Measurement of the CP violation phase ϕ_s in $B_s^0 \rightarrow J/\psi \phi$ decay in ATLAS using 80.5 fb⁻¹ of LHC data at 13 TeV

On behalf of ATLAS Collaboration

31 August - 11 September 2019

Workshop on Connecting Insights in Fundamental Physics: Standard Model and Beyond $Corfu\ 2019$

《曰》 《聞》 《臣》 《臣》 三臣

Motivation

• Interference of direct decay and decay with mixing into the same final state of $B_s^0 \rightarrow J/\psi \phi$ gives rise to time-dependent CP violation (CPV)

- CPV phase ϕ_s is the weak phase difference between the $B_s^0 \bar{B}_s^0$ mixing amplitude and the direct $b \rightarrow c\bar{c}s$ decay amplitude
- In the Standard Model (SM) the ϕ_s is related to the CKM matrix and is small:

$$\phi_s \simeq -2\beta_s = -2arg \frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*} = -0.0363^{+0.0016}_{-0.0015} \text{ rad}$$

- New Physics (NP) processes could contribute to the mixing box diagrams, potentially allowing for large deviations in ϕ_s from the SM prediction
- Alongside ϕ_s , other quantities are describing the differential decay rate:
 - Decay widths and masses of the two mass eigenstates
 - CP even/odd state amplitudes and phases

- LHC Run 1 results consistent with the Standard Model prediction
- Search for New Physics needs increase of the $\phi_{\rm s}$ precision

Sinem Simsek

Data and Monte Carlo simulation samples

Run 2 Data:

- 4.9 ${\rm fb}^{-1}$ of 13 ${
 m TeV}$ pp collision data in 2015
- 31.3 ${\rm fb}^{-1}$ of 13 TeV *pp* collision data in 2016
- 44.3 fb^{-1} of 13 TeV *pp* collision data in 2017
- Events collected with mixture of triggers based on $J/\psi \rightarrow \mu^+\mu^$ identification, with muon $p_{\rm T}$ thresholds of either 4 GeV or 6 GeV (vary over run periods)

MC samples:

- MC samples for $B^0_s
 ightarrow J/\psi \phi$
- MC samples for peaking backgrounds $B^0_d \rightarrow J/\psi K^{*0}$, $B^0_d \rightarrow J/\psi K\pi$ and $\Lambda^0_b \rightarrow J/\psi Kp$
- MC samples for tagging calibration channel $B^{\pm} \rightarrow J/\psi K^{\pm}$ (systematics and cross-checks only, real data used for calibration)

Reconstruction and candidate selection

Event

- Triggers (previous slide) and Good Data Quality selection criteria
- At least one PV formed from at least 4 ID tracks
- \bullet At least one pair of ID+MS identified $\mu^+\mu^-$

$J/\psi \to \mu^+ \mu^-$

- Dimuon vertex fit $\chi^2/d.o.f. < 10$
- Three dimuon invariant mass windows for BB/BE/EE (barrel, endcap) muon combinations

$\phi \rightarrow K^+ K^-$

- $p_{\mathrm{T}}(K) > 1 \; \mathrm{GeV}$
- 1008.5 MeV < m(KK) < 1030.5 MeV

$B_s^0 ightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)^2$

- $p_{\mathrm{T}}(B_s^0) > 10 \; \mathrm{GeV}$
- Four-track vertex fit $\chi^2/{\rm d.o.f.} <$ 3 (J/ ψ mass constrained)
- \bullet Keep only the candidate with best vertex fit $\chi^2/{\rm d.o.f.}$ in event
- 5150 $MeV < m(B_s^0) <$ 5650 $MeV \rightarrow$ in total 3 210 429 B_s^0 candidates

Angular analysis

- $B^0_s
 ightarrow J/\psi \phi$ decay = decay of pseudoscalar to vector-vector
- Final state: admixture of CP-odd (L = 1) and CP-even (L = 0, 2) states
- Distinguishable through time-dependent angular analysis
- Non-resonant S-wave decay $B_s^0 \to J/\psi K^+ K^-$ contribute to the final state and is included in the differential decay rate due to interference with the signal $B_s^0 \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ decay

Figure: Angles between final state particles in transversity basis

Mass-lifetime-angular fit

We perform unbinned maximum likelihood fit simultaneously for B_s^0 mass, decay time and the decay angles:

$$\begin{split} \ln \mathcal{L} &= \sum_{i=1}^{N} \{ w_i \cdot \ln(f_{\mathrm{s}} \cdot \mathcal{F}_{\mathrm{s}}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ &+ f_{\mathrm{s}} \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ &+ f_{\mathrm{s}} \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ &+ (1 - f_{\mathrm{s}} \cdot (1 + f_{B^0} + f_{\Lambda_b})) \mathcal{F}_{\mathrm{bkg}}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \} \end{split}$$

Physics parameters

- CPV phase: ϕ_s
- Decay widths: $\Delta \Gamma_s$, Γ_s
- Decay amplitudes: $|A_0(0)|^2$, $|A_{||}(0)|^2$, $\delta_{||}$, δ_{\perp}
- S-wave: $|A_{S}(0)|^{2}$, δ_{S}
- Δm_s fixed to PDG

Observables

- Base observables: m_i , t_i , Ω_i
- Conditional observables per-candidate:
 - resolutions: σ_{m_i} , σ_{t_i} (*B*- p_{T_i} dependent)
 - tagging probability and method: P(B|Q)
 - Corresponding "Punzi" distributions for signal and combinatorial background are extracted from data using sidebands subtraction (the PDFs shapes are then fixed in the fit)

Opposite side tagging

- Use $b-\bar{b}$ correlation to determine initial signal flavour from the other *B*-meson in the event
 - $b \rightarrow I$ transition are clean tagging method
 - b
 ightarrow c
 ightarrow l and neutral B-meson oscillations dilute the tagging
- Provide probability P(B|Q) of signal candidate to be B_s^0 or \bar{B}_s^0

Tagger types

 $\bullet\,$ tight muon, low- $p_{\rm T}$ muon, electron, b-tagged jet

 Signal flavour probability derived from charge of p_T weighted tracks in a cone around the opposite side primary object (e[±], μ[±], b-jet)

$$Q_{\mathrm{x}} = rac{\sum_{i}^{N \mathrm{\ tracks}} q_{i} \cdot (p_{\mathrm{T}i})^{\kappa}}{\sum_{i}^{N \mathrm{\ tracks}} (p_{\mathrm{T}i})^{\kappa}}$$

 Search order based on best purity: tight muons, electrons, low-p_T muons, b-jets

Tagging calibration

Calibration using $B^{\pm} \rightarrow J/\psi K^{\pm}$ events (real data)

- Self-tagging non-oscillating channel
- Dimuon candidates in range 2.8 $< m(\mu\mu) <$ 3.4 GeV
- $p_{\mathrm{T}}(\mu) > 4 \; \mathrm{GeV}$, $p_{\mathrm{T}}(K^{\pm}) > 1 \; \mathrm{GeV}$
- Invariant mass in range 5.0 $< m(\mu\mu K^{\pm}) <$ 5.6 ${
 m GeV}$
- $au(B^{\pm}) > 0.2 \ {
 m ps}^{-1}$ reducing prompt combinatorial background

Tagging performance

- Efficiency $\epsilon = N_{\text{tagged}}/N_{\text{Bcand.}}$ (fraction of tagged signals)
- Dilution D = (1 2w) (w is miss-tag probability)
- Tagging power $TP = \epsilon D^2$ (figure of merit of tagger performance)

• Tagging performance in the B^{\pm} channel

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]
Tight μ	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Low- $p_{ m T}~\mu$	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Jet-charge	5.54 ± 0.01	20.4 ± 0.1	0.231 ± 0.005
Total	14.74 ± 0.02	33.4 ± 0.1	1.65 ± 0.01

• Tag charge distribution and calibration curve for tight muons (for discrete part and continious part)

Projections of the mass-lifetime-angular fit

• Pull plots include both statistical and systematical uncertainties

Results of the mass-lifetime-angular fit

Parameter	Value	Statistical uncertainty	Systematic uncertainty
$\phi_s[rad]$	-0.068	0.038	0.018
$\Delta \Gamma_s [m ps^{-1}]$	0.067	0.005	0.002
$\Gamma_s[ps^{-1}]$	0.669	0.001	0.001
$ A_{ }(0) ^2$	0.219	0.002	0.002
$ A_0(0) ^2$	0.517	0.001	0.004
$ A_{S}(0) ^{2}$	0.046	0.003	0.004
δ_{\perp} [rad]	2.946	0.101	0.097
δ_{\parallel} [rad]	3.267	0.082	0.201
$\delta_{\perp} - \delta_{S}$ [rad]	-0.220	0.037	0.010

	ΔΓ	Γ _s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_{S}$
ϕ_s	-0.111	0.038	0.000	-0.008	-0.015	0.019	-0.001	-0.011
ΔΓ	1	-0.563	0.092	0.097	0.042	0.036	0.011	0.009
Γ_s		1	-0.139	-0.040	0.103	-0.105	-0.041	0.016
$ A_{ }(0) ^2$			1	-0.349	-0.216	0.571	0.223	-0.035
$ A_0(0) ^2$				1	0.299	-0.129	-0.056	0.051
$ A_{S}(0) ^{2}$					1	-0.408	-0.175	0.164
δ_{\parallel}						1	0.392	-0.041
δ_{\perp}							1	0.052

Systematic uncertainties

- Systematics assumed uncorrelated $\rightarrow \text{Total} = \sqrt{\sum_i \text{syst}_i^2}$
- \bullet Tagging systematics dominant for ϕ_s
 - Accounting for pile-up dependence, calibration curves model and MC precision, "Punzi" PDFs variations, difference between B^{\pm} and B_s^0 kinematics
- Fit-model time resolution systematics dominant for Γ_s and $\Delta\Gamma_s$

	ϕ_s [rad]	$\Delta\Gamma_s$ [ps^{-1}]	$[ps^{-1}]$	$\left A_{ }(0)\right ^2$	$ A_0(0) ^2$	$ A_{s}(0) ^{2}$	δ_{\perp} [rad]	$\delta_{ }$ [rad]	$oldsymbol{\delta}_{ot} - oldsymbol{\delta}_{s} \ [ext{rad}]$
Tagging	0.0174	0.0004	0.0003	0.0002	0.0002	0.0023	0.0191	0.0221	0.0022
Acceptance	0.0007	$< 10^{-4}$	$< 10^{-4}$	0.0008	0.0007	0.0024	0.0331	0.0140	0.0026
ID Alignment	0.0007	0.0001	0.0005	10^{-4}	10^{-4}	10^{-4}	0.0101	0.0072	10^{-4}
S wave-phase	0.0002	< 10 ⁻⁴	< 10 ⁻⁴	0.0003	10^{-4}	0.0003	0.0112	0.0212	0.0083
Background Angles Model:									
Choice of fit function	0.0018	0.0008	$< 10^{-4}$	0.0014	0.0007	0.0002	0.0850	0.1920	0.0018
Choice of P_T bins	0.0013	0.0005	$< 10^{-4}$	0.0004	0.0005	0.0012	0.0015	0.0072	0.0010
Choice of mass interval	0.0004	0.0001	0.0001	0.0003	0.0003	0.0013	0.0044	0.0074	0.0023
Dedicated Backgrounds:									
B_d^0	0.0023	0.0011	< 10 ⁻⁴	0.0002	0.0031	0.0014	0.0102	0.0232	0.0021
λ_b	0.0016	0.0004	0.0002	0.0005	0.0012	0.0018	0.0138	0.0295	0.0008
Fit Model:									
Time res. sig frac	0.0014	0.0011	< 10 ⁻⁴	0.0005	0.0006	0.0006	0.0120	0.0297	0.0004
Time res. P_T bins	0.0033	0.0014	0.001	10 ⁻⁴	10 ⁻⁴	0.0005	0.0062	0.0052	0.0011
TOTAL	0.018	0.002	0.001	0.002	0.004	0.004	0.097	0.201	0.010

Sinem Simsek

Run-2 $B_s^0 \rightarrow J/\psi \phi$ Analysis

31 August - 11 September 2019 13 / 22

Combination of Run 1 - Run 2 results

- A Best Linear Unbiased Estimate (BLUE) combination is performed to combine the current result with the Run 1 measurement
- The BLUE combination uses the measured values and uncertainties of the parameters as well as the correlations between them

	13	${ m TeV}$ dat	а	Combine	ed 13 Te	V with
				7 TeV a	nd 8 Te	V data
Par	Value	Stat	Syst	Value	Stat	Syst
$\phi_s[rad]$	-0.068	0.038	0.018	-0.076	0.034	0.019
$\Delta \Gamma_s [m ps^{-1}]$	0.067	0.005	0.002	0.068	0.004	0.003
$\Gamma_s[ps^{-1}]$	0.669	0.001	0.001	0.669	0.001	0.001
$ A_{ }(0) ^2$	0.219	0.002	0.002	0.220	0.002	0.002
$ A_0(0) ^2$	0.517	0.001	0.004	0.517	0.001	0.004
$ A_{S} ^{2}$	0.046	0.003	0.004	0.043	0.004	0.004
δ_{\perp} [rad]	2.946	0.101	0.097	3.075	0.096	0.091
δ_{\parallel} [rad]	3.267	0.082	0.201	3.295	0.079	0.202
$\delta_{\perp} - \delta_{S} [rad]^{*}$	-0.220	0.037	0.010	-0.216	0.037	0.010

*A correction due to $m(K^+K^-)$ dependence of phase difference between S and P waves is applied in the current analysis, but was missing in the Run 1 analysis. Therefore the Run 1 value of $\delta_{\perp} - \delta_S$ is not used.

Sinem Simsek

Run-2 $B_{\epsilon}^{0} \rightarrow J/\psi \phi$ Analysis

Updated overview and the Conclusion

Current results on ϕ_s from LHC

	ϕ_s [rad]
LHC Combined Run 1	-0.021 ± 0.031
ATLAS Run 1, JHEP08, 147	-0.090 ± 0.078 (stat) \pm 0.041 (syst)
CMS Run 1, Phys.Lett. B757, 97	-0.075 ± 0.097 (stat) \pm 0.031 (syst)
LHCb 2015/16 \oplus Run 1, arXiv:1906.08356	-0.080 ± 0.032
ATLAS 2015/16/17 (80.5 ${ m fb}^{-1}$) \oplus Run 1 (19.2 ${ m fb}^{-1}$)	-0.076 ± 0.034 (stat) \pm 0.019 (syst)
HFLAV Combined	-0.055 ± 0.021

* 王

æ

Probability density functions

$$\ln \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_{\mathrm{s}}\mathcal{F}_{\mathrm{s}} + f_{\mathrm{s}}f_{B^0}\mathcal{F}_{B^0} + f_{\mathrm{s}}f_{\Lambda_b}\mathcal{F}_{\Lambda_b} + (1 - f_{\mathrm{s}}(1 + f_{B^0} + f_{\Lambda_b}))\mathcal{F}_{\mathrm{bkg}} \}$$

Peaking backgrounds

- Contributions from $B^0_d \to J/\psi K^{*0}$, $B^0_d \to J/\psi K\pi$ and $\Lambda^0_b \to J/\psi Kp$
- Shapes of distributions changed due to wrong mass assignment (KK)
- PDFs extracted from MC and then fixed in the main fit
- Fractions calculated from:
 - Efficiencies and acceptance from MC
 - BR from PDG
 - Fragmentation fractions from other measurements

Combinatorial background PDFs

- Mass: exponential + constant
- Time: delta-function and 3 exponentials convolved with per-candidate time resolution
- Angles: Legendre polynomials from sidebands; fixed in the main fit

k	$\mathcal{O}^{(k)}(t)$	$g^{(k)}(\theta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2 heta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_{\mathcal{T}}(1-\sin^2\theta_{\mathcal{T}}\sin^2\phi_{\mathcal{T}})$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_{\mathcal{T}}\sin^2\theta_{\mathcal{T}}$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel} $	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$
	$\left[(1 + \cos\phi_s) e^{-\Gamma_{\mathrm{L}}^{(s)}t} + (1 - \cos\phi_s) e^{-\Gamma_{\mathrm{H}}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}$	$-\sin^2\psi_{\mathcal{T}}\sin2 heta_{\mathcal{T}}\sin\phi_{\mathcal{T}}$
6	$\pm e^{- \mathbf{s}^{r}(\mathbf{s}n(\boldsymbol{\sigma}_{\perp} - \boldsymbol{\sigma}_{\parallel}) \cos(\Delta m_{s}t) - \cos(\boldsymbol{\sigma}_{\perp} - \boldsymbol{\sigma}_{\parallel})\cos(\boldsymbol{\varphi}_{s}\sin(\Delta m_{s}t))]} A_{0}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\mathrm{L}}^{(s)}t} - e^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos\delta_{\perp}\sin\phi_{s}$	$rac{1}{\sqrt{2}}\sin 2\psi_T\sin 2 heta_T\cos\phi_T$
7	$\frac{\pm e^{-\Gamma_{s}t}(\sin\delta_{\perp}\cos(\Delta m_{s}t) - \cos\delta_{\perp}\cos\phi_{s}\sin(\Delta m_{s}t))]}{\frac{1}{2} A_{S}(0) ^{2}\left[(1 - \cos\phi_{s})e^{-\Gamma_{L}^{(s)}t} + (1 + \cos\phi_{s})e^{-\Gamma_{H}^{(s)}t} \mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$rac{2}{3}\left(1-\sin^2 heta_{\mathcal{T}}\cos^2\phi_{\mathcal{T}} ight)$
8	$\alpha A_{5}(0) A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{4}(s)}t - e^{-\Gamma_{H}(s)}t)\sin(\delta_{\parallel} - \delta_{5})\sin\phi_{5}$	$rac{1}{3}\sqrt{6}\sin\psi_T\sin^2 heta_T\sin2\phi_T$
9	$ te^{-s^{-s}} (\cos(\delta_{\parallel} - \delta_{S}) \cos(\Delta m_{s}t) - \sin(\delta_{\parallel} - \delta_{S}) \cos \phi_{s} \sin(\Delta m_{s}t))] $ $ \frac{1}{2} \alpha A_{S}(0) A_{\perp}(0) \sin(\delta_{\perp} - \delta_{S}) $	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2 heta_T\cos\phi_T$
	$(1 - \cos \phi_s) e^{-\Gamma_{\rm L}^{(S)} t} + (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(S)} t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s$	
10	$ \alpha A_0(0) A_S(0) [\frac{1}{2} (e^{-\Gamma_{\rm H}^{(s)} t} - e^{-\Gamma_{\rm L}^{(s)} t}) \sin \delta_S \sin \phi_s $	$\frac{4}{3}\sqrt{3}\cos\psi_{T}\left(1-\sin^{2}\theta_{T}\cos^{2}\phi_{T}\right)$
	$\pm e^{-\Gamma_{S}t}(\cos\delta_{S}\cos(\Delta m_{s}t)+\sin\delta_{S}\cos\phi_{s}\sin(\Delta m_{s}t))]$	

Performing the calibrations

- Results of Fit provide $N_{B\pm}Q=i}$; P(Q|B+) = N(B+|Q) / N(B+)

- Calibration curve separated into
 - Continuous and discrete parts
- Converts Q values into a Probability

Tag charge distribution and calibration curves

Tag "Punzi" distributions - discrete

 \bullet Fraction of tag-charge equal to ± 1 in signal and background events

Tag method	Sig	nal	Backg	round
	f_{+1}	f_{-1}	f_{+1}	f_{-1}
Tight μ	0.069 ± 0.003	0.075 ± 0.003	0.047 ± 0.001	0.049 ± 0.001
Electron	0.20 ± 0.01	$\textbf{0.19} \pm \textbf{0.01}$	0.168 ± 0.002	0.173 ± 0.002
Low-pt μ	0.109 ± 0.005	0.117 ± 0.005	0.070 ± 0.001	0.076 ± 0.001
Jets	0.0451 ± 0.0015	0.0458 ± 0.0016	0.0376 ± 0.0003	0.0386 ± 0.0003

• Fraction of tag-methods in signal and background events

Tag method	Signal	Background
Tight μ	0.0400 ± 0.0006	0.0316 ± 0.0001
Electron	0.0187 ± 0.0004	0.0148 ± 0.0001
Low-pT μ	0.0291 ± 0.0005	0.0264 ± 0.0001
Jets	0.144 ± 0.001	0.1196 ± 0.0002
Untagged	0.767 ± 0.003	0.8077 ± 0.0005

- Flavour tagging systematics:
 - calibration function (tag probability vs. tag charge)
 - \bullet pile-up dependence (calibration for three $\textit{N}_{\rm PV}$ bins)
 - variation of tag probability and tag method "Punzi" terms (functions, histograms)
 - stat. uncertainty due to $B^\pm o J/\psi K^\pm$ data sample included in overall stat. err.
- Angular acceptance (binned fit of MC) by changing the bin widths and central values
- Inner detector alignment: Residual misalignment affects tracks impact parameter, effect in fit results in systematics
- \bullet S-wave phase by varying correction factor α that accounts for mass-dependence of phase difference between S and P waves
- Background angles model varying Legendre polynomials describing sidebands data:
 - their degree
 - *B*-*p*_T dependence (binning)
 - size of B⁰_s mass sidebands
- Contributions from peaking backgrounds $B_d^0 \rightarrow J/\psi K^{*0}$, $B_d^0 \rightarrow J/\psi K\pi$ and $\Lambda_b^0 \rightarrow J/\psi Kp$, accounting for:
 - production fraction uncertainties
 - uncertainties in modeling of decay angles (including S/P wave interference)
 - uncertainties of fit-function describing the mass-time-angular PDFs
- Signal fit model:
 - adding second mass scale factor
 - varying $B-p_{\rm T}$ binning (decay time per-candidate errors sensitive to that)
 - varying signal fraction when determining the decay time "Punzi" terms