A far-from-equilibrium horizon

Costas BACHAS

(ENS, Paris)

Humboldt Kolleg on Quantum Gravity and Fundamental Interactions
SEPTEMBER 17 - SEPTEMBER 21, 2021

In memory of Theodore Tomaras

A dear friend and outstanding scientist

Based on 2101.12529;
 2107.00965; \& in progress

with Vassilis Papadopoulos

\& Zhongwu Chen

See also 2006.11333 w. Shira Chapman, Dongsheng Ge, Giuseppe Policastro

1. Introduction

(Near) static gravitational horizons, related to (near) equilibrium thermodynamical systems, are well studied and well understood. Beckenstein, Hawking, ... Jacobson, . . .

Much less is known far from equilibrium

Local versus event horizon?

Light rays one-way

Causally disconnected

Stationary states are a particular set of states where progress looks possible

In this talk I will describe a simple far-from-equilibrium system for which exact calculations are possible. The hope is that one will learn from it some more general lessons.

The system in question is that of a gravitating domain wall anchored at an AdS boundary

These are ubiquitous in quantum gravity for very different reasons:
-- bridges in the QG lanscape
(phase coexistence, bubble nucleation, cosmology)
-- Randall-Sundrum compactifications \& localized gravity
-- Enter in recent toy models of the Page curve

> I will not dwell on these issues in today's talk

2. Thin brane \& dual ICFT

Most gravitating domain walls are thick. But starting with the famous paper of Coleman \& De Lucia, a frequently-used approximation is that of thin walls.

The minimal action

$$
\begin{aligned}
& I_{\mathrm{gr}}=-\frac{1}{2} \int_{\mathbb{S}_{1}} d^{3} x \sqrt{g_{1}}\left(R_{1}+\frac{2}{\ell_{1}^{2}}\right)-\frac{1}{2} \int_{\mathbb{S}_{2}} d^{3} x \sqrt{g_{2}}\left(R_{2}+\frac{2}{\ell_{2}^{2}}\right) \\
&+\lambda \int_{\mathbb{W}} d^{2} s \sqrt{\hat{g}_{w}}+\mathrm{GHY} \text { terms }+\mathrm{ct}
\end{aligned}
$$

depends on 3 dimensionless parameters $\quad \ell_{1}, \ell_{2}, \lambda \quad$ (with $8 \pi G=1$)

We will work in $2+1$ dimensions. The thin wall is a simple form of 'matter.'
Take $\ell_{1} \leq \ell_{2}$. A simple calculation shows that vacuum domain walls exist for

False vacuum unstable to bubble nucleation

BPS values for flat walls

Domain wall inflates

Vilenkin '81 Ipser, Sikivie '83 Karch, Randall '01

Cvetic, Griffies, Rey '92
Cardoso, Dall'Agata, Lust '02
Ceresole et al '06

Holographic dual :

The wall hits the AdS boundary at the location of a conformal interface

Karch, Randall '01
CB, de Boer, Dijkgraaf, Ooguri ‘02

radial coordinate

Scales chararizing the state (temperature, heat flow, volume) deform the interior geometry of both the bulks and the wall away from AdS

Dictionary:

Central charges

$$
c_{j}=12 \pi \ell_{j}
$$

Entropy

$$
\log g_{\mathrm{I}}=2 \pi \ell_{1} \ell_{2}\left[\lambda_{\max } \tanh ^{-1}\left(\frac{\lambda}{\lambda_{\max }}\right)-\lambda_{\min } \tanh ^{-1}\left(\frac{\lambda_{\min }}{\lambda}\right)\right]
$$

Simidzija, Van Raamsdonk '20
Azeyanagi, Karch, Takayanagi, Thompson '07

Energy transmission coeffs
 $$
\mathscr{T}_{1 \rightarrow 2}=\frac{\lambda_{\max }+\lambda_{\min }}{\lambda_{\max }+\lambda}, \quad \mathscr{T}_{2 \rightarrow 1}=\frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }+\lambda}
$$

CB, Chapman, Ge, Policastro '20

This minimal bottom-up model is at best a useful approximation to full-fledged top-down dual pairs. It captures however the 3 universal ICFT operators:

In this talk I will describe some interesting far-from-equilibrium states of this system and compare with what is known/expected from the field theory side.

3. Out-of-equilibrium ICFT

A simple set of states of a homogeneous q-wire

This is a fake out-of-equilibrium state, since left and right movers dont interact. (chemical potential for conserved momentum)

To make things more interesting introduce a defect (or junction/interface):

$$
\begin{aligned}
\left\langle T_{++}^{(1)}\right\rangle & =\mathscr{R}_{1} \frac{\pi c_{1}}{12} \Theta_{1}^{2}+\mathscr{T}_{2} \frac{\pi c_{2}}{12} \Theta_{2}^{2} \\
\left\langle T_{++}^{(2)}\right\rangle & =\mathscr{T}_{1} \frac{\pi c_{1}}{12} \Theta_{1}^{2}+\mathscr{R}_{2} \frac{\pi c_{2}}{12} \Theta_{2}^{2}
\end{aligned}
$$

$$
\mathscr{R}_{j}, \quad \mathscr{T}_{j}
$$

reflection, transmission coefficients

These coefficients were introduced in

$$
\mathscr{R}_{j}+\mathscr{T}_{j}=1 \quad \text { conservation of energy }
$$

They obey:

$$
c_{1} \mathscr{T}_{1}=c_{2} \mathscr{T}_{2} \quad \text { detailed balance }
$$

So a simple calculation gives

$$
\frac{d Q}{d t}=\frac{\pi}{12} c_{1} \mathscr{T}_{1}\left(\Theta_{1}^{2}-\Theta_{2}^{2}\right)
$$

Agrees with special cases: $\quad \mathscr{T}_{1}=0$ (boundary) $\quad \mathscr{T}_{1}=1$ (Topological)

The energy currents do not suffice to describe the state of the outgoing fluids
We parametrize the entropy currents as follows:

thermal

$$
\begin{aligned}
& \left\langle s_{-}^{(1)}\right\rangle=-\frac{\pi c_{1}}{6} \Theta_{1}, \quad\left\langle s_{+}^{(1)}\right\rangle=\frac{\pi c_{1}}{6} \Theta_{1}^{\mathrm{eff}} \\
& \left\langle s_{+}^{(2)}\right\rangle=\frac{\pi c_{2}}{6} \Theta_{2}, \quad\left\langle s_{-}^{(2)}\right\rangle=-\frac{\pi c_{2}}{6} \Theta_{2}^{\mathrm{eff}}
\end{aligned}
$$

Microcanonical bounds: $\quad s \leq s_{\text {micro }}=\left(\frac{\pi c}{3}\langle T\rangle\right)^{1 / 2} \Longrightarrow$

$$
\Theta_{1}^{\mathrm{eff}} \leq \sqrt{\mathscr{R}_{1} \Theta_{1}^{2}+\mathscr{T}_{1} \Theta_{2}^{2}} \quad \text { and } \quad \Theta_{2}^{\mathrm{eff}} \leq \sqrt{\mathscr{R}_{2} \Theta_{2}^{2}+\mathscr{T}_{2} \Theta_{1}^{2}}
$$

In general entanglement of scattering quanta leads to production of (coarse-grained) entropy:

$$
\frac{d S_{\mathrm{tot}}}{d t}=\frac{\pi c_{1}}{6}\left(\Theta_{1}^{\mathrm{eff}}-\Theta_{1}\right)+\frac{\pi c_{2}}{6}\left(\Theta_{2}^{\mathrm{eff}}-\Theta_{2}\right)+\frac{d S_{\mathrm{def}}}{d t}
$$

A first-principles calculation of entropy production at an interface is lacking

In the minimal holographic model the interface is maximally-mixing, i.e. outgoing quantum fluids are thermal \& entropy production is maximal

4. Dual gravitational state

In the homogeneous case, the dual state is given by the BTZ metric:

$$
d s^{2}=\frac{\ell^{2} d r^{2}}{\left(r^{2}-M \ell^{2}+J^{2} \ell^{2} / 4 r^{2}\right)}-\left(r^{2}-M \ell^{2}\right) d t^{2}+r^{2} d x^{2}-J \ell d x d t
$$

$$
\text { mass } \quad \frac{1}{2} M \ell=\left\langle T_{--}\right\rangle+\left\langle T_{++}\right\rangle
$$

with

$$
\operatorname{spin} \quad \frac{1}{2} J=\left\langle T_{--}\right\rangle-\left\langle T_{++}\right\rangle=\frac{d Q}{d t}
$$

This has outer and inner horizons, and an ergosphere (cf Kerr BH):

$$
r_{ \pm}^{2}=\frac{1}{2} M \ell^{2} \pm \frac{1}{2} \sqrt{M^{2} \ell^{4}-J^{2} \ell^{2}} \quad r_{\mathrm{ergo}}=\sqrt{M} \ell \geq r_{+}
$$

4. Dual gravitational state

In the homogeneous case, the dual state is given by the BTZ metric:

$$
d s^{2}=\frac{\ell^{2} d r^{2}}{\left(r^{2}-M \ell^{2}+J^{2} \ell^{2} / 4 r^{2}\right)}-\left(r^{2}-M \ell^{2}\right) d t^{2}+r^{2} d x^{2}-J \ell d x d t
$$

$$
\text { mass } \quad \frac{1}{2} M \ell=\left\langle T_{--}\right\rangle+\left\langle T_{++}\right\rangle
$$

with

$$
\operatorname{spin} \quad \frac{1}{2} J=\left\langle T_{--}\right\rangle-\left\langle T_{++}\right\rangle=\frac{d Q}{d t}
$$

This has outer and inner horizons, and an ergosphere (cf Kerr BH):

$$
r_{ \pm}^{2}=\frac{1}{2} M \ell^{2} \pm \frac{1}{2} \sqrt{M^{2} \ell^{4}-J^{2} \ell^{2}} \quad r_{\mathrm{ergo}}=\sqrt{M} \ell \geq r_{+}
$$

In infalling Eddington-Finkelstein coordinates

$$
d v=d t+\frac{\ell d r}{h(r)} \quad \text { and } \quad d y=d x+\frac{J \ell^{2} d r}{2 r^{2} h(r)}
$$

$$
d s^{2}=-h(r) d v^{2}+2 \ell d v d r+r^{2}\left(d y-\frac{J \ell}{2 r^{2}} d v\right)^{2}
$$

$$
\frac{1}{r^{2}}\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)
$$

the metric is smooth at the future horizon.
Infalling light rays have

$$
\nu, y=\text { constant }
$$

We glue two BTZ backgrounds along a brane with tension λ

The embedding of the stationary brane is described by six functions of one variable σ :

$$
x_{j}(\sigma), \quad r_{j}(\sigma), \quad t_{j}=\tau+f_{j}(\sigma)
$$

The brane equations are
-- Continuity of the induced metric $\quad \hat{g}_{a b}(\sigma)$ 3 eqs
-- Israel-Lanczos conditions: $\quad\left[K_{\alpha \beta}\right]=-\lambda \hat{g}_{\alpha \beta}$

1 eq \& 2 momentum constraints

Consistency requires $\quad J_{1}=-J_{2}$ Energy conservation in ICFT

Gauge fixing: $\quad \sigma=r_{1}^{2}-M_{1} \ell_{1}^{2}=r_{2}^{2}-M_{2} \ell_{2}^{2}$

$$
\Delta t^{\prime} \equiv f_{2}^{\prime}-f_{1}^{\prime}=\frac{J_{1}}{2 \sigma}\left(\ell_{1} x_{1}^{\prime}+\ell_{2} x_{2}^{\prime}\right)
$$

time advance/delay

Solution of remaining eqs:

$$
\begin{aligned}
& \frac{x_{1}}{\ell_{1}}=-\int \frac{\operatorname{sgn}(\sigma)\left[\left(\lambda^{2}+\lambda_{0}^{2}\right) \sigma^{2}+\left(M_{1}-M_{2}\right) \sigma\right]}{2\left(\sigma-\sigma_{+}^{\mathrm{H} 1}\right)\left(\sigma-\sigma_{-}^{\mathrm{H} 1}\right) \sqrt{A \sigma\left(\sigma-\sigma_{+}\right)\left(\sigma-\sigma_{-}\right)}} \\
& \frac{x_{2}}{\ell_{2}}=-\int \frac{\operatorname{sgn}(\sigma)\left[\left(\lambda^{2}-\lambda_{0}^{2}\right) \sigma^{2}-\left(M_{1}-M_{2}\right) \sigma\right]}{2\left(\sigma-\sigma_{+}^{\mathrm{H} 2}\right)\left(\sigma-\sigma_{-}^{\mathrm{H} 2}\right) \sqrt{A \sigma\left(\sigma-\sigma_{+}\right)\left(\sigma-\sigma_{-}\right)}}
\end{aligned}
$$

where $\quad \lambda_{0}^{2}=\lambda_{\text {min }} \lambda_{\text {max }} \quad$ and putative singularities

$$
\begin{gathered}
\sigma_{ \pm}^{\mathrm{H} j}=-\frac{M_{j} \ell_{j}^{2}}{2} \pm \frac{1}{2} \sqrt{M_{j}^{2} \ell_{j}^{4}-J_{j}^{2} \ell_{j}^{2}} \\
\sigma_{ \pm}=\frac{-B \pm \sqrt{B^{2}-A C}}{A}
\end{gathered}
$$

$$
\begin{gathered}
A=\left(\lambda_{\max }^{2}-\lambda^{2}\right)\left(\lambda^{2}-\lambda_{\min }^{2}\right), \quad B=\lambda^{2}\left(M_{1}+M_{2}\right)-\lambda_{0}^{2}\left(M_{1}-M_{2}\right), \\
C=-\left(M_{1}-M_{2}\right)^{2}+\lambda^{2} J_{1}^{2} .
\end{gathered}
$$

Simidzija, Van Raamsdonk '20
CB, Chen, Papadopoulos '21

$$
\sigma_{+}>0 \quad \text { turning point }
$$

One finds two types of brane solution:

avoids ergoregion

$$
\sigma_{+}=0 \quad \text { smooth entry in ergoregion }
$$

$$
\sigma_{+}<0 \quad \text { wrong signature }
$$

(ii)
enters ergoregion

5. Inside the ergoregion

$\sigma_{+}=0 \quad$ implies

$$
M_{1}-M_{2}= \pm \lambda J_{1}=\mp \lambda J_{2} \quad \text { and } \quad \lambda^{2}\left(M_{1}+M_{2}\right) \geq \lambda_{0}^{2}\left(M_{1}-M_{2}\right)
$$

Using the holographic dictionary and the fact that the incoming fluxes are thermal gives:

$$
M_{j}=4 \pi^{2} \Theta_{j}^{2}-\frac{J_{j}}{\ell_{j}} \Longrightarrow \quad M_{1}-M_{2}=4 \pi^{2}\left(\Theta_{1}^{2}-\Theta_{2}^{2}\right)-J_{1}\left(\frac{1}{\ell_{1}}+\frac{1}{\ell_{2}}\right)
$$

$$
\Longrightarrow \frac{d Q}{d t}=\frac{\pi}{12} c_{1} \mathscr{T}_{1 \rightarrow 2}\left(\Theta_{1}^{2}-\Theta_{2}^{2}\right)
$$

$$
\text { with } \mathscr{T}_{1 \rightarrow 2}=\frac{\lambda_{\max }+\lambda_{\min }}{\lambda_{\max } \pm \lambda}
$$

With $\sigma_{+}=0$ the embedding functions read

$$
\begin{aligned}
& \frac{x_{1}^{\prime}}{\ell_{1}}=-\frac{\left(\lambda^{2}+\lambda_{0}^{2}\right) \sigma+\left(M_{1}-M_{2}\right)}{2\left(\sigma-\sigma_{+}^{\mathrm{H} 1}\right)\left(\sigma-\sigma_{-}^{\mathrm{H} 1}\right) \sqrt{A\left(\sigma-\sigma_{-}\right)}} \\
& \frac{x_{2}^{\prime}}{\ell_{2}^{\prime}}=-\frac{\left(\lambda^{2}-\lambda_{0}^{2}\right) \sigma-\left(M_{1}-M_{2}\right)}{2\left(\sigma-\sigma_{+}^{\mathrm{H} 2}\right)\left(\sigma-\sigma_{-}^{\mathrm{H} 2}\right) \sqrt{A\left(\sigma-\sigma_{-}\right)}}
\end{aligned}
$$

Can be shown that σ_{-}lies behind the inner (Cauchy) horizons
where the classical solution cannot be trusted

> cf Dias, Reall, Santos '19
> Papadodimas et al '19
> Balasubramanian et al '19
> Emparan, Tomasevic ' 20

- Beyond the ergoplane the brane cannot turn around and exit the horizon

The solution looks like this (Eddington-Finkelstein coordinates):

The local (apparent) horizon $\mathscr{H}_{1} \cup \mathscr{H}_{2}$ lies outside the event (causal) horizon

The former is discontinuous and non-compact
\Longrightarrow no contradiction with general theorems
cf Hawking \& Ellis

The (non-Killing) event horizon in region 1 is the boundary of the causal past of $E_{2} \times$ time

Define global timelike unit vector field:

$$
t^{\mu} \partial_{\mu}=\frac{\partial}{\partial v_{j}}+\frac{h_{j}\left(r_{j}\right)-1}{2 \ell_{j}} \frac{\partial}{\partial r_{j}}+\frac{J_{j} \ell_{j}}{2 r_{j}^{2}} \frac{\partial}{\partial y_{j}} \quad \text { in the } j \text { th region. }
$$

Future-directed null curves obey

$$
\begin{aligned}
\dot{x}^{\mu} & =(\dot{v}, \dot{r}, \dot{y}) \quad \text { where } \quad \dot{x}^{\mu} \dot{x}_{\mu}=0 \quad \text { and } \quad \dot{x}^{\mu} t_{\mu}<0 \\
& \Longrightarrow \dot{r}=\frac{h(r)}{2 \ell} \dot{v}-\frac{r^{2}}{2 \ell \dot{v}}\left(\dot{y}-\frac{J \ell}{2 r^{2}} \dot{v}\right)^{2} \quad \text { and } \quad \dot{v}>0 .
\end{aligned}
$$

-. Arrow of time defined by inceasing $v, \&$ behind the horizon $(h<0) \quad r$ is monotone decreasing

So \mathscr{H}_{2} Is part of the event horizon

The projection of $\tilde{\mathscr{H}}_{1}$ on a Cauchy slice
Is a curve through E_{2} everywhere tangent to the local lightcone
\Longrightarrow Minimize the angle between projection of null curves and positive y_{1} axis

$$
\left.\Longrightarrow \frac{d y}{d r}\right|_{\widetilde{\mathscr{H}}_{1}}=\frac{2 \ell}{J \ell-2 r \sqrt{M \ell^{2}-r^{2}}}
$$

near BTZ horizon, $r=r_{+}+\epsilon$, behaves as ϵ^{-1}
\Longrightarrow event and BTZ horizons approach asymptotically each other

Implies that outgoing fluxes are thermal in both directions
i.e. incoming fluxes are thermalized by single scattering at interface!

Is this possible in boundary CFT ?

```
cf Hubeny, Marolf, Rangamani, Fiscetti,
Emparan, Martinez,Wiseman, Santos,
```

Resembles double-sided funnel solution, but who ordered fine-tuning of temperatures at two horizon points?

6. Pair of interfaces

When $\quad \sigma_{+}>0$ the brane has a turning point outside the ergoregion.
The solution is shown on the left:

Near thermal equilibrium ($\Theta_{+} \simeq \Theta_{-}$) the system undergoes a phase transition at a critical value of $\Delta x \Theta$

This is a Hawking-Page type of transition (possibly signaling the deconfinement of the middle CFT

Witten '98; . . .

At high temperature, the thermal conductivity is the same as for a brane

$$
\text { with tension } 2 \lambda
$$

Using the expression for the transport coefficients one finds:

$$
\mathscr{T}_{\text {pair }}=\mathscr{T}_{1}\left(1+\mathscr{R}_{2}^{2}+\mathscr{R}_{2}^{4}+\cdots\right) \mathscr{T}_{2}
$$

At low temperature, the system behaves as in the homogeneous system

$$
\begin{array}{cc}
\mathscr{T}_{\text {pair }}=1 & \begin{array}{c}
\text { perfect constructive } \\
\text { interference }
\end{array}
\end{array}
$$

(as if the two branes have merged into a tensionless one)

This phase does not exist when $\quad c_{1}>3 c_{2}$
i.e. when the island CFT has too few degrees of freedom

Reassuringly, this includes the limit of an "empty CFT"

7. Outlook

Many questions raised by this simple model. Most urgently (in progress) :
-- Compute Ryu-Takayanagi-Hubeny-Rangamani surfaces; understand how entropy production is related to spike in event horizon

At the same time, many of the features may be related to the bottom-up thin-brane approximation:
-- Extend to top-down, thick-brane models
-- Compute entropy production in ICFT; maximal mixing ?

Thank you

