrm{L} \otimes \mathrm{R}}=h_{\mathrm{L}}+h_{\mathrm{R}} \\
\text { Softness maps as } & \sigma_{\mathrm{L} \otimes \mathrm{R}}=1+\sigma_{\mathrm{L}}+\sigma_{\mathrm{R}}
\end{array}
$$

[^0] soft limits with $\sigma=1$

Does FT x FT -> FT have an identity element? $\quad \mathrm{L}=\mathrm{L} \otimes 1, \quad \mathrm{R}=1 \otimes \mathrm{R}, \quad 1=1 \otimes 1$.

Does FT x FT -> FT have an identity element?
 $$
\mathrm{L}=\mathrm{L} \otimes \mathbf{1}, \quad \mathrm{R}=\mathbf{1} \otimes \mathrm{R}, \quad \mathbf{1}=\mathbf{1} \otimes \mathbf{1}
$$

Color structure

Does FT x FT -> FT have an identity element?
 $$
\mathrm{L}=\mathrm{L} \otimes \mathbf{1}, \quad \mathrm{R}=\mathbf{1} \otimes \mathrm{R}, \quad \mathbf{1}=\mathbf{1} \otimes \mathbf{1} .
$$

Color structure

Does FT x FT -> FT have an identity element? $\quad \mathrm{L}=\mathrm{L} \otimes \mathbf{1}, \quad \mathrm{R}=\mathbf{1} \otimes \mathrm{R}, \quad \mathbf{1}=\mathbf{1} \otimes \mathbf{1}$.

Color structure

Does FT x FT -> FT have an identity element? $\quad \mathrm{L}=\mathrm{L} \otimes \mathbf{1}, \quad \mathrm{R}=\mathbf{1} \otimes \mathrm{R}, \quad \mathbf{1}=\mathbf{1} \otimes \mathbf{1}$.

Color structure

Which model is it?

$\begin{array}{cl}\phi^{3} \text { interaction } & f^{a b c} \tilde{f}^{a^{\prime} b^{\prime} c^{\prime}} \phi^{a a^{\prime}} \phi^{b b^{\prime}} \phi^{c c^{\prime}} ? \\ i f^{a b c}=\operatorname{Tr}\left[T^{a}\left[T^{b}, T^{c}\right]\right] & d^{a b c} \tilde{d}^{a^{\prime} b^{\prime} c^{\prime}} \phi^{a a^{\prime}} \phi^{b b^{\prime}} \phi^{c c^{\prime}}\end{array}$

$$
\begin{array}{ll}
f^{a b c} \tilde{f}^{a^{\prime} b^{\prime} c^{\prime}} \phi^{a a^{\prime}} \phi^{b b^{\prime}} \phi^{c c^{\prime}} \quad ? & d^{a b c} \tilde{d}^{a^{\prime} b^{\prime} c^{\prime}} \phi^{a a^{\prime}} \phi^{b b^{\prime}} \phi^{c c^{\prime}} ? \\
i f^{a b c}=\operatorname{Tr}\left[T^{a}\left[T^{b}, T^{c}\right]\right] & d^{a b c}=\operatorname{Tr}\left[T^{a}\left\{T^{b}, T^{c}\right\}\right]
\end{array}
$$

Which model is it?

$$
\begin{aligned}
& f^{a b c} \tilde{f}^{a^{\prime} b^{\prime} c^{\prime}} \phi^{a a^{\prime}} \phi^{b b^{\prime}} \phi^{c c^{\prime}} \quad ? \\
& i f^{a b c}=\operatorname{Tr}\left[T^{a}\left[T^{b}, T^{c}\right]\right]
\end{aligned}
$$

$\mathrm{L}=\mathrm{L} \otimes \mathbf{1}, \quad \mathrm{R}=\mathbf{1} \otimes \mathrm{R}, \quad \mathbf{1}=\mathbf{1} \otimes \mathbf{1}$.

Cubic Bi-Adjoint Scalar model (BAS)

$$
\mathcal{L}_{\mathrm{BAS}}=-\frac{1}{2}\left(\partial_{\mu} \phi^{a a^{\prime}}\right)^{2}-g f^{a b c} \tilde{f}^{a^{\prime} b^{\prime} c^{\prime}} \phi^{a a^{\prime}} \phi^{b b^{\prime}} \phi^{c c^{\prime}}
$$

So that takes care of $1=1 \otimes 1$
What about the rest of the algebra?

The double-copy is a map FT x FT -> FT

The kernel defines the multiplication rule of this map

$\mathrm{FT} \otimes \mathrm{FT}$	YM	$\mathcal{N}=4 \mathrm{SYM}$	$\chi \mathrm{PT}$	BAS
YM	gravity +	$\mathcal{N}=4 \mathrm{SG}$	BI	YM
$\mathcal{N}=4 \mathrm{SYM}$	$\mathcal{N}=4 \mathrm{SG}$	$\mathcal{N}=8 \mathrm{SG}$	$\mathcal{N}=4 \mathrm{sDBI}$	$\mathcal{N}=4 \mathrm{SYM}$
$\chi \mathrm{PT}$	BI	$\mathcal{N}=4 \mathrm{sDBI}$	sGalileon	$\chi \mathrm{PT}$
BAS	YM	$\mathcal{N}=4 \mathrm{SYM}$	$\chi \mathrm{PT}$	BAS

String KLT also has an identity element:
BAS + very specific higher-derivative operators.

KLT algebra

$$
\mathrm{L}=\mathrm{L} \otimes \mathbf{1}, \quad \mathrm{R}=\mathbf{1} \otimes \mathrm{R}, \quad \mathbf{1}=\mathbf{1} \otimes \mathbf{1}
$$

Consider now the double-copy in EFT contexts

Which theories obey the field theory KKBCJ relations? YM theory $\checkmark \quad$ Chiral perturbation theory

Super YM theory \checkmark Bi-adjoint scalar model

What about higher-derivative operators in EFTs?

Which theories obey the field theory KKBCJ relations?
YM theory Chiral perturbation theory

Super YM theory \checkmark Bi-adjoint scalar model

What about higher-derivative operators in EFTs?

Why are some operators allowed and not others? Is this the most general story?

String theory does that!

String theory KLT

KLT originally came from closed string $=(\text { open string })^{2}$ at tree-level

$$
A_{n}^{\mathrm{L} \otimes \mathrm{R}}=\sum_{a, b} A_{n}^{\mathrm{L}}[a] S_{n}[a \mid b] A_{n}^{\mathrm{R}}[b]
$$

string KLT kernel

The KLT kernel is deeply linked with the open string amplitudes to ensure correct pole structure in the closed string amps.
Upon expansion in alpha', this translates to very particular higher-derivative corrections of the kernel:
not the most general options and tuned exactly to the alpha' corrections in the open string.
Example: $\quad S_{4}[1234 \mid 1243]=-\sin \left(\pi \alpha^{\prime} s\right)=-\pi \alpha^{\prime} s+\frac{1}{6}\left(\pi \alpha^{\prime} s\right)^{3}+\ldots$
Only s-dependence, no t or u; why?

$$
\text { Only odd powers in } s \text {; why? }
$$

$$
A_{n}^{\mathrm{L} \otimes \mathrm{R}}=\sum_{a, b} A_{n}^{\mathrm{L}}[a] S_{n}[a \mid b] A_{n}^{\mathrm{R}}[b]
$$

What are the rules for generalizing the KLT kernel?

The generalized double-copy kernel should

1) eliminate double-poles
2) provide "missing" poles
3) not introduce spurious poles

We propose a new framework for systematically analyzing generalizations of the double-copy kernel: the KLT bootstrap
2106.12600 with Chi, A. Herderschee, C. Jones, S. Paranjape

The proposal is based on the KLT algebra

KLT algebra

$$
\mathrm{L}=\mathrm{L} \otimes 1, \quad \mathrm{R}=1 \otimes \mathrm{R}, \quad 1=1 \otimes 1 .
$$

When the multiplication rule is changed, the identity element is changed, and vice versa:
The kernel and the identity model are uniquely linked!

KLT algebra

When the multiplication rule is changed, the identity element is changed, and vice versa:
The kernel and the identity model are uniquely linked!

Bi-Adjoint Scalar model (BAS)

Statement BAS $=$ BAS \times BAS --- or $1=1 \otimes 1$ can be written as

$$
m_{n}[\gamma \mid \delta]=\sum_{\alpha, \beta} m_{n}[\gamma \mid \alpha] S_{n}[\alpha \mid \beta] m_{n}[\beta \mid \delta]
$$

$$
\mathcal{L}_{\mathrm{BAS}}=-\frac{1}{2}\left(\partial_{\mu} \phi^{a a^{\prime}}\right)^{2}-g f^{a b c} \tilde{f}^{a^{\prime} b^{\prime} c^{\prime}} \phi^{a a^{\prime}} \phi^{b b^{\prime}} \phi^{c c^{\prime}}
$$

or in matrix form

$(n-3)!\times(n-3)!$ submatrices

Double-sum over ($n-3$)! color orderings

Bi-Adjoint Scalar model (BAS)

$$
\mathcal{L}_{\mathrm{BAS}}=-\frac{1}{2}\left(\partial_{\mu} \phi^{a a^{\prime}}\right)^{2}-g f^{a b c} \tilde{f}^{a^{\prime} b^{\prime} c^{\prime}} \phi^{a a^{\prime}} \phi^{b b^{\prime}} \phi^{c c^{\prime}}
$$

Statement BAS $=$ BAS \times BAS --- or $1=1 \otimes 1$ can be written as

$$
\begin{aligned}
& \quad m_{n}[\gamma \mid \delta]=\sum_{\alpha, \beta} m_{n}[\gamma \mid \alpha] S_{n}[\alpha \mid \beta] m_{n}[\beta \mid \delta] \quad \text { or in matrix form } \quad m_{n}=m_{n} \cdot S_{n} \cdot m_{n} \\
& \text { So multiplying from both the left and right with inverses of matrices of BAS amplitudes gives } \quad S_{n}=\left(m_{n}\right)^{-1}
\end{aligned}
$$

The field theory KLT kernel is the inverse of an ($n-3$)! x ($n-3$)! submatrix of BAS amplitudes!

Bi-Adjoint Scalar model (BAS)

$$
\mathcal{L}_{\mathrm{BAS}}=-\frac{1}{2}\left(\partial_{\mu} \phi^{a a^{\prime}}\right)^{2}-g f^{a b c} \tilde{f}^{a^{\prime} b^{\prime} c^{\prime}} \phi^{a a^{\prime}} \phi^{b b^{\prime}} \phi^{c c^{\prime}}
$$

Statement BAS $=$ BAS \times BAS --- or $1=1 \otimes 1$ can be written as

$$
\begin{aligned}
& \quad m_{n}[\gamma \mid \delta]=\sum_{\alpha, \beta} m_{n}[\gamma \mid \alpha] S_{n}[\alpha \mid \beta] m_{n}[\beta \mid \delta] \quad \text { or in matrix form } \quad m_{n}=m_{n} \cdot S_{n} \cdot m_{n} \\
& \text { So multiplying from both the left and right with inverses of matrices of BAS amplitudes gives } \quad S_{n}=\left(m_{n}\right)^{-1}
\end{aligned}
$$

The field theory KLT kernel is the inverse of an $(n-3)!x(n-3)!$ submatrix of BAS amplitudes!

4-point case

Tree amplitudes color-ordered wrt both color-factors, e.g.

$$
m_{4}[1234 \mid 1234]=\frac{g^{2}}{s}+\frac{g^{2}}{u}, \quad m_{4}[1234 \mid 1243]=-\frac{g^{2}}{s} \quad \Rightarrow \quad \begin{aligned}
& S_{4}[1234 \mid 1234]=\left(m_{4}[1234 \mid 1234]\right)^{-1}=-\frac{s u}{t g^{2}} \\
& S_{4}[1234 \mid 1243]=\left(m_{4}[1243 \mid 1234]\right)^{-1}=-\frac{s}{g^{2}}
\end{aligned}
$$

Strings KLT kernel

The string theory KLT kernel is the inverse of an ($n-3$)! $\mathrm{x}(\mathrm{n}-3)$! submatrix of BAS+ (specific h.d.) amplitudes!

$$
\begin{gathered}
m_{4}^{\left(\alpha^{\prime}\right)}[1234 \mid 1243]=-\frac{1}{\sin \left(\pi \alpha^{\prime} s\right)}=-\frac{1}{\pi \alpha^{\prime} s}-\frac{1}{6} \pi \alpha^{\prime} s-\frac{7}{360}\left(\alpha^{\prime} \pi s\right)^{3}+\ldots . \\
\text { BAS }
\end{gathered}
$$

KLT bootstrap

$n=4 \Rightarrow(n-1)!=6$ single-trace color-orderings: $1234,1243,1324,1342,1423,1432$
Recall that $1=1 \otimes 1$ means $m_{n}=m_{n} \cdot S_{n} \cdot m_{n}$ and this implies $S_{n}=\left(m_{n}\right)^{-1}$

Written out for rank (4-3)!=1 at 4-point means, for example:

$$
\begin{aligned}
& m_{n}[1234 \mid 1234]=m_{n}[1234 \mid 1243] \frac{1}{m_{4}[1243 \mid 1243]} m_{n}[1243 \mid 1234] \\
& \Longrightarrow m_{n}[1234 \mid 1234] m_{4}[1243 \mid 1243]-m_{n}[1234 \mid 1243] m_{n}[1243 \mid 1234]=0
\end{aligned}
$$

KLT bootstrap

$n=4 \Rightarrow(n-1)!=6$ single-trace color-orderings: $1234,1243,1324,1342,1423,1432$
Recall that $1=1 \otimes 1$ means $m_{n}=m_{n} \cdot S_{n} \cdot m_{n}$ and this implies $S_{n}=\left(m_{n}\right)^{-1}$

Written out for rank (4-3)!=1 at 4-point means, for example:

$$
\begin{aligned}
& m_{n}[1234 \mid 1234]=m_{n}[1234 \mid 1243] \frac{1}{m_{4}[1243 \mid 1243]} m_{n}[1243 \mid 1234] \\
& \Longrightarrow m_{n}[1234 \mid 1234] m_{4}[1243 \mid 1243]-m_{n}[1234 \mid 1243] m_{n}[1243 \mid 1234]=0
\end{aligned}
$$

So this condition is that a 2×2 minor of the 6×6 matrix of $m_{4}[a \mid b]$ amplitudes have to vanish:

$$
\left(\begin{array}{cc|}
\begin{array}{|cc|}
\hline m_{4}[1234 \mid 1234] & m_{4}[1234 \mid 1243] \\
m_{4}[1243 \mid 1234] & m_{4}[1243 \mid 1243]
\end{array} & \cdots \\
\cdots & \cdots
\end{array}\right)
$$

Similarly, all 2×2 minors must vanish! But that's just saying that we must have a rank 1 system. Aha!

KLT bootstrap at 4-pt

6×6 matrix for these amplitudes has rank 6.
4-point KLT bootstrap equations
Imposing the vanishing of all 2×2 minors =>

$$
\begin{aligned}
& f_{1}(s, t)=\frac{f_{2}(s, t) f_{2}(-s-t, s)}{f_{2}(t, s)}, \quad f_{6}(s, t)=f_{1}(s, t) . \\
& f_{2}(s, t) f_{2}(-s-t, s) f_{2}(t,-s-t)=f_{2}(t, s) f_{2}(-s-t, t) f_{2}(s,-s-t) .
\end{aligned}
$$

Solved by BAS and the strings BAS+h.d. amplitudes.

What else solves it?

Most general rank ($\mathrm{n}-3$)! kernel at 4-point

Write the most general ansatz for $f_{2}: \quad f_{2}(s, t)=-\frac{g^{2} \Lambda^{2}}{s}+\sum_{k=0}^{N} \sum_{r=0, k} \frac{a_{k, r}}{\Lambda^{2 k}} s^{r} t^{k-r}$

Solve the KLT bootstrap equations order by order. Impose locality. Result:

$$
\begin{aligned}
f_{2}(s, t)= & -\frac{g^{2} \Lambda^{2}}{s}+\frac{1}{\Lambda^{2}}\left(a_{1,0} t+a_{1,1} s\right)+\frac{a_{2,0}}{\Lambda^{4}} t(s+t) \\
& +\frac{1}{\Lambda^{6}}\left[a_{3,0} t^{3}+a_{3,1} s t^{2}+a_{3,2} s^{2} t+a_{3,3} s^{3}\right]+\mathcal{O}\left(\frac{1}{\Lambda^{8}}\right)
\end{aligned}
$$

Strings result recovered for

> New double-copy kernel much more general.

$$
a_{1,1}=-\frac{1}{6}, \quad a_{3,3}=-\frac{7}{360}, \ldots
$$

and all other $\mathrm{a}_{\mathrm{i}, \mathrm{j}}=0$

4-point result as BAS + h.d. Lagrangian

$$
\left.\begin{array}{rl}
\mathcal{L}= & -\frac{1}{2}\left(\partial_{\mu} \phi^{a a^{\prime}}\right)^{2}-\frac{g}{6} f^{a b c} \tilde{f}^{a^{\prime} b^{\prime} c^{\prime}} \phi^{a a^{\prime}} \phi^{b b^{\prime}} \phi^{c c^{\prime}} \\
& -\frac{a_{\mathrm{L}}+a_{\mathrm{R}}}{2 \Lambda^{4}} f^{a b x} f^{c d x} f^{a^{\prime} b^{\prime} x^{\prime}} f^{c^{\prime} d^{\prime} x^{\prime}}\left(\partial_{\mu} \phi^{a a^{\prime}}\right)\left(\partial^{\mu} \phi^{b b^{\prime}}\right) \phi^{c c^{\prime}} \phi^{d d^{\prime}} \\
& +\frac{a_{\mathrm{L}}}{\Lambda^{4}} f^{a b x} f^{c d x} d^{a^{\prime} b^{\prime} x^{\prime}} d^{c^{\prime} d^{\prime} x^{\prime}}\left(\partial_{\mu} \phi^{a a^{\prime}}\right) \phi^{b b^{\prime}}\left(\partial^{\mu} \phi^{c c^{\prime}}\right) \phi^{d d^{\prime}} \\
& \left.\left.+\frac{a_{\mathrm{R}}}{\Lambda^{4}} d^{a b x} d^{c d x} f^{a b c}=\operatorname{Tr} b^{\prime} x^{\prime} f^{c^{\prime} d^{\prime} x^{\prime}}\left(\partial_{\mu} \phi^{a a^{\prime}}\right) \phi^{b b^{\prime}}\left(\partial^{\mu} \phi^{c c^{\prime}}\right) \phi^{b}, T^{c}\right\}\right] \\
d^{\prime}
\end{array}\right] .
$$

Observations

- There is no $d^{a b c} d^{a^{\prime} b^{\prime} c^{\prime}} \phi_{a a^{\prime}} \phi_{b b^{\prime}} \phi_{c c^{\prime}}$ term: it does not solve the rank 1 bootstrap equations.
- There is no ϕ^{4} term; does not solve the rank 1 bootstrap equations
- The dabc terms modify the $\mathrm{U}(1)$ decoupling identities that are part of the field theory KK relations and generalize the strings monodromy relations.
- Known strings kernel has $\mathrm{a}_{\mathrm{L}}=\mathrm{a}_{\mathrm{R}}$. The generalization allows "heterotic"-type double-copy.

Double-copy of YM + h.d.

Impose generalized KKBCJ relations <=>

$\mathbf{1} \otimes \mathbf{R}=\mathbf{R} \quad \mathbf{L} \otimes \mathbf{1}=\mathbf{L}$
on a general ansatz for MHV 4-pt YM + h.d. to find

And similarly for the R sector.

Summarizing the difference between admissible operators in ordinary field theory KLT vs. the new generalized KLT:
For YM + higher-derivatives
FT KLT YM: $\operatorname{tr} F^{2} \checkmark \operatorname{tr} F^{3} \checkmark \operatorname{tr} F^{4} 1 X \operatorname{tr} D^{2} F^{4} 1 \vee 1 X \operatorname{tr} D^{4} F^{4} 1 \vee 2 X \ldots$ Gen. KLT $\mathrm{YM}: \operatorname{tr} F^{2} \curvearrowright \operatorname{tr} F^{3} \curvearrowright \operatorname{tr} F^{4} 1 \vee \operatorname{tr} D^{2} F^{4} 1 \vee 1 X \operatorname{tr} D^{4} F^{4} 1 \vee 2 \vee \ldots$

Green checkmark: operator allowed with arbitrary coefficient.
Blue checkmark: operator allowed with coefficient fixed by the parameters in the KLT kernel.

Summarizing the difference between admissible operators in ordinary field theory KLT vs. the new generalized KLT:
For YM + higher-derivatives
FT KLT YM: $\operatorname{tr} F^{2} \vee \operatorname{tr} F^{3} \vee \operatorname{tr} F^{4} 1 X \quad \operatorname{tr} D^{2} F^{4} 1 \vee 1 X \operatorname{tr} D^{4} F^{4} 1 \curvearrowright 2 X \ldots$ Gen. KLT Y M: $\operatorname{tr} F^{2} \vee \operatorname{tr} F^{3} \vee \operatorname{tr} F^{4} I \vee \operatorname{tr}^{2} F^{4} 1 \vee 1 X \operatorname{tr} D^{4} F^{4} 1 \vee 2 \vee \ldots$

For chiPT + higher-derivatives
FT KLT χ PT: $\operatorname{tr} \partial^{2} \phi^{n}, \operatorname{tr} \partial^{4} \phi^{4} 2 x \operatorname{tr} \partial^{6} \phi^{4} 1 \sim 1 x \operatorname{tr} \partial^{8} \phi^{4} 1 \sim 2 x \operatorname{tr} \partial^{10} \phi^{4} 1 \sim 2 x$
Gen. KLT $\quad X$ PT: $\operatorname{tr} \partial^{2} \phi^{n} \vee \operatorname{tr} \partial^{4} \phi^{4} 2 X \operatorname{tr} \partial^{6} \phi^{4} 1 \curvearrowright 1 \checkmark \operatorname{tr} \partial^{8} \phi^{4} 1 \curvearrowright 2 X \operatorname{tr} \partial^{10} \phi^{4} 1 / 2 \checkmark$

Green checkmark: operator allowed with arbitrary coefficient.
Blue checkmark: operator allowed with coefficient fixed by the parameters in the KLT kernel.

Summarizing the difference between admissible operators in ordinary field theory KLT vs. the new generalized KLT:
For YM + higher-derivatives
FT KLT YM: $\operatorname{tr} F^{2} \vee \operatorname{tr} F^{3} \vee \operatorname{tr} F^{4} 1 X \quad \operatorname{tr} D^{2} F^{4} 1 \vee 1 X \operatorname{tr} D^{4} F^{4} 1 \curvearrowright 2 X \ldots$ Gen. KLT Y M: $\operatorname{tr} F^{2} \vee \operatorname{tr} F^{3} \vee \operatorname{tr} F^{4} I \vee \operatorname{tr}^{2} F^{4} 1 \vee 1 X \operatorname{tr} D^{4} F^{4} 1 \vee 2 \vee \ldots$

For chiPT + higher-derivatives
fTKLT χ PT: $\operatorname{tr} \partial^{2} \phi^{n} \vee \operatorname{tr} \partial^{4} \phi^{4} 2 x \operatorname{tr} \partial^{6} \phi^{4} \mathcal{N} 1 x \operatorname{tr} \partial^{8} \phi^{4} 1 \checkmark 2 X \operatorname{tr} \partial^{10} \phi^{4} 1 \checkmark 2 x$ Gen. KLT $\quad X$ PT: $\operatorname{tr} \partial^{2} \phi^{n} \vee \operatorname{tr} \partial^{4} \phi^{4} 2 X \operatorname{tr} \partial^{6} \phi^{4} 1 \curvearrowright 1 \checkmark \operatorname{tr} \partial^{8} \phi^{4} 1 \curvearrowright 2 X \operatorname{tr} \partial^{10} \phi^{4} 1 / 2 \checkmark$

Green checkmark: operator allowed with arbitrary coefficient.
Blue checkmark: operator allowed with coefficient fixed by the parameters in the KLT kernel.

For FIXED choice of kernel, this LINKS the coefficients of $\operatorname{tr} F^{4}$ with that of one of $\operatorname{the} \operatorname{tr} \partial^{6} \phi^{4}$ operators.

Double-copy of YM + h.d. -> Gravity ${ }^{+}$+ h.d.

local R^{4} contribution

In the field theory or strings double copy, there is less freedom in the coefficient of R^{4}.

The result of the double-copy: in all cases checked, same operators produced but with shifts of their coefficients.

Higher-point

Necessary to test consistency by going to higher point:

What if the KLT bootstrap at 5-point further fixed some of the 4-point kernel coefficients $a_{i, j}$? (Then we'd be in trouble!)

For $n=5 \quad \Rightarrow \quad(n-1)!=4!=24$ distinct orderings.

Cyclic symmetry + momentum relabelings $\Rightarrow>$ parameterized by 8 functions $g_{i}(s, t), i=1,2, \ldots, 8$.
We impose the rank $(n-3)!=2$ conditions equivalent to $1=1 \otimes 1$ on this 24×24 system and solve.

Found consistent solution for the bootstrapped 5pt (BAS+h.d.) amplitudes; no constraints placed on 4-pt coefficients; in fact, up to quadratic order in Mandelstams, the amplitudes are completely fixed by 4-pt input.

Tested for 5 pt +++++ YM + h.d.

Summary

- We have investigated the algebraic structure of the KLT multiplication rule.
- The KLT algebra gives a systematic way to generalize the double-copy in the KLT form: the double-copy bootstrap.
- Solved as BAS + most general h.d. terms for minimal rank (n-3)! at 4- and 5-point.
- Tested in examples with YM and chiPT.

Outlook

1) To the orders checked, the generalized double-copy produces the same h.d. operators in the double-copy LxR amplitude, but with some shifted Wilson coefficients: why?
small multiplicity / low-enough dim effect? or something more fundamental?
=> Currently studying similarity transformations from "hybrid" double-copy kernels, finding interesting algebraic structures. [Alan Chen \& H.E., work in progress].
2) The method is more than BAS+hd. It is a framework for exploring more general forms of the double-copy:

- Does there exist other form of the double-copy without the cubic BAS interaction?
- Is minimal rank ($n-3$)! fundamental?
- Initiated study of non-minimal rank examples in our paper, more to do.

Outlook

1) To the orders checked, the generalized double-copy produces the same h.d. operators in the double-copy LxR amplitude, but with some shifted Wilson coefficients: why?
small multiplicity / low-enough dim effect? or something more fundamental?
=> Currently studying similarity transformations from "hybrid" double-copy kernels, finding interesting algebraic structures. [Alan Chen \& H.E., work in progress].
2) The method is more than BAS+hd. It is a framework for exploring more general forms of the double-copy:

- Does there exist other form of the double-copy without the cubic BAS interaction?
- Is minimal rank ($n-3$)! fundamental?
- Initiated study of non-minimal rank examples in our paper, more to do.

3) Also, recent work on higher-derivative terms in the color-factors in the $B C J$ formulation
[Carrasco, Rodina, Zekioglu, Z.Yin (2019+2021)]
=> their BCJ-form => BAS + h.d. also with rank ($\mathrm{n}-3$)! (in the examples we have checked)
=> have translated a few examples to their form to ours
The relationship should be studied more.

Example of exact kernel solution

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2}\left(\partial_{\mu} \phi^{a a^{\prime}}\right)^{2}-\frac{g}{6} f^{a b c} \tilde{f}^{a^{\prime} b^{\prime} c^{\prime}} \phi^{a a^{\prime}} \phi^{b b^{\prime}} \phi^{c c^{\prime}} \\
& \frac{\frac{\sum^{\prime}+a_{\mathrm{R}}}{2 \Lambda^{4}} f^{a b x} f^{c d x} f^{a^{\prime} b^{\prime} x^{\prime}} f^{c^{\prime} d^{\prime} x^{\prime}}\left(\partial_{\mu} \phi^{a a^{\prime}}\right)\left(\partial^{\mu} \phi^{b b^{\prime}}\right) \phi^{c c^{\prime}} \phi^{d d^{\prime}}}{} \\
& +\frac{a_{\mathrm{L}} f^{a b x} f^{c d x} a^{\prime} a^{\prime} b^{\prime} x^{\prime} d^{c^{\prime} d^{\prime} x^{\prime}}\left(\partial_{\mu} \phi^{a a^{\prime}}\right) \phi^{b b^{\prime}}\left(\partial^{\mu} \phi^{c c^{\prime}}\right) \phi^{d d^{\prime}}}{\Lambda^{4}} \\
& +\frac{a_{\mathrm{R}}}{\Lambda^{4}} d^{a b x} d^{c d x} f^{a^{\prime} b^{\prime} x^{\prime}} f^{c^{\prime} d^{\prime} x^{\prime}}\left(\partial_{\mu} \phi^{a a^{\prime}}\right) \phi^{b b^{\prime}}\left(\partial^{\mu} \phi^{c c^{\prime}}\right) \phi^{d d^{\prime}}+
\end{aligned}
$$

Exact minimal rank solution at 4pt and 5pt

- L sector unmodified BAS KKBCJ relations
- R sector has modified KKBCJ relations

Kernel

$$
S_{4}[1234 \mid 1234]=\left(m_{4}[1234 \mid 1234]\right)^{-1}=-\frac{g^{2} t}{s u}-4 \frac{a_{\mathrm{R}}}{\Lambda^{4}} t
$$

$$
\mathcal{A}_{4}^{\mathrm{L}}\left[1^{+} 2^{+} 3^{-} 4^{-}\right]=[12]^{2}\langle 34\rangle^{2} \frac{\left(g_{\mathrm{YM}}^{\mathrm{L}}\right)^{2}}{s u}
$$

$$
\mathcal{A}_{4}^{\mathrm{R}}\left[1^{+} 2^{+} 3^{-} 4^{-}\right]=\left(g_{\mathrm{YM}}^{\mathrm{R}}\right)^{2}[12]^{2}\langle 34\rangle^{2}\left[\frac{1}{s u}+\frac{4 a_{\mathrm{R}}}{g^{2} \Lambda^{4}}\right]
$$

Double-copy:

$$
\mathcal{M}_{4}\left(1^{+} 2^{+} 3^{-} 4^{-}\right)=\kappa^{2} \frac{[12]^{4}\langle 34\rangle^{4}}{s t u}
$$

$$
\text { So: } G R=Y M \times\left(Y M+F^{4}\right) \quad!!!
$$

Outlook

1) To the orders checked, the generalized double-copy produces the same h.d. operators in the double-copy LxR amplitude, but with some shifted Wilson coefficients: why?
small multiplicity / low-enough dim effect? or something more fundamental?
=> Currently studying similarity transformations from "hybrid" double-copy kernels, finding interesting algebraic structures. [Alan Chen \& H.E., work in progress].
2) The method is more than BAS+hd. It is a framework for exploring more general forms of the double-copy:

- Does there exist other form of the double-copy without the cubic BAS interaction?
- Is minimal rank ($n-3$)! fundamental?
- Initiated study of non-minimal rank examples in our paper, more to do.

3) Also, recent work on higher-derivative terms in the color-factors in the $B C J$ formulation
[Carrasco, Rodina, Zekioglu, Z.Yin (2019+2021)]
=> their BCJ-form => BAS + h.d. also with rank ($\mathrm{n}-3$)! (in the examples we have checked)
=> have translated a few examples to their form to ours
The relationship should be studied more.
4) Positivity constraints? EFT-hedron? UV completability? What makes the strings kernel special?

Outlook

5) The double-copy also has a celestial version

Is there a celestial formulation of the double-copy bootstrap?

Collaborators

Callum Jones
Graduated April 2020
Postdoc at UCLA

Shruti Paranjape
Graduated Spring 2021
-> UC Davis

Aidan Herderschee
4th year graduate student

Steve Naculich
(Bowdoin)

Thank you

$$
\mathbf{M}
$$

[^0]: Example: all 70 scalars of $\mathrm{N}=8$ supergravity have vanishing

