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1. Heisenberg-Euler Effective Lagrangian in QED
Lelpzig 1936

2. Light by Light Scattering at LHC

3. Effective Lagrangian in YM theory and QCD 1976

4. Chromomagnetic Gluon Condensation in QCD 1977
Absence of the Imaginary part.

5. Absence of imaginary part in chromomagnetic field

6. Induced Effective Cosmological Constant



Based on lectures at the Leipzig University in occasion of the 80 Years of Heisenberg-Fuler Lagrangian 1936-2016,
ITP, Leipzig, November 21, 2016 and

40 Years of Discovery of the Chromomagnetic Gluon Condensation 1977-2017 at the Ludwig-Maximilian University
Miinchen, Arnold Sommerfeld Colloquium at Center for Theoretical Physics, April 18, 2018.



Euler and Kockel 1935.
Heisenberg and Euler 1936

Hans Euler Werner Heisenberg



Heisenberg-Euler Effective Lagrangian

Performing the renormalisation one can get the effective Lagrangian

E? — H? mc > ds as cos(as) bscosh(bs) a? — b
Lopr = g2 2 TC 3/ as g 1 2
1 2 mme h ) 0 55 t sin(as)  sinh(bs) i 3 ;
where ehE ehH
- b= m2c3

For strong magnetic fields a=0, b >> 1 the quantum correction term will have the form
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Heisenberg-Euler Effective Lagrangian

The renormalisation gives

2 —H? mc > ds as cos(as) bscosh(bs) a’ — b
Lor = 42 2_3/_—3 1 2
1 2 mme (5 7) 0 S5 t sin(as)  sinh(bs) 3 7 ;
where dimensionless fields are
eh& eh’H
a=-—535, b=—57
m-c m4c
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—uler-Kockel Effective Lagrangian  Eulerand Kockel 1935

2 — H? 2 2 h

- 2 = 2 ZNY
Loppm——5—+ =2(=) (=) mc2{(5 H*)? +7(EH)%)
R

The electric displacement D and magnetic induction B induced in the vacuum are

aE’UCLC 4 62 2 h —2 —»2 - —
Di =&+ o, & + 45(47Thc) (m ) ch 2(87 = HO)E + T(EH) M.}
8£vac 4 62 9 h 3 — —9 N
’ Bi =7 = OH, i+ 45(47Thc) (mc) ch 12087 = H)H — T(ER)Ei ).

For pure magnetic external field

8 ozel)\
45 mc?

C?—[2) QED vacuum responds as diamagnet !

For pure electric external field

8 ael)\
45 mc?

D; =& (1 + c &%) QED vacuum permittivity



Euler-Kockel Scattering of Light by Light  Euler and Kockel 1935,

For the week fields a << 1, b << 1 the first guantum correction term has the form

2 — H? 2 2 9, N g 1 > =9\ D
Lefy = 2 | 45(47Thc mc) ch{(g —HY)THT(EH)TS

The light by light scattering cross section when w < m

113956, e* , h o hw g 33 o
_ - D2 e g
M= T 902 5 (47Thc) mc (mCZ) e

Studying more than 4 billion events taken in 2015, the ATLAS collaboration found 13 candidates for
light-by-light scattering. This result has a significance of 4.4 standard deviations, allowing the
ATLAS collaboration to report the first direct evidence of this phenomenon.

Oryrysy = T0 & 24(stat) + 17(syst) 1073 cm?
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Invariant mass distribution of the measured final state photon pairs (markers), compared to
the expected light-by-light scattering signal (red line) and expected background contributions
(shaded areas). (Image: ATLAS Collaboration/CERN)
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Sauter-Schwinger pair production Sauter 1931
Schwinger 1951,

Considering pure electric field

1) —

1 /OO ds 2. (e€s)cos(e€s)
0

_ 1 2
- 872 =N t sin(e€s) bt 5(688) ;

it has singularities at s, = nm/e€ and the integration path is considered to lie above the real axis

2 (68)2 > ]. 271'

1 1
1 R - n R - T 5
20m L A7 Z 52 e 473 Z n26 =

n=1 N n=1

This is the probability, per unit time and per unit volume, that a electron-positron pair is created
by the constant electric field.
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Heisenberg-Euler Effective Lagrangian

. The zeta function regularisation was introduced and used to express the Lagrangian
. The renormalisation of Quantum Electrodynamics was clearly performed

. The result is an infinite sum of the perturbation series

. The asymptotic behaviour of QED at week and strong fields was derived

. Weak field expansion coincides with the Euler-Kockel Effective Lagrangian

. The tunnelling production of electron-positron pairs by strong electric field

. The strong field behaviour demonstrate the vacuum instability, known as Moscow zero



Effective Lagrangian for Charged Vector Boson
Vanyashin and Terentev 1965

Duff and Ramon-Medrano 1975
Skalozub 1976
Bartalin, Matinyan and G.S. 1976

1
Syar(4) = — / Br trG Gy Gy = 04 Ay — Oy A, — ig[A,, A,

525y 17 (A)
SAGA

H,uy(o‘) — — nuz/vo(A)va(A) T QQG,LW T (04 — 1)VM(A)V1/(A)7
Hpp =V, (A)Vu(A).

Using proper time representation

>d % d

or in equivalent form

Lopp=Lvu =3 | CTralU(s)o) +i [ TralUs) o

where | |
U(s) = e s Uy(s) = e Hrps



Effective Lagrangian in Quantum Chromodynamics

1 ds 1 ds
1) _
L) = ~ 3.3 gTrexp{—L(s) +2Ns} + = S—3Trexp{—L(s)}
where the corresponding martrices are: I\/IatinyaGn-ESir-wgig(g 78 1978
N =1g9G
K(s) = N coth(Ns)

L(s) = %tr In[(N's) sinh(N's)]

The effective Lagrangian take the following form

1 ds _. 2 (gF1s) (gFss)

r—_ = [ 22 —ip®s _
82 ) s3 sinh(gF1s) sinh(gFss)
1 ds _, 2 sinh(gFis)  sinh(gFss)
[ Luts g (gF
a2 | $3° (9F715) (g 28)[sinh(gF28) i Sinh(gFls)]

FEZ—F—(FQ—FgQ)l/Q, F22:—.F—|—(.F2—|—g2)1/2

where we have introduced the infrared regularisation parameter p



Effective Lagrangian in Quantum Chromodynamics

Renormalisation will give

(1) _ L oo@ —p?s (9/15) (gf28) _ 1 2
L= 87?2/0 3" " (sinh(gfls) sin(g fos) L+ 3(98) F) *

n 9_2/000 @e—i;ﬂs (f1f2 sin(gf1s) f12)

472 S sinh (g f2s)
2 00 .
. g_ @ —u?s Sln(ngS) _r2
A2 /0 S c (f1f2 sinh(g f1s) f2)
where sg is the ultraviolet cut off parameter and
ff=F+F+@)"2  f=-F+(F+g)"

1 1
F = ZtrGWGW, G = ZtTGMVG,ZV'



Effective Lagrangian in Quantum Chromodynamics

First consider pure chromomagnetic case

G=0F=H>—-EH/2>0, f2=2F f2=0

1 1
W =4 —/ @e a S( 9/15  _ 1+ —(98)2.7:) +
0

872 s3 sinh(g f1s) 3
_|_g2/ dSe o s(flSHl(gflS) —QF)
472 S gs
The asymptotic behaviour for strong magnetic fields is
H)? . gH  (gH)*  gH 11 gH
v o W7, 97 nZl = — 2In 22
4872 2 arz 2 I8z W) In =

The first term represent the diamagnetism counteracting the external field caused by the
charged gluons circulating in the vacuum due to the Lorentz force. The second terms
represent paramagnetism, an effect associated with the polarisation of the gluon spin
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3&21‘,' \ { 1?}@«ac
L HERICE G.S. 1977
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Effective Lagrangian in Quantum Chromodynamics

The asymptotic behaviour for strong magnetic fields is in QCD

11 g?—[

5 (gH)? In =

(1) ~ _—
£ 4872 ,u

As one can clearly see in QED the asymptotic is different

! (eH)? In(— i
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The QCD vacuum is paramagnetic ! The QED vacuum is diamagnetic !



Renormalisation of Massless Theories

Loop expansion of the effective action has the following form

[' = Z / dxl...d:vnf(n)/‘ﬁjjjm (T15 ey Tn) AL (1) A (T
= Sy nm + W(l) -+ W(Q) + ....

and can be expressed also as derivative expansion
F:/d4x[Z+Z+2+...]

The £ depends on invariants J and g, the £ depends on first order covariant derivatives of G v and
so on. With the use of £ we can introduce the renormalisation of the effective action as

oL

OF t-tn(22F)—g—o — !

allowing to define renormalisation
Ur=Tun+2Z Sy



Heisenberg-Euler Lagrangian in Massless Limit

OF =4 m(22F—g—0 ~ "

oL . £) _ s /OO ds (ef1s) cosh(efys)
872 Jo s3  sinh(efis)

This leads to the following renormalisation of the Heisenberg-Euler Lagrangian in the massless
limit

£ _ ut /OO ds(ascosh(as) o a28(coshs S ))7 (2.34)
0 2

872 s3 \  sinh(as) sinhs  sinh? s

where

a? =282 F /it = 2H2 )yt , G=0. (2.35)

Lagrangian in massless QED is:

2 2
1) e“F 2e°F
’Cel _2472[1]&( M4 )_1}7

where 2F = H2 — £2 > 0, g = EH = 0 and the effective Lagrangian will take the form

e? F 2e2F

L=—F+ 5 5| In i )—1].




Chromomagnetic Gluon Condensate in QCD

r) — ' /OO dS( as a’s, 1 scosh s ) N
- 812 Jo s3\ sinhas 2 ‘sinhs  sinh®s
4 o0 d 2
+ 4M—7T2/() S—i(as sin(as) — %(Sins + s Cos 3))

where a = gH/u?. Taking the integrals one can get the energy density of the vacuum

HE 11 ) B 1, 2g°F
= 5t g M) (n25—2) = F+ g2 F(n i ~1)

where the invariant JF is positive and correspond to the magnetic field configurations

U

1 2 1 *
F=5G >0, §=7GuG, =0

(S o} ga)qQ«%

2t a7

48#2)
11g2

< g2GfW > ae= 2,u4 exp (

G.S. Phys.Lett. B 71 1977
bag model interpretation H.Nielsen 1978



1))

EgaP i

the vacuum energy density vanishes e¢(Fp) = 0, as it is shown on Fig.

967
112N

292f0 = ,u4 exp (— +1)=e< 2g2.7: >ac -

The effective coupling constant at this field strength has the value

9672
11N

2 9 112N
967 967 tanf — —J

1 if N . > 0.
1IN < 1 =>> 11 0672

7*(Fo) =

7% (Fo) =

9672

= > 0
1IN(1 —n)

Fn = el—n < F >uvac; gz(Fn)

if the product N(1 —n) — oo is large and the t'Hooft coupling constant g?N = ) is fixed



Effective Lagrangian in massless QED

Le:—F+247T2[ln( = )—1], F=="F—, G=¢&H=0

Effective Lagrangian in QCD

B Ny 2g°F
Ly=—F + 1 250°F | In( i )—1],
where N, is the number of quark flavours.
- 1IN o/ 29°F He — &4 _gq
Ly=—F — 559" F(In i - 1), F="0"050, G=EH,=0



Energy Momentum Tensors in QED and QCD
Schwinger 1951

oL oL oL
T v — — I/L —FV — — I/L F FV - UV ~ ~
v Juvk + F,u)\ A Juvk + Lyxty) 8.7:+ 9u agg
oL oL oL
= (F FV 1/ F U L — F— —
( [ AT g,LL )\,O)af g,u( af g g)
2 2 2
el [y € 2e“F e B
T =Ty [1 2472 o p } + G 2472 & v=0,
G.S. 1977
VM 11Ng*  2¢*F 11N
T = TiM [1+ 55 In i )~ wge 59 F,



Renormalisation Group and Effective Action

r— Z / Ay dz DO () VAT (1), A% ()

because the vertex functions and gauge fields transforms as follows

L) atan — Z/2pn) avean A4y — ZoLA (1) g = Za G,

The renormalisation group equation takes the form

0

, 0 5
)5A()

4 a
u—l—ﬁ()g—l—v /dxA

{u H' =0

where ((g) is the Callan-Symanzik beta function, the v(g) is the anomalous dimension.

G = £H = 0 it reduces to the form

, 9 o .
{u o + B(g )—g+2W( )Fﬁ}ﬁ_oa



Renormalisation Group and Effective Action

0L 2 daq B 1
J = B(g), t=g In(2g°F/u).

OF —  @2(t)’ dt

The behaviour of the eftective Lagrangian at strong fields is similar to the
behaviour of the Gauge Field Theories at small distances or large momentum

We have
. L .
Ba — —— = = MHvyac Ha-
OH,

The vacuum permeability

2 2972
pnoep =1 — QZWQ log(elu4 ) <1, diamagnetic,

2 2972 9
roep = 1+ 9(gi7r2 (11N — 2Ny)log g,u4a > 1, paramagnetic, N > I

Ny.



Renormalisation Group and Effective Action

oL ¢ dg  ,,_ 1 21/ 4
TF__LE]Q(t)’ g_ﬂ(g) , t—§ln(29 F/u™).
then
L(F) = ,u4/g§(i) dt , t = %ln(ng]://fl)

the energy momentum tensor

1 o\ 9° 1 e\ 4
Tow = ~(GiaGor = 9 3G 20N g“”(/ g2 (t) §§2(t))u

< 292.7: > ae= ,u4 exp (— = A :
- 92(,“)) Qep



Higgs mode in Quantum Chromodynamics

The imaginary part of the effective Lagrangian is G.S. 1977

ImcW) = gf1/ —sin(,u2s)sm(gf15) gf1/ —Sil’l(,LLQS)

472 52 42 S

2 £2 2 £2 2 £2
s s
:_g_f;_gfﬁgle_:_gf“rgfl _ 0
4= 2 4 2 8T 8T

N.Nielsen and Olesen 1978
where f; = VH2 = H. Ambjorn, N.Nielsen and Olesen 1979
H.Nielsen and Ninomia 1979
H.Nielsen and Olesen 1979
Ambjorn and Olesen1980

Deep understanding of the physics of unstable mode have been gained by the NBI group.
As it was demonstrated in the series of NBI articles due to the unstable mode n=0

ko = ki + (2n+1£2)gf

2 £2
ImL® = I'm g—fl/ by JhF — g fr — ie = _9h

2 ST

The dynamics of unstable mode may lead to the modulation of the vacuum field
configurations.



Higgs mode in Quantum Chromodynamics

W,=->=(A,+A}), Ay, = A} and W = W1 = —ilWs
V2 N.Nielsen and Olesen 1978
Ambjorn, N.Nielsen and Olesen 1979
H.Nielsen and Ninomia 1979

dka 1M (z1—*2)2 ko H.Nielsen and Olesen 1979
Wiz) :/ 2T e i) P, (10, 23) Ambjorn and Olesen1980
Shiggs mode —1/2 dko 2 2 1 2 dpdq _ e’ * *
g\iﬂ — (gH) / /%d:vodmg(lﬁu@@\ +gH‘(I)k2‘ _59 /(27T)26 2ot (I)k2+pq)k2+qq)k2(bk2+P+Q)

where the @, (z0,23) IS the dynamical variable of the higgs mode



C.A Flory. Covariant constant chromomagnetic fields and elimination of the one-loop
instabilities, SLAC-PUB-3244, October 1983.

Presenting the amplitude of the higgs mode and of the corresponding action in terms of alternative

dimensionless variables k,, — k,,/~/gH, x, — x,+/gH one can get T
dk
(gH) 1/2 W = / 26_;(33“_162) (I)k;g (5130, 333)

where @, (g, x3) is also dimensionless. The action of the higgs mode takes the form:

Shiggs mode dk2 2 2 1 2 dpdq _p’+q? * *
\/% — —dazodazg(](? (I)k2| —I—‘(I)k2| _ig /(271_)26 2 (I)k2+pq)k2—|—qq)k2q)k2—l—p+q)'

What is essential in this representation is that the dependence on the chromomagnetic field does

not show up in the Lagrangian and appears only in front of the higgs field amplitude (¢gH )1/ 2

6—£higgs mode A (gH)_% o /D@kg Shzggs mode[q)kg]

Contribution of the higgs mode is only through the integration measure



Effective Lagrangian in Quantum Chromodynamics

C.A Flory. Covariant constant chromomagnetic fields and elimination of the one-loop
instabilities, SLAC-PUB-3244, October 1983.

Further treatment of the unstable mode has been given by Flory. He demonstrated that a
completely real energy density appears when one include the quartic terms of the Yang-
Mills action for these modes. The argument of Flory is that the imaginary part of the effective
action is an artefact of the one loop approximation.

One should use the complete Lagrangian for the unstable modes and not just the quadratic
terms used in the one loop approximation. This calculation leads to the same expression for

the real part of the Lagrangian and without imaginary part.

He demonstrated that a completely real energy density appears when one include
the quartic terms of the Yang-Mills action for these modes.

11 | 1 gH 1
£ — _ _ 2 H? (In(EE =
(9672 ~ 9672 + 329 (In 12 2)
2 1.2 2 1.2 2 1.2
ko =kjj+ (2n+1+2)gH, ko =kj+@2n+1-2)gH, ky=Fkj—gH

n=0,1,... n=1,2,.. n =



Cosmological Constant

G.S. 1977
_ 1 29°F
L=—F 1529 .F(ln " 1)
oYM [1 11g2N1 292.7:} 1192ijT G—0
2 1% | 1l 1% ’ — V.
g 0672 A 1T I g6
967?
< 292]: > vac= ,u4 exp (— :
at the vacuum state ( 1192.7\7)
11 5
< T,LLV >vac™= —Guv 967 2N < g°F >vac - Cvac — _Pva,c
_ Ay 1 2 T
Cvac — e — 967T2N <g F >vac

Zeldovich invariant equation

e =

eEPP g BE4P) . PAp

1_62 ] - ]//1_-—62 ? XX ,1____[32 4



Cosmological Constant in Renormalisation group

1 ) 92 6215 1 €2t A
T,Lw — _(G,uAGV)\ — g/ﬂ/ZG)\p) §2(t) T g,ul/(/ —5 dt — 5 ):u

where b = 11N — 2Nf

< 292.7: > ae= ,u4 exp (— = A :
- 92(,“)) Qep



Mirror QCD and Cosmological Constant

Chromomagnetic condensate in QCD

4 -2 52
C Aeff 11 2 Ha — ga
€vac = 87TG — _967T2N < g F >fua,c ) F — 2 > O
Chromoelectric condensate in MQCD
11 7o E7
E%EQCD - _967T2N < 92FMQCD Zvac FHOED = = 2 — <0

e = MQCD + QD ~ .

vac vac

R.Pasechnik et.al. arXiv:1804.09826
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