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(Near) static gravitational horizons,  related to (near) equilibrium
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thermodynamical systems, are well studied and well understood. 

Much less is known far from equilibrium

 Stationary states  are a particular set of states where progress looks possible

 Local  versus event horizon ?

Beckenstein, Hawking,  . . . ,  Jacobson, . . . 

Light rays one-way Causally 
disconnected

1.  Introduction
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 In this talk I will describe a simple far-from-equilibrium system for which

 exact calculations are possible. The hope is that one will learn from it

 some more general lessons. 



-- bridges in the QG lanscape
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0.  Motivations

-- Randall-Sundrum compactifications & localized gravity 

--  Enter in recent toy models of the Page curve

The system in question is that of a gravitating domain wall anchored at 
an AdS boundary

These are ubiquitous in quantum gravity for very different reasons:

 (phase coexistence, bubble nucleation, cosmology)  

I will not dwell on these issues in today's talk



2.  Thin brane & dual  ICFT

 Most gravitating domain walls are thick.   But starting with the famous paper
 of Coleman & De Lucia, a frequently-used approximation is that of  thin walls.

 The minimal action  

Igr = −
1
2 ∫𝕊1

d3x g1 (R1 +
2
ℓ2

1
) −

1
2 ∫𝕊2

d3x g2 (R2 +
2
ℓ2

2
)

+ λ∫𝕎
d2s ̂gw + GHY terms + ct .

 depends on 3 dimensionless parameters  ℓ1, ℓ2, λ (with                  )8πG = 1
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Take    .  A simple calculation shows that vacuum domain walls exist forℓ1 ≤ ℓ2
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1
ℓ1

−
1
ℓ2

λmin

< λ <
1
ℓ1

+
1
ℓ2

λmax

False vacuum unstable 
 to bubble nucleation

Domain wall inflates

Cvetic, Griffies, Rey ’92 
Cardoso, Dall’Agata, Lust ’02 

Ceresole et al ‘06

Vilenkin ’81 
Ipser, Sikivie ’83 

Karch, Randall ‘01BPS values for flat walls

true  
vacuum

false 
vacuum

CB ’02

 We will work in 2+1 dimensions. The thin wall is a simple form of 'matter.'



  Holographic dual : 

The wall hits the AdS boundary at the location of a 
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conformal interface

CFT1 CFT2Inface

true vac false vac

Karch, Randall ’01 
CB, de Boer, Dijkgraaf, Ooguri ‘02

radial  
coordinate  

Scales chararizing the state (temperature, heat flow, volume) deform the

interior geometry of both the bulks and the wall away from AdS 
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cj = 12π ℓj Brown, Henneaux  ’86 

log gI = 2πℓ1ℓ2 [λmax tanh−1( λ
λmax

) − λmin tanh−1( λmin

λ )]
Simidzija, Van Raamsdonk  ’20 

Azeyanagi, Karch, Takayanagi,  
Thompson  ‘07 

 

𝒯1→2 =
λmax + λmin

λmax + λ
, 𝒯2→1 =

λmax − λmin

λmax + λ
CB, Chapman, Ge, Policastro  ’20 

Entropy

Energy 
transmission 

coeffs

Central charges

Dictionary:



This minimal bottom-up model is at best a useful approximation
to full-fledged top-down dual pairs. It captures however the 
3 universal ICFT operators: 

g(1)
μν T (1)

ab

g(2)
μν T (2)

ab

xμ(σα) ya(τ)

Bulk metrics  

Brane embedding 

Stress tensors 

Displacement operator 

Billo, Gonçalves, Lauria, Meineri  ’16 
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In this talk I will describe some interesting far-from-equilibrium
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states of this system and compare with what is known/expected from
the field theory side.



A simple set of states of a homogeneous q-wire
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3.  Out-of-equilibrium ICFT

Θ− Θ+

T−−
T++

⟨T±±⟩ =
πc
12

Θ2
± ⟹ ⟨T tx⟩ =

πc
12

(Θ2
− − Θ2

+) Heat flow
Stefan-Boltzman law

This is a fake out-of-equilibrium state, since left and right movers dont interact.

(chemical potential for conserved momentum)



To make things more interesting  introduce a defect (or junction/interface):
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Θ1 Θ2

T(1)
−− =

πc1

12
Θ 2

1 T(2)
++ =

πc2

12
Θ 2

2T(2)
−−T(1)

++

⟨T(1)
++⟩ = ℛ1

πc1

12
Θ2

1 + 𝒯2
πc2

12
Θ2

2

⟨T(2)
++⟩ = 𝒯1

πc1

12
Θ2

1 + ℛ2
πc2

12
Θ2

2

ℛj , 𝒯j

reflection, transmission  
coefficients
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These coefficients were introduced in 

and shown to be universal in 2D in Meineri, Penedones, Rousset  ’19 

Quella, Runkel, Watts  ’06 

They obey:
ℛj + 𝒯j = 1

c1𝒯1 = c2𝒯2

conservation of energy

detailed balance

So a simple calculation gives

dQ
dt

=
π
12

c1𝒯1(Θ2
1 − Θ2

2) Bernard, Doyon, Viti   ’14 

Agrees with special cases:  𝒯1 = 0 (boundary) 𝒯1 = 1 (Topological)



The energy currents do not suffice to describe the state of the outgoing fluids

We parametrize the entropy currents as follows:

⟨s(1)
− ⟩ = −

πc1

6
Θ1 , ⟨s(1)

+ ⟩ =
πc1

6
Θeff

1

⟨s(2)
+ ⟩ =

πc2

6
Θ2 , ⟨s(2)

− ⟩ = −
πc2

6
Θeff

2

thermal ? ?

Θeff
1 ≤ ℛ1Θ2

1 + 𝒯1Θ2
2 and Θeff

2 ≤ ℛ2Θ2
2 + 𝒯2Θ2

1

Microcanonical bounds: s ≤ smicro = ( πc
3

⟨T⟩)
1/2

⟹
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In general entanglement of scattering quanta leads to production of (coarse-grained) entropy:

x

t

0

πc1
3 Θ1 πc2

3 Θ2

hot cold

NESS

πc1
6 (Θ1 + Θeff

1 ) πc2
6 (Θ2 + Θeff

2 )

dStot

dt
=

πc1

6
(Θeff

1 − Θ1) +
πc2

6
(Θeff

2 − Θ2) +
dSdef

dt

"partitioning  
protocol"

Entropy densities
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A first-principles calculation of entropy production at an interface is lacking

In the minimal holographic model the interface is maximally-mixing,

i.e. outgoing quantum fluids are thermal & entropy production is maximal
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4.  Dual gravitational state

ds2 =
ℓ2dr2

(r2 − Mℓ2 + J2ℓ2/4r2)
− (r2 − Mℓ2)dt2 + r2dx2 − Jℓ dxdt

In the homogeneous case, the dual state is given by  the BTZ metric:

1
2

J = ⟨T−−⟩ − ⟨T++⟩ =
dQ
dt

1
2

Mℓ = ⟨T−−⟩ + ⟨T++⟩
with 

mass 

spin 

This has outer and inner horizons, and an ergosphere (cf Kerr BH):

r2
± =

1
2

Mℓ2 ± 1
2

M2ℓ4 − J2ℓ2 rergo = M ℓ ≥ r+



17/36

4.  Dual gravitational state

ds2 =
ℓ2dr2

(r2 − Mℓ2 + J2ℓ2/4r2)
− (r2 − Mℓ2)dt2 + r2dx2 − Jℓ dxdt

In the homogeneous case, the dual state is given by  the BTZ metric:

1
2

J = ⟨T−−⟩ − ⟨T++⟩ =
dQ
dt

1
2

Mℓ = ⟨T−−⟩ + ⟨T++⟩
with 

mass 

spin 

This has outer and inner horizons, and an ergosphere (cf Kerr BH):

r2
± =

1
2

Mℓ2 ± 1
2

M2ℓ4 − J2ℓ2 rergo = M ℓ ≥ r+
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In infalling Eddington-Finkelstein coordinates

ds2 = − h(r) dv 2 + 2ℓ dv dr + r2(dy −
Jℓ
2r2

dv)2

dv = dt +
ℓdr
h(r)

and dy = dx +
Jℓ2dr

2r2h(r)
,

1
r2

(r2 − r2
+)(r2 − r2

−)

the metric is smooth at the future horizon. 

Infalling light rays have v, y = constant
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We glue two BTZ backgrounds  along a brane with tension λ

ℓ2 , M2 , J2ℓ1 , M1 , J1
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xj(σ), rj(σ), tj = τ + fj(σ)

The embedding of the stationary brane is described by six functions of one variable      :σ

The brane equations are 

-- Continuity of the induced metric ̂gab(σ)

-- Israel-Lanczos conditions: [Kαβ] = − λ ̂gαβ

3 eqs

1 eq & 2 momentum  
constraints

J1 = − J2Consistency requires Energy conservation in ICFT
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σ = r2
1 − M1ℓ2

1 = r2
2 − M2ℓ2

2Gauge fixing: 

time advance/delay

Solution of remaining eqs: 

Δt′ ≡ f′ 2 − f′ 1 =
J1

2σ
(ℓ1x′ 1 + ℓ2x′ 2)

x1

ℓ1
= − ∫

sgn(σ)[(λ2 + λ2
0) σ2 + (M1 − M2)σ]

2(σ − σH1
+ )(σ − σH1

− ) Aσ(σ − σ+)(σ − σ−)

x2

ℓ2
= − ∫

sgn(σ)[(λ2 − λ2
0) σ2 − (M1 − M2)σ]

2(σ − σH2
+ )(σ − σH2

− ) Aσ(σ − σ+)(σ − σ−)
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where

A = (λ2
max − λ2)(λ2 − λ2

min), B = λ2(M1 + M2) − λ2
0(M1 − M2),

C = − (M1 − M2)2 + λ2J2
1 .

σ± =
−B ± B2 − AC

A

σHj
± = −

Mjℓ2
j

2
± 1

2
M2

j ℓ4
j − J2

j ℓ2
j

horizons

λ2
0 = λminλmax and  putative singularities

Simidzija, Van Raamsdonk  ’20 

CB, Chen, Papadopoulos  '21 

Exchange space 
and time, J=0
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One finds two types of brane solution:

(ii)(i)

σ+ > 0.
σ+ = 0

?

σ

0

cutoff

avoids ergoregion enters ergoregion

σ+ > 0

σ+ = 0

σ+ < 0

turning point

smooth entry in ergoregion

wrong signature
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5.  Inside the ergoregion

impliesσ+ = 0

M1 − M2 = ± λJ1 = ∓ λJ2 and λ2(M1 + M2) ≥ λ 2
0 (M1 − M2)

Mj = 4π2Θ2
j −

Jj

ℓj
⟹ M1 − M2 = 4π2(Θ2

1 − Θ2
2) − J1(

1
ℓ1

+
1
ℓ2

)

Using the holographic dictionary and the fact that the incoming fluxes are thermal gives:

⟹
dQ
dt

=
π
12

c1𝒯1→2(Θ2
1 − Θ2

2) with 𝒯1→2 =
λmax + λmin

λmax ± λ

For + sign, recover the expected Stefan-Boltzman constantcf black/white. hole
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x′ 1

ℓ1
= −

(λ2 + λ2
0) σ + (M1 − M2)

2(σ − σH1
+ )(σ − σH1

− ) A(σ − σ−)

x′ 2

ℓ2
= −

(λ2 − λ2
0) σ − (M1 − M2)

2(σ − σH2
+ )(σ − σH2

− ) A(σ − σ−)

With               the embedding functions readσ+ = 0

Can be shown that         lies behind the inner (Cauchy) horizonsσ−

where the classical solution cannot be trusted
cf  Dias, Reall, Santos ’19 

Papadodimas et al '19 
Balasubramanian et al '19 
 Emparan, Tomasevic '20

Beyond the ergoplane the brane cannot turn around and exit the horizon∴
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5.  Inside the ergoregion

σ

σH1
+

σH2
+

0

E1 E1

E2 E2

ergoplane

horizon 1

horizon 2

y2

J1
J2

y1

The solution looks like this (Eddington-Finkelstein coordinates):

ℋ1

ℋ2



The local (apparent) horizon                     lies outside the event (causal) horizon
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The former is discontinuous and non-compact

⟹ no contradiction with general theorems

ℋ1 ∪ ℋ2

cf  Hawking & Ellis 
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5.  Inside the ergoregion

E1 E1

E2 E2

ℋ1

ℋ2

ℋ̃ 1
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The (non-Killing) event horizon in region 1 is the boundary of the

E2 × timecausal past of 
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Define global timelike unit vector field:

tμ∂μ =
∂

∂vj
+

hj(rj) − 1
2ℓj

∂
∂rj

+
Jjℓj

2r2
j

∂
∂yj

in the jth region .

·xμ = (·v, ·r, ·y) where ·xμ ·xμ = 0 and ·xμtμ < 0

Future-directed null curves obey

⟹ ·r =
h(r)
2ℓ

·v −
r2

2ℓ ·v ( ·y −
Jℓ
2r2

·v)2 and ·v > 0 .

∴ Arrow of time defined by inceasing    , & behind the horizon
(         )        is monotone decreasing

v
rh < 0

So          Is part of the event horizonℋ2
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The projection of          on a Cauchy slice

Is a curve through        everywhere tangent to the local lightcone

ℋ̃1
E2

Minimize the angle between projection of null curves and positive      axisy1⟹

dy
dr

ℋ̃ 1

=
2ℓ

Jℓ − 2r Mℓ2 − r2
⟹

near BTZ horizon,                       , behaves asr = r+ + ϵ ϵ−1

event and BTZ horizons approach asymptotically each other⟹
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Implies that outgoing fluxes are thermal in both directions 
i.e. incoming fluxes are thermalized by single scattering at interface !

Is this possible in boundary CFT ?

BTZ horizon 1

Θ1 Θeff
1 Θeff

2 Θ2

BTZ horizon 2

?

dQ1
dt

00 dQ2
dt

Resembles double-sided funnel solution, but who ordered fine-tuning of 
temperatures at two horizon points? 

cf Hubeny, Marolf, Rangamani, Fiscetti,  
Emparan, Martinez,Wiseman, Santos, . . . 



6. Pair of interfaces

When σ+ > 0 the brane has a turning point outside the ergoregion.

M1 M1
M2

M M − λJ M − 2λJ

Θ− Θ−Θ+ Θ+Δx Δx
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The solution is shown on the left:
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Near thermal equilibrium (Θ+ ≃ Θ−) the system undergoes a

phase transition at a critical value of  Δx Θ
CB, Papadopoulos '21 

 

This is a Hawking-Page type of transition (possibly signaling the deconfinement of 

the middle CFT Witten '98; . . .  
 

At high temperature, the thermal conductivity is the same as for a brane

2λ with tension

Using the expression for the transport coefficients one finds:

𝒯pair = 𝒯1 (1 + ℛ2
2 + ℛ4

2 + ⋯) 𝒯2 classical scatterers
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𝒯pair = 1 perfect constructive 
interference

At low temperature, the system behaves as in the homogeneous system

(as if the two branes have merged into a tensionless one)

This phase does not exist when c1 > 3c2

i.e. when the island CFT has too few degrees of freedom 

Reassuringly, this includes the limit of an "empty CFT" 
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7.   Outlook

--  Compute Ryu-Takayanagi-Hubeny-Rangamani surfaces;

understand how entropy production is related to spike in event horizon

Many questions raised by this simple model. Most urgently (in progress) :
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At the same time, many of the features may be related to the 
bottom-up thin-brane approximation: 

-- Extend to top-down, thick-brane models

-- Compute entropy production in ICFT; maximal mixing ? 



Thank you


