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Consider a classical scattering in space

A set of objects with asymptotic four momenta p′1, · · ·p′m come
together, interact via complicated forces, and disperse as a set
of other objects with asymptotic four momenta p1, · · ·pn.

p2
i ≡ −(p0

i )2 + ~p2
i = −m2

i , p′2i = −m′2i , i = 1,2, · · ·

We shall choose the origin of space-time to be in the region
where the scattering event takes place

Detector D placed at I+ – a far way point ~x – detects
hµν ≡ (gµν − ηµν)/2 around time t0:

t0 = R/c + correction, R ≡ |~x|

The correction is due to the gravitational drag on the
gravitational radiation. 4



Define retarded time at the detector:

u ≡ t− t0

Our focus will be on the late and early time tail of the radiation –
the value of hµν at D at large positive u and large negative u.

Define eµν via:
eµν = hµν −

1
2
ηµν η

ρσ hρσ ⇔ hµν = eµν −
1
2
ηµν η

ρσ eρσ

Up to gauge transformations and corrections of order R−2,

eµν = Aµν +
1
u

Bµν +
ln|u|
u2 Fµν +O(u−2), for large positive u

eµν =
1
u

Cµν +
ln|u|
u2 Gµν +O(u−2), for large negative u

Aµν ,Bµν ,Fµν ,Cµν ,Gµν are given solely by the momenta of the
ingoing and outgoing objects without requiring any knowledge
of the details of the scattering process. 5



Aµν =
2 G
R c3

[
−

n∑
i=1

pµi pνi
1

n.pi
+

m∑
i=1

p′µi p′νi
1

n.p′i

]
, R ≡ |~x|, n ≡ (1, ~x/R)

Bµν = − 4 G2

R c7

 n∑
i=1

n∑
j=1
j 6=i

pi.pj

{(pi.pj)2 −m2
i m2

j c4}3/2

{
3
2

m2
i m2

j c4 − (pi.pj)
2
}

×
pµi

n.pi
(n.pj pνi − n.pi pνj )

−


n∑

j=1

pj.n
n∑

i=1

1
pi.n

pµi pνi −
m∑

j=1

p′j .n
m∑

i=1

1
p′i .n

p′µi p′νi




Cµν=
4 G2

R c7

[
m∑

i=1

m∑
j=1
j 6=i

p′i .p
′
j

{(p′i .p′j)2 −m′2i m′2j c4}3/2

{
3
2

m′2i m′2j c4 − (p′i .p
′
j)

2
}

×
p′µi
n.p′i

(n.p′j p′νi − n.p′i p′νj )

]
.
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Fµν = 2
G3

R c11

[
4


n∑

j=1

pj.n
n∑
`=1

p`.n
n∑

i=1

pµi pνi
pi.n

−
m∑

j=1

p′
j .n

m∑
`=1

p′
`.n

m∑
i=1

p′µ
i p′ν

i

p′
i .n


+4

n∑
`=1

p`.n
n∑

i=1

n∑
j=1
j 6=i

1

pi.n

pi.pj

{(pi.pj)
2 − p2

i p2
j }

3/2
{2(pi.pj)

2 − 3p2
i p2

j }{n.pj pµi pνi − n.pi p(µ
i pν)j }

+2
m∑
`=1

p′
`.n

m∑
i=1

m∑
j=1
j6=i

1

p′
i .n

p′
i .p

′
j

{(p′
i .p

′
j )

2 − p′2
i p′2

j }
3/2
{2(p′

i .p
′
j )

2 − 3p′2
i p′2

j }{n.p
′
j p′µ

i p′ν
i − n.p′

i p′(µ
i p′ν)

j }

+
n∑

i=1

n∑
j=1
j 6=i

n∑
`=1
` 6=i

1

pi.n

pi.pj

{(pi.pj)
2 − p2

i p2
j }

3/2
{2(pi.pj)

2 − 3p2
i p2

j }
pi.p`

{(pi.p`)2 − p2
i p2
`
}3/2

{2(pi.p`)
2 − 3p2

i p2
`}{n.pj pµi − n.pi pµj } {n.p` pνi − n.pi pν` }

]
,

Gµν = −2
G3

R c11

[
2

n∑
`=1

p′
`.n

m∑
i=1

m∑
j=1
j 6=i

1

p′
i .n

p′
i .p

′
j

{(p′
i .p

′
j )

2 − p′2
i p′2

j }
3/2
{2(p′

i .p
′
j )

2 − 3p′2
i p′2

j }

{n.p′
j p′µ

i p′ν
i − n.p′

i p′(µ
i p′ν)

j }

−
m∑

i=1

m∑
j=1
j 6=i

m∑
`=1
` 6=i

1

p′
i .n

p′
i .p

′
j

{(p′
i .p

′
j )

2 − p′2
i p′2

j }
3/2
{2(p′

i .p
′
j )

2 − 3p′2
i p′2

j }
p′

i .p
′
`

{(p′
i .p

′
`
)2 − p′2

i p′2
`
}3/2

{2(p′
i .p

′
`)

2 − 3p′2
i p′2
` }{n.p

′
j p′µ

i − n.p′
i p′µ

j } {n.p
′
` p′ν

i − n.p′
i p′ν
` }

]
.
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eµν = Aµν +
1
u

Bµν +
ln|u|
u2 Fµν +O(u−2), for large positive u

eµν =
1
u

Cµν +
ln|u|
u2 Gµν +O(u−2), for large negative u

Aµν: memory term

– a permanent change in the state of the detector after the
passage of gravitational waves

Zeldovich, Polnarev; Braginsky, Grishchuk; Braginsky, Thorne; · · ·

– related to the leading soft graviton theorem Strominger; · · ·

Bµν ,Fµν ,Cµν ,Gµν: tail terms

– related to logarithmic terms in the subleading and
subsusbleading soft graviton theorem Laddha, A.S.; Sahoo, A.S.

Saha, Sahoo, A.S.; Sahoo
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1. The result is a statement in classical GR, even though it was
originally suggested by quantum soft graviton theorem.

2. Aµν ,Bµν ,Fµν ,Cµν ,Gµν can be expressed in terms of the
momenta of incoming and outgoing objects without knowing
what forces operated and how the objects moved during the
scattering.

3. For charged particles there are known corrections to this
formula due to long range electromagnetic interactions

9



4. In the expressions for Aµν , Bµν and Fµν , the sum over final
state particles i,j includes integration over outgoing flux of
radiation, regarded as a flux of massless particles.

For Aµν this gives the ‘non-linear memory’ term
Christodoulou; Thorne; Blanche, Damour; Bieri, Garfinkle; · · ·

Due to some miraculous cancellation, in Bµν and Fµν the
contribution from massless final states can be expressed in
terms of massive state momenta

– makes it easier to calculate these since we do not need to find
the gravitational wave spectrum emitted during the scattering. 10



In Bµν , drop massless particles / radiation contribution in the
sum over final states, and add

− 4 G2

R c7

[
PµFPνF − PµI PνI

]
PI: total incoming momentum

PF: total outgoing momentum carried by massive particles

In Fµν , drop massless particles / radiation contribution in the
sum over final states, and add

− 8 G3

R c11

[
n.PF PµF PνF − n.PI PµI PνI

]

Note: These are not new formulæ but follow from manipulating
the results shown earlier 11



Furthermore, if the final state has at most one massive object
and arbitrary number of massless particles, then Bµν and Fµν
become totally independent of the final state momenta.

This has somewhat unusual consequences.

Suppose we have a pair of massless / ultra-relativistic particles
passing each other at large impact parameter.

A far away detector detects some gravitational wave profile due
to late time acceleration of these particles under each other’s
gravitational field.

If we now reduce the impact parameter the particles will scatter
and emit gravitational waves

Except for the memory term, the late time gravitational wave
profile detected in the faraway detector will remain unchanged
since it is insensitive to final momenta 12



If we reduce the impact parameter even further, the particles will
coalesce to form a black hole together with massless radiation.

The late time gravitational wave profile at the faraway detector
still remains the same as if nothing has happened

– there is only one massive object in the final state!

The same argument tells us that the 1/u and ln|u|/u2 tails vanish
for binary black hole merger

One object (bound system)
→ one object + gravitational radiation

– equivalent to one object→ one object for Bµν or Fµν
computation

– no Bµν or Fµν 13



5. So far in our formulæ there is no spin dependence.

– expected to arise at order u−2 Ghosh, Sahoo, arXiv:2106.10741
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After taking Fourier transform these results also give the power
spectrum P(ω) of soft gravitational radiation.

Example: Power spectrum of soft gravitational radiation for the
scattering of a pair of massless particles in cm frame at large
impact parameter / small deflection angle

E2

π2
θ2

s

2
{

1 + 2 ln 2 + ln θ−2
s +O(θ3

s)
}

+
E4

2π4ω
2(lnω)2

[
1− θ2

s

2
{

1 + 2 ln 2 + ln θ−2
s
}

+O(θ3
s)

]
+O(ω2 lnω) .

E: energy of each particle, θs deflection angle

– confirms a conjecture by Ciafaloni, Colferai and Veneziano on
the sign of the ω2(lnω)2 term, but the coefficient differs by a
factor of 2 from the conjectured value. 15



Classical derivation

16



S F

1. We divide the space-time into the scattering region S where
complicated interactions take place and the asymptotic region F
where the particles interact via long range gravitational force.

2. We iteratively solve the coupled equation of matter and
gravity in the asymptotic region F

– matter equations are evolved forward for incoming particles
and backward for outgoing particles since initial and final
momenta are known (includes hard radiation emitted from S)

– gravitational equations in F are always evolved forward using
retarded Green’s function 17



We write

gµν = ηµν + 2 hµν , eµν = hµν −
1
2
ηµν η

ρσ hρσ, eµν ≡ ηµαηνβeαβ

and rewrite Einstein’s equation in de Donder gauge ∂µeµν = 0, as

�eµν = −8πG Tµν(x), � ≡ ηρσ∂ρ∂σ Tµν ≡ TXµν + Thµν

TXµν: matter stress tensor

Thµν captures all terms quadratic and higher order in hρσ on the
left hand side of Einstein’s equation.

From now on all indices will be raised and lowered by the flat
metric η and we shall set c=1

Note: We are not assuming weak gravity at this stage.
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� eµν = −8πG Tµν can be ‘solved’ as:

eµν(x) = −8πG
∫

d4y Gr(x,y) Tµν(y)

Gr(x,y): retarded Green’s function in flat space-time

Using explicit form of Gr one finds that for large R≡ |~x|,

ẽµν(ω,~x) =
2 G
R

eiω R T̂µν(k), k = ω(1, n̂), n̂ ≡ ~x/R

ẽµν(ω,~x) =

∫
dt eiωt eµν(t, ~x), T̂µν(k) ≡

∫
d4x e−ik.x Tµν(x)

The memory, u−1 and u−2ln u terms in eµν arise from 1/ω, lnω
and ω(lnω)2 terms in T̂µν
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ẽµν(ω,~x) =
2 G
R

eiω R T̂µν(k), T̂µν(k) ≡
∫

d4x e−ik.x Tµν(x)

We shall divide the integration region over x into two parts:

c1
c2

c′1c′2
S F

1. Scattering region S: A region of large size L around x=0.

2. Asymptotic region F: Complement of S

Since our goal is to compute terms in T̂µν that are non-analytic
as ω → 0, we can ignore the contribution from the finite region S
in
∫

d4x.

In the asymptotic region, we can regard TXµν as due to the
incoming and outgoing object trajectories, moving under each
others’ long range gravitational field. 20



TXµν(x) ≡
n∑

i=1

mi

∫ ∞
0

dτ δ(4)(x− Xi(τ))
dXµi
dτ

dXνi
dτ

+
m∑

i=1

m′i

∫ 0

−∞
dτ δ(4)(x− X′i(τ))

dX′µi
dτ

dX′νi
dτ

+ · · · ,

Tµν(x) = TXµν(x) + Thµν(x),

�eµν = −8πG Tµν ,

d2Xµi
dτ2 = −Γµνρ(X(τ))

dXνi
dτ

dXρi
dτ

,
d2X′µi
dτ2 = −Γµνρ(X′(τ))

dX′νi
dτ

dX′ρi
dτ

,

Boundary conditions:

Xµi (τ = 0) = cµi , lim
τ→∞

dXµi
dτ

= Vµi =
1

mi
pµi ,

X′µi (τ = 0) = c′µi , lim
τ→−∞

dX′µi
dτ

= V′µi =
1

m′i
p′µi .

– difference from earlier approach
Goldberger, Ridgway; Kosower, Maybee, O’Connell; · · ·
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We solve these equations iteratively, starting with the solution:

eµν = 0, Xµi (τ) = cµi + Vµi τ = cµi +
1

mi
pµi τ,

X′µi (τ) = c′µi + V′µi τ = c′µi +
1

m′i
p′µi τ .

This generates a series expansion in G Mω, possibly with
corrections involving lnω factors.

In order to get ω−1 and lnω terms, it is enough to do one
iteration. Saha, Sahoo, A.S.

For ω2 lnω term, we need one more iteration. Sahoo

Taking Fourier transform we recover the results quoted earlier.
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Relation to soft theorem
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Soft theorems give the result for an amplitude with M soft
gravitons in terms of the amplitude without the soft gravitons

Weinberg; Cachazo, Strominger; · · ·

This is simplest in D ≥ 5 where the S-matrix is free from IR
divergence.

General structure
Asoft+hard = SM Ahard

SM: a matrix differential operator involving orbital and spin
angular momenta of external states

The classical limit is taken by taking the Laddha, A.S.

– hard particles to have mass>> Mpl, and

– by replacing the orbital and spin angular momentum operators
by classical spin and orbital angular momenta of external states.
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In the classical limit, the soft theorem simplifies to:

Asoft+hard =

{
M∏
α=1

Sα

}
× Ahard

with Sα depending only on the quantum number of the α-th soft
particle and those of the hard particles.

We can now find the conditional probability of emitting M soft
gravitons of certain quantum number for given set of ‘classical’
hard incoming and outgoing particles

1
M!
|S|2M × (phase space factor)M × |Ahard|2

By maximizing this with respect to M, we find the classical
number of soft gravitons with given quantum numbers.

This can be used to determine the (Fourier transform of the)
gravitational wave-form up to a phase. 25



In D ≥ 5, this formula has been tested in many examples.

Soft factor gives the gravitational wave-form without any
additional phase.

However in D=4 there are two subtleties.

1. Sα depends on the angular momenta of the hard particles.

Jµνi = xµi pνi − xνi pµi + Sµνi , Sµνi : spin

Due to the long range gravitational force of the other particles,
xµi has logarithmic correction to its trajectory:

xµi = pµi τ/mi + cµi ln τ + · · ·

Jµνi diverges as τ →∞.

We use the wave-length of the gravitational wave as an ad hoc
infra-red cut-off on τ . 26



2. Due to long range gravitational force on the soft gravitons,
they have a Coulomb phase:

exp[iωR] ⇒ exp[iω {R− C ln R}]

We replace ln R by ln(Rω) with the intuition that the Coulomb
drag on a wave of wavelength λ acts over the distance λ to R

– correctly captures the effect of gravitational backscattering
Peters, Blanchet, Goldberger, Ross, Rothstein, · · ·

With these two ansatz on cut-off, we get the results for the
gravitational wave-form quoted earlier after taking a Fourier
transform. 27



In D=4, the classical results from soft theorem should be
regarded as conjectures rather than derivations.

Nevertheless, soft theorem leads to the correct conjectures!

More importantly, it teaches us what questions might have
universal answers independent of the details of the scattering
process, generalizing the memory effect.

e.g. we get universal results by asking for soft radiation for
given initial and final hard particles, instead of just for given
initial data.
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For the future:

Power law decay in u comes from non-analytic function in
frequency space

– arise from IR divergent terms and should therefore be
determined by soft physics.

1. Can we develop a systematic procedure for computing all
higher order terms in the large u expansion?

2. Does the magical independence of the result on the final state
massless particle data continue to hold?

3. Do all such terms vanish for the black hole merger problem?
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