Dimensional Regularization Gauss-Bonnet terms and Anomaly Actions

Claudio Coriano'

Department of Mathematics and Physics
Universita' del Salento and INFN Lecce, Italy
based on work with
M.M. Maglio (GGI), D. Theofilopoulos (Salento U), (EPJ-C 2021, and on ongling work with M. Maglio, D. Theofilopoulos, M. Creti, R. Tommasi

August 312021
CORFU 2021

CFT's have been extensively studied in the last 50 years for a variety of reasons

1. string theory
2. critical behaviour of statistical systems
3. Possible applications to particle phenomenology (extensions of the Standard Model with a "possible" conformal phase
4. Early universe.
5. AdS/CFT correspondence. A theory in a conformal phase is dual - in a well defined senseto a specific gravitational theory. Applications of this correspondence, from ordinary field theories, to cosmology (holography) as well as condensed matter physics have been overwhelming.

In d=2 spacetime dimensions the theory is particularly rich, but much less in higher dimensions.
Neverthless, the power of the construction is significant, vene in the presence of only a finite number -rather than infinite- of symmetries.

Our discussions will be focused on theories with $\mathrm{d}>2$, where most of the activity, both in theory and phenomenology is.

The context in which we are going to investigate the impact of such symmetry is a phenomenological one, where we assume that a conformal phase of matter exists and may actually impact early cosmology.

One could also envision, at a more speculative level, a coupling of the Standard Model to conformal matter, with the inclusion of extra degrees of freedom in the form of dilaton fields.

We will briefly illustrate this case, just as example, though this specific point will be touched only briefly.

The methodology used in flat space, con be extended to a general spacetime and comes with specific issues which need to be clarified. In particular to Weyl-flat spacetimes, which is under investigation.

What conects flat and curved spacetime analysis is the ANOMALY INDUCED ACTION and the two counterterms which are necessary in order to make sense of such theories

Conformal symmetry induces significant constraints on multi-point functions which are controlled by hieriarchical equations, in the form of Conformal Ward Identities (CWIs)

These constraints can be formulated both in a flat and in a curved spacetime.

If we collect all the correlation functions into a single functional and study the impact of the quantum corrections, in the flat limit, starting from this functional, it is possible to investigate such constraints in momentum space in great generality, in any background, as constraints induced by the effective action.

Exact Correlators from Conformal Ward Identities in Momentum Space and the Perturbative TJJ Vertex

The General 3-Graviton Vertex ($T T T$) of Conformal Field Theories in Momentum Space in $d=4$

TTT in CFT:

Trace Identities and the Conformal Anomaly Effective Action connection with the nonlocal anomaly action

MM Maglio, CC 2017

MM Maglio, CC 2018

MM Maglio, E Mottola, CC
2018

Bzowski, McFadden Skenderis, 2013
BMS

The general reconstruction method is due to BMS

We have provided a simplified analysis of the TJJ and TTT by matching the general reconstruction to free field theory

Suppose you want to couple the Standard Model to Gravity

(a)

(b)

(c)

(d)

$$
5
$$

\qquad

(e)
(f)

$$
\begin{aligned}
S= & S_{G}+S_{\mathrm{SM}}+S_{I} \\
= & -\frac{1}{\kappa^{2}} \int d^{4} x \sqrt{-g} R+\int d^{4} x \sqrt{-g} \mathcal{L}_{\mathrm{SM}} \\
& +\frac{1}{6} \int d^{4} x \sqrt{-g} R \mathcal{H}+\mathcal{H},
\end{aligned}
$$

Stress energy tensor, photon photon

An example

Einstein's equations take the form

$$
\frac{\delta}{\delta g^{\mu \nu}(x)} S_{G}=-\frac{\delta}{\delta g^{\mu \nu}(x)}\left[S_{\mathrm{SM}}+S_{I}\right]
$$

and the EMT in our conventions is defined as

$$
T_{\mu \nu}(x)=\frac{2}{\sqrt{-g(x)}} \frac{\delta\left[S_{\mathrm{SM}}+S_{I}\right]}{\delta g^{\mu \nu}(x)}
$$

Delle Rose, Serino, CC which is classically covariantly conserved $\left(g^{\mu \rho} T_{\mu \nu ; \rho}=0\right)$.

$$
\begin{aligned}
& \mathcal{L}_{\text {grav }}(x)=-\frac{\kappa}{2} T^{\mu \nu}(x) h_{\mu \nu}(x) . \\
& g_{\mu \nu}(x)=\eta_{\mu \nu}+\kappa h_{\mu \nu}(x),
\end{aligned}
$$

$$
\begin{gathered}
T_{\mu \nu}=T_{\mu \nu}^{\min }+T_{\mu \nu}^{I} \\
T_{\mu \nu}^{\text {min }}=T_{\mu \nu}^{f, s .}+T_{\mu \nu}^{\mathrm{femm}}+T_{\mu \nu}^{\text {Higqs }}+T_{\mu \nu}^{\text {Yukawa }}+T_{\mu \nu}^{\mathrm{finix}}+T_{\mu \nu}^{\text {ghost }} .
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{L}_{\mathcal{H}}= & \left(D^{\mu} \mathcal{H}\right)^{\dagger}\left(D_{\mu} \mathcal{H}\right)+\mu_{\mathcal{H}}^{2} \mathcal{H}^{\dagger} \mathcal{H} \\
& -\lambda\left(\mathcal{H}^{\dagger} \mathcal{H}\right)^{2} \mu_{\mathcal{H}}^{2}, \quad \lambda>0,
\end{aligned}
$$

Example : THE HIGGS SECTOR

$$
\begin{aligned}
& T_{\mu v}^{\text {Hese }}=-\eta_{\mu \nu} \kappa_{\text {mies }}+\partial_{\mu} H \partial_{\nu} H+\partial_{\mu} \phi \partial_{\nu} \phi+\partial_{\mu} \phi^{+} \partial_{\nu} \phi^{-}+\partial_{\nu} \phi^{+} \partial_{\mu} \phi^{-}+M_{z}^{2} z_{\mu} z_{\nu}+M_{w}^{2}\left(W_{\mu}^{+} W_{\nu}^{-}+W_{v}^{+} W_{\mu}^{-}\right) \\
& +M_{W}\left(W_{\mu} \partial_{\phi} \phi^{+}+W_{\nu}^{-} \partial_{\mu} \phi^{+}+W_{\mu}^{+} \partial_{\nu} \phi+W_{\nu}^{+} \partial_{\mu} \phi^{-}\right)+M_{z}\left(\partial_{\mu} \phi z_{\nu}+\partial_{\phi} \phi z_{\mu}\right)+\frac{e M_{W}}{\sin \theta_{w}} H\left(W_{\mu}^{*} W_{\nu}^{-}+w_{\nu}^{+} W_{\mu}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -i e M_{W}\left[A_{\mu}\left(W_{\nu}^{-}-W_{\nu}^{+} \phi^{-}\right)+A_{\nu}\left(W_{\mu}^{-}-W_{\mu}^{+} \phi^{-}\right)\right]+\frac{e^{2}}{4 \sin ^{2} \theta_{\psi}}{ }^{\mu}\left[\left[W_{\mu}^{+} W_{\nu}^{-}+W_{\nu}^{+} W_{\mu}^{-}+2 z_{\mu} z_{\nu}\right)\right] \\
& -\frac{i e^{2}}{2 \cos \psi_{\psi}}\left[\left[Z_{\mu}\left(W_{\nu}^{ \pm} \phi^{-}-W_{\nu}^{-} \phi^{+}\right)+Z_{\nu}\left(W_{\mu}^{ \pm} \phi^{-}-W_{\mu}^{-} \phi^{+}\right]\right]+\frac{e^{2}}{4 \sin ^{2} \theta_{w} \phi^{2}\left(W_{\mu}^{ \pm} W_{\nu}^{-}+w_{\nu}^{ \pm} W_{\mu}^{-}+2 z_{\mu} Z_{\nu}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{e^{2}}{2 \cos \theta_{w}} \phi\left[Z_{\mu}\left(W_{\nu}^{+} \phi^{-}+W_{\nu}^{-} \phi^{+}\right)+Z_{\nu}\left(W_{\mu}^{+} \phi^{-}+W_{\mu}^{-} \phi^{+}\right)\right]-\frac{e^{2}}{2 \sin \theta_{w}} \phi\left[A_{\mu}\left(W_{\nu}^{-} \phi^{+}+W_{\nu}^{ \pm} \phi^{-}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma_{F}^{\mu \nu \alpha \beta}(p, q)= \sum_{i=1}^{3} \Phi_{i F}\left(s, 0,0, m_{f}^{2}\right) \phi_{i}^{\mu \nu \alpha \beta}(p, q), \\
& \Sigma_{B}^{\mu \nu \alpha \beta}(p, q)= \sum_{i=1}^{3} \Phi_{i B}\left(s, 0,0, M_{W}^{2}\right) \phi_{i}^{\mu \nu \alpha \beta}(p, q) \\
& \Sigma_{I}^{\mu \nu \alpha \beta}(p, q)= \Phi_{1 I}\left(s, 0,0, M_{W}^{2}\right) \phi_{1}^{\mu \nu \alpha \beta}(p, q) \\
&+\Phi_{4 I}\left(s, 0,0, M_{W}^{2}\right) \phi_{4}^{\mu \nu \alpha \beta}(p, q) \\
& \Phi_{1 F}\left(s, 0,0, m_{f}^{2}\right)=-i \frac{\kappa}{2} \frac{\alpha}{3 \pi s} Q_{f}^{2}\left\{-\frac{2}{3}+\frac{4 m_{f}^{2}}{s}\right. \\
&\left.-2 m_{f}^{2} \mathcal{C}_{0}\left(s, 0,0, m_{f}^{2}, m_{f}^{2}, m_{f}^{2}\right)\left[1-\frac{4 m_{f}^{2}}{s}\right]\right\} \\
& \Phi_{1 B}\left(s, 0,0, M_{W}^{2}\right)=-i \frac{\kappa}{2} \frac{\alpha}{\pi s}\left\{\frac{5}{6}-\frac{2 M_{W}^{2}}{s}\right. \\
&\left.\quad+2 M_{W}^{2} \mathcal{C}_{0}\left(s, 0,0, M_{W}^{2}, M_{W}^{2}, M_{W}^{2}\right)\left[1-\frac{2 M_{W}^{2}}{s}\right]\right\}
\end{aligned}
$$

Presence of a $1 / \mathrm{s}$ behavior associated to an "effective dof" Dilaton-like

$$
\Phi_{1 \mathrm{pole}}^{F} \equiv i \kappa \frac{\alpha}{9 \pi s} Q_{f}^{2},
$$

$$
\Phi_{1 B, \mathrm{pole}} \equiv-i \frac{\kappa}{2} \frac{\alpha}{\pi s} \frac{5}{6}
$$

THINGS ARE CLEAR IN QCD QCD TGG

$$
\varkappa,
$$

$$
T_{\mu \nu}=-g_{\mu \nu} \mathcal{L}_{Q C D}-F_{\mu \rho}^{a} F_{\nu}^{a \rho}-\frac{1}{\xi} g_{\mu \nu} \partial^{\rho}\left(A_{\rho}^{a} \partial^{\sigma} A_{\sigma}^{a}\right)+\frac{1}{\xi}\left(A_{\nu}^{a} \partial_{\mu}\left(\partial^{\sigma} A_{\sigma}^{a}\right)+A_{\mu}^{a} \partial_{\nu}\left(\partial^{\sigma} A_{\sigma}^{a}\right)\right)
$$

$$
+\frac{i}{4}\left[\bar{\psi} \gamma_{\mu}\left(\vec{\partial}_{\nu}-i g T^{a} A_{\nu}^{a}\right) \psi-\bar{\psi}\left(\overleftarrow{\partial}_{\nu}+i g T^{a} A_{\nu}^{a}\right) \gamma_{\mu} \psi+\bar{\psi} \gamma_{\nu}\left(\vec{\partial}_{\mu}-i g T^{a} A_{\mu}^{a}\right) \psi\right.
$$

$$
\left.-\bar{\psi}\left(\overleftarrow{\partial}_{\mu}+i g T^{a} A_{\mu}^{a}\right) \gamma_{\nu} \psi\right]+\partial_{\mu} \bar{\omega}^{a}\left(\partial_{\nu} \omega^{a}-g f^{a b c} A_{\nu}^{c} \omega^{b}\right)+\partial_{\nu} \bar{\omega}^{a}\left(\partial_{\mu} \omega^{a}-g f^{a b c} A_{\mu}^{c} \omega^{b}\right)
$$

$$
\begin{aligned}
T_{\mu \nu}^{g . f .} & =\frac{1}{\xi}\left[A_{\nu}^{a} \partial_{\mu}\left(\partial \cdot A^{a}\right)+A_{\mu}^{a} \partial_{\nu}\left(\partial \cdot A^{a}\right)\right]-\frac{1}{\xi} g_{\mu \nu}\left[-\frac{1}{2}(\partial \cdot A)^{2}+\partial^{\rho}\left(A_{\rho}^{a} \partial \cdot A^{a}\right)\right] \\
T_{\mu \nu}^{g h} & =\partial_{\mu} \bar{\omega}^{a} D_{\nu}^{a b} \omega^{b}+\partial_{\nu} \bar{\omega}^{a} D_{\mu}^{a b} \omega^{b}-g_{\mu \nu} \partial^{\rho} \bar{\omega}^{a} D_{\rho}^{a b} \omega^{b} .
\end{aligned}
$$

$$
\begin{aligned}
\partial^{\mu} T_{\mu \nu} & =-\frac{\delta S}{\delta \psi} \partial_{\nu} \psi-\partial_{\nu} \bar{\psi} \frac{\delta S}{\delta \bar{\psi}}+\frac{1}{2} \partial^{\mu}\left(\frac{\delta S}{\delta \psi} \sigma_{\mu \nu} \psi-\bar{\psi} \sigma_{\mu \nu} \frac{\delta S}{\delta \bar{\psi}}\right)-\partial_{\nu} A_{\mu}^{a} \frac{\delta S}{\delta A_{\mu}^{a}} \\
& +\partial_{\mu}\left(A_{\nu}^{a} \frac{\delta S}{\delta A_{\mu}^{a}}\right)-\frac{\delta S}{\delta \omega^{a}} \partial_{\nu} \omega^{a}-\partial_{\nu} \bar{\omega}^{a} \frac{\delta S}{\delta \bar{\omega}^{a}}
\end{aligned}
$$

$$
\begin{aligned}
\partial^{\mu}\left\langle T_{\mu \nu}(x) A_{\alpha}^{a}\left(x_{1}\right) A_{\beta}^{b}\left(x_{2}\right)\right\rangle_{t r u n c} & =-\partial_{\nu} \delta^{4}\left(x_{1}-x\right) D_{\alpha \beta}^{-1}\left(x_{2}, x\right)-\partial_{\nu} \delta^{4}\left(x_{2}-x\right) D_{\alpha \beta}^{-1}\left(x_{1}, x\right) \\
& +\partial^{\mu}\left(g_{\alpha \nu} \delta^{4}\left(x_{1}-x\right) D_{\beta \mu}^{-1}\left(x_{2}, x\right)+g_{\beta \nu} \delta^{4}\left(x_{2}-x\right) D_{\alpha \mu}^{-1}\left(x_{1}, x\right)\right)
\end{aligned}
$$

Delle Rose, Armillis, CC

(a)

(c)

(n)

(a)

(d)

QCD TJJ: 1 form factor carries the entire anomaly
Delle Rose, Armillis, CC

$$
\Phi_{1 q}\left(s, 0,0, m^{2}\right)=-\frac{g^{2}}{36 \pi^{2} s}+\frac{g^{2} m^{2}}{6 \pi^{2} s^{2}}-\frac{g^{2} m^{2}}{6 \pi^{2} s} \mathcal{C}_{0}\left(s, 0,0, m^{2}\right)\left[\frac{1}{2}-\frac{2 m^{2}}{s}\right]
$$

Quark contribution

$$
\Phi_{1}(s, 0,0)=-\frac{g^{2}}{72 \pi^{2} s}\left(2 n_{f}-11 C_{A}\right)+\frac{g^{2}}{6 \pi^{2}} \sum_{i=1}^{n_{f}} m_{i}^{2}\left\{\frac{1}{s^{2}}-\frac{1}{2 s} \mathcal{C}_{0}\left(s, 0,0, m_{i}^{2}\right)\left[1-\frac{4 m_{i}^{2}}{s}\right]\right\},
$$

It is reproduced by the effective action

$$
\begin{aligned}
S_{\text {pole }} & =-\frac{c}{6} \int d^{4} x d^{4} y R^{(1)}(x) \square^{-1}(x, y) F_{\alpha \beta}^{a} F^{a \alpha \beta} \\
& =\frac{1}{3} \frac{g^{3}}{16 \pi^{2}}\left(-\frac{11}{3} C_{A}+\frac{2}{3} n_{f}\right) \int d^{4} x d^{4} y R^{(1)}(x) \square^{-1}(x, y) F_{\alpha \beta} F^{\alpha \beta}
\end{aligned}
$$

$$
\mathcal{S}_{A} \sim \int d^{4} x d^{4} y R^{(1)}(x)\left(\frac{1}{\square}\right)(x, y)\left(b^{\prime} E_{4}^{(2)}(y)+b\left(C^{2}\right)^{(2)}(y)\right)
$$

This behavior is generic for conformal and chiral anomalies

$$
\mathcal{S}_{A} \sim \beta(e) \int d^{4} x d^{4} y R^{(1)}(x)\left(\frac{1}{\square}\right)(x, y) F^{\mu \nu} F_{\mu \nu}(y)
$$

If we couple the SM to gravity we would find at 1-loop a general behavior.

It is reproduced by a nonlocal effective action where an intermediate virtual state couples to the anomaly

Superconformal Sum Rules and the Spectral Density Flow

 of the Composite Dilaton (ADD) Multiplet in $\mathcal{N}=1$ Theories$$
\begin{aligned}
& \partial_{\mu} R^{\mu}=\frac{g^{2}}{16 \pi^{2}}\left(T(A)-\frac{1}{3} T(R)\right) F^{a \mu \nu} \tilde{F}_{\mu \nu}^{a}, \\
& \text { Superconformal anomaly multiplet } \\
& \bar{\sigma}_{\mu} S_{A}^{\mu}=-i \frac{3 g^{2}}{8 \pi^{2}}\left(T(A)-\frac{1}{3} T(R)\right)\left(\bar{\lambda}^{a} \bar{\sigma}^{\mu \nu}\right)_{A} F_{\mu \nu}^{a}, \\
& \eta_{\mu \nu} T^{\mu \nu}=-\frac{3 g^{2}}{32 \pi^{2}}\left(T(A)-\frac{1}{3} T(R)\right) F^{a \mu \nu} F_{\mu \nu}^{a} .
\end{aligned}
$$

EXACT SUM RULE

The form factor that carries the chiral
And conformal anomaly away from the critical point c shows a branch cut.

The spectral dentity exhibits a pole As $m \rightarrow 0$

Delle Rose, CC

THESE ANALYSIS ARE PURELY PERTURBATIVE.

RENORMALIZATION ASSOCIATED TO 2 COUNTERTERMS

$$
\begin{aligned}
& C^{2}=C_{\lambda \mu \nu \rho} C^{\lambda \mu \nu \rho}=R_{\lambda \mu \nu \rho} R^{\lambda \mu \nu \rho}-2 R_{\mu \nu} R^{\mu \nu}+\frac{R^{2}}{3} \\
& E={ }^{*} R_{\lambda \mu \nu \rho}{ }^{*} R^{\lambda \mu \nu \rho}=R_{\lambda \mu \nu \rho} R^{\lambda \mu \nu \rho}-4 R_{\mu \nu} R^{\mu \nu}+R^{2} .
\end{aligned}
$$

WEYL TENSOR SQUARED

GAUSS BONNET TERM

The HIggs has to be conformally coupled (delle Rose, Serino, CC)

$$
T_{\mu}^{\mu}=-\frac{1}{8}\left[2 b C^{2}+2 b^{\prime}\left(E-\frac{2}{3} \square R\right)+2 c F^{2}\right]
$$

SCT

$$
\begin{aligned}
\mathcal{K}^{\kappa} T^{\mu \nu}(x) \equiv & \delta_{\kappa} T^{\mu \nu}(x)=\frac{\partial}{\partial b^{\kappa}}\left(\delta T^{\mu \nu}\right) \\
= & -\left(x^{2} \partial_{\kappa}-2 x_{\kappa} x \cdot \partial\right) T^{\mu \nu}(x)+2 \Delta_{T} x_{\kappa} T^{\mu \nu}(x)+2\left(\delta_{\mu \kappa} x_{\alpha}-\delta_{\alpha \kappa} x_{\mu}\right) T^{\alpha \nu}(x) \\
& +2\left(\delta_{\kappa \nu} x_{\alpha}-\delta_{\alpha \kappa} x_{\nu}\right) T^{\mu \alpha}
\end{aligned}
$$

$$
\begin{aligned}
{\left[K^{\mu}, D\right] } & =-i K^{\mu} \\
{\left[P^{\mu}, K^{\nu}\right] } & =2 i \delta^{\mu \nu} D+2 i J^{\mu \nu} \\
{\left[K^{\mu}, K^{\nu}\right] } & =0 \\
{\left[J^{\rho \sigma}, K^{\mu}\right] } & =i \delta^{\mu \rho} K^{\sigma}-i \delta^{\mu \sigma} K^{\rho} .
\end{aligned}
$$

$$
\begin{aligned}
\text { translations } & L_{g}=a^{\mu} \partial_{\mu}, \\
\text { rotations } & L_{g}=\frac{\omega^{\mu \nu}}{2}\left[x_{\nu} \partial_{\mu}-x_{\mu} \partial_{\nu}\right]-\Sigma_{\mu \nu}, \\
\text { scale transformations } & L_{g}=\sigma[x \cdot \partial+\Delta], \\
\text { special conformal transformations } & L_{g}=b^{\mu}\left[x^{2} \partial_{\mu}-2 x_{\mu} x \cdot \partial-2 \Delta x_{\mu}-2 x_{\nu} \Sigma_{\mu}^{\nu}\right] .
\end{aligned}
$$

FROM ORDINARY WARD IDENTITIES TO CONFORMAL WARD IDENTITIES

HIERARCHICAL SET OF EQUATIONS THAT NEED TO BE INVESTIGATED

RENORMALIZATION of the 3 T affects the 2 T and so on

To understand these states and the role of the counterterms
it is useful to move to momentum space

It is also useful to identify a mapping between general non perturbative solutions of the CWIs with the free field theory realizations
two and 3-point functions of primary scalar fields, in the scalar case, are easily fixed

$$
\begin{gathered}
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right)\right\rangle=\frac{C_{12}}{\left|x_{1}-x_{2}\right|^{2 \Delta_{1}}} \delta_{\Delta_{1} \Delta_{2}} \\
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right)\right\rangle=\frac{C_{123}}{x_{12}^{\Delta_{1}+\Delta_{2}-\Delta_{3}} x_{23}^{\Delta_{2}+\Delta_{3}-\Delta-1} x_{13}^{\Delta_{3}+\Delta_{1}-\Delta_{2}}}
\end{gathered}
$$

$$
\Gamma^{\mu \nu \alpha \beta}\left(x_{1}, x_{2}, x_{3}\right)=\left\langle T^{\mu \nu}\left(x_{1}\right) J^{\alpha}\left(x_{2}\right) J^{\beta}\left(x_{3}\right)\right\rangle
$$

TJJ

$$
\begin{aligned}
\mathcal{K}^{\kappa} \Gamma^{\mu \nu \alpha \beta}\left(x_{1}, x_{2}, x_{3}\right)= & \sum_{i=1}^{3} K_{i}^{\kappa}{ }_{\text {scalar }}\left(x_{i}\right) \Gamma^{\mu \nu \alpha \beta}\left(x_{1}, x_{2}, x_{3}\right) \\
& +2\left(\delta^{\mu \kappa} x_{1 \rho}-\delta_{\rho}^{\kappa} x_{1}^{\mu}\right) \Gamma^{\rho \nu \alpha \beta}+2\left(\delta^{\nu \kappa} x_{1 \rho}-\delta_{\rho}^{\kappa} x_{1}^{\nu}\right) \Gamma^{\mu \rho \alpha \beta} \\
& 2\left(\delta^{\alpha \kappa} x_{2 \rho}-\delta_{\rho}^{\kappa} x_{2}^{\alpha}\right) \Gamma^{\mu \nu \rho \beta}+2\left(\delta^{\beta \kappa} x_{3 \rho}-\delta_{\rho}^{\kappa} x_{3}^{\beta}\right) \Gamma^{\mu \nu \alpha \rho}=0
\end{aligned}
$$

analysis of the TT, TTT in coordinate space done long ago by Osborn and Petkou

Delle Rose, Mottola, Serino, C.C.

 Bzowski, McFadden, Skenderis$$
\Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\int d p_{1} d p_{2} \ldots d p_{n-1} e^{i\left(p_{1} x_{1}+p_{2} x_{2}+\ldots p_{n-1} x_{n-1}+\bar{p}_{n} x_{n}\right)} \Phi\left(p_{1}, p_{2}, \ldots, \bar{p}_{n}\right)
$$

$$
\sum_{j=1}^{n}\left(x_{j}^{\alpha} \frac{\partial}{\partial x_{j}^{\alpha}}+\Delta_{j}\right) \Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
$$

dilatation WI

$$
\left[\sum_{j=1}^{n} \Delta_{j}-(n-1) d-\sum_{j=1}^{n-1} p_{j}^{\alpha} \frac{\partial}{\partial p_{j}^{\alpha}}\right] \Phi\left(p_{1}, p_{2}, \ldots, \bar{p}_{n}\right)=0
$$

SC WI

$$
\sum_{j=1}^{n}\left(-x_{j}^{2} \frac{\partial}{\partial x_{j}^{\kappa}}+2 x_{j}^{\kappa} x_{j}^{\alpha} \frac{\partial}{\partial x_{j}^{\alpha}}+2 \Delta_{j} x_{j}^{\kappa}\right) \Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
$$

$$
\sum_{j=1}^{n-1}\left(p_{j}^{\kappa} \frac{\partial^{2}}{\partial p_{j}^{\alpha} \partial p_{j}^{\alpha}}+2\left(\Delta_{j}-d\right) \frac{\partial}{\partial p_{j}^{\kappa}}-2 p_{j}^{\alpha} \frac{\partial^{2}}{\partial p_{j}^{\kappa} \partial p_{j}^{\alpha}}\right) \Phi\left(p_{1}, \ldots p_{n-1}, \bar{p}_{n}\right)=0
$$

We need to solve

$$
\begin{aligned}
& \sum_{j=1}^{n-1}\left(p_{j}^{\kappa} \frac{\partial^{2}}{\partial p_{j}^{\alpha} \partial p_{j}^{\alpha}}+2\left(\Delta_{j}-d\right) \frac{\partial}{\partial p_{j}^{\kappa}}-2 p_{j}^{\alpha} \frac{\partial^{2}}{\partial p_{j}^{\kappa} \partial p_{j}^{\alpha}}\right) \Phi\left(p_{1}, \ldots p_{n-1}, \bar{p}_{n}\right)=0 \\
& {\left[\sum_{j=1}^{n} \Delta_{j}-(n-1) d-\sum_{j=1}^{n-1} p_{j}^{\alpha} \frac{\partial}{\partial p_{j}^{\alpha}}\right] \Phi\left(p_{1}, p_{2}, \ldots, \bar{p}_{n}\right)=0}
\end{aligned}
$$

perform the change of variables (Delle Rose, Serino, Mottola, CC, 2013)
$n=3$

$$
\begin{aligned}
\frac{\partial}{\partial p_{1}^{\mu}} & =2\left(p_{1 \mu}+p_{2 \mu}\right) \frac{\partial}{\partial p_{3}^{2}}+\frac{2}{p_{3}^{2}}\left((1-x) p_{1 \mu}-x p_{2 \mu}\right) \frac{\partial}{\partial x}-2\left(p_{1 \mu}+p_{2 \mu}\right) \frac{y}{p_{3}^{2}} \frac{\partial}{\partial y} \\
\frac{\partial}{\partial p_{2}^{\mu}} & =2\left(p_{1 \mu}+p_{2 \mu}\right) \frac{\partial}{\partial p_{3}^{2}}-2\left(p_{1 \mu}+p_{2 \mu}\right) \frac{x}{p_{3}^{2}} \frac{\partial}{\partial x}+\frac{2}{p_{3}^{2}}\left((1-y) p_{2 \mu}-y p_{1 \mu}\right) \frac{\partial}{\partial y}
\end{aligned}
$$

$$
G_{123}\left(p_{1}^{2}, p_{2}^{2}, p_{3}^{2}\right)=\left(p_{3}^{2}\right)^{-d+\frac{1}{2}\left(\eta_{1}+\eta_{2}+\eta_{3}\right)} \Phi(x, y)
$$

The equations are found to become a hypergeometric system of rank-4

$$
\left\{\begin{array}{l}
{\left[x(1-x) \frac{\partial^{2}}{\partial x^{2}}-y^{2} \frac{\partial^{2}}{\partial y^{2}}-2 x y \frac{\partial^{2}}{\partial x \partial y}+[\gamma-(\alpha+\beta+1) x] \frac{\partial}{\partial x}\right.} \\
\left.-(\alpha+\beta+1) y \frac{\partial}{\partial y}-\alpha \beta\right] \Phi(x, y)=0 \\
{\left[y(1-y) \frac{\partial^{2}}{\partial y^{2}}-x^{2} \frac{\partial^{2}}{\partial x^{2}}-2 x y \frac{\partial^{2}}{\partial x \partial y}+\left[\gamma^{\prime}-(\alpha+\beta+1) y\right] \frac{\partial}{\partial y}\right.} \\
\left.-(\alpha+\beta+1) x \frac{\partial}{\partial x}-\alpha \beta\right] \Phi(x, y)=0
\end{array}\right.
$$

Appell system of equations
(see Campes de Feriet and Appell's book)

$$
\begin{aligned}
& \alpha=\frac{d}{2}-\frac{\eta_{1}+\eta_{2}-\eta_{3}}{2} \\
& \beta=d-\frac{\eta_{1}+\eta_{2}+\eta_{3}}{2}
\end{aligned}
$$

$$
\gamma=\frac{d}{2}-\eta_{1}+1
$$

$$
\gamma^{\prime}=\frac{d}{2}-\eta_{2}+1
$$

$$
F_{4}\left(\alpha, \beta ; \gamma, \gamma^{\prime} ; x, y\right)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{(\alpha)_{i+j}(\beta)_{i+j}}{(\gamma)_{i}\left(\gamma^{\prime}\right)_{j}} \frac{x^{i}}{i!} \frac{y^{j}}{j!}
$$

$(\alpha)_{i}=\Gamma(\alpha+i) / \Gamma(\alpha)$ is the Pochhammer symbol.

$$
\begin{aligned}
& \quad\left\langle O\left(p_{1}\right) O\left(p_{2}\right) O\left(p_{3}\right)\right\rangle=\left(p_{3}^{2}\right)^{-d+\frac{\Delta_{t}}{2}} C\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, d\right) \\
& \left\{\Gamma\left(\Delta_{1}-\frac{d}{2}\right) \Gamma\left(\Delta_{2}-\frac{d}{2}\right) \Gamma\left(d-\frac{\Delta_{1}+\Delta_{2}+\Delta_{3}}{2}\right) \Gamma\left(d-\frac{\Delta_{1}+\Delta_{2}-\Delta_{3}}{2}\right)\right. \\
& \quad \times F_{4}\left(\frac{d}{2}-\frac{\Delta_{1}+\Delta_{2}-\Delta_{3}}{2}, d-\frac{\Delta_{t}}{2}, \frac{d}{2}-\Delta_{1}+1, \frac{d}{2}-\Delta_{2}+1 ; x, y\right) \\
& + \\
& \quad \Gamma\left(\frac{d}{2}-\Delta_{1}\right) \Gamma\left(\Delta_{2}-\frac{d}{2}\right) \Gamma\left(\frac{\Delta_{1}-\Delta_{2}+\Delta_{3}}{2}\right) \Gamma\left(\frac{d}{2}+\frac{\Delta_{1}-\Delta_{2}-\Delta_{3}}{2}\right) \\
& \quad \times x^{\Delta_{1}-\frac{d}{2}} F_{4}\left(\frac{\Delta_{1}-\Delta_{2}+\Delta_{3}}{2}, \frac{d}{2}-\frac{\Delta_{2}+\Delta_{3}-\Delta_{1}}{2}, \Delta_{1}-\frac{d}{2}+1, \frac{d}{2}-\Delta_{2}+1 ; x\right.
\end{aligned}
$$

$$
\left.\begin{array}{rl}
+\Gamma\left(\Delta_{1}-\frac{d}{2}\right) & \Gamma\left(\frac{d}{2}-\Delta_{2}\right) \Gamma\left(\frac{-\Delta_{1}+\Delta_{2}+\Delta_{3}}{2}\right) \Gamma\left(\frac{d}{2}+\frac{-\Delta_{1}+\Delta_{2}-\Delta_{3}}{2}\right) \\
& \times y^{\Delta_{2}-\frac{d}{2}} F_{4}\left(\frac{\Delta_{2}-\Delta_{1}+\Delta_{3}}{2}, \frac{d}{2}-\frac{\Delta_{1}-\Delta_{2}+\Delta_{3}}{2}, \frac{d}{2}-\Delta_{1}+1, \Delta_{2}-\frac{d}{2}+1 ; x, y\right) \\
+ & \Gamma\left(\frac{d}{2}-\Delta_{1}\right)
\end{array}\right) \Gamma\left(\frac{d}{2}-\Delta_{2}\right) \Gamma\left(\frac{\Delta_{1}+\Delta_{2}-\Delta_{3}}{2}\right) \Gamma\left(-\frac{d}{2}+\frac{\Delta_{1}+\Delta_{2}+\Delta_{3}}{2}\right) .
$$

linear combination of 4 fundamental solutions

It is important to verify that the symmetric solution above does not have any unphysical singularity in the
physical region, reproducing the expected behaviour in the large momentum limit $p_{3} \gg p_{1}$

(MM Maglio, CC)

If we define

in terms of F4

$$
\begin{aligned}
& B(\lambda, \mu)=\left(\frac{a}{c}\right)^{\lambda}\left(\frac{b}{c}\right)^{\mu} \Gamma\left(\frac{\alpha+\lambda+\mu-\nu}{2}\right) \Gamma\left(\frac{\alpha+\lambda+\mu+\nu}{2}\right) \Gamma(-\lambda) \Gamma(-\mu) \times \\
& \times F_{4}\left(\frac{\alpha+\lambda+\mu-\nu}{2}, \frac{\alpha+\lambda+\mu+\nu}{2} ; \lambda+1, \mu+1 ; \frac{a^{2}}{c^{2}}, \frac{b^{2}}{c^{2}}\right)
\end{aligned}
$$

Then one obtains an explictly symmetric expression

(Bzowski, McFadden, Slkenderis)

$$
\begin{aligned}
& \int_{0}^{\infty} d s s^{\alpha-1} K_{\lambda}\left(p_{1} s\right) K_{\mu}\left(p_{2} s\right) K_{\nu}\left(p_{3} s\right)= \\
& \quad=\frac{2^{\alpha-4}}{c^{\alpha}}[B(\lambda, \mu)+B(\lambda,-\mu)+B(-\lambda, \mu)+B(-\lambda,-\mu)]
\end{aligned}
$$

$$
\Phi\left(p_{1}, p_{2}, p_{3}\right)=C_{123} p_{1}^{\Delta_{1}-\frac{d}{2}} p_{2}^{\Delta_{2}-\frac{d}{2}} p_{3}^{\Delta_{3}-\frac{d}{2}} \int_{0}^{\infty} d x x^{\frac{d}{2}-1} K_{\Delta_{1}-\frac{d}{2}}\left(p_{1} x\right) K_{\Delta_{2}-\frac{d}{2}}\left(p_{2} x\right) K_{\Delta_{3}-\frac{d}{2}}\left(p_{3} x\right)
$$

The Bessel functions K_{ν} satisfy the equations

$$
\begin{aligned}
\frac{\partial}{\partial p}\left[p^{\beta} K_{\beta}(p x)\right] & =-x p^{\beta} K_{\beta-1}(p x) \\
K_{\beta+1}(x) & =K_{\beta-1}(x)+\frac{2 \beta}{x} K_{\beta}(x)
\end{aligned}
$$

`The hypergeometric system of equations corrispondign to F4, can also be obtained by first rewriting the special CWI's which are four-vector equations to the scalar form (Bzowsky, McFadden, Skenderis, 2013)

$$
K^{\kappa}\left(p_{i}\right) \equiv \sum_{j=1}^{2}\left(2\left(\Delta_{j}-d\right) \frac{\partial}{\partial p_{j}^{\kappa}}+p_{j}^{\kappa} \frac{\partial^{2}}{\partial p_{j}^{\alpha} \partial p_{j}^{\alpha}}-2 p_{j}^{\alpha} \frac{\partial^{2}}{\partial p_{j}^{\kappa} \partial p_{j}^{\alpha}}\right) \Phi\left(p_{1}, p_{2}, \bar{p}_{3}\right)=0
$$

$$
\frac{\partial \Phi}{\partial p_{i}^{\mu}}=\frac{p_{i}^{\mu}}{p_{i}} \frac{\partial \Phi}{\partial p_{i}}-\frac{\bar{p}_{3}^{\mu}}{p_{3}} \frac{\partial \Phi}{\partial p_{3}}
$$

chain rule

$$
\begin{gathered}
K_{\text {scalar }}{ }^{\kappa} \Phi=0 \\
K_{\text {scalar }}^{\kappa}=\sum_{i=1}^{3} p_{i}^{\kappa} K_{i}
\end{gathered}
$$

$$
\begin{aligned}
& K_{i} \equiv \frac{\partial^{2}}{\partial p_{i} \partial p_{i}}+\frac{d+1-2 \Delta_{i}}{p_{i}} \frac{\partial}{\partial p_{i}} \\
& \frac{\partial^{2} \Phi}{\partial p_{i} \partial p_{i}}+\frac{1}{p_{i}} \frac{\partial \Phi}{\partial p_{i}}\left(d+1-2 \Delta_{1}\right)-\frac{\partial^{2} \Phi}{\partial p_{3} \partial p_{3}}-\frac{1}{p_{3}} \frac{\partial \Phi}{\partial p_{3}}\left(d+1-2 \Delta_{3}\right)=0
\end{aligned}
$$

$$
\begin{gathered}
K_{i j} \equiv K_{i}-K_{j} \\
K_{13}^{\kappa} \Phi=0 \quad \text { and } \quad K_{23}^{\kappa} \Phi=0
\end{gathered}
$$

The general (nonperturbative) result obtained for this and other correlators can be simplified by choosing 3 independent field theory solutions which are conformal at 1-loop (e.g. QED, QCD)

The simplification is drastic and allows to avoid all the complications related to the renomalization of the 3 K integrals.

How to proceed

the TTT Case

$$
\begin{gathered}
\left\langle T^{\mu \nu}(x)\right\rangle=\frac{2}{\sqrt{g(x)}} \frac{\delta \mathcal{W}}{\delta g_{\mu \nu}(x)} \\
\mathcal{W}=\frac{1}{\mathcal{N}} \int \mathcal{D} \Phi e^{-S}
\end{gathered}
$$

$$
\begin{aligned}
\left\langle T^{\mu_{1} \nu_{1}}\left(x_{1}\right) \ldots T^{\mu_{n} \nu_{n}}\left(x_{n}\right)\right\rangle & \equiv\left[\frac{2}{\sqrt{g\left(x_{1}\right)}} \cdots \frac{2}{\sqrt{-g\left(x_{n}\right)}} \frac{\delta^{n} \mathcal{W}}{\delta g_{\mu_{1} \nu_{1}}\left(x_{1}\right) \ldots \delta g_{\mu_{n} \nu_{n}}\left(x_{n}\right)}\right]_{f l a t} \\
& =\left.2^{n} \frac{\delta^{n} \mathcal{W}}{\delta g_{\mu_{1} \nu_{1}}\left(x_{1}\right) \ldots \delta g_{\mu_{n} \nu_{n}}\left(x_{n}\right)}\right|_{\text {flat }}
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle T^{\mu_{1} \nu_{1}}\left(x_{1}\right) T^{\mu_{2} \nu_{2}}\left(x_{2}\right) T^{\mu_{3} \nu_{3}}\left(x_{3}\right)\right\rangle=8\left\{-\left\langle\frac{\delta S}{\delta g_{\mu_{1} \nu_{1}}\left(x_{1}\right)} \frac{\delta S}{\delta g_{\mu_{2} \nu_{2}}\left(x_{2}\right)} \frac{\delta S}{\delta g_{\mu_{3} \nu_{3}}\left(x_{3}\right)}\right\rangle\right. \\
& \quad+\left\langle\frac{\delta^{2} S}{\delta g_{\mu_{1} \nu_{1}}\left(x_{1}\right) \delta g_{\mu_{2} \nu_{2}}\left(x_{2}\right)} \frac{\delta S}{\delta g_{\mu_{3} \nu_{3}}\left(x_{3}\right)}\right\rangle+\left\langle\frac{\delta^{2} S}{\left.\delta g_{\mu_{1} \nu_{1}}\left(x_{1}\right) \delta g_{\mu_{3} \nu_{3}\left(x_{3}\right)} \frac{\delta S}{\delta g_{\mu_{2} \nu_{2}}\left(x_{2}\right)}\right\rangle} \begin{array}{l}
\left.\quad+\left\langle\frac{\delta S}{\delta g_{\mu_{2} \nu_{2}}\left(x_{2}\right) \delta g_{\mu_{3} \nu_{3}}\left(x_{3}\right)} \frac{\delta}{\delta g_{\mu_{1} \nu_{1}}\left(x_{1}\right)}\right\rangle-\left\langle\frac{\delta^{3} S}{\delta g_{\mu_{1} \nu_{1}}\left(x_{1}\right) \delta g_{\mu_{2} \nu_{2}}\left(x_{2}\right) \delta g_{\mu_{3} \nu_{3}}\left(x_{3}\right)}\right\rangle\right\}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{j=1}^{2}[& {\left[2\left(\Delta_{j}-d\right) \frac{\partial}{\partial p_{j}^{\kappa}}-2 p_{j}^{\alpha} \frac{\partial}{\partial p_{j}^{\alpha}} \frac{\partial}{\partial p_{j}^{\kappa}}+\left(p_{j}\right)_{\kappa} \frac{\partial}{\partial p_{j}^{\alpha}} \frac{\partial}{\partial p_{j \alpha}}\right]\left\langle T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(\bar{p}_{3}\right)\right\rangle } \\
& +2\left(\delta^{\kappa\left(\mu_{1}\right.} \frac{\partial}{\partial p_{1}^{\alpha_{1}}}-\delta_{\alpha_{1}}^{\kappa} \delta^{\lambda\left(\mu_{1}\right.} \frac{\partial}{\partial p_{1}^{\lambda}}\right)\left\langle T^{\left.\nu_{1}\right) \alpha_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(\bar{p}_{3}\right)\right\rangle \\
& +2\left(\delta^{\kappa\left(\mu_{2}\right.} \frac{\partial}{\partial p_{2}^{\alpha_{2}}}-\delta_{\alpha_{2}}^{\kappa} \delta^{\lambda\left(\mu_{2}\right.} \frac{\partial}{\partial p_{2}^{\lambda}}\right)\left\langle T^{\left.\nu_{2}\right) \alpha_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(\bar{p}_{3}\right) T^{\mu_{1} \nu_{1}}\left(p_{1}\right)\right\rangle=0
\end{aligned}
$$

projectors

Reconstruction in the BMS approach

$$
T^{\mu \nu}=t^{\mu \nu}+t_{l o c}^{\mu \nu}
$$

$$
\begin{aligned}
\pi_{\alpha}^{\mu} & =\delta_{\alpha}^{\mu}-\frac{p^{\mu} p_{\alpha}}{p^{2}}, \quad \tilde{\pi}_{\alpha}^{\mu}=\frac{1}{d-1} \pi_{\alpha}^{\mu} \\
\Pi_{\alpha \beta}^{\mu \nu} & =\frac{1}{2}\left(\pi_{\alpha}^{\mu} \pi_{\beta}^{\nu}+\pi_{\beta}^{\mu} \pi_{\alpha}^{\nu}\right)-\frac{1}{d-1} \pi^{\mu \nu} \pi_{\alpha \beta}, \\
\mathcal{I}_{\alpha}^{\mu \nu} & =\frac{1}{p^{2}}\left[2 p^{(\mu} \delta_{\alpha}^{\nu)}-\frac{p_{\alpha}}{d-1}\left(\delta^{\mu \nu}+(d-2) \frac{p^{\mu} p^{\nu}}{p^{2}}\right)\right] \\
\mathcal{I}_{\alpha \beta}^{\mu \nu} & =\mathcal{I}_{\alpha}^{\mu \nu} p_{\beta}=\frac{p_{\beta}}{p^{2}}\left(p^{\mu} \delta_{\alpha}^{\nu}+p^{\nu} \delta_{\alpha}^{\mu}\right)-\frac{p_{\alpha} p_{\beta}}{p^{2}}\left(\delta^{\mu \nu}+(d-2) \frac{p^{\mu} p^{\nu}}{p^{2}}\right) \\
\mathcal{L}_{\alpha \beta}^{\mu \nu} & =\frac{1}{2}\left(\mathcal{I}_{\alpha \beta}^{\mu \nu}+\mathcal{I}_{\beta \alpha}^{\mu \nu}\right) \quad \tau_{\alpha \beta}^{\mu \nu}=\tilde{\pi}^{\mu \nu} \delta_{\alpha \beta}
\end{aligned}
$$

transverse traceless sector

$$
\left\langle t^{\mu_{1} \nu_{1}}\left(p_{1}\right) t^{\mu_{2} \nu_{2}}\left(p_{2}\right) t^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle=\Pi_{1}^{\mu_{1} \beta_{1}} \Pi_{2}^{\alpha_{2} \beta_{2}} \Pi_{3}^{\mu_{2} \nu_{2}} \Pi_{\alpha_{3} \beta_{3}}^{\mu_{3} \nu_{3}}\left\langle T^{\alpha_{1} \beta_{1}}\left(p_{1}\right) T^{\alpha_{2} \beta_{2}}\left(p_{2}\right) T^{\alpha_{3} \beta_{3}}\left(p_{3}\right)\right\rangle
$$

$$
\begin{align*}
& \left\langle t^{\mu_{1} \nu_{1}}\left(p_{1}\right) t^{\mu_{2} \nu_{2}}\left(p_{2}\right) t^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle=\Pi_{\alpha_{1} \beta_{1}}^{\mu_{1} \nu_{1}}\left(p_{1}\right) \Pi_{\alpha_{2} \beta_{2}}^{\mu_{2} \nu_{2}}\left(p_{2}\right) \Pi_{\alpha_{3} \beta_{3}}^{\mu_{3} \nu_{3}}\left(p_{3}\right) \\
& \times\left[A_{1} p_{2}^{\alpha_{1}} p_{2}^{\beta_{1}} p_{3}^{\alpha_{2}} p_{3}^{\beta_{2}} p_{1}^{\alpha_{3}} p_{1}^{\beta_{3}}+A_{2} \delta^{\beta_{1} \beta_{2}} p_{2}^{\alpha_{1}} p_{3}^{\alpha_{2}} p_{1}^{\alpha_{3}} p_{1}^{\beta_{3}}+A_{2}\left(p_{1} \leftrightarrow p_{3}\right) \delta^{\beta_{2} \beta_{3}} p_{3}^{\alpha_{2}} p_{1}^{\alpha_{3}} p_{2}^{\alpha_{1}} p_{2}^{\beta_{1}}\right. \\
& \quad+A_{2}\left(p_{2} \leftrightarrow p_{3}\right) \delta^{\beta_{3} \beta_{1}} p_{1}^{\alpha_{3}} p_{2}^{\alpha_{1}} p_{3}^{\alpha_{2}} p_{3}^{\beta_{2}}+A_{3} \delta^{\alpha_{1} \alpha_{2}} \delta^{\beta_{1} \beta_{2}} p_{1}^{\alpha_{3}} p_{1}^{\beta_{3}}+A_{3}\left(p_{1} \leftrightarrow p_{3}\right) \delta^{\alpha_{2} \alpha_{3}} \delta^{\beta_{2} \beta_{3}} p_{2}^{\alpha_{1}} p_{2}^{\beta_{1}} \\
& \quad+A_{3}\left(p_{2} \leftrightarrow p_{3}\right) \delta^{\alpha_{3} \alpha_{1}} \delta^{\beta_{3} \beta_{1}} p_{3}^{\alpha_{2}} p_{3}^{\beta_{2}}+A_{4} \delta^{\alpha_{1} \alpha_{3}} \delta^{\alpha_{2} \beta_{3}} p_{2}^{\beta_{1}} p_{3}^{\beta_{2}}+A_{4}\left(p_{1} \leftrightarrow p_{3}\right) \delta^{\alpha_{2} \alpha_{1}} \delta^{\alpha_{3} \beta_{1}} p_{3}^{\beta_{2}} p_{1}^{\beta_{3}} \\
& \left.\quad+A_{4}\left(p_{2} \leftrightarrow p_{3}\right) \delta^{\alpha_{3} \alpha_{2}} \delta^{\alpha_{1} \beta_{2}} p_{1}^{\beta_{3}} p_{2}^{\beta_{1}}+A_{5} \delta^{\alpha_{1} \beta_{2}} \delta^{\alpha_{2} \beta_{3}} \delta^{\alpha_{3} \beta_{1}}\right] \tag{5.12}
\end{align*}
$$

the entire correlator is reconstructed via

$$
\begin{aligned}
&\left\langle T^{\mu_{1} \nu_{1}} T^{\mu_{2} \nu_{2}} T^{\mu_{3} \nu_{3}}\right\rangle=\left\langle t^{\mu_{1} \nu_{1}} t^{\mu_{2} \nu_{2}} t^{\mu_{3} \nu_{3}}\right\rangle+\left\langle t_{l o c}^{\mu_{1} \nu_{1}} t^{\mu_{2} \nu_{2}} t^{\mu_{3} \nu_{3}}\right\rangle+\left\langle t^{\mu_{1} \nu_{1}} t_{l o c}^{\mu_{2} \nu_{2}} t^{\mu_{3} \nu_{3}}\right\rangle+\left\langle t^{\mu_{1} \nu_{1}} t^{\mu_{2} \nu_{2}} t_{l o c}^{\mu_{3} \nu_{3}}\right\rangle \\
&+\left\langle t_{l o c}^{\mu_{1} \nu_{1}} t_{l o c}^{\mu_{2} \nu_{2}} t^{\mu_{3} \nu_{3}}\right\rangle+\left\langle t_{l o c}^{\mu_{1} \nu_{1}} t_{l o c}^{\mu_{2} \nu_{2}} t^{\mu_{3} \nu_{3}}\right\rangle+\left\langle t^{\mu_{1} \nu_{1}} t_{l o c}^{\mu_{2} \nu_{2}} t_{l o c}^{\mu_{3} \nu_{3}}\right\rangle+\left\langle t_{l o c}^{\mu_{1} \nu_{1}} t_{l o c}^{\mu_{2} \nu_{2}} t_{l o c}^{\mu_{3} \nu_{3}}\right\rangle
\end{aligned}
$$

at the same time one solves the diolatation WI

$$
\left(\sum_{j=1}^{3} \Delta_{j}-2 d-\sum_{j=1}^{2} p_{j}^{\alpha} \frac{\partial}{\partial p_{j}^{\alpha}}\right)\left\langle T^{\alpha_{1} \beta_{1}} T^{\alpha_{2} \beta_{2}} T^{\alpha_{3} \beta_{3}}\right\rangle
$$

the intermediate steps are rather technical

BMS

$$
\begin{array}{ll}
K_{13} A_{1}=0 & K_{23} A_{1}=0 \\
K_{13} A_{2}=8 A_{1} & K_{23} A_{2}=8 A_{1} \\
K_{13} A_{2}\left(p_{1} \leftrightarrow p_{3}\right)=-8 A_{1} & K_{23} A_{2}\left(p_{1} \leftrightarrow p_{3}\right)=0 \\
K_{13} A_{2}\left(p_{2} \leftrightarrow p_{3}\right)=0 & K_{23} A_{2}\left(p_{2} \leftrightarrow p_{3}\right)=-8 A_{1} \\
K_{13} A_{3}=2 A_{2} & K_{23} A_{3}=2 A_{2} \\
K_{13} A_{3}\left(p_{1} \leftrightarrow p_{3}\right)=-2 A_{2}\left(p_{1} \leftrightarrow p_{3}\right) & K_{23} A_{3}\left(p_{1} \leftrightarrow p_{3}\right)=0 \\
K_{13} A_{3}\left(p_{2} \leftrightarrow p_{3}\right)=0 & K_{23} A_{3}\left(p_{2} \leftrightarrow p_{3}\right)=-2 A_{2}\left(p_{2} \leftrightarrow p_{3}\right) \\
K_{13} A_{4}=-4 A_{2}\left(p_{2} \leftrightarrow p_{3}\right) & K_{23} A_{4}=-4 A_{2}\left(p_{1} \leftrightarrow p_{3}\right) \\
K_{13} A_{4}\left(p_{1} \leftrightarrow p_{3}\right)=4 A_{2}\left(p_{2} \leftrightarrow p_{3}\right) & K_{23} A_{4}\left(p_{1} \leftrightarrow p_{3}\right)=4 A_{2}\left(p_{2} \leftrightarrow p_{3}\right)-4 A_{2} \\
K_{13} A_{4}\left(p_{2} \leftrightarrow p_{3}\right)=4 A_{2}\left(p_{1} \leftrightarrow p_{3}\right)-4 A_{2} & K_{23} A_{4}\left(p_{2} \leftrightarrow p_{3}\right)=4 A_{2}\left(p_{1} \leftrightarrow p_{3}\right) \\
K_{13} A_{5}=2\left[A_{4}-A_{4}\left(p_{1} \leftrightarrow p_{3}\right)\right] & K_{23} A_{5}=2\left[A_{4}-A_{4}\left(p_{2} \leftrightarrow p_{3}\right)\right]
\end{array}
$$

primary WI's

and some secondary WI's which connect 3- and 2-point functions

The primary can be solved in temrs of 3 K integrals and deffine a generalised hypergeometric system of Appell type for F4.

Renormalization, anomalies and the anomaly action

Lagrangian realizations and reconstruction
MM Maglio, CC

$$
\begin{array}{cc}
S_{\text {scalar }}=\frac{1}{2} \int d^{d} x \sqrt{-g}\left[g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi-\chi R \phi^{2}\right] & \begin{array}{l}
\text { in d=4 we need } 3 \text { sectors to perform the } \\
\text { matching }
\end{array} \\
S_{\text {fermion }}=\frac{i}{2} \int d^{d} x e e_{a}^{\mu}\left[\bar{\psi} \gamma^{a}\left(D_{\mu} \psi\right)-\left(D_{\mu} \bar{\psi}\right) \gamma^{a} \psi\right], \\
S_{M}=-\frac{1}{4} \int d^{4} x \sqrt{-g} F^{\mu \nu} F_{\mu \nu}, & D_{\mu}=\partial_{\mu}+\Gamma_{\mu}=\partial_{\mu}+\frac{1}{2} \sum^{a b} e_{a}^{\sigma} \nabla_{\mu} e_{b \sigma} . \\
S_{g f}=-\frac{1}{\xi} \int d^{4} x \sqrt{-g}\left(\nabla_{\mu} A^{\mu}\right)^{2}, & \text { The } \Sigma^{a b} \text { are the generators of the Lorentz group in the spin } 1 / 2 \text { representation. } \\
S_{g h}=\int d^{4} x \sqrt{-g} \partial^{\mu} \bar{c} \partial_{\mu} c . & S_{a b e l i a n}=S_{M}+S_{g f}+S_{g h}
\end{array}
$$

[^0] e_{μ}^{a} is the vielbein and e its determinant, with the covariant derivative D_{μ} given by

Can be matched to the complete solution of the CWI's

$$
\begin{aligned}
\partial_{\nu}\left\langle T^{\mu \nu}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right) T^{\alpha \beta}\left(x_{3}\right)\right\rangle= & {\left[\left\langle T^{\rho \sigma}\left(x_{1}\right) T^{\alpha \beta}\left(x_{3}\right)\right\rangle \partial^{\mu} \delta\left(x_{1}, x_{2}\right)+\left\langle T^{\alpha \beta}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right)\right\rangle \partial^{\mu} \delta\left(x_{1}, x_{3}\right)\right] } \\
& -\left[\delta^{\mu \rho}\left\langle T^{\nu \sigma}\left(x_{1}\right) T^{\alpha \beta}\left(x_{3}\right)\right\rangle+\delta^{\mu \sigma}\left\langle T^{\nu \rho}\left(x_{1}\right) T^{\alpha \beta}\left(x_{3}\right)\right\rangle\right] \partial_{\nu} \delta\left(x_{1}, x_{2}\right) \\
& -\left[\delta^{\mu \alpha}\left\langle T^{\nu \beta}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right)\right\rangle+\delta^{\mu \beta}\left\langle T^{\nu \alpha}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right)\right\rangle\right] \partial_{\nu} \delta\left(x_{1}, x_{3}\right) .
\end{aligned}
$$

$$
\begin{aligned}
p_{1 \nu_{1}}\left\langle T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right)\right. & \left.T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle=-p_{2}^{\mu_{1}}\left\langle T^{\mu_{2} \nu_{2}}\left(p_{1}+p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle-p_{3}^{\mu_{1}}\left\langle T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{1}+p_{3}\right)\right\rangle \\
& +p_{2 \alpha}\left[\delta^{\mu_{1} \nu_{2}}\left\langle T^{\mu_{2} \alpha}\left(p_{1}+p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle+\delta^{\mu_{1} \mu_{2}}\left\langle T^{\nu_{2} \alpha}\left(p_{1}+p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle\right] \\
& +p_{3 \alpha}\left[\delta^{\mu_{1} \nu_{3}}\left\langle T^{\mu_{3} \alpha}\left(p_{1}+p_{3}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right)\right\rangle+\delta^{\mu_{1} \mu_{3}}\left\langle T^{\nu_{3} \alpha}\left(p_{1}+p_{3}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right)\right\rangle\right] .
\end{aligned}
$$

while naive scale invariance gives the traceless condition

$$
g_{\mu \nu}\left\langle T^{\mu \nu}\right\rangle=0
$$

$$
\begin{array}{ll}
\beta_{a}(S)=-\frac{3 \pi^{2}}{720}, & \beta_{b}(S)=\frac{\pi^{2}}{720} \\
\beta_{a}(F)=-\frac{9 \pi^{2}}{360}, & \beta_{b}(F)=\frac{11 \pi^{2}}{720} \\
\beta_{a}(G)=-\frac{18 \pi^{2}}{360}, & \beta_{b}(G)=\frac{31 \pi^{2}}{360}
\end{array}
$$

After renormalization this equation is modified by the contribution of the conformal anomaly, by the general expression

$$
\begin{aligned}
g_{\mu \nu}(z)\left\langle T^{\mu \nu}(z)\right\rangle & =\sum_{I=F, S, G} n_{I}\left[\beta_{a}(I) C^{2}(z)+\beta_{b}(I) E(z)\right]+\frac{\kappa}{4} n_{G} F^{a \mu \nu} F_{\mu \nu}^{a}(z) \\
& \equiv \mathcal{A}(z, g)
\end{aligned}
$$

in $d=3$ we need two sectors (scalar and fermion)

$$
\begin{aligned}
& A_{1}^{d=3}\left(p_{1}, p_{2}, p_{3}\right)=\frac{\pi^{3}\left(n_{S}-4 n_{F}\right)}{60\left(p_{1}+p_{2}+p_{3}\right)^{6}}\left[p_{1}^{3}+6 p_{1}^{2}\left(p_{3}+p_{2}\right)+\left(6 p_{1}+p_{2}+p_{3}\right)\left(\left(p_{2}+p_{3}\right)^{2}+3 p_{2} p_{3}\right)\right] \\
& A_{2}^{d=3}\left(p_{1}, p_{2}, p_{3}\right)=\frac{\pi^{3}\left(n_{S}-4 n_{F}\right)}{60\left(p_{1}+p_{2}+p_{3}\right)^{6}}\left[4 p_{3}^{2}\left(7\left(p_{1}+p_{2}\right)^{2}+6 p_{1} p_{2}\right)+20 p_{3}^{3}\left(p_{1}+p_{2}\right)+4 p_{3}^{4}\right. \\
& \left.+3\left(5 p_{3}+p_{1}+p_{2}\right)\left(p_{1}+p_{2}\right)\left(\left(p_{1}+p_{2}\right)^{2}+p_{1} p_{2}\right)\right] \\
& +\frac{\pi^{3} n_{F}}{3\left(p_{1}+p_{2}+p_{3}\right)^{4}}\left[p_{1}^{3}+4 p_{1}^{2}\left(p_{2}+p_{3}\right)+\left(4 p_{1}+p_{2}+p_{3}\right)\left(\left(p_{2}+p_{3}\right)^{2}+p_{2} p_{3}\right)\right] \\
& \begin{aligned}
A_{3}^{d=3}\left(p_{1}, p_{2}, p_{3}\right) & =\frac{\pi^{3}\left(n_{S}-4 n_{F}\right) p_{3}^{2}}{240\left(p_{1}+p_{2}+p_{3}\right)^{4}}\left[28 p_{3}^{2}\left(p_{1}+p_{2}\right)+3 p_{3}\left(11\left(p_{1}+p_{2}\right)^{2}+6 p_{1} p_{2}\right)+7 p_{3}^{3}\right. \\
& \left.+12\left(p_{1}+p_{2}\right)\left(\left(p_{1}+p_{2}\right)^{2}+p_{1} p_{2}\right)\right] \\
& +\frac{\pi^{3} n_{F} p_{3}^{2}}{6\left(p_{1}+p_{2}+p_{3}\right)^{3}}\left[3 p_{2}\left(p_{1}+p_{2}\right)+2\left(\left(p_{1}+p_{2}\right)^{2}+p_{1} p_{2}\right)+p_{3}^{2}\right] \\
& -\frac{\pi^{3}\left(n_{s}+4 n_{F}\right)}{16\left(p_{1}+p_{2}+p_{3}\right)^{2}}\left[p_{1}^{3}+2 p_{1}^{2}\left(p_{2}+p_{3}\right)+\left(2 p_{1}+p_{2}+p_{3}\right)\left(\left(p_{2}+p_{3}\right)^{2}-p_{2} p_{3}\right)\right]
\end{aligned} \\
& A_{4}^{d=3}\left(p_{1}, p_{2}, p_{3}\right)=\frac{\pi^{3}\left(n_{S}-4 n_{F}\right)}{120\left(p_{1}+p_{2}+p_{3}\right)^{4}}\left[\left(4 p_{3}+p_{1}+p_{2}\right)\left(3\left(p_{1}+p_{2}\right)^{4}-3\left(p_{1}+p_{2}\right)^{2} p_{1} p_{2}+4 p_{1}^{2} p_{2}^{2}\right)\right. \\
& \left.+9 p_{3}^{2}\left(p_{1}+p_{2}\right)\left(\left(p_{1}+p_{2}\right)^{2}-3 p_{1} p_{2}\right)-3 p_{3}^{5}-12 p_{3}^{4}\left(p_{1}+p_{2}\right)-9 p_{3}^{3}\left(\left(p_{1}+p_{2}\right)^{2}+2 p_{1} p_{2}\right)\right] \\
& +\frac{\pi^{3} n_{F}}{6\left(p_{1}+p_{2}+p_{3}\right)^{3}}\left[\left(p_{1}+p_{2}\right)\left(\left(p_{1}+p_{2}\right)^{2}-p_{1} p_{2}\right)\left(p_{1}+p_{2}+3 p_{3}\right)-p_{3}^{4}-3 p_{3}^{3}\left(p_{1}+p_{2}\right)\right. \\
& \left.-6 p_{1} p_{2} p_{3}^{2}\right]-\frac{\pi^{3}\left(n_{s}+4 n_{F}\right)}{8\left(p_{1}+p_{2}+p_{3}\right)^{2}}\left[p_{1}^{3}+2 p_{1}^{2}\left(p_{2}+p_{3}\right)+\left(2 p_{1}+p_{2}+p_{3}\right)\left(\left(p_{2}+p_{3}\right)^{2}-p_{2} p_{3}\right)\right]
\end{aligned}
$$

in $d=4$
The correlator in $d=4$ and the trace anomaly
$\left\langle T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle_{G}=-V_{G}^{\mu_{1} \nu_{1} \mu_{2} \nu_{2} \mu_{3} \nu_{3}}\left(p_{1}, p_{2}, p_{3}\right)+\sum_{i=1}^{3} W_{G, i}^{\mu_{1} \nu_{1} \mu_{2} \nu_{2} \mu_{3} \nu_{3}}\left(p_{1}, p_{2}, p_{3}\right)$
we need 3 sectors and we need to renormalize because the gauge sector is not finite

$$
\begin{aligned}
\left\langle t^{\mu_{1} \nu_{1}}\left(p_{1}\right) t^{\mu_{2} \nu_{2}}\left(p_{2}\right) t^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle_{G} & =\Pi_{\alpha_{1} \beta_{1}}^{\mu_{1} \nu_{1}}\left(p_{1}\right) \Pi_{\alpha_{2} \beta_{2}}^{\mu_{2} \nu_{2}}\left(p_{2}\right) \Pi_{\alpha_{3} \beta_{3}}^{\mu_{3} \nu_{3}}\left(p_{3}\right) \\
& \times\left[-V_{G}^{\alpha_{1} \beta_{1} \alpha_{2} \beta_{2} \alpha_{3} \beta_{3}}\left(p_{1}, p_{2}, p_{3}\right)+\sum_{i=1}^{3} W_{G, i}^{\alpha_{1} \beta_{1} \alpha_{2} \beta_{2} \alpha_{3} \beta_{3}}\left(p_{1}, p_{2}, p_{3}\right)\right]
\end{aligned}
$$

$$
\left\langle T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle=\sum_{I=F, G, S} n_{I}\left\langle T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle_{I}
$$

$$
\begin{aligned}
& A_{2}^{D i v}=\frac{\pi^{2}}{45 \varepsilon}\left[26 n_{G}-7 n_{F}-2 n_{S}\right] \\
& A_{3}^{D i v}=\frac{\pi^{2}}{90 \varepsilon}\left[3\left(s+s_{1}\right)\left(6 n_{F}+n_{S}+12 n_{G}\right)+s_{2}\left(11 n_{F}+62 n_{G}+n_{S}\right)\right] \\
& A_{4}^{D i v}=\frac{\pi^{2}}{90 \varepsilon}\left[\left(s+s_{1}\right)\left(29 n_{F}+98 n_{G}+4 n_{S}\right)+s_{2}\left(43 n_{F}+46 n_{G}+8 n_{S}\right)\right] \\
& A_{5}^{D i v}=\frac{\pi^{2}}{180 \varepsilon}\left\{n_{F}\left(43 s^{2}-14 s\left(s_{1}+s_{2}\right)+43 s_{1}^{2}-14 s_{1} s_{2}+43 s_{2}^{2}\right)\right.
\end{aligned}
$$

A1 is finite

Anomalous CWI's in QED (MM Maglio,CC)

$$
\begin{aligned}
& \mathrm{K}_{13} A_{3}^{\text {Ren }}=2 A_{2}^{\text {Ren }}-\frac{2 \pi^{2}}{45}\left(7 n_{F}-26 n_{G}+2 n_{S}\right) \\
& \mathrm{K}_{23} A_{3}^{\text {Ren }}=2 A_{2}^{\text {Ren }}-\frac{2 \pi^{2}}{45}\left(7 n_{F}-26 n_{G}+2 n_{S}\right) \\
& \mathrm{K}_{13} A_{4}^{\text {Ren }}=-4 A_{2}^{\text {Ren }}\left(p_{2} \leftrightarrow p_{3}\right)+\frac{4 \pi^{2}}{45}\left(7 n_{F}-26 n_{G}+2 n_{S}\right) \\
& \mathrm{K}_{23} A_{4}^{\text {Ren }}=-4 A_{2}^{\text {Ren }}\left(p_{1} \leftrightarrow p_{3}\right)+\frac{4 \pi^{2}}{45}\left(7 n_{F}-26 n_{G}+2 n_{S}\right) \\
& \mathrm{K}_{13} A_{5}^{\text {Ren }}=2\left[A_{4}^{\text {Ren }}-A_{4}^{\text {Ren }}\left(p_{1} \leftrightarrow p_{3}\right)\right]-\frac{4 \pi^{2}}{9}\left(s-s_{2}\right)\left(5 n_{F}+2 n_{G}+n_{s}\right) \\
& \mathrm{K}_{23} A_{5}^{\text {Ren }}=2\left[A_{4}^{\text {Ren }}-A_{4}^{\text {Ren }}\left(p_{2} \leftrightarrow p_{3}\right)\right]-\frac{4 \pi^{2}}{9}\left(s_{1}-s_{2}\right)\left(5 n_{F}+2 n_{G}+n_{s}\right)
\end{aligned}
$$

one needs also to investigate the

Secondary anomalous CWI's from free field theory

$$
\left\langle T^{\mu_{1} \nu_{1}} T^{\mu_{2} \nu_{2}} T^{\mu_{3} \nu_{3}}\right\rangle_{R e n}=\left\langle t^{\mu_{1} \nu_{1}} t^{\mu_{2} \nu_{2}} t^{\mu_{3} \nu_{3}}\right\rangle_{R e n}+\left\langle T^{\mu_{1} \nu_{1}} T^{\mu_{2} \nu_{2}} T^{\mu_{3} \nu_{3}}\right\rangle_{R e n l t}+\left\langle T^{\mu_{1} \nu_{1}} T^{\mu_{2} \nu_{2}} T^{\mu_{3} \nu_{3}}\right\rangle_{a n o m a l y}
$$

On Some Hypergeometric Solutions of the Conformal Ward
Identities of Scalar 4-point Functions in Momentum Space

$$
\begin{aligned}
C_{13}=\{ & \frac{\partial^{2}}{\partial p_{1}^{2}}+\frac{\left(d-2 \Delta_{1}+1\right)}{p_{1}} \frac{\partial}{\partial p_{1}}-\frac{\partial^{2}}{\partial p_{3}^{2}}-\frac{\left(d-2 \Delta_{3}+1\right)}{p_{3}} \frac{\partial}{\partial p_{3}} \\
& +\frac{1}{s} \frac{\partial}{\partial s}\left(p_{1} \frac{\partial}{\partial p_{1}}+p_{2} \frac{\partial}{\partial p_{2}}-p_{3} \frac{\partial}{\partial p_{3}}-p_{4} \frac{\partial}{\partial p_{4}}\right)+\frac{\left(\Delta_{3}+\Delta_{4}-\Delta_{1}-\Delta_{2}\right)}{s} \frac{\partial}{\partial s} \\
& +\frac{1}{t} \frac{\partial}{\partial t}\left(p_{1} \frac{\partial}{\partial p_{1}}+p_{4} \frac{\partial}{\partial p_{4}}-p_{2} \frac{\partial}{\partial p_{2}}-p_{3} \frac{\partial}{\partial p_{3}}\right)+\frac{\left(\Delta_{2}+\Delta_{3}-\Delta_{1}-\Delta_{4}\right)}{t} \frac{\partial}{\partial t} \\
& \left.+\frac{\left(p_{1}^{2}-p_{3}^{2}\right)}{s t} \frac{\partial^{2}}{\partial s \partial t}\right\} \Phi\left(p_{1}, p_{2}, p_{3}, p_{4}, s, t\right)=0 .
\end{aligned}
$$

dual conformal symmetry

$$
k=y_{51}, \quad p_{1}=y_{12}, \quad p_{2}=y_{23}, \quad p_{3}=y_{34}
$$

$$
\Phi_{B o x}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\int \frac{d^{d} k}{k^{2}\left(k+p_{1}\right)^{2}\left(k+p_{1}+p_{2}\right)^{2}\left(k+p_{1}+p_{2}+p_{3}\right)^{2}}
$$

$+\ldots \ldots$
by requiring conformal invariance in momentum/coordinate space and in dual coordinate space
one btains a unique solution

For some vaues of the scaling dimensions exact solutions can be found

$$
\begin{aligned}
& \left\langle O\left(p_{1}\right) O\left(p_{2}\right) O\left(p_{3}\right) O\left(p_{4}\right)\right\rangle= \\
& = \\
& \quad \sum_{a, b} c(a, b)\left[\left(s^{2} t^{2}\right)^{\Delta-\frac{3}{4} d}\left(\frac{p_{1}^{2} p_{3}^{2}}{s^{2} t^{2}}\right)^{a}\left(\frac{p_{2}^{2} p_{4}^{2}}{s^{2} t^{2}}\right)^{b} F_{4}\left(\alpha(a, b), \beta(a, b), \gamma(a), \gamma^{\prime}(b), \frac{p_{1}^{2} p_{3}^{2}}{s^{2} t^{2}}, \frac{p_{2}^{2} p_{4}^{2}}{s^{2} t^{2}}\right)\right. \\
& \\
& \quad+\left(s^{2} u^{2}\right)^{\Delta-\frac{3}{4} d}\left(\frac{p_{2}^{2} p_{3}^{2}}{s^{2} u^{2}}\right)^{a}\left(\frac{p_{1}^{2} p_{4}^{2}}{s^{2} u^{2}}\right)^{b} F_{4}\left(\alpha(a, b), \beta(a, b), \gamma(a), \gamma^{\prime}(b), \frac{p_{2}^{2} p_{3}^{2}}{s^{2} u^{2}}, \frac{p_{1}^{2} p_{4}^{2}}{s^{2} u^{2}}\right) \\
& \\
& \left.\quad+\left(t^{2} u^{2}\right)^{\Delta-\frac{3}{4} d}\left(\frac{p_{1}^{2} p_{2}^{2}}{t^{2} u^{2}}\right)^{a}\left(\frac{p_{3}^{2} p_{4}^{2}}{t^{2} u^{2}}\right)^{b} F_{4}\left(\alpha(a, b), \beta(a, b), \gamma(a), \gamma^{\prime}(b), \frac{p_{1}^{2} p_{2}^{2}}{t^{2} u^{2}}, \frac{p_{3}^{2} p_{4}^{2}}{t^{2} u^{2}}\right)\right]
\end{aligned}
$$

They are still hypergeometric functions F4 but quartic ratioa of momenta

Probably indication of a Yangian symmetry

DCC solutions (dual conformal/conformal) probably related ti a Yangian symmetry

$$
\begin{aligned}
& \left\{\begin{array}{l}
{\left[\begin{array}{l}
{\left[\frac{\partial^{2}}{\partial p_{1}^{2}}+\frac{(d-2 \Delta+1)}{p_{1}} \frac{\partial}{\partial p_{1}}-\frac{\partial^{2}}{\partial p_{3}^{2}}-\frac{(d-2 \Delta+1)}{p_{3}} \frac{\partial}{\partial p_{3}}+\frac{\left(p_{1}^{2}-p_{3}^{2}\right)}{s t} \frac{\partial^{2}}{\partial s \partial t}\right] I_{\tilde{\alpha}\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}}=0} \\
{\left[\frac{\partial^{2}}{\partial p_{2}^{2}}+\frac{(d-2 \Delta+1)}{p_{2}} \frac{\partial}{\partial p_{2}}-\frac{\partial^{2}}{\partial p_{4}^{2}}-\frac{(d-2 \Delta+1)}{p_{4}} \frac{\partial}{\partial p_{4}}+\frac{\left(p_{2}^{2}-p_{4}^{2}\right)}{s t} \frac{\partial^{2}}{\partial s \partial t}\right] I_{\tilde{\alpha}\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}}=0} \\
{\left[\frac{\partial^{2}}{\partial p_{3}^{2}}+\frac{(d-2 \Delta+1)}{p_{3}} \frac{\partial}{\partial p_{3}}-\frac{\partial^{2}}{\partial p_{4}^{2}}-\frac{(d-2 \Delta+1)}{p_{4}} \frac{\partial}{\partial p_{4}}+\frac{\left(p_{2}^{2}-p_{1}^{2}\right)}{s t} \frac{\partial^{2}}{\partial s \partial t}\right] I_{\tilde{\alpha}\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}}=0}
\end{array} \quad\right. \text { new hypergeometric systems }} \\
\begin{array}{l}
\left\langle O\left(p_{1}\right) O\left(p_{2}\right) O\left(p_{3}\right) O\left(p_{4}\right)\right\rangle= \\
= \\
\\
\quad \sum_{a, b} c(a, b)\left[\left(s^{2} t^{2}\right)^{\Delta-\frac{3}{4} d}\left(\frac{p_{1}^{2} p_{3}^{2}}{s^{2} t^{2}}\right)^{a}\left(\frac{p_{2}^{2} p_{4}^{2}}{s^{2} t^{2}}\right)^{b} F_{4}\left(\alpha(a, b), \beta(a, b), \gamma(a), \gamma^{\prime}(b), \frac{p_{1}^{2} p_{3}^{2}}{s^{2} t^{2}}, \frac{p_{2}^{2} p_{4}^{2}}{s^{2} t^{2}}\right)\right. \\
\\
\quad+\left(s^{2} u^{2}\right)^{\Delta-\frac{3}{4} d}\left(\frac{p_{2}^{2} p_{3}^{2}}{s^{2} u^{2}}\right)^{a}\left(\frac{p_{1}^{2} p_{4}^{2}}{s^{2} u^{2}}\right)^{b} F_{4}\left(\alpha(a, b), \beta(a, b), \gamma(a), \gamma^{\prime}(b), \frac{p_{2}^{2} p_{3}^{2}}{s^{2} u^{2}}, \frac{p_{1}^{2} p_{4}^{2}}{s^{2} u^{2}}\right) \\
\\
\\
\left.+\left(t^{2} u^{2}\right)^{\Delta-\frac{3}{4} d}\left(\frac{p_{1}^{2} p_{2}^{2}}{t^{2} u^{2}}\right)^{a}\left(\frac{p_{3}^{2} p_{4}^{2}}{t^{2} u^{2}}\right)^{b} F_{4}\left(\alpha(a, b), \beta(a, b), \gamma(a), \gamma^{\prime}(b), \frac{p_{1}^{2} p_{2}^{2}}{t^{2} u^{2}}, \frac{p_{3}^{2} p_{4}^{2}}{t^{2} u^{2}}\right)\right]
\end{array}
\end{array} . \begin{array}{l}
\text { of variables }
\end{array}\right.
\end{aligned}
$$

asymptotic limits of these equations
(for instance, fixed angle scattering) Lauricella functions are solutions

Maglio, Theofilopoulos, CC EPJ-C 2020

Four-point functions in momentum space: conformal ward

 identities in the scalar/tensor case
ig. 1 Orbits of the primary CWI's of the $T O O O$ under P_{23} and P_{24}

Orbits of form factors under permutations and their classification

$$
\begin{aligned}
C_{41}= & {\left[\frac{2\left(p_{3}^{2}-p_{2}^{2}-t^{2}\right)}{t} \frac{\partial}{\partial t}+\frac{2\left(p_{4}^{2}-p_{2}^{2}-u^{2}\right)}{u} \frac{\partial}{\partial u}\right.} \\
& -4 p_{2} \frac{\partial}{\partial p_{2}}+\frac{2}{\bar{p}_{1}^{2}}\left(\frac{d(d-2)\left(p_{2}^{2}-s^{2}\right)-2 s^{2}}{(d-1)}\right) \\
& \left.+\frac{4 \Delta(d-1)-2 d^{2}-3(d-2)}{(d-1)}-\frac{(d-2)}{(d-1)} \frac{\left(p_{2}^{2}-s^{2}\right)^{2}}{\bar{p}_{1}^{4}}\right] \\
& \times A\left(p_{2}, p_{3}, p_{4}, s, t, u\right) \\
& -\left[\frac{2}{\bar{p}_{1}^{2}}\left(\frac{d\left(p_{3}^{2}-u^{2}\right)+2 u^{2}}{(d-1)}\right)+\frac{(d-2)}{(d-1)}+\frac{(d-2)}{(d-1)} \frac{\left(p_{3}^{2}-u^{2}\right)^{2}}{\bar{p}_{1}^{4}}\right] \\
& \times A\left(p_{3}, p_{2}, p_{4}, u, t, s\right) \\
& -\left[\frac{2}{\bar{p}_{1}^{2}}\left(\frac{d\left(p_{4}^{2}-t^{2}\right)+2 t^{2}}{(d-1)}\right)+\frac{(d-2)}{(d-1)}+\frac{(d-2)}{(d-1)} \frac{\left(p_{4}^{2}-t^{2}\right)^{2}}{\bar{p}_{1}^{4}}\right] \quad \times A\left(p_{4}, p_{3}, p 2, t, s, u\right)
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{K}_{i j}=\mathrm{K}_{i}-\mathrm{K}_{j} \tag{D.4}
\end{equation*}
$$

One can choose an arbitrary momentum as pivot in the ansatz for the solution of such system, for instance $\left(x, y, z, p_{4}^{2}\right)$, where

$$
\begin{equation*}
x=\frac{p_{1}^{2}}{p_{4}^{2}}, \quad y=\frac{p_{2}^{2}}{p_{4}^{2}}, \quad z=\frac{p_{3}^{2}}{p_{4}^{2}} \tag{D.5}
\end{equation*}
$$

$$
\begin{aligned}
& F_{C}\left(\alpha, \beta, \gamma, \gamma^{\prime}, \gamma^{\prime \prime}, x, y, z\right)=\sum_{m_{1}, m_{2}, m_{3}}^{\infty} \\
& \quad \times \frac{(\alpha)_{m_{1}+m_{2}+m_{3}}(\beta)_{m_{1}+m_{2}+m_{3}}}{(\gamma)_{m_{1}}\left(\gamma^{\prime}\right)_{m_{2}}\left(\gamma^{\prime \prime}\right)_{m_{3}} m_{1}!m_{2}!m_{3}!} x^{m_{1}} y^{m_{2}} z^{m_{3}}
\end{aligned}
$$

$$
\phi\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\left(p_{4}^{2}\right)^{n_{s}} x^{a} y^{b} z^{c} F(x, y, z)
$$

$$
\phi\left(p_{1}, p_{2}, p_{3}, p_{4}\right)
$$

$$
\begin{aligned}
& =C I_{d-1}\left\{\Delta_{1}-\frac{d}{2}, \Delta_{2}-\frac{d}{2}, \Delta_{3}-\frac{d}{2}, \Delta_{4}-\frac{d}{2}\right\} \\
& =\int_{0}^{\infty} d x x^{d-1} \prod_{i=1}^{4}\left(p_{i}\right)^{\Delta_{i}-\frac{d}{2}} K_{\Delta_{i}-\frac{d}{2}}\left(p_{i} x\right)
\end{aligned}
$$

Maglio, Theofilopoulos, CC
first time that 4 K appear in CWIs
particular solutons of these systems are Lauricella functions

$$
\begin{aligned}
& \left\{\begin{aligned}
x_{j}\left(1-x_{j}\right) \frac{\partial^{2} F}{\partial x_{j}^{2}}+\sum_{s \neq j} x_{r} \sum_{r=j} x_{s} \frac{\partial^{2} F}{\partial x_{r} \partial x_{s}}+\left[\gamma_{j}-(\alpha+\beta+1) x_{j}\right] \frac{\partial F}{\partial x_{j}}-(\alpha+\beta+1) \sum_{k \neq j} x_{k} \frac{\partial F}{\partial x_{k}}-\alpha \beta F=0 \\
(j=1,2,3)
\end{aligned}\right. \\
& x=\frac{p_{1}^{2}}{p_{4}^{2}, \quad y=\frac{p_{2}^{2}}{p_{4}^{2}}, \quad z=\frac{p_{3}^{2}}{p_{4}^{2}}} \begin{aligned}
& \\
& S_{1}\left(\alpha, \beta, \gamma, \gamma^{\prime}, \gamma^{\prime \prime}, x, y, z\right)=F_{C}\left(\alpha, \beta, \gamma, \gamma^{\prime}, \gamma^{\prime \prime}, x, y, z\right),
\end{aligned} \\
& \begin{aligned}
S_{2}\left(\alpha, \beta, \gamma, \gamma^{\prime}, \gamma^{\prime \prime}, x, y, z\right) & =x^{1-\gamma} F_{C}\left(\alpha-\gamma+1, \beta-\gamma+1,2-\gamma, \gamma^{\prime}, \gamma^{\prime \prime}, x, y, z\right), \\
S_{3}\left(\alpha, \beta, \gamma, \gamma^{\prime}, \gamma^{\prime \prime}, x, y, z\right) & =y^{1-\gamma^{\prime}} F_{C}\left(\alpha-\gamma^{\prime}+1, \beta-\gamma^{\prime}+1, \gamma, 2-\gamma^{\prime}, \gamma^{\prime \prime}, x, y, z\right), \\
S_{4}\left(\alpha, \beta, \gamma, \gamma^{\prime}, \gamma^{\prime \prime}, x, y, z\right) & =z^{1-\gamma^{\prime \prime}} F_{C}\left(\alpha-\gamma^{\prime \prime}+1, \beta-\gamma^{\prime \prime}+1, \gamma, \gamma^{\prime}, 2-\gamma^{\prime \prime}, x, y, z\right),
\end{aligned} \\
& S_{5}\left(\alpha, \beta, \gamma, \gamma^{\prime}, \gamma^{\prime \prime}, x, y, z\right)=x^{1-\gamma} y^{1-\gamma^{\prime}} F_{C}\left(\alpha-\gamma-\gamma^{\prime}+2, \beta-\gamma-\gamma^{\prime}+2,2-\gamma, 2-\gamma^{\prime}, \gamma^{\prime \prime}, x, y, z\right), \\
& S_{6}\left(\alpha, \beta, \gamma, \gamma^{\prime}, \gamma^{\prime \prime}, x, y, z\right)=x^{1-\gamma} z^{1-\gamma^{\prime \prime}} F_{C}\left(\alpha-\gamma-\gamma^{\prime \prime}+2, \beta-\gamma-\gamma^{\prime \prime}+2,2-\gamma, \gamma^{\prime}, 2-\gamma^{\prime \prime}, x, y, z\right) \\
& S_{7}\left(\alpha, \beta, \gamma, \gamma^{\prime}, \gamma^{\prime \prime}, x, y, z\right)=y^{1-\gamma^{\prime}} z^{1-\gamma^{\prime \prime}} F_{C}\left(\alpha-\gamma^{\prime}-\gamma^{\prime \prime}+2, \beta-\gamma^{\prime}-\gamma^{\prime \prime}+2, \gamma, 2-\gamma^{\prime}, 2-\gamma^{\prime \prime}, x, y, z\right) \\
& S_{8}\left(\alpha, \beta, \gamma, \gamma^{\prime}, \gamma^{\prime \prime}, x, y, z\right)=x^{1-\gamma} y^{1-\gamma^{\prime}} z^{1-\gamma^{\prime \prime}} \\
& \times F_{C}\left(\alpha-\gamma-\gamma^{\prime}-\gamma^{\prime \prime}+2, \beta-\gamma-\gamma^{\prime}-\gamma^{\prime \prime}+2,2-\gamma, 2-\gamma^{\prime}, 2-\gamma^{\prime \prime}, x, y, z\right)
\end{aligned}
$$

Giuseppe Lauricella (1867-1913)

TTTT implications for the anomaly action
It can be derived from the analysis of the counterterms
$V_{C^{2}}^{\mu_{1} \nu_{1} \mu_{2} \nu_{2} \mu_{3} \nu_{3} \mu_{4} \nu_{4}}\left(p_{1}, p_{2}, p_{3}, \bar{p}_{4}\right) \simeq\left[V_{C^{2}}^{\mu_{1} \nu_{1} \mu_{2} \nu_{2} \mu_{3} \nu_{3} \mu_{4} \nu_{4}}\left(p_{1}, p_{2}, p_{3}, \bar{p}_{4}\right)\right]_{d=4}+\varepsilon V_{C^{2}}^{\mu_{1} \nu_{1} \mu_{2} \nu_{2} \mu_{3} \nu_{3} \mu_{4} \nu_{4}}\left(p_{1}, p_{2}, p_{3}, \bar{p}_{4}\right)$

Decomposition into a transverse traceless sector + longitudinal sector
Maglio, Theofilopoulos, CC
Renormalization of the 4 T affects the 3 T and the 2 T

the anomaly part

$$
\begin{aligned}
& \left\langle T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle_{\text {anomaly }}=\frac{\hat{\pi}^{\mu_{1} \nu_{1}}\left(p_{1}\right)}{3 p_{1}^{2}}\left\langle T\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle_{\text {anomaly }} \\
& +\frac{\hat{\pi}^{\mu_{2} \nu_{2}}\left(p_{2}\right)}{3 p_{2}^{2}}\left\langle T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle_{\text {anomaly }}+\frac{\hat{\pi}^{\mu_{3} \nu_{3}}\left(p_{3}\right)}{3 p_{3}^{2}}\left\langle T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T\left(p_{3}\right)\right\rangle_{\text {anomaly }} \\
& -\frac{\hat{\pi}^{\mu_{1} \nu_{1}}\left(p_{1}\right) \hat{\pi}^{\mu_{2} \nu_{2}}\left(p_{2}\right)}{9 p_{1}^{2} p_{2}^{2}}\left\langle T\left(p_{1}\right) T\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right)\right\rangle_{\text {anomaly }}-\frac{\hat{\pi}^{\mu_{2} \nu_{2}}\left(p_{2}\right) \hat{\pi}^{\mu_{3} \nu_{3}}\left(p_{2}\right)}{9 p_{2}^{2} p_{3}^{2}}\left\langle T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T\left(p_{2}\right) T\left(p_{3}\right)\right\rangle_{\text {anomaly }} \\
& -\frac{\hat{\pi}^{\mu_{1} \nu_{1}}\left(p_{1}\right) \hat{\pi}^{\mu_{3} \nu_{3}}\left(\bar{p}_{3}\right)}{9 p_{1}^{2} p_{3}^{2}}\left\langle T\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T\left(p_{3}\right)\right\rangle_{\text {anomaly }}+\frac{\hat{\pi}^{\mu_{1} \nu_{1}}\left(p_{1}\right) \hat{\pi}^{\mu_{2} \nu_{2}}\left(p_{2}\right) \hat{\pi}^{\mu_{3} \nu_{3}}\left(\bar{p}_{3}\right)}{27 p_{1}^{2} p_{2}^{2} p_{3}^{2}}\left\langle T\left(p_{1}\right) T\left(p_{2}\right) T\left(\bar{p}_{3}\right)\right\rangle_{\text {anomaly. }} .
\end{aligned}
$$

The 4rth order anomaly action: organization

$$
\begin{gathered}
\mathcal{S}_{A}=\int d^{4} x_{1} d^{4} x_{2}\left\langle T \cdot h\left(x_{1}\right) T \cdot h\left(x_{2}\right)\right\rangle+\int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3}\left\langle T \cdot h\left(x_{1}\right) T \cdot h\left(x_{2}\right) T \cdot h\left(x_{3}\right)\right\rangle_{p o l e} \\
+\int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3} d^{4} x_{4}\left(\left\langle T \cdot h\left(x_{1}\right) T \cdot h\left(x_{2}\right) T \cdot h\left(x_{3}\right) T \cdot h\left(x_{4}\right)\right\rangle_{p o l e}+\right. \\
\left.+\left\langle T \cdot h\left(x_{1}\right) T \cdot h\left(x_{2}\right) T \cdot h\left(x_{3}\right) T \cdot h\left(x_{4}\right)\right\rangle_{0 T}\right),
\end{gathered}
$$

$$
\begin{aligned}
&\langle \left.T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(\bar{p}_{4}\right)\right\rangle_{0-\text { residue }}= \\
&= \mathcal{I}_{\alpha_{1}}^{\mu_{1} \nu_{1}}\left(p_{1}\right) p_{1 \beta_{1}}\left\langle T^{\alpha_{1} \beta_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(\bar{p}_{4}\right)\right\rangle_{\text {anomaly }}+(\text { perm. }) \\
&-\left\{\left[\mathcal{I}_{\alpha_{2}}^{\mu_{2} \nu_{2}}\left(p_{2}\right) \mathcal{I}_{\alpha_{1}}^{\mu_{1} \nu_{1}}\left(p_{1}\right) p_{2 \beta_{2}} p_{1 \beta_{1}}\left\langle T^{\alpha_{1} \beta_{1}}\left(p_{1}\right) T^{\alpha_{2} \beta_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(p_{4}\right)\right\rangle_{\text {anom }}\right.\right. \\
&+\mathcal{I}_{\alpha_{1}}^{\mu_{1} \nu_{1}}\left(p_{1}\right) \frac{\pi^{\mu_{2} \nu_{2}}\left(p_{2}\right)}{3} p_{1 \beta_{1}}\left\langle T^{\alpha_{1} \beta_{1}}\left(p_{1}\right) T\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(\bar{p}_{4}\right)\right\rangle_{\text {anomaly }} \\
&\left.\left.\quad+\frac{\pi^{\mu_{1} \nu_{1}}\left(p_{1}\right)}{3} \mathcal{I}_{\alpha_{2}}^{\mu_{2} \nu_{2}}\left(p_{2}\right) p_{2 \beta_{2}}\left\langle T\left(p_{1}\right) T^{\alpha_{2} \beta_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(\bar{p}_{4}\right)\right\rangle_{\text {anomaly }}\right]+(\text { perm. })\right\} \\
&+\left\{\left[\mathcal{I}_{\alpha_{1}}^{\mu_{1} \nu_{1}}\left(p_{1}\right) \mathcal{I}_{\alpha_{2}}^{\mu_{2} \nu_{2}}\left(p_{2}\right) \frac{\pi^{\mu_{3} \nu_{3}}\left(p_{3}\right)}{3}\left\langle T^{\alpha_{1} \beta_{1}}\left(p_{1}\right) T^{\alpha_{2} \beta_{2}}\left(p_{2}\right) T\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(\bar{p}_{4}\right)\right\rangle_{\text {anomaly }}+(13)+(23)\right]+(\text { perm. })\right. \\
&+\left.\quad-\left\{\mathcal{I}_{\alpha_{1}}^{\mu_{1} \nu_{1}}\left(p_{1}\right) \frac{\pi^{\mu_{2} \nu_{2}}\left(p_{2}\right)}{3} \frac{\pi^{\mu_{3} \nu_{3}}\left(p_{3}\right)}{3} p_{1 \beta_{1}}\left\langle T^{\alpha_{1} \beta_{1}}\left(p_{1}\right) T\left(p_{2}\right) T\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(\bar{p}_{4}\right)\right\rangle_{\text {anomaly }}+(12)+(13)\right]+(\text { perm. })\right\} \\
&\quad+(13)+(23)+(14)+(24)+(13)(24)\} \\
& \quad-\left\{\mathcal { I } _ { \alpha _ { 2 } } ^ { \mu _ { 2 } \nu _ { 2 } } (p _ { 2 }) \frac { \pi ^ { \mu _ { 3 } \nu _ { 3 } } (p _ { 3 }) } { 3 } \frac { \pi ^ { \mu _ { 4 } \nu _ { 4 } } (p _ { 4 }) } { 3 } p _ { 1 \beta _ { 1 } } ^ { \mu _ { 1 } \nu _ { 1 } } \left(p_{2 \beta_{2}}\left\langle T^{\alpha_{1} \beta_{1}}\left(p_{1}\right) T^{\alpha_{2} \beta_{2}}\left(p_{2}\right) T\left(p_{3}\right) T\left(p_{4}\right)\right\rangle_{\text {anomaly }}^{\mu_{2} \nu_{2}}\left(p_{2}\right)\right.\right. \\
& 3 \frac{\pi^{\mu_{3} \nu_{3}}\left(p_{3}\right)}{3} \frac{\pi^{\mu_{4} \nu_{4}}\left(p_{4}\right)}{3} p_{1 \beta_{1}}\left\langle T^{\alpha_{1} \beta_{1}}\left(p_{1}\right) T\left(p_{2}\right) T\left(p_{3}\right) T\left(\bar{p}_{4}\right)\right\rangle_{\text {anomaly }} \\
&\quad+(12)+(13)+(14)\} .
\end{aligned}
$$

The anomaly contribution at 4T

$$
\begin{aligned}
& \left\langle T^{\mu_{1} \nu_{1}}\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(\bar{p}_{4}\right)\right\rangle_{\text {poles }}= \\
& =\frac{\pi^{\mu_{1} \nu_{1}}\left(p_{1}\right)}{3}\left\langle T\left(p_{1}\right) T^{\mu_{2} \nu_{2}}\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(\bar{p}_{4}\right)\right\rangle_{\text {anomaly }}+(\text { perm. }) \\
& -\frac{\pi^{\mu_{1} \nu_{1}}\left(p_{1}\right)}{3} \frac{\pi^{\mu_{2} \nu_{2}}\left(p_{2}\right)}{3}\left\langle T\left(p_{1}\right) T\left(p_{2}\right) T^{\mu_{3} \nu_{3}}\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(\bar{p}_{4}\right)\right\rangle_{\text {anomaly }}+(\text { perm. }) \\
& +\frac{\pi^{\mu_{1} \nu_{1}}\left(p_{1}\right)}{3} \frac{\pi^{\mu_{2} \nu_{2}}\left(p_{2}\right)}{3} \frac{\pi^{\mu_{3} \nu_{3}}\left(p_{2}\right)}{3}\left\langle T\left(p_{1}\right) T\left(p_{2}\right) T\left(p_{3}\right) T^{\mu_{4} \nu_{4}}\left(\bar{p}_{4}\right)\right\rangle_{\text {anomaly }}+(\text { perm. }) \\
& -\frac{\pi^{\mu_{1} \nu_{1}}\left(p_{1}\right)}{3} \frac{\pi^{\mu_{2} \nu_{2}}\left(p_{2}\right)}{3} \frac{\pi^{\mu_{3} \nu_{3}}\left(p_{3}\right)}{3} \frac{\pi^{\mu_{4} \nu_{4}}\left(p_{4}\right)}{3}\left\langle T\left(p_{1}\right) T\left(p_{2}\right) T\left(p_{3}\right) T\left(\bar{p}_{4}\right)\right\rangle_{\text {anomaly }} .
\end{aligned}
$$

It is possible to generalize this to all orders
M.M. Maglio,E. Mottola, CC

RIEGERT ACTION works for the TTT

$$
g_{\mu \nu}=e^{2 \sigma} \bar{g}_{\mu \nu} . \quad \sqrt{-g} \Delta_{4}=\sqrt{-\bar{g}} \bar{\Delta}_{4}
$$

$$
\begin{gathered}
\Delta_{4} \equiv \nabla_{\mu}\left(\nabla^{\mu} \nabla^{\nu}+2 R^{\mu \nu}-\frac{2}{3} R g^{\mu \nu}\right) \nabla_{\nu}=\square^{2}+2 R^{\mu \nu} \nabla_{\mu} \nabla_{\nu}-\frac{2}{3} R \square+\frac{1}{3}\left(\nabla^{\mu} R\right) \nabla_{\mu} \\
\mathcal{S}_{\text {anom }}^{N L}[g]=\frac{1}{4} \int d^{4} x \sqrt{-g_{x}}\left(E-\frac{2}{3} \square R\right)_{x} \int d^{4} x^{\prime} \sqrt{-g_{x^{\prime}}} D_{4}\left(x, x^{\prime}\right)\left[\frac{b^{\prime}}{2}\left(E-\frac{2}{3} \square R\right)+b C^{2}\right]_{x^{\prime}}
\end{gathered}
$$

Weyl invariant terms are missing, as for any anomaly induced action

The action is b uilt working in $d=4$ using

$$
\begin{aligned}
\sqrt{-g} C^{2} & =\sqrt{-\bar{g}} \bar{C}^{2} \\
\sqrt{-g}\left(E-\frac{2}{3} \square R\right) & =\sqrt{-\bar{g}}\left(\bar{E}-\frac{2}{3} \bar{\square} \bar{R}\right)+4 \sqrt{-\bar{g}} \bar{\Delta}_{4} \sigma
\end{aligned}
$$

Open issue
`iMPLICATION FOR THE EARLY UNIVERSE

Einstein-Gauss BOnnet Gravity oce we extend our analysis fo the Weyl flat case (work in progress)

$$
\begin{aligned}
& \mathcal{S}(g)=\mathcal{S}(\bar{g})+\sum_{n=1}^{\infty} \frac{1}{2^{n} n!} \int d^{d} x_{1} \ldots d^{d} x_{n} \sqrt{g_{1}} \ldots \sqrt{g_{n}}\left\langle T^{\mu_{1} \nu_{1}} \ldots T^{\mu_{n} \nu_{n}}\right\rangle_{\bar{g}} \delta g_{\mu_{1} \nu_{1}}\left(x_{1}\right) \ldots \delta g_{\mu_{n} \nu_{n}}\left(x_{n}\right) . \\
& \text { For anomaly actions } \\
& \text { which is constrained by the Wess-Zumino consistency condition } \\
& {\left[\delta_{\sigma_{1}}, \delta_{\sigma_{2}}\right] \mathcal{S}=0}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{S}_{\text {eff }} \sim \int d^{4} x \sqrt{g}\left(\Lambda+c_{1}(g) R+c_{2} \text { " } R^{2 "}\right), \quad \quad \text { SAKHAROV induced gravit } \\
& \delta_{\sigma} \mathcal{S}=\frac{1}{(4 \pi)^{2}} \int d^{4} x \sqrt{g} \sigma\left(c_{1} R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}+c_{2} R_{\mu \nu} R^{\mu \nu}+c_{3} R^{2}+c_{4} \square R\right)
\end{aligned}
$$

TOPOLOGICAL TERMS IN THE EARLY UNIVERSE FROM THE CONFORMAL ANOMALY

$$
\begin{aligned}
& \quad E_{d}=\frac{1}{2^{d / 2}} \delta_{\mu_{1} \cdots \mu_{d}}^{\nu_{1} \cdots \nu_{d}} R_{\nu_{1} \nu_{2}}^{\mu_{1} \mu_{2}} \cdots R^{\mu_{d-1} \mu_{d}}{ }_{\nu_{d-1} \nu_{d}}, \\
& R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}+\frac{\alpha}{d-4} \mathcal{H}_{\mu \nu}=8 \pi G_{N} T_{\mu \nu}, \\
& \\
& \mathcal{L}_{0}=1 \\
& \mathcal{L}_{1}=R \\
& \mathcal{L}_{2}=E_{4} \\
& \mathcal{L}_{3}=R^{3}-12 R R_{\mu \nu} R^{\mu \nu}+16 R_{\mu \nu} R^{\mu}{ }_{\rho} R^{\nu \rho}+24 R_{\mu \nu} R_{\rho \sigma} R^{\mu \rho \nu \sigma}+3 R R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma} \\
& \\
& \quad-24 R_{\mu \nu} R^{\mu}{ }_{\rho \sigma \kappa} R^{\nu \rho \sigma \kappa}+4 R_{\mu \nu \rho \sigma} R^{\mu \nu \eta \zeta} R^{\rho \sigma}{ }_{\eta \zeta}-8 R_{\mu \rho \nu \sigma} R^{\mu}{ }_{\eta}{ }_{\eta} R_{\zeta}^{\rho \eta \sigma \zeta} .
\end{aligned}
$$

in the Einstein Gauss-Bonnet term

LOVELOCK Theorem can be violated?

Maglio, Theofilopoulos,
M. Creti', R Tommasi

$$
\begin{gathered}
\mathcal{S}_{E G B}=\int d^{d} x \sqrt{g}\left(R+\frac{\alpha}{d-4} E\right) \\
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}+\frac{\alpha}{d-4} \mathcal{H}_{\mu \nu}=8 \pi G_{N} T_{\mu \nu}
\end{gathered}
$$

singular limits of EGB gravity are related to anomaly actions

The Conformal Ward Identities allow to define in a new way the anomaly induced action. This can be studied both in flat and in curved spacetime, by a careful analysis of such constraints.

So far, we have covered the flat spacetime limit, up to the 4T. We can easily extend this analysis to the nT .

We have also shown how the inclusion of dual conformal/conformal symmetry allows to extend the power of the CWI, probably because of some underlying Yangian symmetry.

This requires a complete understanding of topological terms in curved spacetime, which in CFTs appear as counterterms in the anomaly action

[^0]: where $\chi=(d-2) /(4 d-4)$ for a conformally coupled scalar in d dimensions, and R is the Ricci scalar.

