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Membrane theory

The Hamiltonian for a (bosonic) closed membrane moving in 𝐑"#," in
the light-cone gauge is

𝐻 = '
(
𝑑*𝜎

1
2
𝑝/𝑝/ +

1
4
𝑥/, 𝑥3 𝑥/, 𝑥3

・Closed surface Σ which represents the membrane.

・Embedding coordinates 𝑥/ 𝐴 = 1,2, … , 9 in 𝐑"#,".

・Canonical momenta 𝑝/ = 𝜕𝑥//𝜕𝑡.

・Poisson bracket , induced by the volume form 𝜔 on Σ.
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Matrix regularization

The Hamiltonian is described in terms of the functions 𝑥/, 𝑝/ ∈ 𝐶>(Σ)
and the Poisson bracket , on Σ.

The matrix regularization is an operation of the following replacement,
[Hoppe, de Wit-Hoppe-Nicolai, Arnlind-Hoppe-Huisken]

which approximate the Poisson algebra by matrices. The accuracy of
the approximation improves as 𝑁 → ∞.
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Poisson algebra on Σ

(𝐶> Σ , , )

Lie algebra of matrices

(𝑀E(𝐂), , )
Infinite dimension Finite dimension



Matrix model for membrane

After the matrix regularization, the Hamiltonian of the membrane theory
becomes [Hoppe, de Wit-Hoppe-Nicolai]

𝐻 = Tr
1
2
𝑃/𝑃/ −

1
4
[𝑋/, 𝑋3][𝑋/, 𝑋3]

This coincides with (the bosonic term of) the matrix model which is
conjectured to describe M-theory. [BFSS, Susskind, Seiberg]

The matrix regularization is also applied to type IIB string theory and
provides a matrix model for the nonperturbative formulation. [IKKT]
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Area-preserving diffeomorphisms

In the matrix regularization, the (residual) gauge symmetry of the
membrane theory is replaced as
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Area-preserving diffs

𝛿𝑥/ = 𝑥/, 𝑣

Unitary transformations

𝛿𝑋/ = −𝑖 𝑋/, 𝑉

Poisson algebra on Σ

(the Lie algebra is) 

isomorphic (the Lie algebra is) equivalent in

𝑁 → ∞ at least for 𝑆*

[Hoppe, Pope-Stelle]

MR



Topic of my talk

We study how general diffeomorphisms on Σ act on the matrices in the
matrix regularization.

・For constructing a covariant formulation of M-theory.

・For formulating theories of gravity on fuzzy spaces.
[Chamseddine-Connes, Aschieri et al, Hanada-Kawai-Kimura, Steinacker, Nair, Yang, etc.]
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General diffs on Σ

𝛿𝑥/ = 𝑢T𝜕T𝑥/
???

𝛿𝑋/ = ? ? ?



Plan of my talk:

1. Berezin-Toeplitz quantization

2. Matrix diffeomorphisms

3. Matrix diffeomorphisms on fuzzy sphere

4. Approximate diffeomorphism invariants



1. Berezin-Toeplitz quantization



Matrix regularization and quantization

The matrix regularization is very similar to quantization on the classical
phase space (for a particle moving on the real line),

We can say that the matrix regularization is the quantization on a
compact curved phase space. ⟹ Berezin-Toeplitz quantization
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Poisson algebra on 𝐑*

(𝐶> 𝐑* , , )

Algebra of operators

(𝑄, , )
Infinite dimension

Noncompact



Berezin-Toeplitz quantization

The quantization is given by a linear map for the canonical variables,

𝑞, 𝑝 ∈ 𝐑* ⟼ Z𝑞, Z𝑝 with Z𝑞, Z𝑝 = 𝑖ℏ

and fixing the ordering of (Z𝑞, Z𝑝) in composite operators. The Berezin-
Toeplitz quantization is a scheme of the anti-normal ordering:

\𝑓 =
1
𝜋ℏ

'
𝐑_
𝑑*𝑧 ⟩𝑧 ⟨𝑧 𝑓(𝑧)

・Complex coordinate 𝑧 = (𝑞 + 𝑖𝑝)/ ℏ.

・Canonical coherent state | ⟩𝑧 :  Z𝑎| ⟩𝑧 = "
ℏ
𝑧| ⟩𝑧 for [ Z𝑎, Z𝑎e] = 1.
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Coherent state and Dirac zero modes

We can rewrite the Berezin-Toeplitz map as

𝑖| \𝑓|𝑗 = '
𝐑_
𝑑*𝑧 𝜓h

e 𝑧 𝜓i 𝑧 𝑓(𝑧)

𝜓i 𝑧 =
1
𝜋ℏ

⟨𝑖| ⟩𝑧
0

(𝑖 = 1,2, … ,∞)

The spinors 𝜓i 𝑧 are characterized as the zero modes of a Dirac
operator with a 𝑈(1) gauge potential for a constant curvature,

𝐷 = 𝑖𝜎m 𝜕m −
𝑖
ℏ
𝐴m , 𝐹 = 𝑑𝐴 = 𝑑𝑞 ∧ 𝑑𝑝

This formulation can be generalized to general phase spaces.
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Berezin-Toeplitz map

The Berezin-Toeplitz map 𝑇E: 𝐶>(Σ) → 𝑀E(𝐂) for a closed surface Σ is
[Klimek-Lesniewski, Bordemann-Meinrenken-Schlichenmaier, Ma-Marinescu] c.f.[Terashima]

𝑖|𝑇E 𝑓 |𝑗 = '
(
𝑑*𝜎 𝑔 𝜓h

e𝜓i 𝑓

・Riemannian metric 𝑔Ts (which is compatible with 𝜔).

・𝑈(1) gauge potential 𝐴T with the Chern number "
*t ∫v 𝐹 = 𝑁.

・Dirac operator 𝐷 = 𝑖𝜎T(𝜕T + 𝛺T − 𝑖𝐴T).

・Orthonormal basis of Ker𝐷: 𝜓i (𝑖 = 1, 2, … , 𝑁).
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c by the Index
theorem



2. Matrix diffeomorphisms



Mapping diffeomorphisms

We map automorphisms of C>(Σ) instead of diffeomorphisms of Σ to
transformations of matrices:

𝑓 ∈ 𝐶>(Σ) 𝐹 = 𝑇E(𝑓)

𝜑∗𝑓 ∈ 𝐶>(Σ) 𝐹} = 𝑇E(𝜑∗𝑓)
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automorphism

induced by φ

transformation of 

matrices

B-T map

B-T map

𝑓 ∘ 𝜑

∥



3. Matrix diffeomorphisms on the fuzzy sphere



Dirac zero modes for 𝑆*

We choose the standard round metric 𝑔 = 𝑑𝜃* + 𝑠𝑖𝑛* 𝜃 𝑑𝜙* and the
Wu-Yang gauge potential

𝐴 =

𝑁
2 − cos 𝜃 + 1 𝑑𝜙 (region I)
𝑁
2 − cos 𝜃 − 1 𝑑𝜙 (region II)

With these data, the orthonormal Dirac zero modes are

𝜓i 𝜃, 𝜙 =
𝑁
2𝜋

⟨𝑖| ⟩Ω
0

(𝑖 = 1, 2, … , 𝑁)

| ⟩Ω = 𝑒����� 𝑒����_ 𝑒���� ⟩|𝐽𝐽 (𝑁 = 2𝐽 + 1)

I

II
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𝑁-dim irrep of 𝑆𝑈(2) generators



Berezin-Toeplitz map for 𝑆*

The Berezin-Toeplitz map for the embedding functions 𝑥/ (𝐴 = 1,2,3)

of 𝑆* in 𝐑� are

𝑋/ ≔ 𝑇E(𝑥/) =
𝑁
2𝜋

'
�_
𝑑Ω ⟩Ω ⟨Ω 𝑥/ =

𝐿/

𝐽 + 1

This is the well-known configuration of the fuzzy sphere (up to 𝑂 𝑁�" ),
which satisfies [Madore]

𝑋/𝑋/ = 1 + 𝑂 𝑁�"

𝑁 𝑋/, 𝑋3 = 2𝑖𝜖/3�𝑋� + 𝑂(𝑁�")
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Holomorphic diffeomorphisms of 𝑆*

We identify the sphere with 𝐂 ∪ ∞ by the stereographic coordinate
𝑧 = 𝑒i� tan �

*
and focus on the holomorphic diffeomorphisms,

𝜑 𝑧 =
𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 ,

𝑎 𝑏
𝑐 𝑑 ∈ 𝑆𝐿(2, 𝐂)

Special four types:

Rotation

𝜑 𝑧 = 𝑒i¡𝑧 (𝛼 ∈ 𝐑)

Translation

𝜑 𝑧 = 𝑧 + 𝑏

Dilatation

𝜑 𝑧 = 𝑒£𝑧 (𝑡 ∈ 𝐑)

Special conformal

𝜑 𝑧 =
𝑧

𝑐𝑧 + 1
13/24

Isometry & area-preserving This talk



Mapping dilatation

The transformation of 𝑥/ induced by the dilatation is

𝜑∗𝑥/ 𝑧 = 𝑥/ 𝑒£𝑧 (𝑡 ≥ 0)

The corresponding transformation of 𝑋/ is

⟨𝐽𝑟|𝑋}¦ ⟩|𝐽𝑠 =
𝛿§�"¨ 𝑒�£

𝐽 + 1 𝐽 − 𝑟 + 1 𝐽 + 1 𝐹 𝐽 + 𝑟 + 1, 1, 2𝐽 + 3; 1 − 𝑒�*£

⟨𝐽𝑟|𝑋}� ⟩|𝐽𝑠 =
𝛿§¦"¨ 𝑒�£

𝐽 + 1
𝐽 + 𝑟 + 1 𝐽 − 1 𝐹 𝐽 + 𝑟 + 2, 1, 2𝐽 + 3; 1 − 𝑒�*£

⟨𝐽𝑟|𝑋}�| ⟩𝐽𝑠 =
𝛿§¨

2(𝐽 + 1)
{(1 + 𝑒�*£) 𝐽 + 𝑟 + 1 𝐹 𝐽 + 𝑟 + 2, 1, 2𝐽 + 3; 1 − 𝑒�*£

−2 𝐽 + 1 𝐹(𝐽 + 𝑟 + 1, 1, 2𝐽 + 2; 1 − 𝑒�*£)}

Gauss’s hypergeometric
function 𝐹(𝛼, 𝛽, 𝛾, 𝑠)
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Unitary non-equivalence

The transformation off course does not break the constraint, 𝑋}/𝑋/} ≃ 1,
but changes the eigenvalues.

Thus, general diffeomorphisms do not correspond to unitary similarity
transformations in the matrix regularization.
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-100 000

-50 000

0

50 000

100 000

-100 000 -50 000 0 50 000 100 000
0.990

0.995

1.000

1.005

1.010

= 𝐽 + 1 ⟨𝐽𝑟 𝑋� ⟩𝐽𝑟

= 𝐽 + 1 ⟨𝐽𝑟 𝑋′� ⟩𝐽𝑟

𝑡 = 0.4

𝐽 = 10000

𝑡 = 0.4

𝐽 = 10000

⟨𝐽𝑟 𝑋}/𝑋′/ ⟩𝐽𝑟

𝑟 𝑟



4. Approximate diffeomorphism invariants



Approximate diffeomorphism invariants

We propose three kinds of approximate diffeomorphism invariants on
the fuzzy sphere in the sense that they are

(i) Invariant exactly under unitary similarity transformations

𝛿𝑋/ = −𝑖 𝑋/, 𝑉

(ii) Invariant in the large-𝑁 limit under general matrix diffs

𝛿𝑋/ =
𝑁
2𝜋

'
�_
𝑑Ω | ⟩Ω ⟨Ω|𝑢T𝜕T𝑥/
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Matrix Dirac operator

From the embedding functions 𝑥/ and the matrices 𝑋/ of the fuzzy 𝑆*,
we define a Dirac type operator,

±𝐷 = 𝜎/ ⨂ (𝑋/ − 𝑥/)

We denote the eigenvalues and eigenstates by 𝐸´ and | ⟩𝑛 such that
𝐸# ≤ 𝐸" ≤ ¶¶¶ . Then we have [de Badyn-Karczmarek-Sabella-Garnier-Yeh]

𝐸# =
𝐽

𝐽 + 1 − 1 = 𝑂(𝑁�")

| ⟩0 = 𝑈*
1
0 ⨂ | ⟩Ω
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Invariance of 𝐸#

Under an infinitesimal matrix diff 𝑋/ → 𝑋/ + 𝛿𝑋/, 𝐸# transforms as

𝛿𝐸# = ⟨0|𝜎/ ⨂ 𝛿𝑋/| ⟩0

= 𝑥/𝑢T𝜕T𝑥/ + 𝑂(𝑁�")

Thus 𝐸# is invariant up to 1/𝑁 corrections.

𝐸# has the information of the induced metric for the embedding
functions 𝑥/. [Berenstein-Dzienkowski, Ishiki, Schneiderbauer-Steinacker] cf.[Terashima]
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this term is zero since 𝑥/𝑥/ = 1

The “locality” of | ⟩Ω

Ω Ω} * ~ 𝐽𝛿 * Ω − Ω}



Information metric

By using the eigenstate | ⟩0 , we introduce a density matrix,

𝜌 = | ⟩0 ⟨0|

This defines an embedding of 𝑆* into the space of density matrices
and gives a metric ℎ on 𝑆* as the pullback of the information metric,

ℎTº𝑑𝜎T𝑑𝜎s = Tr 𝑑𝜌𝑑𝜌

For general Kähler manifolds, this gives a Kähler metric. [Ishiki-TM-Muraki]
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Covariance of ℎTº

Under an infinitesimal matrix diff 𝑋/ → 𝑋/ + 𝛿𝑋/, | ⟩0 transforms as

𝛿| ⟩0 = »
´¼#

⟩𝑛 ⟨𝑛 𝜎/ ⨂ 𝛿𝑋/| ⟩0
𝐸# − 𝐸´

+ (puer imaginary)

= −𝑢T𝜕T| ⟩0 + (puer imaginary) + 𝑂(𝑁�")

This means 𝛿𝜌 = −𝑢T𝜕T𝜌 + 𝑂(𝑁�"), and so the induced metric ℎ is

covariant up to 1/𝑁 corrections:

𝛿ℎTº = −∇T𝑢º + ∇º𝑢T + 𝑂(𝑁�")
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Heat kernel expansion

For a 2𝑛-dimensional Riemannian manifold (𝑀, 𝑔), the heat kernel

𝐾 𝑡 = Tr 𝑒�£∆

∆= −
1
𝑔
𝜕T( 𝑔𝑔Ts𝜕s)

generates diffeomorphism invariants on 𝑀 as the coefficients of
the asymptotic expansion in 𝑡 → +0:

𝐾 𝑡 ~
1
4𝜋 ´ '

v
𝑔 𝑡�´ +

1
4𝜋 ´

1
6
'
v

𝑔𝑅 𝑡�´¦" + ⋯
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Cosmological term

Einstein-Hilbert action



Heat kernel on fuzzy sphere

We define the heat kernel on the fuzzy sphere by [Sasakura]

±𝐾 𝑡E,𝑁 = Tr 𝑒�£Ã Ä∆

Ä∆= 𝐽 + 1 *[𝑋/, [𝑋/, 1]]

The matrix Laplacian Ä∆ corresponds to the operator −{𝑥/, {𝑥/,¶¶ }} and
has the same spectrum with ∆ on 𝑆* up to a UV cutoff:

Tr Ä∆= »
ÅÆ#

E�"

»
ÇÆ�Å

Å

𝑙(𝑙 + 1) = »
ÅÆ#

E�"

𝑙(𝑙 + 1)(2𝑙 + 1)

22/24



Double scaling limit

The matrix heat kernel ±𝐾 is regular in 𝑡E → +0 for finite 𝑁, but by
putting 𝑡E = 𝑁�¡ (0 < 𝛼 < 1) and taking the limit 𝑁 → ∞, we have

±𝐾 𝑡E,𝑁 ~ 1 ¶ 𝑡E�" +
1
3
𝑡E# + 𝑂(𝑡E)

The geometric information which ±𝐾 has is based on the metric of
− {𝑥/, {𝑥/,¶¶ }} = −𝑔Tº𝜕T𝜕s + ⋯ where

𝑔Tº = 𝑊ËT𝑊Ìº𝜕Ë𝑥/𝜕Ì𝑥/
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𝑅 = 2

Vol(𝑆*) = 4𝜋

Open string metric in the strong magnetic flux  [Seiberg-Witten]



Invariance of ±𝐾

Under a general perturbation 𝑋/ → 𝑋/ + 𝛿𝑋/, we find

𝛿𝑋/ = »
ÅÇË

𝛿𝑋ÅÇË Ä𝑌ÅÇË/

𝛿 ±𝐾 = 2𝑖𝑡E𝛿𝑋##�"
𝐽 + 1
𝐽 »

ÅÆ#

E�"

𝑒�£ÃÅ Å¦" 𝑙(𝑙 + 1)(2𝑙 + 1)

The mode 𝛿𝑋##�" is for Ä𝑌##�"/ ∝ 𝐿/, which changes the radius of 𝑆* in
𝐑� and so violates the constraint 𝑋/𝑋/ ≃ 1.

This means that if 𝛿𝑋/ is a matrix diffeomorphism, then 𝛿 ±𝐾 = 0.
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Vector fuzzy spherical harmonics
[Ishiki-Shimasaki-Takayama-Tsuchiya]



Summary

In the formulation of the matrix regularization, we …

・defined the action of diffeomorphisms on matrices using the
Berezin-Toeplitz quantization map.

・proposed three kinds of method of constructing approximate
invariants on the fuzzy sphere.

The future work is …

・charactering the matrix diffeomorphisms in terms of purely
the matrix geometry.

・applying to formulate gravity on fuzzy spaces.


