The Minimal *SU*(5) **Unification Model***

Ilja Doršner

University of Split

Corfu 2021 Summer Institute Workshop on Standard Model and Beyond Corfu, Greece September 5th, 2021

*I.D. and Shaikh Saad, Phys.Rev.D 101 (2020) 1, 015009, arXiv:1910.09008.
I.D., Emina Džaferović-Mašić, and Shaikh Saad, Phys.Rev.D 104 (2021) 1, 015023, arXiv:2105.01678.

•A PARAMETER SPACE ANALYSIS

CONCLUSIONS

SU(5)	$SU(3) \times SU(2) \times U(1)$	SU(5)	SU(3) imes SU(2) imes U(1)
$5_{TT} = \Lambda$	$\Lambda_1\left(1,2,rac{1}{2} ight)$	$\overline{5}_{E} = E$	$L_i\left(1,2,-rac{1}{2} ight)$
$O_H = H$	$\Lambda_3\left(3,1,-rac{1}{3} ight)$	$O_{Fi} = F_i$	$d_{i}^{c}\left(\overline{3},1,rac{1}{3} ight)$
	$\phi_0(1,1,0)$		$Q_i\left(3,2,rac{1}{6} ight)$
	$\phi_1(1,3,0)$	$10_{Fi} \equiv T_i$	$u_{i}^{c}\left(\overline{3},1,-rac{2}{3} ight)$
$24_H\equiv\phi$	$\phi_3\left(3,2,-rac{5}{6} ight)$		$e_{i}^{c}\left(1,1,1 ight)$
	$\phi_{\overline{3}}\left(\overline{3},2,rac{5}{6} ight)$		
	$\phi_8(8,1,0)$		

SU(5)	$SU(3) \times SU(2) \times U(1)$	SU(5)	$SU(3) \times SU(2) \times U(1)$
$5_{TT} = \Lambda$	$\Lambda_1\left(1,2,rac{1}{2} ight)$	$\overline{5}_{E} = E$	$L_i(1, 2, -\frac{1}{2})$
$O_H = H$	$\Lambda_3\left(3,1,-\frac{1}{3}\right)$	$O_{Fi} = P_i$	$d_i^c\left(\overline{3},1,rac{1}{3} ight)$
	$\phi_0\left(1,1,0\right)$		$Q_i\left(3,2,rac{1}{6} ight)$
	$\phi_1\left(1,3,0\right)$	$10_{Fi} \equiv T_i$	$u_{i}^{c}\left(\overline{3},1,-\frac{2}{3}\right)$
$24_H\equiv\phi$	$\phi_3(3,2,-\frac{5}{6})$		$e_{i}^{c}\left(1,1,1 ight)$
	$\phi_{\overline{3}}\left(\overline{3},2,rac{5}{6} ight)$		
	$\phi_8(8,1,0)$		

SU(5)	$SU(3) \times SU(2) \times U(1)$	SU(5)	$SU(3) \times SU(2) \times U(1)$
5 A	$\Lambda_1\left(1,2,rac{1}{2} ight)$	$\overline{5}_{\mathrm{EL}} = F_{\mathrm{EL}}$	$L_i\left(1, 2, -\frac{1}{2}\right)$
$O_H = \Lambda$	$\Lambda_3\left(3,1,-rac{1}{3} ight)$	$O_{Fi} \equiv F_i$	$d_i^c\left(\overline{3},1,rac{1}{3} ight)$
	$\phi_0(1,1,0)$		$Q_i\left(3,2,rac{1}{6} ight)$
	$\phi_1(1,3,0)$	$10_{Fi} \equiv T_i$	$u_i^c\left(\overline{3},1,-rac{2}{3} ight)$
$24_H\equiv\phi$	$\phi_3(3,2,-\frac{5}{6})$		$e_i^c\left(1,1,1 ight)$
	$\phi_{\overline{3}}\left(\overline{3},2,rac{5}{6} ight)$		
	$\phi_8(8,1,0)$		

SU(5)	$SU(3) \times SU(2) \times U(1)$	SU(5)	SU(3) imes SU(2) imes U(1)
$5_{TT} = \Lambda$	$\Lambda_1\left(1,2,rac{1}{2} ight)$	$\overline{5}_{E} = E$	$L_i\left(1,2,-rac{1}{2} ight)$
$O_H = H$	$\Lambda_3\left(3,1,-rac{1}{3} ight)$	$O_{Fi} = F_i$	$d_i^c\left(\overline{3},1,rac{1}{3} ight)$
	$\phi_0\left(1,1,0\right)$		$Q_i\left(3,2,rac{1}{6} ight)$
	$\phi_1(1,3,0)$	$10_{Fi} \equiv T_i$	$u_i^c\left(\overline{3},1,-rac{2}{3} ight)$
$24_H\equiv\phi$	$\phi_3\left(3,2,-rac{5}{6} ight)$		$e_{i}^{c}\left(1,1,1 ight)$
	$\phi_{\overline{3}}\left(\overline{3},2,rac{5}{6} ight)$		
	$\phi_8(8,1,0)$		

- NEUTRINOS ARE MASLESSS
- GAUGE COUPLING UNIFICATION DOES NOT TAKE PLACE
- $m_e = m_d, m_\mu = m_s, m_\tau = m_b$

SU(5)	$SU(3) \times SU(2) \times U(1)$	SU(5)	SU(3) imes SU(2) imes U(1)
$5_{\rm rr} = \Lambda$	$\Lambda_1\left(1,2,rac{1}{2} ight)$	$\overline{5}_{Ei} = E_i$	$L_i\left(1,2,-rac{1}{2} ight)$
0H = H	$\Lambda_3\left(3,1,-rac{1}{3} ight)$	$O_{F_i} = I_i$	$d_{i}^{c}\left(\overline{3},1,rac{1}{3} ight)$
	$\phi_0(1,1,0)$		$Q_i\left(3,2,rac{1}{6} ight)$
	$\phi_1(1,3,0)$	$10_{Fi} \equiv T_i$	$u_i^c\left(\overline{3},1,-rac{2}{3} ight)$
$24_H \equiv \phi$	$\phi_3\left(3,2,-rac{5}{6} ight)$		$e_{i}^{c}\left(1,1,1 ight)$
	$\phi_{\overline{3}}\left(\overline{3},2,rac{5}{6} ight)$		$\Sigma_1(1,3,1)$
	$\phi_8(8,1,0)$	$15_F \equiv \Sigma$	$\Sigma_3\left(3,2,rac{1}{6} ight)$
	$\Phi_1\left(1,4,-rac{3}{2} ight)$		$\Sigma_{6}(6, 1, -\frac{2}{3})$
$35_H \equiv \Phi$	$\Phi_3\left(\overline{3},3,-rac{2}{3} ight)$		$\overline{\Sigma}_1 \ (1,3,-1)$
	$\Phi_6\left(\overline{6},2,rac{1}{6} ight)$	$\overline{15}_F \equiv \overline{\Sigma}$	$\overline{\Sigma}_3\left(\overline{3},2,-rac{1}{6} ight)$
	$\Phi_{10}\left(\overline{10},1,1 ight)$		$\overline{\Sigma}_6\left(\overline{6}, 1, \frac{2}{3}\right)$

SU(5)	$SU(3) \times SU(2) \times U(1)$	SU(5)	$SU(3) \times SU(2) \times U(1)$
$5_{II} = \Lambda$	$\Lambda_1\left(1,2,rac{1}{2} ight)$	$\overline{5}_{\mathrm{E}} = F_{\mathrm{e}}$	$L_i\left(1,2,-rac{1}{2} ight)$
01 = 11	$\Lambda_3\left(3,1,-rac{1}{3} ight)$	$o_{F_i} = 1_i$	$d_{i}^{c}\left(\overline{3},1,rac{1}{3} ight)$
	$\phi_0\left(1,1,0\right)$		$Q_i\left(3,2,rac{1}{6} ight)$
	$\phi_1 \ (1,3,0)$	$10_{Fi} \equiv T_i$	$u_i^c\left(\overline{3},1,-rac{2}{3} ight)$
$24_H\equiv\phi$	$\phi_3\left(3,2,-rac{5}{6} ight)$		$e_{i}^{c}\left(1,1,1 ight)$
	$\phi_{\overline{3}}\left(\overline{3},2,rac{5}{6} ight)$		$\Sigma_1(1,3,1)$
	$\phi_8 (8, 1, 0)$	$15_F \equiv \Sigma$	$\Sigma_3\left(3,2,rac{1}{6} ight)$
	$\Phi_1(1, 4, -\frac{3}{2})$		$\Sigma_{6}(6, 1, -\frac{2}{3})$
$35_{II} = \Phi$	$\Phi_3(\overline{3}, 3, -\frac{2}{3})$		$\overline{\Sigma}_1 \ (1,3,-1)$
	$\Phi_6\left(\overline{6},2,rac{1}{6} ight)$	$\overline{15}_F \equiv \overline{\Sigma}$	$\overline{\Sigma}_3\left(\overline{3},2,-rac{1}{6} ight)$
	$\Phi_{10}\left(\overline{10},1,1 ight)$		$\overline{\Sigma}_6\left(\overline{6}, 1, \frac{2}{3}\right)$

SU(5)	$SU(3) \times SU(2) \times U(1)$	SU(5)	SU(3) imes SU(2) imes U(1)
$5_H \equiv \Lambda$	$\Lambda_1\left(1,2,rac{1}{2} ight)$	$\overline{5}_{Ei} \equiv F_i$	$L_i\left(1,2,-rac{1}{2} ight)$
	$\Lambda_3\left(3,1,-\frac{1}{3} ight)$		$d_{i}^{c}\left(\overline{3},1,rac{1}{3} ight)$
	$\phi_0\left(1,1,0\right)$		$Q_i\left(3,2,rac{1}{6} ight)$
	$\phi_1\left(1,3,0\right)$	$10_{Fi} \equiv T_i$	$u_i^c\left(\overline{3},1,-rac{2}{3} ight)$
$24_H\equiv\phi$	$\phi_3(3, 2, -\frac{5}{6})$		$e_{i}^{c}\left(1,1,1 ight)$
	$\phi_{\overline{3}}\left(\overline{3},2,rac{5}{6} ight)$		$\Sigma_1(1,3,1)$
	$\phi_8(8,1,0)$	$15_F \equiv \Sigma$	$\Sigma_3\left(3,2,rac{1}{6} ight)$
	$\Phi_1(1, 4, -\frac{3}{2})$		$\Sigma_{6}(6, 1, -\frac{2}{3})$
$35_{TT} = \Phi$	$\Phi_3(\overline{3},3,-\frac{2}{3})$	$\overline{15}_F \equiv \overline{\Sigma}$	$\overline{\Sigma}_1 \ (1,3,-1)$
	$\Phi_6\left(\overline{6},2,rac{1}{6} ight)$		$\overline{\Sigma}_3\left(\overline{3},2,-rac{1}{6} ight)$
	$\Phi_{10}\left(\overline{10},1,1 ight)$		$\overline{\Sigma}_6\left(\overline{6}, 1, \frac{2}{3}\right)$

<u>A NOVEL SU(5) MODEL PROPOSAL*</u>

SU(5)	$SU(3) \times SU(2) \times U(1)$	SU(5)	SU(3) imes SU(2) imes U(1)
$5_{II} = \Lambda$	$\Lambda_1\left(1,2,rac{1}{2} ight)$	$\overline{5}_{\mathrm{E}} = F_{\mathrm{e}}$	$L_i\left(1,2,-rac{1}{2} ight)$
011 = 11	$\Lambda_3\left(3,1,-rac{1}{3} ight)$	$\sigma_{Fi} = Fi$	$d_{i}^{c}\left(\overline{3},1,rac{1}{3} ight)$
	$\phi_0\left(1,1,0\right)$		$Q_i\left(3,2,rac{1}{6} ight)$
	$\phi_1\left(1,3,0\right)$	$10_{Fi} \equiv T_i$	$u_i^c\left(\overline{3},1,-rac{2}{3} ight)$
$24_H\equiv\phi$	$\phi_3\left(3,2,-rac{5}{6} ight)$		$e_{i}^{c}\left(1,1,1 ight)$
	$\phi_{\overline{3}}\left(\overline{3},2,rac{5}{6} ight)$		$\Sigma_1(1,3,1)$
	$\phi_8(8,1,0)$	$15_F \equiv \Sigma$	$\Sigma_3\left(3,2,rac{1}{6} ight)$
	$\Phi_1(1, 4, -\frac{3}{2})$		$\Sigma_{6}(6, 1, -\frac{2}{3})$
$35_{TT} = \Phi$	$\Phi_3(\overline{3}, 3, -\frac{2}{3})$		$\overline{\Sigma}_1 \ (1,3,-1)$
	$\Phi_6\left(\overline{6},2,rac{1}{6} ight)$	$\overline{15}_F \equiv \overline{\Sigma}$	$\overline{\Sigma}_3\left(\overline{3},2,-rac{1}{6} ight)$
	$\Phi_{10}\left(\overline{10},1,1 ight)$		$\overline{\Sigma}_6\left(\overline{6}, 1, \frac{2}{3}\right)$

 v_{24} - SU(5) breaking VEV

*I.D. and Shaikh Saad, Phys.Rev.D 101 (2020) 1, 015009, arXiv:1910.09008.

 v_5 - electroweak VEV

SU(5)	$SU(3) \times SU(2) \times U(1)$	SU(5)	$SU(3) \times SU(2) \times U(1)$
5 A	$\Lambda_1\left(1,2,rac{1}{2} ight)$	$\overline{5}_{\mathrm{EV}} = F_{\mathrm{V}}$	$L_i(1, 2, -\frac{1}{2})$
$O_H = H$	$\Lambda_3\left(3,1,-rac{1}{3} ight)$	$O_{F_1} = I_1$	$d_i^c\left(\overline{3},1,rac{1}{3} ight)$
	$\phi_0(1,1,0)$		$Q_i\left(3,2,rac{1}{6} ight)$
	$\phi_1(1,3,0)$	$10_{Fi} \equiv T_i$	$u_i^c\left(\overline{3},1,-rac{2}{3} ight)$
$24_H \equiv \phi$	$\phi_3\left(3,2,-rac{5}{6} ight)$		$e_i^c\left(1,1,1 ight)$
	$\phi_{\overline{3}}\left(\overline{3},2,rac{5}{6} ight)$	$15_F \equiv \Sigma$	$\Sigma_1(1,3,1)$
	$\phi_8(8,1,0)$		$\Sigma_3\left(3,2,rac{1}{6} ight)$
	$\Phi_1\left(1,4,-\frac{3}{2}\right)$		$\Sigma_{6}\left(6,1,-\frac{2}{3}\right)$
$35_H \equiv \Phi$	$\Phi_{3}\left(\overline{3},3,-\frac{2}{3}\right)$		$\overline{\Sigma}_1 \ (1,3,-1)$
	$\Phi_6\left(\overline{6},2,rac{1}{6} ight)$	$\overline{15}_F \equiv \overline{\Sigma}$	$\overline{\Sigma}_3\left(\overline{3},2,-rac{1}{6} ight)$
	$\Phi_{10}\left(\overline{10},1,1 ight)$		$\overline{\Sigma}_6\left(\overline{6}, 1, \frac{2}{3}\right)$

SU(5)	$SU(3) \times SU(2) \times U(1)$	SU(5)	$SU(3) \times SU(2) \times U(1)$
$5_{TT} = \Lambda$	$\Lambda_1\left(1,2,rac{1}{2} ight)$	$\overline{5}_{E} = E$	$L_i\left(1,2,-\frac{1}{2} ight)$
$O_H = H$	$\Lambda_3\left(3,1,-rac{1}{3} ight)$	$O_{Fi} = I_i$	$d_i^c\left(\overline{3},1,rac{1}{3} ight)$
	$\phi_0\left(1,1,0\right)$		$Q_i\left(3, 2, \frac{1}{6}\right)$
	$\phi_1 \ (1,3,0)$	$10_{Fi} \equiv T_i$	$u_i^c\left(\overline{3},1,-rac{2}{3} ight)$
$24_H \equiv \phi$	$\phi_3\left(3,2,-rac{5}{6} ight)$		$e_i^c\left(1,1,1 ight)$
	$\phi_{\overline{3}}\left(\overline{3},2,rac{5}{6} ight)$		$\Sigma_1(1,3,1)$
	$\phi_8 (8,1,0)$	$15_F \equiv \Sigma$	$\Sigma_3(3, 2, \frac{1}{6})$ *
	$\Phi_1\left(1,4,-rac{3}{2} ight)$		$\Sigma_{6}\left(6,1,-\frac{2}{3}\right)$
$35_H \equiv \Phi$	$\Phi_3\left(\overline{3},3,-\frac{2}{3}\right)$		$\overline{\Sigma}_1 \ (1,3,-1)$
	$\Phi_6\left(\overline{6},2,rac{1}{6} ight)$	$\overline{15}_F \equiv \overline{\Sigma}$	$\overline{\Sigma}_3\left(\overline{3},2,-rac{1}{6} ight)$
	$\Phi_{10}\left(\overline{10},1,1 ight)$		$\overline{\Sigma}_6\left(\overline{6}, 1, \frac{2}{3}\right)$

*N. Oshimo,, Phys.Rev.D 80 (2009) 075011, arXiv:0907.3400.

SU(5)	SU(3) imes SU(2) imes U(1)	SU(5)	SU(3) imes SU(2) imes U(1)
$5_H \equiv \Lambda$	$\Lambda_1\left(1,2,rac{1}{2} ight)$	$\overline{5}_{Fi} \equiv F_i$	$L_i(1,2,-\frac{1}{2})$
	$\Lambda_3\left(3,1,-\frac{1}{3} ight)$		$d_i^c\left(3,1,rac{1}{3} ight)$
	$\phi_0\left(1,1,0\right)$		$Q_i\left(3,2,rac{1}{6} ight)$
	$\phi_1\left(1,3,0\right)$	$10_{Fi} \equiv T_i$	$u_i^c\left(\overline{3},1,-rac{2}{3} ight)$
$24_H \equiv \phi$	$\phi_3\left(3,2,-rac{5}{6} ight)$		$e_{i}^{c}\left(1,1,1 ight)$
	$\phi_{\overline{3}}\left(\overline{3},2,rac{5}{6} ight)$		$\Sigma_1(1,3,1)$
	$\phi_8(8,1,0)$	$15_F \equiv \Sigma$	$\Sigma_3\left(3,2,rac{1}{6} ight)$
	$\Phi_1(1, 4, -\frac{3}{2})$		$\Sigma_{6}(6, 1, -\frac{2}{3})$
$35_H \equiv \Phi$	$\Phi_3\left(\overline{3},3,-\frac{2}{3} ight)$	$\overline{15}_F \equiv \overline{\Sigma}$	$\overline{\Sigma}_1 \ (1,3,-1)$
	$\Phi_6\left(\overline{6},2,rac{1}{6} ight)$		$\overline{\Sigma}_3\left(\overline{3},2,-rac{1}{6} ight)$
	$\Phi_{10}\left(\overline{10},1,1 ight)$		$\overline{\Sigma}_6\left(\overline{6}, 1, \frac{2}{3}\right)$

$$\mathcal{L} \supset \left\{ +Y_{ij}^{u} T_{i}^{\alpha\beta} T_{j}^{\gamma\delta} \Lambda^{\rho} \epsilon_{\alpha\beta\gamma\delta\rho} + Y_{ij}^{d} T_{i}^{\alpha\beta} F_{\alpha j} \Lambda_{\beta}^{*} + Y_{i}^{a} \Sigma^{\alpha\beta} F_{\alpha i} \Lambda_{\beta}^{*} + Y_{i}^{b} \overline{\Sigma}_{\beta\gamma} F_{\alpha i} \Phi^{*\alpha\beta\gamma} \right. \\ \left. +Y_{i}^{c} T_{i}^{\alpha\beta} \overline{\Sigma}_{\beta\gamma} \phi_{\alpha}^{\gamma} + \text{h.c.} \right\} + M_{\Sigma} \overline{\Sigma}_{\alpha\beta} \Sigma^{\alpha\beta} + y \, \overline{\Sigma}_{\alpha\beta} \Sigma^{\beta\gamma} \phi_{\gamma}^{\alpha} \\ \left. -\mu_{\Lambda}^{2} \left(\Lambda_{\alpha}^{*} \Lambda^{\alpha} \right) + \lambda_{0}^{\Lambda} \left(\Lambda_{\alpha}^{*} \Lambda^{\alpha} \right)^{2} + \mu_{1} \Lambda_{\alpha}^{*} \Lambda^{\beta} \phi_{\beta}^{\alpha} + \lambda_{1}^{\Lambda} \left(\Lambda_{\alpha}^{*} \Lambda^{\alpha} \right) \left(\phi_{\gamma}^{\beta} \phi_{\beta}^{\gamma} \right) + \lambda_{2}^{\Lambda} \Lambda_{\alpha}^{*} \Lambda^{\beta} \phi_{\beta}^{\gamma} \phi_{\gamma}^{\alpha} \\ \left. -\mu_{\phi}^{2} \left(\phi_{\gamma}^{\beta} \phi_{\beta}^{\gamma} \right) + \mu_{2} \phi_{\beta}^{\alpha} \phi_{\gamma}^{\beta} \phi_{\alpha}^{\gamma} + \lambda_{0}^{\phi} \left(\phi_{\gamma}^{\beta} \phi_{\beta}^{\gamma} \right)^{2} + \lambda_{1}^{\phi} \phi_{\beta}^{\alpha} \phi_{\gamma}^{\gamma} \phi_{\delta}^{\gamma} \phi_{\alpha}^{\delta} + \mu_{\Phi}^{2} \left(\Phi^{*\alpha\beta\gamma} \Phi_{\alpha\beta\gamma} \right) \\ \left. + \lambda_{0}^{\Phi} \left(\Phi^{*\alpha\beta\gamma} \Phi_{\alpha\beta\gamma} \right)^{2} + \lambda_{1}^{\Phi} \Phi^{*\alpha\beta\gamma} \Phi_{\alpha\beta\delta} \Phi^{*\delta\rho\sigma} \Phi_{\rho\sigma\gamma} + \lambda_{0} \left(\Phi^{*\alpha\beta\gamma} \Phi_{\alpha\beta\gamma} \right) \left(\phi_{\rho}^{\delta} \phi_{\beta}^{\rho} \right) \\ \left. + \lambda_{0}^{\prime} \left(\Phi^{*\alpha\beta\gamma} \Phi_{\alpha\beta\gamma} \right) \left(\Lambda_{\rho}^{*} \Lambda^{\rho} \right) + \lambda_{0}^{\prime\prime} \Phi^{*\alpha\beta\gamma} \Phi_{\beta\gamma\delta} \Lambda^{\delta} \Lambda_{\alpha}^{*} + \mu_{3} \Phi^{*\alpha\beta\gamma} \Phi_{\beta\gamma\delta} \phi_{\alpha}^{\delta} \\ \left. + \lambda_{1} \Phi^{*\alpha\beta\gamma} \Phi_{\alpha\delta\rho} \phi_{\beta}^{\delta} \phi_{\gamma}^{\rho} + \lambda_{2} \Phi^{*\alpha\beta\rho} \Phi_{\alpha\beta\delta} \phi_{\rho}^{\gamma} \phi_{\gamma}^{\delta} + \left\{ \lambda^{\prime} \Lambda^{\alpha} \Lambda^{\beta} \Lambda^{\gamma} \Phi_{\alpha\beta\gamma} + \text{h.c.} \right\} ,$$

$$\mathcal{L} \supset \left\{ +Y_{ij}^{u} T_{i}^{\alpha\beta} T_{j}^{\gamma\delta} \Lambda^{\rho} \epsilon_{\alpha\beta\gamma\delta\rho} + Y_{ij}^{d} T_{i}^{\alpha\beta} F_{\alpha j} \Lambda_{\beta}^{*} + Y_{i}^{a} \Sigma^{\alpha\beta} F_{\alpha i} \Lambda_{\beta}^{*} + Y_{i}^{b} \overline{\Sigma}_{\beta\gamma} F_{\alpha i} \Phi^{*\alpha\beta\gamma} \right. \\ \left. +Y_{i}^{c} T_{i}^{\alpha\beta} \overline{\Sigma}_{\beta\gamma} \phi_{\alpha}^{\gamma} + \text{h.c.} \right\} + M_{\Sigma} \overline{\Sigma}_{\alpha\beta} \Sigma^{\alpha\beta} + y \, \overline{\Sigma}_{\alpha\beta} \Sigma^{\beta\gamma} \phi_{\gamma}^{\alpha} \\ \left. -\mu_{\Lambda}^{2} \left(\Lambda_{\alpha}^{*} \Lambda^{\alpha} \right) + \lambda_{0}^{\Lambda} \left(\Lambda_{\alpha}^{*} \Lambda^{\alpha} \right)^{2} + \mu_{1} \Lambda_{\alpha}^{*} \Lambda^{\beta} \phi_{\beta}^{\alpha} + \lambda_{1}^{\Lambda} \left(\Lambda_{\alpha}^{*} \Lambda^{\alpha} \right) \left(\phi_{\gamma}^{*} \phi_{\beta}^{\gamma} \right) + \lambda_{2}^{\Lambda} \Lambda_{\alpha}^{*} \Lambda^{\beta} \phi_{\beta}^{\gamma} \phi_{\gamma}^{\alpha} \\ \left. -\mu_{\phi}^{2} \left(\phi_{\gamma}^{\beta} \phi_{\beta}^{\gamma} \right) + \mu_{2} \phi_{\beta}^{\alpha} \phi_{\gamma}^{\beta} \phi_{\alpha}^{\gamma} + \lambda_{0}^{\phi} \left(\phi_{\gamma}^{\beta} \phi_{\beta}^{\gamma} \right)^{2} + \lambda_{1}^{\phi} \phi_{\beta}^{\alpha} \phi_{\gamma}^{\beta} \phi_{\delta}^{\gamma} \phi_{\delta}^{\delta} + \mu_{\Phi}^{2} \left(\Phi^{*\alpha\beta\gamma} \Phi_{\alpha\beta\gamma} \right) \\ \left. + \lambda_{0}^{\Phi} \left(\Phi^{*\alpha\beta\gamma} \Phi_{\alpha\beta\gamma} \right)^{2} + \lambda_{1}^{\Phi} \Phi^{*\alpha\beta\gamma} \Phi_{\alpha\beta\delta} \Phi^{*\delta\rho\sigma} \Phi_{\rho\sigma\gamma} + \lambda_{0} \left(\Phi^{*\alpha\beta\gamma} \Phi_{\alpha\beta\gamma} \right) \left(\phi_{\rho}^{\delta} \phi_{\beta}^{\rho} \right) \\ \left. + \lambda_{0}^{\prime} \left(\Phi^{*\alpha\beta\gamma} \Phi_{\alpha\beta\gamma} \right) \left(\Lambda_{\rho}^{*} \Lambda^{\rho} \right) + \lambda_{0}^{\prime\prime} \Phi^{*\alpha\beta\gamma} \Phi_{\beta\gamma\delta} \Lambda^{\delta} \Lambda_{\alpha}^{*} + \mu_{3} \Phi^{*\alpha\beta\gamma} \Phi_{\beta\gamma\delta} \phi_{\alpha}^{\delta} \\ \left. + \lambda_{1} \Phi^{*\alpha\beta\gamma} \Phi_{\alpha\delta\rho} \phi_{\beta}^{\delta} \phi_{\gamma}^{\rho} + \lambda_{2} \Phi^{*\alpha\beta\rho} \Phi_{\alpha\beta\delta} \phi_{\rho}^{\gamma} \phi_{\gamma}^{\delta} + \left\{ \lambda^{\prime} \Lambda^{\alpha} \Lambda^{\beta} \Lambda^{\gamma} \Phi_{\alpha\beta\gamma} + \text{h.c.} \right\} ,$$

PARTICLE CONTENT:

$$5_H, 24_H, 35_H, \overline{5}_{Fi}, 10_{Fi}, 15_F, \overline{15}_F$$
 $i = 1, 2, 3$
YUKAWA COUPLINGS:
 $Y_i^a, Y_i^b, Y_i^c, Y_{ij}^u, Y_{ij}^d, y$ $i, j = 1, 2, 3$

NEUTRINO MASSES *

 $\mathcal{L} \supset \lambda' \ 5_H 5_H 5_H 35_H + Y_i^a \ 15_F \overline{5}_F {}_i 5_H^* + Y_i^b \ \overline{15}_F \overline{5}_F {}_i 35_H^*$

NEUTRINO MASSES *

 $(M_N)_{ij} = m_0 \left(Y_i^a Y_j^b + Y_i^b Y_j^a \right) \qquad m_0 = \frac{\lambda' v_5^2}{16\pi^2} \frac{M_{\Sigma_1}}{M_{\Sigma_1}^2 - M_{\Phi_1}^2} \log\left(\frac{M_{\Sigma_1}^2}{M_{\Phi_1}^2}\right)$

*K.S. Babu, S. Nandi, and Z. Tavartkiladze, Phys.Rev.D 80 (2009) 071702, arXiv:0905.2710.

CHARGED FERMION MASSES

GEORGI-GLASHOW MODEL:*

 $(M_U)_{ij} = 4v_5(Y^u_{ij} + Y^u_{ji})$

$$(M_D)_{ij} = v_5 \left(Y_{ij}^d
ight)$$

$$(M_E)_{ij} = v_5 Y^d_{ji}$$

CHARGED FERMION MASSES *

$$(M_U)_{ij} = 4v_5(Y^u_{ij} + Y^u_{ji})$$

$$(M_D)_{ij} = v_5 \left(Y^d_{ij} + \delta' \; Y^c_i Y^a_j
ight)$$

$$(M_E)_{ij} = v_5 Y_{ji}^d$$

$$\delta' \equiv \sqrt{10/3} v_{24}/(4M_{\Sigma_3})$$

FERMION MASSES *

$$(M_U)_{ij} = 4v_5(Y^u_{ij} + Y^u_{ji})$$

 $(M_D)_{ij} = v_5 \left(Y^d_{ij} + \delta' Y^c_i Y^a_j\right)$
 $(M_E)_{ij} = v_5 Y^d_{ji}$
 $(M_N)_{ij} = m_0 \left(Y^a_i Y^b_j + Y^b_i Y^a_j\right)$

PARAMETER SPACE ANALYSIS *

- GAUGE COUPLING UNIFICATION ($\max(M_{GUT})$)

 $M \equiv \min(M_J), \qquad J = \Phi_1, \Phi_3, \Phi_6, \Phi_{10}, \Sigma_1, \Sigma_3, \Sigma_6, \phi_1, \phi_8, \Lambda_3$

*I.D., Emina Džaferović-Mašić, and Shaikh Saad, Phys.Rev.D 104 (2021) 1, 015023, arXiv:2105.01678.

PARAMETER SPACE ANALYSIS

- GAUGE COUPLING UNIFICATION

 $M \equiv \min(M_J), \qquad J = \Phi_1, \Phi_3, \Phi_6, \Phi_{10}, \Sigma_1, \Sigma_3, \Sigma_6, \phi_1, \phi_8, \Lambda_3$

*I. Cordero-Carrión, M. Hirsch, and A. Vicente, Phys.Rev.D 101 no. 7, (2020) 075032, arXiv:1912.08858.

PARAMETER SPACE ANALYSIS *

- GAUGE COUPLING UNIFICATION

 $M \equiv \min(M_J), \qquad J = \Phi_1, \Phi_3, \Phi_6, \Phi_{10}, \Sigma_1, \Sigma_3, \Sigma_6, \phi_1, \phi_8, \Lambda_3$ $M_{\rm GUT}$ - FERMION MASS FIT $\alpha_{\rm GUT}^{-1}$ M_{Σ_1} $\Sigma_1\left(1,3,1
ight)$ - PROTON DECAY ANALYSIS m_0 $M_U = U_L M_U^{\text{diag}} U_R^{\dagger} \,,$ $M_D = D_L M_D^{\rm diag} D_R^{\dagger}$ $\begin{pmatrix} M_{\Phi_1} \\ 1, 4, -\frac{3}{2} \end{pmatrix}$ $M_E \equiv E_L M_E^{\rm diag} E_R^{\dagger} \,,$ Φ_1 $M_N = N M_N^{\text{diag}} N^T,$

*I.D., Emina Džaferović-Mašić, and Shaikh Saad, Phys.Rev.D 104 (2021) 1, 015023, arXiv:2105.01678.

*I.D., Emina Džaferović-Mašić, and Shaikh Saad, Phys.Rev.D 104 (2021) 1, 015023, arXiv:2105.01678.

PARAMETER SPACE ANALYSIS

*I.D., Emina Džaferović-Mašić, and Shaikh Saad, Phys.Rev.D 104 (2021) 1, 015023, arXiv:2105.01678.

*I.D., Emina Džaferović-Mašić, and Shaikh Saad, Phys.Rev.D 104 (2021) 1, 015023, arXiv:2105.01678.

*I.D., Emina Džaferović-Mašić, and Shaikh Saad, Phys.Rev.D 104 (2021) 1, 015023, arXiv:2105.01678.

*I.D., Emina Džaferović-Mašić, and Shaikh Saad, Phys.Rev.D 104 (2021) 1, 015023, arXiv:2105.01678.

PARAMETER SPACE ANALYSIS *

*I.D., Emina Džaferović-Mašić, and Shaikh Saad, Phys.Rev.D 104 (2021) 1, 015023, arXiv:2105.01678.

CONCLUSIONS

CONCLUSIONS

CONCLUSIONS

- AN IMPROVEMENT OF THE CURRENT $p \rightarrow \pi^0 e^+$ LIFETIME LIMIT BY A FACTOR OF 2, 15, AND 96 WOULD REQUIRE THESE FOUR SCALAR MULTIPLETS TO RESIDE AT OR BELOW THE 100 TeV, 10 TeV, AND 1 TeV MASS SCALES, RESPECTIVELY.

THANK YOU

dorsner@fesb.hr