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Abstract
The phenomena of the chromomagnetic gluon condensation in Yang-Mills theory is reexam-

ined. The exact integration of the Heisenberg-Euler Lagrangian in the limit of massless chiral
fermions is performed. The extension of the Heisenberg-Euler Lagrangian to the Yang-Mills
theory allows to calculate the corresponding e�ective action, the energy-momentum tensor and
demonstrate that the energy density curve crosses the zero energy level of the perturbative
vacuum state at nonzero angle and continuously enters to the negative energy density region.
At the crossing point and further down the e�ective coupling constant is small and proves that
the true vacuum state of the Yang-Mills theory is below the perturbative vacuum state and
is described by the nonzero chromomagnetic gluon condensate. The renormalisation group
analyses allows to express the energy momentum tensor, its trace and the vacuum magnetic
permeabilities in QED and QCD in terms of e�ective coupling constant and Callan-Symanzik
beta function. These considerations were provided earlier to justify the existence of the chro-
momagnetic gluon condensation and of the nonzero energy gap between perturbative and
non-perturbative vacuum states. The work of the Niels Bohr Institute theory group and of
Curt Flory will be presented proving the absence of the imaginary part in a chromomagnetic
field. In the vacuum the energy-momentum tensor is proportional to the space-time metric
and induces a negative contribution to the e�ective cosmological constant.

ú

Based on lectures at the Leipzig University in occasion of the 80 Years of Heisenberg-Euler Lagrangian 1936-2016,
ITP, Leipzig, November 21, 2016 and
40 Years of Discovery of the Chromomagnetic Gluon Condensation 1977-2017 at the Ludwig-Maximilian University
München, Arnold Sommerfeld Colloquium at Center for Theoretical Physics, April 18, 2018.
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Heisenberg-Euler Effective  Lagrangian

Performing the renormalisation one can get the effective Lagrangian   

where  where
a = e~E

m2c3 , b = e~H

m2c3 (5.39)

introducing as æ s we will get
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2
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2

2 ≠ 4fi2mc2(mc
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0

ds
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1. The renormalisation of the quantum electrodynamics was clearly performed
2. The asymptotic behaviour of the e�ective Lagrangian at small and large fields was discovered.
3.The zeta regularisation was introduced and used to express the finale result.

mc2 = 8.2 · 10≠7 g cm2

s2 ⁄c = ~
mc

= 3.86 · 10≠11cm
mc2

( ~
mc)3 = 1.43 · 1025 g

cm s2

6 Lamb Shift

In 1947 Willis Lamb and Robert Retherford carried out an experiment using microwave techniques
to stimulate radio-frequency transitions between 2S1/2 and 2P1/2 levels of hydrogen [8]. By using
lower frequencies than for optical transitions the Doppler broadening could be neglected (Doppler
broadening is proportional to the frequency). The energy di�erence Lamb and Retherford found
was a rise of about 1000 MHz of the 2S1/2 level above the 2P1/2 level.

7 Casimir E�ect

Dutch physicists Hendrik Casimir and Dirk Polder at Philips Research Labs proposed the existence
of a force between two polarisable atoms and between such an atom and a conducting plate in
1947, this special form is called the Casimir-Polder force. After a conversation with Niels Bohr,
who suggested it had something to do with zero-point energy, Casimir alone formulated the theory
predicting a force between neutral conducting plates in 1948 which is called the Casimir e�ect in
the narrow sense [9].

8 Schwinger approach

Performing integration over wave function parameters one can get

9 Hawing Radiation

10

For strong magnetic fields  a=0, b >> 1 the quantum correction term will have the form  

With additional normalisation factor 1/32fi
4 it will coincides with the Schwinger form

Leff = E2 ≠ H2
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Let us consider the counter term
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we shall get expression which is the renormalisation group invariant

e
2
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6.1 Weak Field Expansion

The first nontrivial term in the perturbation expansion is
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With additional normalisation factor 1/32fi
4
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In pure magnetic field case
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6.2 Strong Field Assymtotic
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With additional normalisation factor 1/32fi
4
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where –el = e
2

4fi~c
. The vacuum became unstable at extremely strong field !

H0 = Hc e

12fi2
–el (6.58)

7 Physical Interpretation of Results

The zeta function regularisation was introduced and used to express the finale result
The renormalisation of Quantum Electrodynamics was clearly performed
The results represent infinite sum of the series in the electromagnetic coupling constant expansion
The asymptotic behaviour of the e�ective Lagrangian at week and strong fields was derived
Weak expansion coincides with the Euler-Kockel Scattering of Light by Light
Clear understanding the tunnelling production of electron-positron pairs by strong electric field
The strong field behaviour demonstrate the vacuum instability for strong magnetic field known as
Moscow zero
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Adding and subtracting the logarithmically divergent term one can get the renormalised e�ective
Lagrangian which can be written in the finale form as
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With additional normalisation factor 1/4fi it will coincides with the Schwinger form
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Let us consider the counter term
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we shall get expression which is the renormalisation group invariant
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4.1 Weak Field Expansion

The first nontrivial term in the perturbation expansion is
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Heisenberg-Euler Effective  Lagrangian

where dimensionless fields are  

where
a = e~E

m2c3 , b = e~H

m2c3 (5.39)

introducing as æ s we will get

Leff = E
2

≠ H
2

2 ≠ 4fi2mc2(mc

~ )3
⁄ Œ

0

ds

s3 e≠ s
a

a2s cos(s)
sin(s)

b
as cosh( b

as)
sinh( b

as)
≠ 1 + e2 E

2
≠ H

2

3 s2
} (5.40)

1. The renormalisation of the quantum electrodynamics was clearly performed
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6 Lamb Shift

In 1947 Willis Lamb and Robert Retherford carried out an experiment using microwave techniques
to stimulate radio-frequency transitions between 2S1/2 and 2P1/2 levels of hydrogen [8]. By using
lower frequencies than for optical transitions the Doppler broadening could be neglected (Doppler
broadening is proportional to the frequency). The energy di�erence Lamb and Retherford found
was a rise of about 1000 MHz of the 2S1/2 level above the 2P1/2 level.
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Dutch physicists Hendrik Casimir and Dirk Polder at Philips Research Labs proposed the existence
of a force between two polarisable atoms and between such an atom and a conducting plate in
1947, this special form is called the Casimir-Polder force. After a conversation with Niels Bohr,
who suggested it had something to do with zero-point energy, Casimir alone formulated the theory
predicting a force between neutral conducting plates in 1948 which is called the Casimir e�ect in
the narrow sense [9].
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Performing integration over wave function parameters one can get
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and the finite term will be
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1. The renormalisation of the quantum electrodynamics was clearly performed
2. The asymptotic behaviour of the e�ective Lagrangian at small and large fields was discovered.
3.The zeta regularisation was introduced and used to express the finale result.
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( ~
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cm s2

The breakdown field strength at which dry air loses its insulating ability and allows a discharge to
pass through is Eb = 3 · 104 V olt/cm. At this field strength, the electric energy density is:

Eb = 3 · 104 V olt/cm Uelec = 4 · 102 g

cm s2

Ec = 1016 V olt/cm Uelec = 0.8 1026 g

cm s2

Hc = 4.4 · 1013 Gauss Umagnet = 0.8 · 1026 g

cm s2

Hneutron star = 1015 Gauss Umagnet = 4 · 1028 g

cm s2

(6.54)
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7 Physical Interpretation of Results

The zeta function regularisation was introduced and used to express the finale result
The renormalisation of Quantum Electrodynamics was clearly performed
The results represent infinite sum of the series in the electromagnetic coupling constant expansion
The asymptotic behaviour of the e�ective Lagrangian at week and strong fields was derived
Weak expansion coincides with the Euler-Kockel Scattering of Light by Light
Clear understanding the tunnelling production of electron-positron pairs by strong electric field
The strong field behaviour demonstrate the vacuum instability for strong magnetic field known as
Moscow zero
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pass through is Eb = 3 · 104

V olt/cm. At this field strength, the electric energy density is:

Ec = 1016
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8 Schwinger Approach and Anomalies

It was discovered that the Heisenberg-Euler Lagrangian is a sum of one loop diagrams with electron
running in the loop and that the sum can be expressed as a functional determinant of the Dirac
operator

W
(1) = ≠i T r ln(“� + m) = i

⁄ Œ

0

ds

s
Tr exp ≠i(“� + m)s = i

2

⁄ Œ

0

ds

s
Tr exp ≠i(m2 ≠ (“�)2)s

(8.67)
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enough. Even if they are not strong enough to create pairs they will, due to the virtual possibility
of creating pairs, polarise the vacuum and therefore change the Maxwell equations” [7].

When the external electric Ę and magnetic H̨ fields are applied to the vacuum they influence
the behaviour of the virtual electron-positron pairs and can therefore induce a nonzero dielectric
polarisation P̨vac and magnetisation M̨vac of the vacuum. The electric displacement D̨ and magnetic
induction B̨ induced in the vacuum were suggested to be written as a sum

D̨ = Ę + 4fiP̨vac (5.18)
B̨ = H̨ ≠ 4fiM̨vac (5.19)

and the main goal of Heisenberg and Euler was to find the vacuum polarisation functions P̨vac(Ę , H̨)
and M̨vac(Ę , H̨) in the background electromagnetic fields Ę , H̨ when the fields are varying slowly on
the scale of the Compton wavelength of the electrons ⁄c = ~

mc
. The last condition was imposed in

order to avoid the dependents of the polarisation functions on the derivatives of the fields strength
tensor. The important step in the realisation of this program was the introduction of the e�ective
Lagrangian Leff

Leff = Ę2 ≠ H̨2

8fi
+ Lvac(Ę , H̨) (5.20)

through which the electric displacement D̨ and magnetic induction B̨ were defined as [7]

Di = Ei + ˆLvac

ˆEi

, Bi = Hi ≠ ˆLvac

ˆHi

. (5.21)

Lvac = ? (5.22)

In electrodynamics vector potential play the role of coordinates Ai ≥ qi and the electric field play the
role of velocity Ei = Ȧi ≥ q̇i, thus the inspection of the formula (5.21) defining Di demonstrates that
Di play the role of the momentum Di ≥ pi = ˆL

ˆq̇i
in the Hamiltonian formulation of electrodynamics

[?] and the e�ective Hamiltonian defining the vacuum energy density can be written as

U = Ei

ˆLeff

ˆEi

≠ Leff . (5.23)

This is in a clear correspondence with the classical expression for the Hamiltonian u = q̇ipi ≠ L =
q̇i

ˆL

ˆq̇i
≠ L. The above basic formula (5.23) allows to calculate the e�ective Lagrangian Leff if the

e�ective Hamiltonian U is known. Due to the relativistic and gauge invariance the energy density
U and the e�ective Lagrangian can only depend on two invariants

Ę2 ≠ H̨2 and (ĘH̨)2

for slowly waring background fields. The calculation of U(Ę , H̨) can be reduced to the question of
how the energy density of the electromagnetic vacuum is changing under the action of the constant
background fields Ę and H̨. These changes in the energy density of the vacuum are caused by
the shifts of the energy eigenvalues of the electrons and positrons in the vacuum. The problem
reduces therefore to the solution of the Dirac equation in the background field and calculation of the
di�erence of the vacuum energy density in the presence and in the absence of the background field

�U = U(Ę , H̨) ≠ U(0, 0). (5.24)
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6.1 Weak Field Expansion

The first nontrivial term in the perturbation expansion is
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With additional normalisation factor 1/32fi
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45( e

2

4fi~c
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)3 1
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In pure magnetic field case
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6.2 Strong Field Assymtotic
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With additional normalisation factor 1/32fi
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ln( e~H

m2c3 )2 = ≠H2

2
1
1 ≠ –el

3fi
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(6.57)

where –el = e
2

4fi~c
. The vacuum became unstable at extremely strong field !

H0 = Hc e

12fi2
–el (6.58)

7 Physical Interpretation of Results

The zeta function regularisation was introduced and used to express the finale result
The renormalisation of Quantum Electrodynamics was clearly performed
The results represent infinite sum of the series in the electromagnetic coupling constant expansion
The asymptotic behaviour of the e�ective Lagrangian at week and strong fields was derived
Weak expansion coincides with the Euler-Kockel Scattering of Light by Light
Clear understanding the tunnelling production of electron-positron pairs by strong electric field
The strong field behaviour demonstrate the vacuum instability for strong magnetic field known as
Moscow zero
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. The vacuum became unstable at extremely strong field !
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The renormalisation of Quantum Electrodynamics was clearly performed
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Weak expansion coincides with the Euler-Kockel Scattering of Light by Light
Clear understanding the tunnelling production of electron-positron pairs by strong electric field
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For the week fields  a << 1, b << 1 the first quantum correction term has the form  

Euler-Kockel Scattering of Light by Light

Studying more than 4 billion events taken in 2015, the ATLAS collaboration found 13 candidates for 
light-by-light scattering. This result has a significance of 4.4 standard deviations, allowing the 
ATLAS collaboration to report the first direct evidence of this phenomenon.
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Moscow zero

mc
2 = 8.2 · 10≠7 g cm

2

s2 ⁄c = ~
mc

= 3.86 · 10≠11
cm

mc
2

( ~
mc

)3 = 1.43 · 1025 g

cm s2

The breakdown field strength at which dry air loses its insulating ability and allows a discharge to
pass through is Eb = 3 · 104

V olt/cm. At this field strength, the electric energy density is:

Eb = 3 · 104
V olt/cm Uelec = 4 · 102 g

cm s2

Ec = 1016
V olt/cm Uelec = 0.8 1026 g

cm s2

Hc = 4.4 · 1013
Gauss Umagnet = 0.8 · 1026 g

cm s2

Hneutron star = 1015
Gauss Umagnet = 4 · 1028 g

cm s2

(7.58)

Hc = m
2
c

3

e~ ≥ 4.4 · 1013
Gauss (7.59)

| 1
⁄c
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mc2 {2(Ę2 ≠ H̨2)Ei + 7(ĘH̨)Hi}
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Clear understanding the tunnelling production of electron-positron pairs by strong electric field
The strong field behaviour demonstrate the vacuum instability for strong magnetic field known as
Moscow zero

mc
2 = 8.2 · 10≠7 g cm

2

s2 ⁄c = ~
mc

= 3.86 · 10≠11
cm

mc
2

( ~
mc

)3 = 1.43 · 1025 g

cm s2

The breakdown field strength at which dry air loses its insulating ability and allows a discharge to
pass through is Eb = 3 · 104

V olt/cm. At this field strength, the electric energy density is:

Ec = 1016
V olt/cm Uelec = 0.8 1026 g

cm s2

Hc = 4.4 · 1013
Gauss Umagnet = 0.8 · 1026 g

cm s2

Eb = 3 · 104
V olt/cm Uelec = 4 · 102 g

cm s2

Hneutron star = 1015
Gauss Umagnet = 4 · 1028 g

cm s2

(5.55)

Hc = m
2
c

3

e~ ≥ 4.4 · 1013
Gauss (5.56)

|⁄c
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6 Schwinger Approach and Anomalies

It was discovered that the Heisenberg-Euler Lagrangian is a sum of one loop diagrams with electron
running in the loop and that the sum can be expressed as a functional determinant of the Dirac
operator
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ds
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(6.61)
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 Invariant mass distribution of the measured final state photon pairs (markers), compared to 
the expected light-by-light scattering signal (red line) and expected background contributions 

(shaded areas). (Image: ATLAS Collaboration/CERN)
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Sauter-Schwinger pair production  

Considering pure electric field     

where
F = 1

4F
2
µ‹ = 1

2(H̨2 ≠ Ę2), G = 1
4Fµ‹F

ú
µ‹ = ĘH̨ (8.66)

and has the solutions

F
2
1 = ≠F ≠ (F2 + G2)1/2

, F
2
2 = ≠F + (F2 + G2)1/2 (8.67)

thus
e

≠l(s) = eF1s eF2s

sin(eF1s) sin(eF2s) , tre
1
2 e‡F s = 4 cos(eF1s) cos(eF2s) (8.68)

and the Lagrangian will take the form

L(1) = ≠ 1
8fi2

⁄ Œ

0

ds

s3 e
≠m

2
s
(eF1s) cos(eF1s) (eF2s) cos(eF2s)

sin(eF1s) sin(eF2s) (8.69)

and with real eigenvalues f1 = ≠iF1, f2 = F2 we shall get

L(1) = ≠ 1
8fi2

⁄ Œ

0

ds

s3 e
≠m

2
s{(ef1s) cosh(ef1s) (ef2s) cos(ef2s)

sinh(ef1s) sin(ef2s) ≠ 1 ≠ 2
3(es)2F} (8.70)

where
f1 = (F + (F2 + G2)1/2)1/2

, f2 = (≠F + (F2 + G2)1/2)1/2 (8.71)

There are following important field configurations. In pure magnetic case G = 0, F > 0 thus
f1 = (2F)1/2

, f2 = 0, in pure electric case G = 0, F < 0 thus f1 = 0, f2 = (≠2F)1/2 and in the case
of parallel fields G = EH ”= 0 thus f1 = H, f2 = E :

G = 0, F > 0 f1 = (2F)1/2
, f2 = 0 pure magnetic

G = 0, F < 0 f1 = 0, f2 = (≠2F)1/2 pure electric
G = EH ”= 0 f1 = H, f2 = E parallel fields (8.72)

In the last case it is initial Heisenberg-Euler Lagrangian. Consider the pure electric field

L(1) = ≠ 1
8fi2

⁄ Œ

0

ds

s3 e
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2
s{(eEs) cos(eEs)

sin(eEs) ≠ 1 + 1
3(eEs)2} (8.73)

it has singularities at sn = nfi/eE and the integration path is considered to lie above the real axis
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n
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4fi3

Œÿ
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s2 e

≠ m2fi
eE n (8.74)

This is the probability, per unit time and per unit volume, that a pair is created by the constant
electric field.

9 Chiral Anomaly

One can apply the results of the proper-time method to compute the e�ective coupling between a
zero spin neutral meson and the electromagnetic field, as produced by the polarisation of the proton
vacuum. This interaction manifests itself in a spontaneous decay of the neutral meson into two
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and the Lagrangian will take the form
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By the deformation of the path s æ ≠is one can get
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where
l(s) = 1

2 trln[(eFs)≠1 sin(eFs)]. (8.71)

In order to evaluate the traces one should know the eigenvalues of the strength tensor matrix Fµ‹Â‹ =
FÂµ. The characteristic equation is
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where
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, f2 = (≠F + (F2 + G2)1/2)1/2 (8.78)
There are following important field configurations. In pure magnetic case G = 0, F > 0 thus
f1 = (2F)1/2

, f2 = 0, in pure electric case G = 0, F < 0 thus f1 = 0, f2 = (≠2F)1/2 and in the case
of parallel fields G = EH ”= 0 thus f1 = H, f2 = E :

G = 0, F > 0 f1 = (2F)1/2
, f2 = 0 pure magnetic

G = 0, F < 0 f1 = 0, f2 = (≠2F)1/2 pure electric
G = EH ”= 0 f1 = H, f2 = E parallel fields (8.79)

In the last case it is the Heisenberg-Euler Lagrangian. Consider the pure electric field

L(1) = ≠ 1
8fi2

⁄ Œ

0

ds

s3 e
≠m

2
s{(eEs) cos(eEs)

sin(eEs) ≠ 1 + 1
3(eEs)2} (8.80)

it has singularities at sn = nfi/eE and the integration path is considered to lie above the real axis

2ImL(1) = 1
4fi

Œÿ

n=1

1
s2

n

e
≠m

2
sn = (eE)2

4fi3

Œÿ

n=1

1
n2 e

≠ m2fi
eE n

This is the probability, per unit time and per unit volume, that a electron-positron pair is created
by the constant electric field.
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Heisenberg-Euler Effective  Lagrangian

1. The zeta function regularisation was introduced and used to express the Lagrangian   

2. The renormalisation of Quantum Electrodynamics was clearly performed 

3. The result is an infinite sum of the perturbation series 

4. The asymptotic behaviour of QED at week and  strong fields was derived  

5. Weak field expansion coincides  with the Euler-Kockel Effective Lagrangian 

6. The tunnelling production of electron-positron pairs by strong electric field  

7. The strong field behaviour demonstrate the vacuum instability, known as Moscow zero



where

SY M (A) = ≠1
4

⁄
d

4
x trGµ‹Gµ‹ , Gµ‹ = ˆµA‹ ≠ ˆ‹Aµ ≠ ig[Aµ, Aµ]

Hµ‹(–) = ”
2
SY M (A)
”A ”A

= ÷µ‹Ò‡(A)Ò‡(A) ≠ 2gGµ‹ + (– ≠ 1)Òµ(A)Ò‹(A),

HF P = Òµ(A)Òµ(A).

Using proper time representation

�(A) = SY M (A) ≠ i

2

⁄ Œ

0

ds

s
Tre

≠iHs + i

⁄ Œ

0

ds

s
Tre

≠iHF P s (11.96)

or in equivalent form

Leff = LY M ≠ i

2

⁄ Œ

0

ds

s
Tr(x|U(s)|x) + i

⁄ Œ

0

ds

s
Tr(x|U0(s)|x) (11.97)

where
U(s) = e

≠iHs
, U0(s) = e

≠iHF P s (11.98)

For covariantly constant fields the matrix elements can be calculated and are

(x|U(s)|y) = i

(4fis)2 exp {≠ i

4(x ≠ y)K(s)(x ≠ y) + i

2xNy ≠ L(s) + 2Ns} (11.99)

(x|U0(s)|y) = i

(4fis)2 exp {≠ i

4(x ≠ y)K(s)(x ≠ y) + i

2xNy ≠ L(s)} (11.100)

where the corresponding matrices are:

N = igG

K(s) = N coth(Ns)

L(s) = 1
2 tr ln[(Ns) sinh(Ns)] (11.101)

and
L(1) = ≠ 1

32fi2

⁄
ds

s3 Trexp{≠L(s) + 2Ns} + 1
16fi2

⁄
ds

s3 Trexp{≠L(s)} (11.102)

Substituting the matrix elements and calculating the traces one can get:

L(1) = ≠ 1
8fi2

⁄
ds

s3 e
≠iµ

2
s

(gF1s) (gF2s)
sinh(gF1s) sinh(gF2s) ≠

≠ 1
4fi2

⁄
ds

s3 e
≠iµ

2
s(gF1s) (gF2s)[ sinh(gF1s)

sinh(gF2s) + sinh(gF2s)
sinh(gF1s) ] (11.103)

where
F

2
1 = ≠F ≠ (F2 + G2)1/2

, F
2
2 = ≠F + (F2 + G2)1/2 (11.104)
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Effective Lagrangian for Charged Vector Boson  

where

SY M (A) = ≠1
4

⁄
d

4
x trGµ‹Gµ‹ , Gµ‹ = ˆµA‹ ≠ ˆ‹Aµ ≠ ig[Aµ, Aµ]

(11.96)

Hµ‹(–) = ”
2
SY M (A)
”A ”A

= ÷µ‹Ò‡(A)Ò‡(A) ≠ 2gGµ‹ + (– ≠ 1)Òµ(A)Ò‹(A),

(11.97)

HF P = Òµ(A)Òµ(A). (11.98)

Using proper time representation

�(A) = SY M (A) ≠ i

2

⁄ Œ

0

ds

s
Tre

≠iHs + i

⁄ Œ

0

ds

s
Tre

≠iHF P s (11.99)

or in equivalent form

Leff = LY M ≠ i

2

⁄ Œ

0

ds

s
Tr(x|U(s)|x) + i

⁄ Œ

0

ds

s
Tr(x|U0(s)|x) (11.100)

where
U(s) = e

≠iHs
, U0(s) = e

≠iHF P s (11.101)

For covariantly constant fields the matrix elements can be calculated and are

(x|U(s)|y) = i

(4fis)2 exp {≠ i

4(x ≠ y)K(s)(x ≠ y) + i

2xNy ≠ L(s) + 2Ns} (11.102)

(x|U0(s)|y) = i

(4fis)2 exp {≠ i

4(x ≠ y)K(s)(x ≠ y) + i

2xNy ≠ L(s)} (11.103)

where the corresponding matrices are:

N = igG

K(s) = N coth(Ns)

L(s) = 1
2 tr ln[(Ns) sinh(Ns)] (11.104)

and
L(1) = ≠ 1

32fi2

⁄
ds

s3 Trexp{≠L(s) + 2Ns} + 1
16fi2

⁄
ds

s3 Trexp{≠L(s)} (11.105)

Substituting the matrix elements and calculating the traces one can get:

L(1) = ≠ 1
8fi2

⁄
ds

s3 e
≠iµ

2
s

(gF1s) (gF2s)
sinh(gF1s) sinh(gF2s) ≠

≠ 1
4fi2

⁄
ds

s3 e
≠iµ

2
s(gF1s) (gF2s)[ sinh(gF1s)

sinh(gF2s) + sinh(gF2s)
sinh(gF1s) ] (11.106)
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Effective Lagrangian in Quantum Chromodynamics 

Using proper time representation

�(A) = SY M (A) ≠ i

2

⁄ Œ

0

ds

s
Tre

≠iHs + i

⁄ Œ

0

ds

s
Tre

≠iHF P s (11.91)

or in equivalent form

Leff = LY M ≠ i

2

⁄ Œ

0

ds

s
Tr(x|U(s)|x) + i

⁄ Œ

0

ds

s
Tr(x|U0(s)|x) (11.92)

where
U(s) = e

≠iHs
, U0(s) = e

≠iHF P s (11.93)

For covariantly constant fields the matrix elements can be calculated and are

(x|U(s)|y) = i

(4fis)2 exp {≠ i

4(x ≠ y)K(s)(x ≠ y) + i

2xNy ≠ L(s) + 2Ns} (11.94)

(x|U0(s)|y) = i

(4fis)2 exp {≠ i

4(x ≠ y)K(s)(x ≠ y) + i

2xNy ≠ L(s)} (11.95)

where the corresponding matrices are:

N = igG

K(s) = N coth(Ns)

L(s) = 1
2 tr ln[(Ns) sinh(Ns)] (11.96)

and
L(1) = ≠ 1

32fi2

⁄
ds

s3 Trexp{≠L(s) + 2Ns} + 1
16fi2

⁄
ds

s3 Trexp{≠L(s)} (11.97)

Substituting the matrix elements and calculating the traces one can get:

L(1) = ≠ 1
8fi2

⁄
ds

s3 e
≠iµ

2
s

(gF1s) (gF2s)
sinh(gF1s) sinh(gF2s) ≠

≠ 1
4fi2

⁄
ds

s3 e
≠iµ

2
s(gF1s) (gF2s)[ sinh(gF1s)

sinh(gF2s) + sinh(gF2s)
sinh(gF1s) ] (11.98)

where
F

2
1 = ≠F ≠ (F2 + G2)1/2

, F
2
2 = ≠F + (F2 + G2)1/2 (11.99)

and we have introduced the infrared regularisation parameter µ
2. Choosing the integration counters

so as to guarantee the convergence of the proper time integrals, that is to make substitution s æ ≠is

in the first and third integrals one can get

L(1) = 1
8fi2

⁄ Œ

s0

ds

s3 e
≠µ

2
s

(gf1s) (gf2s)
sinh(gf1s) sin(gf2s) +

+ 1
4fi2

⁄ Œ

s0

ds

s3 e
≠iµ

2
s(gf1s) (gf2s) sin(gf1s)

sinh(gf2s)

≠ 1
4fi2

⁄ Œ

s0

ds

s3 e
≠µ

2
s(gf1s) (gf2s) sin(gf2s)

sinh(gf1s) (11.100)
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The effective Lagrangian take the following form     

where

SY M (A) = ≠1
4

⁄
d

4
x trGµ‹Gµ‹ , Gµ‹ = ˆµA‹ ≠ ˆ‹Aµ ≠ ig[Aµ, Aµ]

Hµ‹(–) = ”
2
SY M (A)
”A ”A

= ÷µ‹Ò‡(A)Ò‡(A) ≠ 2gGµ‹ + (– ≠ 1)Òµ(A)Ò‹(A),

HF P = Òµ(A)Òµ(A).

Using proper time representation

�(A) = SY M (A) ≠ i

2

⁄ Œ

0

ds

s
Tre

≠iHs + i

⁄ Œ

0

ds

s
Tre

≠iHF P s (11.96)

or in equivalent form

Leff = LY M ≠ i

2

⁄ Œ

0

ds

s
Tr(x|U(s)|x) + i

⁄ Œ

0

ds

s
Tr(x|U0(s)|x) (11.97)

where
U(s) = e

≠iHs
, U0(s) = e

≠iHF P s (11.98)

For covariantly constant fields the matrix elements can be calculated and are

(x|U(s)|y) = i

(4fis)2 exp {≠ i

4(x ≠ y)K(s)(x ≠ y) + i

2xNy ≠ L(s) + 2Ns} (11.99)

(x|U0(s)|y) = i

(4fis)2 exp {≠ i

4(x ≠ y)K(s)(x ≠ y) + i

2xNy ≠ L(s)} (11.100)

where the corresponding matrices are:

N = igG

K(s) = N coth(Ns)

L(s) = 1
2 tr ln[(Ns) sinh(Ns)] (11.101)

and
L(1) = ≠ 1

32fi2

⁄
ds

s3 Trexp{≠L(s) + 2Ns} + 1
16fi2

⁄
ds

s3 Trexp{≠L(s)} (11.102)

Substituting the matrix elements and calculating the traces one can get:

L(1) = ≠ 1
8fi2

⁄
ds

s3 e
≠iµ

2
s

(gF1s) (gF2s)
sinh(gF1s) sinh(gF2s) ≠

≠ 1
4fi2

⁄
ds

s3 e
≠iµ

2
s(gF1s) (gF2s)[ sinh(gF1s)

sinh(gF2s) + sinh(gF2s)
sinh(gF1s) ] (11.103)

where
F

2
1 = ≠F ≠ (F2 + G2)1/2

, F
2
2 = ≠F + (F2 + G2)1/2 (11.104)
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where

SY M (A) = ≠1
4

⁄
d

4
x trGµ‹Gµ‹ , Gµ‹ = ˆµA‹ ≠ ˆ‹Aµ ≠ ig[Aµ, Aµ]

Hµ‹(–) = ”
2
SY M (A)
”A ”A

= ÷µ‹Ò‡(A)Ò‡(A) ≠ 2gGµ‹ + (– ≠ 1)Òµ(A)Ò‹(A),

HF P = Òµ(A)Òµ(A).

Using proper time representation

�(A) = SY M (A) ≠ i

2

⁄ Œ

0

ds

s
Tre

≠iHs + i

⁄ Œ

0

ds

s
Tre

≠iHF P s (11.96)

or in equivalent form

Leff = LY M ≠ i

2

⁄ Œ

0

ds

s
Tr(x|U(s)|x) + i

⁄ Œ

0

ds

s
Tr(x|U0(s)|x) (11.97)

where
U(s) = e

≠iHs
, U0(s) = e

≠iHF P s (11.98)

For covariantly constant fields the matrix elements can be calculated and are

(x|U(s)|y) = i

(4fis)2 exp {≠ i

4(x ≠ y)K(s)(x ≠ y) + i

2xNy ≠ L(s) + 2Ns} (11.99)

(x|U0(s)|y) = i

(4fis)2 exp {≠ i

4(x ≠ y)K(s)(x ≠ y) + i

2xNy ≠ L(s)} (11.100)

where the corresponding matrices are:

N = igG

K(s) = N coth(Ns)

L(s) = 1
2 tr ln[(Ns) sinh(Ns)] (11.101)

and
L(1) = ≠ 1

32fi2

⁄
ds

s3 Trexp{≠L(s) + 2Ns} + 1
16fi2

⁄
ds

s3 Trexp{≠L(s)} (11.102)

Substituting the matrix elements and calculating the traces one can get:

L(1) = ≠ 1
8fi2

⁄
ds

s3 e
≠iµ

2
s

(gF1s) (gF2s)
sinh(gF1s) sinh(gF2s) ≠

≠ 1
4fi2

⁄
ds

s3 e
≠iµ

2
s(gF1s) (gF2s)[ sinh(gF1s)

sinh(gF2s) + sinh(gF2s)
sinh(gF1s) ] (11.103)

where
F

2
1 = ≠F ≠ (F2 + G2)1/2

, F
2
2 = ≠F + (F2 + G2)1/2 (11.104)
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and we have introduced the infrared regularisation parameter µ
2.

Choosing the integration counters so as to guarantee the convergence of the proper time integrals,
that is to make substitution s æ ≠is in the first and third integrals one can get

L(1) = 1
8fi2

⁄ Œ

s0

ds

s3 e
≠µ

2
s

(gf1s) (gf2s)
sinh(gf1s) sin(gf2s) +

+ 1
4fi2

⁄ Œ

s0

ds

s3 e
≠iµ

2
s(gf1s) (gf2s) sin(gf1s)

sinh(gf2s)

≠ 1
4fi2

⁄ Œ

s0

ds

s3 e
≠µ

2
s(gf1s) (gf2s) sin(gf2s)

sinh(gf1s) ,

where ultraviolet cut o� parameter s0 and

f
2
1 = F + (F2 + G2)1/2

, f
2
2 = ≠F + (F2 + G2)1/2 (11.105)

Now we can perform renormalisation of the Lagrangian

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1 (gf1s) (gf2s)

sinh(gf1s) sin(gf2s) ≠ 1 + 1
3(gs)2F

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
f1

1
f2

sin(gf1s)
sinh(gf2s) ≠ f1

2

≠ g
2

4fi2

⁄ Œ

0

ds

s
e

≠µ
2
s
f2

1
f1

sin(gf2s)
sinh(gf1s) ≠ f2

2
(11.106)

Renormalisation will give

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1 (gf1s) (gf2s)

sinh(gf1s) sin(gf2s) ≠ 1 + 1
3(gs)2F

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
1
f1f2

sin(gf1s)
sinh(gf2s) ≠ f

2
1

2

≠ g
2

4fi2

⁄ Œ

0

ds

s
e

≠µ
2
s
1
f1f2

sin(gf2s)
sinh(gf1s) ≠ f

2
2

2
(11.107)

Let us first consider pure chromomagnetic case G = 0, F = (H2 ≠ E2)/2 > 0 and f
2
1 = 2F , f

2
2 = 0

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1

gf1s

sinh(gf1s) ≠ 1 + 1
3(gs)2F

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
1

f1 sin(gf1s)
gs

≠ f
2
1

2
(11.108)

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1

gf1s

sinh(gf1s) ≠ 1 + 1
6(gf1s)2

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
1

f1 sin(gf1s)
gs

≠ f
2
1

2
(11.109)

In the limit of strong magnetic fields

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1

gf1s

sinh(gf1s) ≠ 1 + 1
6(gf1s)2

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
1

f1 sin(gf1s)
gs

≠ f
2
1

2
(11.110)
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and we have introduced the infrared regularisation parameter µ
2.

Choosing the integration counters so as to guarantee the convergence of the proper time integrals,
that is to make substitution s æ ≠is in the first and third integrals one can get

L(1) = 1
8fi2

⁄ Œ

s0

ds

s3 e
≠µ

2
s

(gf1s) (gf2s)
sinh(gf1s) sin(gf2s) +

+ 1
4fi2

⁄ Œ

s0

ds

s
e

≠iµ
2
s(gf1) (gf2) sin(gf1s)

sinh(gf2s)

≠ 1
4fi2

⁄ Œ

s0

ds

s
e

≠µ
2
s(gf1) (gf2) sin(gf2s)

sinh(gf1s) ,

(gf1s) (gf2s)
sinh(gf1s) sin(gf2s) = 1 ≠ g

2

6 (f2
1 ≠ f

2
2 )s2 + O(s4)

f1f2
sin(gf1s)

sinh(gf2s) = f
2
1 + O(s2)

f1f2
sin(gf2s)

sinh(gf1s) = f
2
2 + O(s2)

(11.105)

L(1) = 1
8fi2

⁄ Œ

s0

ds

s3 e
≠µ

2
s

(gf1s) (gf2s)
sinh(gf1s) sin(gf2s) +

+ 1
4fi2

⁄ Œ

s0

ds

s3 e
≠iµ

2
s(gf1s) (gf2s) sin(gf1s)

sinh(gf2s)

≠ 1
4fi2

⁄ Œ

s0

ds

s3 e
≠µ

2
s(gf1s) (gf2s) sin(gf2s)

sinh(gf1s) ,

where s0 is the ultraviolet cut o� parameter and

f
2
1 = F + (F2 + G2)1/2

, f
2
2 = ≠F + (F2 + G2)1/2 (11.106)

Now we can perform renormalisation of the Lagrangian

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1 (gf1s) (gf2s)

sinh(gf1s) sin(gf2s) ≠ 1 + 1
3(gs)2F

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
f1

1
f2

sin(gf1s)
sinh(gf2s) ≠ f1

2

≠ g
2

4fi2

⁄ Œ

0

ds

s
e

≠µ
2
s
f2

1
f1

sin(gf2s)
sinh(gf1s) ≠ f2

2
(11.107)

Renormalisation will give

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1 (gf1s) (gf2s)

sinh(gf1s) sin(gf2s) ≠ 1 + 1
3(gs)2F

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
1
f1f2

sin(gf1s)
sinh(gf2s) ≠ f

2
1

2

≠ g
2

4fi2

⁄ Œ

0

ds

s
e

≠µ
2
s
1
f1f2

sin(gf2s)
sinh(gf1s) ≠ f

2
2

2
(11.108)
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where the corresponding matrices are:

N = igG

K(s) = N coth(Ns)

L(s) = 1
2 tr ln[(Ns) sinh(Ns)] (5.78)

and

L(1) = ≠ 1
32fi2

⁄
ds

s3 Tr exp {≠L(s) + 2Ns} + 1
16fi2

⁄
ds

s3 Tr exp {≠L(s)}. (5.79)

Substituting the matrix elements and calculating the traces one can get [11, 12]:

L(1) = ≠ 1
8fi2

⁄
ds

s3 e
≠iµ

2
s

(gF1s) (gF2s)
sinh(gF1s) sinh(gF2s) ≠

≠ 1
4fi2

⁄
ds

s3 e
≠iµ

2
s(gF1s) (gF2s)

Ësinh(gF1s)
sinh(gF2s) + sinh(gF2s)

sinh(gF1s)
È

(5.80)

where

F
2
1 = ≠F ≠ (F2 + G2)1/2

, F
2
2 = ≠F + (F2 + G2)1/2 (5.81)

and

F = 1
4 trGµ‹Gµ‹ , G = 1

4 trGµ‹G
ú

µ‹ . (5.82)

The first integral here coincides, up to the coe�cient 2, with the expression of the one-loop

Lagrangian in the scalar electrodynamics. The doubling of this expression is associated with the

additional degrees of freedom due to the vector bosons isospin. The second term in is due to the

spin contribution ≠2gGµ‹ in the operator Hµ‹ . We have introduced the mass parameter µ
2 in

order to control the infrared singularities and to make the integrals convergent at infinity [11].

Still this is not enough to make integrals convergent at infinity. Using the real eigenvalues

f
2
1 = F + (F2 + G2)1/2

, f
2
2 = ≠F + (F2 + G2)1/2 (5.83)

one can observe that the second term in the square bracket will take the form sinh(gf2s)
sin(gf1s) and the

integral diverges exponentially in the infrared region at infinity. We shall choose the integration

counter in the complex plane s• so as to guarantee the convergence of the last integral. For that

one should rotate the integration counter in the third integral by the substitution s æ ≠is. The

same rotation of the counter can be performed in the first integral as far it is convergent in any
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and we have introduced the infrared regularisation parameter µ
2.

Choosing the integration counters so as to guarantee the convergence of the proper time integrals,
that is to make substitution s æ ≠is in the first and third integrals one can get

L(1) = 1
8fi2

⁄ Œ

s0

ds

s3 e
≠µ

2
s

(gf1s) (gf2s)
sinh(gf1s) sin(gf2s) +

+ 1
4fi2

⁄ Œ

s0

ds

s3 e
≠iµ

2
s(gf1s) (gf2s) sin(gf1s)

sinh(gf2s)

≠ 1
4fi2

⁄ Œ

s0

ds

s3 e
≠µ

2
s(gf1s) (gf2s) sin(gf2s)

sinh(gf1s) ,

where ultraviolet cut o� parameter s0 and

f
2
1 = F + (F2 + G2)1/2

, f
2
2 = ≠F + (F2 + G2)1/2 (11.105)

Now we can perform renormalisation of the Lagrangian

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1 (gf1s) (gf2s)

sinh(gf1s) sin(gf2s) ≠ 1 + 1
3(gs)2F

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
f1

1
f2

sin(gf1s)
sinh(gf2s) ≠ f1

2

≠ g
2

4fi2

⁄ Œ

0

ds

s
e

≠µ
2
s
f2

1
f1

sin(gf2s)
sinh(gf1s) ≠ f2

2
(11.106)

Renormalisation will give

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
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1 (gf1s) (gf2s)

sinh(gf1s) sin(gf2s) ≠ 1 + 1
3(gs)2F

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
1
f1f2

sin(gf1s)
sinh(gf2s) ≠ f

2
1

2

≠ g
2

4fi2

⁄ Œ

0

ds

s
e

≠µ
2
s
1
f1f2

sin(gf2s)
sinh(gf1s) ≠ f

2
2

2
(11.107)

First consider pure chromomagnetic case

G = 0, F = (H2 ≠ E2)/2 > 0, f
2
1 = 2F , f

2
2 = 0

L(1) = + 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1

gf1s

sinh(gf1s) ≠ 1 + 1
3(gs)2F

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
1

f1 sin(gf1s)
gs

≠ 2F
2

(11.108)

L(1) = + 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1

gf1s

sinh(gf1s) ≠ 1 + 1
6(gf1s)2

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
1

f1 sin(gf1s)
gs

≠ f
2
1

2
(11.109)
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In the limit of strong magnetic fields

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1

gf1s

sinh(gf1s) ≠ 1 + 1
6(gf1s)2

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
1

f1 sin(gf1s)
gs

≠ f
2
1

2
(11.110)

The asymptotic behaviour for strong magnetic fields is

L(1) ¥ (gH)2

48fi2 ln gH
µ2 ≠ (gH)2

4fi2 ln gH
µ2 = ≠ 11

48fi2 (gH)2 ln gH
µ2 (11.111)

The first term represents the diamagnetism which is counteracting to the external field caused by
the charged gluons circling in the vacuum due to the Lorentz force. The second term represent
paramagnetism, an e�ect associated with the polarisation of gluon spins.

As one can clearly see in QED the asymptotic is di�erent

L(1) ¥ + 1
24fi2 (eH)2 ln(eH

m2 ) (11.112)

and the total respond of the vacuum is diamagnetic.
Let us now consider pure chromoelectric case G = 0, F = (H2≠E2)/2 < 0 and f

2
1 = 0, f

2
2 = ≠2F

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1 (gf2s)

sin(gf2s) ≠ 1 + 1
3(gs)2F

2
+

≠ g
2

4fi2

⁄ Œ

0

ds

s
e

≠µ
2
s
1
f2

sin(gf2s)
gs

≠ f
2
2

2
(11.113)

The Lagrangian has singularities on the real axis at sn = nfi/eE and the integration path is considered
to lie above the real axis

2ImL(1) = (gE)2

4fi3

Œÿ

n=1

(≠1)n+1

n2 = (gE)2

48fi

This is the probability, per unit time and per unit volume, that gluons are created by the constant
chromoelectric field.

12 Cromomagnetic Condensate

The di�erent asymptotic limits of the e�ective action and the fact that the QCD vacuum responds
as a paramagnetism suggest that small perturbation by the external fields can generate stable con-
densate. In order to check this guess one should find an exact expression of the e�ective action at
all values of fields. That happens to be possible if one introducing the following renormalisation
condition

ˆL
ˆF |

t=ln( 2F
µ4 )=G=0 = ≠1 (12.114)

this leads to the renormalised

L(1) = g
2
µ

4

8fi2

⁄ Œ

0

ds

s3

1
as

sinh as
≠ a

2
s

2 ( 1
sinh s

≠ s cosh s

sinh2
s

)
2

+

+ g
2
µ

4

4fi2

⁄ Œ

0

ds

s3

1
as sin(as) ≠ a

2
s

2 (sin s + s cos s)
2

(12.115)
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The first term represent the diamagnetism counteracting the external field caused by the 
charged gluons circulating in the vacuum due to the Lorentz force. The second terms 
represent paramagnetism, an effect associated with the polarisation of the gluon spin  

G.S.  1977
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and ultraviolet cut o� parameter s0. Now we can perform renormalisation of the Lagrangian
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2
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2
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s
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2
s
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f1f2
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sinh(gf1s) ≠ f

2
2

2
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Let us first consider pure chromomagnetic case G = 0, F = (H2 ≠ E2)/2 > 0 and f
2
1 = 2F , f

2
2 = 0
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8fi2

⁄ Œ

0

ds
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2
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2
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1
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2
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2
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0
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s
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2
s
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f1 sin(gf1s)
gs

≠ f
2
1

2
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In the limit of strong magnetic fields

L(1) = 1
8fi2
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0

ds

s3 e
≠µ

2
s
1

gf1s

sinh(gf1s) ≠ 1 + 1
6(gf1s)2

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
1

f1 sin(gf1s)
gs

≠ f
2
1

2
(11.105)

The asymptotic behaviour for strong magnetic fields is

L(1) ¥ ≠ 11
48fi2 (gH)2 ln gH

µ2 (11.106)

The first term represents the diamagnetism which is counteracting to the external field caused by
the charged gluons circling in the vacuum due to the Lorentz force. The second term represent
paramagnetism, an e�ect associated with the polarisation of gluon spins.

As one can clearly see in QED the asymptotic is di�erent

L(1) ¥ + 1
24fi2 (eH)2 ln(eH

m2 ) (11.107)
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In the limit of strong magnetic fields
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The asymptotic behaviour for strong magnetic fields is

L(1) ¥ ≠ 11
48fi2 (gH)2 ln gH

µ2 (11.106)

The first term represents the diamagnetism which is counteracting to the external field caused by
the charged gluons circling in the vacuum due to the Lorentz force. The second term represent
paramagnetism, an e�ect associated with the polarisation of gluon spins.

As one can clearly see in QED the asymptotic is di�erent

L(1) ¥ + 1
24fi2 (eH)2 ln(eH
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in QCD

The QCD vacuum is paramagnetic  !   The QED vacuum is diamagnetic !   



Renormalisation of Massless Theories  

12 Cromomagnetic Condensate

The di�erent asymptotic limits of the e�ective action and the fact that the QCD vacuum responds
as a paramagnetism suggest that small perturbation by the external fields can generate stable con-
densate. In order to check this guess one should find an exact expression of the e�ective action at
all values of fields. That happens to be possible if one introducing the following renormalisation
condition

Loop expansion of the e�ective action has the following form

� =
ÿ

n

⁄
dx1...dxn�(n)a1...an

µ1...µn
(x1, ..., xn)Aa1

µ1(x1)...Aan
µn

(xn)

= SY M + W
(1) + W

(2) + ....

and can be expressed also as derivative expansion

� =
⁄

d
4
x[L̄ + L̃ + ˜̃L + ...]

The L̄ depends on invariants F and G, the L̃ depends on first order covariant derivatives of Gµ‹ and
so on. With the use of L̄ we can introduce the renormalisation of the e�ective action as

ˆL̄
ˆF |

t=ln( 2g2F
µ4 )=G=0 = ≠1

allowing to define renormalisation
�r = �un + Z SY M

this leads to the renormalised

L(1) = µ
4

8fi2

⁄ Œ

0

ds

s3

1
as

sinh as
≠ a

2
s

2 ( 1
sinh s

≠ s cosh s

sinh2
s

)
2

+

+ µ
4

4fi2

⁄ Œ

0

ds

s3

1
as sin(as) ≠ a

2
s

2 (sin s + s cos s)
2

(12.119)

where a = gH/µ
2. Taking the integrals one can get the energy density of the vacuum

U = H2

2 + 11
48fi2 (gH)2

1
ln gH

µ2 ≠ 1
2

2
© F + 11

48fi2 g
2F

1
ln 2g

2F
µ4 ≠ 1

2
(12.120)

where the invariant F is positive and correspond to the magnetic field configurations

F = 1
4G

2
µ‹ > 0, G = 1

4Gµ‹G
ú
µ‹ = 0 (12.121)

with its new minimum outside of the origin

< gHvac >= µ
2 exp (≠24fi

2

11g2 ) < g
2
G

2
µ‹ >vac= 2µ

4 exp (≠48fi
2

11g2 ) (12.122)
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Heisenberg-Euler Lagrangian in Massless Limit We shall consider the QED in the massless limit and will impose the following renormalisation

condition on the e�ective Lagrangian introduced in [13, 14]§

ˆL
ˆF |

t= 1
2 ln( 2e2|F|

µ4 )=G=0
= ≠1, (2.33)

where µ
2 is the renormalisation scale parameter. This condition defines the renormalisation of

the e�ective Lagrangian in a covariant gauge Lr = Lun ≠ Z F . In the case of pure magnetic field

(2.32) and the Lagrangian L(1) has the form

L(1) = ≠ 1
8fi2

⁄
Œ

0

ds

s3
(ef1s) cosh(ef1s)

sinh(ef1s)

and diverges at the boundaries of the integration region. With the use of the renormalisation con-

dition (2.33) one can handle both divergences [13, 14]. This leads to the following renormalisation

of the Heisenberg-Euler Lagrangian in the massless limit

L(1) = ≠ µ
4

8fi2

⁄
Œ

0

ds

s3

1
as cosh(as)

sinh(as) ≠ 1 ≠ a
2
s

2
1cosh s

sinh s
≠ s

sinh2
s

22
, (2.34)

where

a
2 = 2e

2F/µ
4 = e

2H̨2
/µ

4
, G = 0. (2.35)

As one can get convinced that this expression is well defined in both limits, in the ultraviolet

s æ 0 and in the infrared s æ Œ regions. One can calculate this integral exactly. The integrals

appearing in this expression can be expressed in terms of the Riemann zeta function and its

extension (see the Appendix for details). The Lagrangian (2.34) will take the form

L(1)
k

= ≠ µ
4

8fi2

⁄
Œ

0
ds

1
as

k≠1 cosh(as)
sinh(as) ≠ a

2
s

k≠1 cosh s

2 sinh s
+ a

2
s

k

2 sinh2
s

2
=

= ≠ µ
4

8fi2

Ë
2a

1≠k ≠ a
2 + a

2
k

È�(k)’(k)
2k

and in the limit k æ ≠1 we shall get

L(1) = µ
4
a

2

4fi2

Ë
ln a ≠ 1

2
È

lim
kæ≠1

(k + 1)�(k)’(k)
2k

= µ
4
a

2

24fi2

Ë
ln a ≠ 1

2
È
,

where we have used the identity [58] limkæ≠1 (k + 1)�(k)’(k) = limkæ≠1
2k≠1

fi
k

’(1≠k)
cos( fik

2 ) = 1
6 . Thus,

in terms of Lorentz and gauge invariant field F = 1
4F

2
µ‹ , the exact expression of the one-loop

Lagrangian in massless QED is:

L(1)
el

= e
2F

24fi2

Ë
ln(2e

2F
µ4 ) ≠ 1

È
, (2.36)

§This renormalisation scheme is alternative to the standard MC and other schemes, see in particular [32].
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Lagrangian in massless QED is:

L(1)
el

= e
2F

24fi2

Ë
ln(2e

2F
µ4 ) ≠ 1

È
, (2.36)

where 2F = H̨2 ≠ Ę2
> 0, G = ĘH̨ = 0 and the e�ective Lagrangian will take the form

L = ≠F + e
2F

24fi2

Ë
ln(2e

2F
µ4 ) ≠ 1

È
. (2.37)

As it follows from this expression the QED vacuum responds to the background magnetic field by

inducing a vacuum current of the electron positron pairs which is attenuated the magnetic field

imposed on the vacuum. The magnetic induction B̨ of the QED vacuum is [11]:

B̨ = ≠ ˆL
ˆH̨

= H̨
Ë
1 ≠ e

2

24fi2 log e
2H̨2

µ4

È
= µvac H̨ (2.38)

and the QED vacuum responds to the background magnetic field as a diamagnet with the magnetic

permeability of the form:

µvac = 1 ≠ e
2

24fi2 log(e
2H̨2

µ4 ) < 1 diamagnetic. (2.39)

The diamagnetism of the QED vacuum means that it repels the magnetic fields by forming induced

magnetic field in the direction opposite to that of the applied magnetic field. This phenomenon

is similar to the Landau diamagnetism of free electron gas when the counteracting field is forms

when the electron trajectories are curved due to the Lorentz force. This also can be seen from

the vacuum energy expression ( see Fig.1 )

‘ = H̨2

2 ≠ e
2H̨2

48fi2 [log(e
2H̨2

µ4 ) ≠ 1]. (2.40)

In case of pure electric field the one-loop Lagrangian has the form

L(1) = ≠ µ
4

8fi2

⁄
Œ

0

ds

s3

1
bs cos(bs)

sin(bs) ≠ 1 ≠ b
2
s

2
1cos s

sin s
≠ s

sin2 s

22
, (2.41)

where

b
2 = ≠2e

2F/µ
4 = e

2Ę 2
/µ

4
, G = 0 (2.42)

and has singularities at s = sn = fin/b = µ
2
fin/eE . The integration path is considered to lie

above the real axis therefore we shall obtain a large positive imaginary contribution to L(1)¶

2ImL(1) = e
2E2

4fi3

Œÿ

n=1

1
n2 = e

2E2

24fi
. (2.43)

¶ The resent development can be found in [68]
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12 Cromomagnetic Condensate

The di�erent asymptotic limits of the e�ective action and the fact that the QCD vacuum responds
as a paramagnetism suggest that small perturbation by the external fields can generate stable con-
densate. In order to check this guess one should find an exact expression of the e�ective action at
all values of fields. That happens to be possible if one introducing the following renormalisation
condition

Loop expansion of the e�ective action has the following form

� =
ÿ

n

⁄
dx1...dxn�(n)a1...an

µ1...µn
(x1, ..., xn)Aa1

µ1(x1)...Aan
µn

(xn)

= SY M + W
(1) + W

(2) + ....

and can be expressed also as derivative expansion

� =
⁄

d
4
x[L̄ + L̃ + ˜̃L + ...]

The L̄ depends on invariants F and G, the L̃ depends on first order covariant derivatives of Gµ‹ and
so on. With the use of L̄ we can introduce the renormalisation of the e�ective action as

ˆL̄
ˆF |

t=ln( 2g2F
µ4 )=G=0 = ≠1

allowing to define renormalisation
�r = �un + Z SY M

this leads to the renormalised

L(1) = µ
4

8fi2

⁄ Œ

0

ds

s3

1
as

sinh as
≠ a

2
s

2 ( 1
sinh s

≠ s cosh s

sinh2
s

)
2

+

+ µ
4

4fi2

⁄ Œ

0

ds

s3

1
as sin(as) ≠ a

2
s

2 (sin s + s cos s)
2

(12.119)

where a = gH/µ
2. Taking the integrals one can get the energy density of the vacuum

U = H2

2 + 11
48fi2 (gH)2

1
ln gH

µ2 ≠ 1
2

2
© F + 11

48fi2 g
2F

1
ln 2g

2F
µ4 ≠ 1

2
(12.120)

where the invariant F is positive and correspond to the magnetic field configurations

F = 1
4G

2
µ‹ > 0, G = 1

4Gµ‹G
ú
µ‹ = 0 (12.121)

with its new minimum outside of the origin

< gHvac >= µ
2 exp (≠24fi

2

11g2 ) < g
2
G

2
µ‹ >vac= 2µ

4 exp (≠48fi
2

11g2 ) (12.122)
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Figure 2: The graph shows the qualitative behaviour of the vacuum energy density ‘(H̨2
a) (1.12),

(4.68). At the intersection point F0 (6.106) the e�ective coupling constant is small (6.107) and
the intersection angle ◊ is strictly positive (6.108). The energy density curve can be continuously
extended from the point F0 deep into the negative energy density region arbitrary close to the
value of the vacuum condensate < F >vac by considering a larger values of N and keeping the
t’Hooft coupling constant g

2
N fixed (6.109),(6.110) . This proves that the true YM vacuum is

below the perturbative vacuum and that there exists a nonzero energy gap ‘gap > 0 between
perturbative and non-perturbative vacua. The true vacuum is characterises by the nonzero value
of the chromomagnetic field strength tensor (1.13), (6.97) and the energy density gap ‘gap = |‘vac|
(1.15) [13, 32].

keeping the t’Hooft coupling constant g
2
N small and fixed. This proves that the true vacuum

of the Yang-Mills theory is below the perturbative vacuum, the energy density curve ‘(F) is

approaching the point of zero energy density from below and that there exists a nonzero energy

gap between perturbative and non-perturbative vacuum. The details of the prove are presented

in the Section 6.

The article is organised as follow. In the second section we shall use gauge and renormalisation

group invariant procedure [11, 13] to renormalise the massless Heisenberg-Euler Lagrangian and

derive the exact one-loop expression for the e�ective Lagrangian in QED (1.1). In the third

section we shall use the renormalisation group equations for the e�ective Lagrangian to derive all

loops results for the vacuum energy density and the traces of the energy momentum tensor. In

the forth and fifth sections the analyses will be extended to the Yang-Mills theory and the prove

of the formation of the chromomagnetic gluon condensation will be reexamined. The prove of

the absence of the imaginary part in the YM e�ective Lagrangian in chromomagnetic field and

the stability of the chromomagnetic gluon condensate by Niels Bohr theory group and by Kurt

Flory will be presented.
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where we have introduced the Casimir operator C2(G) = N for the gauge group G = SU(N).

Let us consider the value of the field strength tensor F0 at which

the vacuum energy density vanishes ‘(F0) = 0, as it is shown on Fig.

2g
2F0 = µ

4 exp (≠ 96fi
2

11g2N
+ 1) = e < 2g

2F >vac . (6.105)

The e�ective coupling constant at this field strength has the value

ḡ
2(F0) = 96fi

2

11N
. (6.106)

It follows that the e�ective coupling constant at the intersection point F0 is small

ḡ
2(F0) = 96fi

2

11N
π 1 if N ∫ 96fi

2

11 . (6.107)

The energy density curve ‘(F) (6.96) intersect the horizontal zero energy line at the nonzero

angle ◊ (see Fig.2)

tan ◊ = 11g
2
N

96fi2 > 0. (6.108)

This means that the true vacuum state is below the perturbative vacuum and we have proved that

i) the true vacuum is below the perturbative vacuum, ii) that there is a nonzero chromomagnetic

fields in the vacuum and iii) that there is a nonzero energy gap between perturbative and non-

perturbative vacuum.

Now the question is how far into the infrared region one can continue the energy density curve

using the perturbative result? Let us consider the fields which are approaching the infrared pole.

This can be done in particular using the following parametrisation

Fn = e
1≠n

< F >vac, (6.109)

where the parameter n is less than one and we have Fn æ < F >vac when n tends to unity

from below. At these fields values the e�ective coupling constant (6.104) tends to zero

ḡ
2(Fn) = 96fi

2

11N(1 ≠ n) æ 0 (6.110)

if the product N(1 ≠ n) æ Œ is large and the t’Hooft coupling constant g
2
N = ⁄ is fixed and

small. It follow then that the e�ective coupling constant can be made small to justify the use of

the perturbative result and the energy density curve can be continuously extended infinitesimally

close to the value of the vacuum field < F >vac as it is shown on Fig. 2. In alternative way one

can study the ratio of quantum mechanical correction L(1) to the classical Lagrangian L = ≠F

≠ L(1)

F = 11N

96fi2 g
2
1

ln 2g
2F

µ4 ≠ 1
2

π 1. (6.111)
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ḡ
2(F0) = 96fi

2

11N
. (6.106)

It follows that the e�ective coupling constant at the intersection point F0 is small

ḡ
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1 Introduction

In this article we shall analyse the e�ective action in QED and QCD using the perturbative loop

expansion and renormalisation group equations and discuss the physical consequences which can

be derived from their explicit expressions. The prove of the existence of the chromomagnetic

gluon condensation in Yang-Mills (YM) theory will be reexamined and the derivation of the new

results will be presented. The Heisenberg-Euler Lagrangian in QED [1, 2, 3, 4, 5, 6] is a sum

of the one loop diagrams with a vacuum electron-positron pair circulating in the loop and the

gluons and quarks in case of QCD [7, 8, 9, 10, 11, 12, 13, 14].

We shall consider the limit of massless electrons and quarks and demonstrate that the proper

time integral in the Heisenberg-Euler Lagrangian can be calculated explicitly and has the exact

logarithmic dependence as a function of the Lorentz invariant field strength tensor ( see Fig.1 )

Le = ≠F + e
2F

24fi2

Ë
ln(2e

2F
µ4 ) ≠ 1

È
, F = H̨2 ≠ Ę2

2 , G = ĘH̨ = 0. (1.1)

This expression to be compared with the one-loop e�ective Lagrangian in pure SU(N) gauge field

theory which has the form [11, 13] ( see Fig.2 ):

Lg = ≠F ≠ 11N

96fi2 g
2F

1
ln 2g

2F
µ4 ≠ 1

2
, F = H̨2

a ≠ Ę2
a

2 > 0, G = ĘaH̨a = 0 . (1.2)

From (1.1) it follows that the corresponding quark contribution considered in the chiral limit is:

Lq = ≠F + Nf

48fi2 g
2F

Ë
ln(2g

2F
µ4 ) ≠ 1

È
, (1.3)

where Nf is the number of quark flavours.

The e�ective Lagrangian technique allows to calculate the magnetic induction B̨ of the vacuum

defined through the derivative of the e�ective Lagrangian [11]

B̨a = ≠ ˆL
ˆH̨a

= µvac H̨a. (1.4)

From (1.1), (1.2) and (1.3) it follow that in QED the vacuum responds to the background magnetic

field as diamagnet and in QCD as paramagnet with the magnetic permeabilities of the form [11]:

µQED = 1 ≠ e
2

24fi2 log(e
2H̨2

µ4 ) < 1, diamagnetic, (1.5)

µQCD = 1 + g
2

96fi2 (11N ≠ 2Nf ) log g
2H̨2

a

µ4 > 1, paramagnetic, N >
2
11Nf . (1.6)

The diamagnetism of the QED vacuum (1.5) means that it repels the magnetic fields by form-

ing induced magnetic field in the direction opposite to that of the applied magnetic field. This
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a
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Energy Momentum Tensors in QED and QCD 
Schwinger 1951

and using (3.47) we shall get
ˆT

ˆF = 4e
2 —̄(ē)

ē3 . (3.52)

The last two formulas (3.51) and (3.52) provide the non-perturbative expressions for the confor-
mal anomaly in QED in the massless limit. Using the one loop expression (2.33) derived above
one can calculate the derivative

M = ˆL
ˆF = ≠1 + e

2

24fi2 ln 2e
2F

µ4 , G = 0. (3.53)

and the Callan-Symanzik beta function (3.46) takes the form:

— = e
ˆM
ˆt

|t=0 = 1
24fi2 e

3
. (3.54)

For the one loop energy momentum tensor (3.50) we shall get

Tµ‹ = T
el

µ‹

Ë
1 ≠ e

2

24fi2 ln 2e
2F

µ4

È
+ gµ‹

e
2

24fi2 F , G = 0, (3.55)

where we have used the expressions (3.53) and the trace of the energy momentum tensor is

T = e
2

6fi2 F . (3.56)

The vacuum energy density is:

T00 = ‘ = H̨2

2 ≠ e
2H̨2

48fi2 [log(e
2H̨2

µ4 ) ≠ 1]. (3.57)

The e�ective coupling constant (3.47) in the one-loop approximation is

ē
2(H̨2) = e

2

1 ≠ e2
24fi2 log( e2H̨2

µ4 )
(3.58)

and tends to infinity at the magnetic field

e
2H2

0 = µ
4
e

24fi2
e2 . (3.59)

If consider the mass parameter µ to be of the order of the electron mass m one can get

H
2
0 = (m

2
c

3

e~ )2 exp ( 24fi
2

e2/~c
), e

2

~c
¥ 1

137 ,

where the critical field Hc is

Hc = m
2
c

3

e~ ¥ 4.4 1013
Gauss.

The perturbation expansion brakes down at the Landau pole shown on Fig.1. In the next section
we shall consider the behaviour of the e�ective Lagrangian in Yang-Mills theory and QCD.

9

G.S. 1977

The e�ective coupling constant (3.52) in the one-loop approximation is

ē
2(H̨2) = e

2

1 ≠ e2
24fi2 log( e2H̨2

µ4 )
(4.55)

and tends to infinity at the magnetic field
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2H2
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4
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2

e2 . (4.56)

In order to estimate the value of the critical field one can consider the mass parameter µ to be of
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where the critical field Hc is

Hc = m
2
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3
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The perturbation expansion brakes down at the ”Moscow zero” shown on Fig.1.

As far as the derivative (3.52) of the e�ective Lagrangian (3.47) has transparent expression

in terms of the e�ective coupling constant (3.52) one can obtain the e�ective Lagrangian by

integration over F

L(F) =
⁄

ˆL
ˆF dF = ≠

⁄
g

2

ḡ2(t)dF . (4.57)

Using the relation (3.47) to express the di�erential g
2
dF = µ

4
e

2·
d· through d· one can represent

the Lagrangian in the form:

L(F) = ≠µ
4

⁄
e

2·

ḡ2(·)d· , t = 1
2 ln(2g

2F/µ
4). (4.58)

In massless QED the magnetic induction (2.38) will take the form

B̨ = ≠ ˆL
ˆH̨

= ≠ ˆL
ˆF H̨ = µvac H̨ (4.59)

therefore the vacuum permeability (2.39) can be expressed through the e�ective coupling constant

ē
2(t)

µvac = e
2

ē2(t) . (4.60)

The e�ective Lagrangian approach allows to calculate the quantum mechanical corrections to the

energy momentum tensor using the formula derived by Schwinger in [5]

Tµ‹ = ≠gµ‹L + ˆL
Fµ⁄

F‹⁄ = ≠gµ‹L + Fµ⁄F‹⁄

ˆL
ˆF + gµ‹

ˆL
ˆG G

= (Fµ⁄F‹⁄ ≠ gµ‹

1
4F

2
⁄fl) ˆL

ˆF ≠ gµ‹(L ≠ F ˆL
ˆF ≠ G ˆL

ˆG ). (4.61)
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which can represent the gauge field fluctuations in the vacuum. One can conjecture that the

average < ... > in (6.97) can be understood as average over these field configurations.

For the energy momentum tensor (4.61) we shall get

Tµ‹ = T
Y M

µ‹

Ë
1 + 11Ng

2

96fi2 ln 2g
2F

µ4

È
≠ gµ‹

11N

96fi2 g
2F , G = 0. (6.98)

The trace of the energy momentum tensor is not equal to zero and characterises the breaking of

conformal symmetry in QCD

T = Tµµ = ≠ 11N

24fi2 g
2F . (6.99)

The vacuum energy density is given in (6.96) T00 = ‘(F) with its minimum at (6.97) [13].

Substituting this value into the expression for the energy momentum tensor (6.98) we shall get

the expression which is proportional to the metric tensor gµ‹

< Tµ‹ >vac= ≠gµ‹

11N

96fi2 < g
2F >vac (6.100)

and is therefore a relativistically invariant characterisation of the vacuum with its negative energy

density ‘vac =< T00 >vac and the pressure Pvac = ≠‘vac. This is important result because

the vacuum state should be Lorentz invariant and its stress tensor Tµ‹ to be the same in all

frames [15, 16]. As a result, its vacuum average value can only be of the cosmological type

< 0|Tµ‹ |0 >= ‘vac gµ‹ and indeed it is.

Let us consider the behaviour of the e�ective Lagrangian from the renormalisation group

point of view and compare it with the behaviour of the e�ective coupling constant. The equations

derived above are universally true for the non-Abelian field as well, thus when G = ĘaH̨a = 0 we

have

M(t, g) = ˆL
ˆF = ≠ g

2

ḡ2(t) ,
dḡ

dt
= —̄(ḡ). (6.101)

The vacuum magnetic permeability introduced in (2.39) will take the form [11]

µvac = g
2

ḡ2(t) , G = 0. (6.102)

The Callan-Symanzik beta function can be calculated using (6.93)

— = 1
2g

ˆM
ˆt

|t=0 = ≠ 11N

96fi2 g
3 (6.103)

and the e�ective coupling constant as a function of the field has the form

ḡ
2(F) = g

2

1 + 11g2N

96fi2 ln 2g2F

µ4

, (6.104)
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The real part of the Lagrangian in the electric field is

ReL(1) = ≠ e
2Ę2

48fi2 [log(e
2Ę2

µ4 ) ≠ 1]. (2.44)

The formulas (2.37), (2.44) and (2.43) proves that the e�ective Lagrangian is the analytical

function of the variable F and has the general form (2.37). The corresponding energy density

takes the form:

‘ = Ę2

2 ≠ e
2Ę2

48fi2 [log(e
2Ę2

µ4 ) + 1] (2.45)

and its behaviour is similar to the one shown on Fig.1. The electric permeability D̨ = ˆL

ˆĘ
= ÁĘ is

Á = 1 ≠ e
2

24fi2 log(e
2Ę2

µ4 ) + i
e

2

24fi
. (2.46)

In the next section we shall consider the renormalisation group invariant derivation of the all-loop

e�ective Lagrangian (2.22) and the generalised expressions for the magnetic induction (2.38) and

permeability (2.39) as well as the electromagnetic energy-momentum tensor and its trace.

3 Renormalisation Group Equation for E�ective Lagrangian

Let us derive the exact expression of the e�ective Lagrangian using the renormalisation group

equation [13, 14]. The e�ective action � is renormalisation group invariant quantity

� =
ÿ

n

⁄
dx1...dxn�(n)a1...an

µ1...µn
(x1, ..., xn)Aa1

µ1(x1)...Aan

µn
(xn)

because the vertex functions and gauge fields transforms as follows

�(n) a1...an

r µ1...µn
= Z

n/2
3 �(n) a1...an

un µ1...µn
, A

a

µ(x)r = Z
≠1
3 A

a

µ(x)un, gr = Z
1/2
3 gun.

The renormalisation group equation takes the form

{µ
2 ˆ

ˆµ2 + —(g) ˆ

ˆg
+ “(g)

⁄
d

4
xA

a

µ(x) ”

”Aa
µ(x)}� = 0

where —(g) is the Callan-Symanzik beta function, the “(g) is the anomalous dimension. When

G = ĘH̨ = 0 it reduces to the form

{µ
2 ˆ

ˆµ2 + —(g) ˆ

ˆg
+ 2“(g)F ˆ

ˆF }L = 0,

where in covariant background gauge — = ≠g“ [11]. Introducing dimensionless quantity

M(g, t) = ˆL
ˆF , t = 1

2 ln(2g
2F/µ

4) (3.47)
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Renormalisation Group and Effective Action 

The behaviour of the effective Lagrangian at strong fields is similar to the 
behaviour of the Gauge Field Theories at small distances or large momentum  

We have 

1 Introduction

In this article we shall analyse the e�ective action in QED and QCD using the perturbative loop

expansion and renormalisation group equations and discuss the physical consequences which can

be derived from their explicit expressions. The prove of the existence of the chromomagnetic

gluon condensation in Yang-Mills (YM) theory will be reexamined and the derivation of the new

results will be presented. The Heisenberg-Euler Lagrangian in QED [1, 2, 3, 4, 5, 6] is a sum

of the one loop diagrams with a vacuum electron-positron pair circulating in the loop and the

gluons and quarks in case of QCD [7, 8, 9, 10, 11, 12, 13, 14].

We shall consider the limit of massless electrons and quarks and demonstrate that the proper

time integral in the Heisenberg-Euler Lagrangian can be calculated explicitly and has the exact

logarithmic dependence as a function of the Lorentz invariant field strength tensor ( see Fig.1 )
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From (1.1) it follows that the corresponding quark contribution considered in the chiral limit is:
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48fi2 g
2F

Ë
ln(2g

2F
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È
, (1.3)

where Nf is the number of quark flavours.

The e�ective Lagrangian technique allows to calculate the magnetic induction B̨ of the vacuum

defined through the derivative of the e�ective Lagrangian [11]

B̨a = ≠ ˆL
ˆH̨a

= µvac H̨a. (1.4)

From (1.1), (1.2) and (1.3) it follow that in QED the vacuum responds to the background magnetic

field as diamagnet and in QCD as paramagnet with the magnetic permeabilities of the form [11]:
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It is useful to derive the expression of the e�ective Lagrangian using the renormalisation

group equation [13, 14]. The solution of the renormalisation group equation in terms of e�ective

coupling constant ḡ(g, t), with the boundary condition ḡ(g, 0) = g, has the form [13, 14]

ˆL
ˆF = ≠ g

2

ḡ2(t) ,
dḡ

dt
= —(ḡ) , t = 1

2 ln(2g
2F/µ

4). (1.17)

The derivative (1.17) of the e�ective Lagrangian has transparent expression in terms of the

e�ective coupling constant and allows to obtain the e�ective Lagrangian by integration over F

L(F) = ≠µ
4

⁄
e

2t

ḡ2(t)dt , t = 1
2 ln(2g

2F/µ
4) (1.18)

in all order of the perturbative expansion and find out the expressions for the physical quantities

beyond the one-loop approximation. One can calculate di�erent observables of physical interest,

that will include the e�ective energy momentum tensor, vacuum energy density, the magnetic

permeability, the e�ective coupling constants and their behaviour as a function of the external

fields. In particular the energy momentum tensor (1.7) will take the form

Tµ‹ = ≠
1
Gµ⁄G‹⁄ ≠ gµ‹

1
4G

2
⁄fl

2
g

2

ḡ2(t) + gµ‹

1 ⁄
e

2t

ḡ2(t)dt ≠ 1
2

e
2t

ḡ2(t)
2
µ

4 (1.19)

and the vacuum energy density can be expressed in terms of the trace Tµµ

T00 = H̨a

2

2
g

2

ḡ2(t) + 1
4Tµµ, G = 0, (1.20)

where the trace of the energy momentum tensor Tµµ is given by the following expression

Tµµ = 4µ
4

⁄
e

2t
—(ḡ(t))
ḡ(t)3 dt , t = 1

2 ln(2g
2F/µ

4). (1.21)

The last formula provides all-loop expression for the conformal anomaly in gauge field theories‡.

Considering the value of the field strength tensor F0 at which the vacuum energy density (1.12)

vanishes ‘(F0) = 0, the point F0 shown on Fig.2, one can observe that the e�ective coupling

constant (1.17) at this field strength has the value 96fi
2

11N≠2Nf

and tends to zero as N æ Œ.

The energy density curve ‘(F) (1.12) intersect the horizontal zero energy line at the nonzero

angle ◊ > 0 (see (6.108) and Fig.2). It is also important that the energy density curve can be

continuously extended from the point F0 deep into the negative energy density region arbitrary

close to the value of the vacuum condensate < F >vac by considering a larger values of N and
‡If one consider the approximation in which ḡ(t) is field independent ḡ(t) © g then (1.21) will reduce to the one

given in literature [49, 50, 51, 52].
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and the vacuum energy density can be expressed in terms of the trace Tµµ
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The last formula provides all-loop expression for the conformal anomaly in gauge field theories‡.

Considering the value of the field strength tensor F0 at which the vacuum energy density (1.12)

vanishes ‘(F0) = 0, the point F0 shown on Fig.2, one can observe that the e�ective coupling

constant (1.17) at this field strength has the value 96fi
2

11N≠2Nf

and tends to zero as N æ Œ.

The energy density curve ‘(F) (1.12) intersect the horizontal zero energy line at the nonzero

angle ◊ > 0 (see (6.108) and Fig.2). It is also important that the energy density curve can be

continuously extended from the point F0 deep into the negative energy density region arbitrary

close to the value of the vacuum condensate < F >vac by considering a larger values of N and
‡If one consider the approximation in which ḡ(t) is field independent ḡ(t) © g then (1.21) will reduce to the one

given in literature [49, 50, 51, 52].
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then

the energy momentum tensor  
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The energy density has its new minimum outside of the perturbative vacuum state < G
2
µ‹ >= 0,

at the Lorentz and renormalisation group invariant field strength [13]†
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In this form the energy momentum tensor represent the relativistically invariant equation of state
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where the chromomagnetic condensate (1.13) is < 2g
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. The magnetic permeability

(1.6) in the vacuum state (1.13) is equal to zero:
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96fi2 log < 2g
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†The discovery of the chromomagnetic gluon condensation in [13] initiated series of publications (see references
in the Conclusion section). In particular after two hours theoretical seminar on chromomagnetic gluon condensation
delivered by the author in ITEP in October 1977. At end of the seminar one of the participant Victor Novikov,
in our way back to the metro station by tram, remarked to the author that the theoretical prediction of the
chromomagnetic condensate just announced [13] can be crucial in improving the naive sum rule equations [56] by
introducing the chromomagnetic condensate and of the corresponding power corrections. The sum rule equations
[56] were not saturated by perturbative contributions. A year later, his proposal was realised in [57].

3



Higgs mode in Quantum Chromodynamics 
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Deep understanding of the physics of unstable mode have been gained by the NBI group. 
As it was demonstrated in the series of NBI articles due to the unstable mode n=0

The first term represents the diamagnetism which is counteracting to the external field caused by
the charged gluons circling in the vacuum due to the Lorentz force. The second term represent
paramagnetism, an e�ect associated with the polarisation of gluon spins.

As one can clearly see in QED the asymptotic is di�erent
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and the total respond of the vacuum is diamagnetic.
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As it was demonstrated by Nilsen and Olesen due to the unstable mode
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An alternative treatment of the unstable mode has been given by Flory. He demonstrated that a
completely real energy density appears when one include the quartic terms of the Yang-Mills action
for these modes.

11.2 Chromoelectric Fields

Let us now consider pure chromoelectric case G = 0, F = (H2 ≠ E2)/2 < 0 and f
2
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The Lagrangian has singularities on the real axis at sn = nfi/eE and the integration path is considered
to lie above the real axis

2ImL(1) = (gE)2

4fi3
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(≠1)n+1

n2 = (gE)2

48fi

This is the probability, per unit time and per unit volume, that gluons are created by the constant
chromoelectric field.

12 Cromomagnetic Condensate

The di�erent asymptotic limits of the e�ective action and the fact that the QCD vacuum responds
as a paramagnetism suggest that small perturbation by the external fields can generate stable con-
densate. In order to check this guess one should find an exact expression of the e�ective action at
all values of fields. That happens to be possible if one introducing the following renormalisation
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The dynamics of unstable mode may lead to the modulation of the vacuum field 
configurations. 

The first term represents the diamagnetism which is counteracting to the external field caused by
the charged gluons circling in the vacuum due to the Lorentz force. The second term represent
paramagnetism, an e�ect associated with the polarisation of gluon spins.
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configurations [38]. The configurations are supported by the external chromomagnetic field gH.

The di�culty here is to calculate the quantum mechanical fluctuations around these classical field

configurations and to see if they remain localised when the external field is switched o�. The

important conclusion of the investigation was that it pointed out to the fact that the stability of

the chromomagnetic field configurations is a natural consequence of the quartic self interaction

of the Yang-Mills field.

Shiggs modeÔ
2fi

= (gH)≠1/2
⁄

dk2
2fi

dx0dx3
1
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dpdq

(2fi)2 e
≠

p
2+q

2
2gH �ú

k2+p�ú

k2+q�k2�k2+p+q

2
.

This result became the initial point for the investigation initiated by Curt Flory in his article

devoted to the resolution of the higgs like mode problem [46]. His breakthrough idea was to

integrate exactly the functional integral over the higgs like mode from the start in order to

get the quantum mechanical contribution to the e�ective Lagrangian of that mode instead of

searching the corresponding classical field configurations.

Presenting the amplitude of the higgs mode and of the corresponding action in terms of alternative

dimensionless variables kµ æ kµ/
Ô

gH, xµ æ xµ

Ô
gH one can get††

(gH)≠1/2
W =

⁄
dk2
2fi

e
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2 (x1+k2)2�k2(x0, x3)

where �k2(x0, x3) is also dimensionless. The action of the higgs mode takes the form:
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.

What is essential in this representation is that the dependence on the chromomagnetic field does

not show up in the Lagrangian and appears only in front of the higgs field amplitude (gH)1/2

in The factor coming from the integration of the action over the field �k2 is background field

independent and does not show up in the renormalised e�ective Lagrangian, thus the

Contribution of the higgs mode to the e�ective Lagrangian is only through the integration measure

and its degeneracy

e
Lhiggs ≥ (gH)≠

1
2 2( gH

2fi
)2 = exp (≠(gH)2

4fi2 log gH ).

This contribution is a real function of chromomagnetic field [46, 47]. After collecting contributions

from all other modes the e�ective Lagrangian takes the form which identically coincides with

(6.92). This confirms the expression (6.92) being without imaginary part (5.88).
††In the SU(2) case Wµ = 1Ô

2 (A1
µ + A2

µ), Aµ = A3
µ and W = W1 = ≠iW2 as it is defined in [26, 33, 38, 40].
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What is essential in this representation is that the dependence on the chromomagnetic field does

not show up in the Lagrangian and appears only in front of the higgs field amplitude (gH)1/2

in The factor coming from the integration of the action over the field �k2 is background field

independent and does not show up in the renormalised e�ective Lagrangian, thus the

Contribution of the higgs mode to the e�ective Lagrangian is only through the integration measure

and its degeneracy

e
Lhiggs ≥ (gH)≠

1
2 2( gH

2fi
)2 = exp (≠(gH)2

4fi2 log gH ).

††In the SU(2) case Wµ = 1Ô
2 (A1

µ + A2
µ), Aµ = A3
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configurations [38]. The configurations are supported by the external chromomagnetic field gH.

The di�culty here is to calculate the quantum mechanical fluctuations around these classical field

configurations and to see if they remain localised when the external field is switched o�. The

important conclusion of the investigation was that it pointed out to the fact that the stability of

the chromomagnetic field configurations is a natural consequence of the quartic self interaction

of the Yang-Mills field.

This result became the initial point for the investigation initiated by Curt Flory in his article

devoted to the resolution of the higgs like mode problem [46]. His breakthrough idea was to

integrate exactly the functional integral over the higgs like mode from the start in order to

get the quantum mechanical contribution to the e�ective Lagrangian of that mode instead of

searching the corresponding classical field configurations.
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What is essential in this representation is that the dependence on the chromomagnetic field
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This contribution is a real function of chromomagnetic field [46, 47]. After collecting contributions

from all other modes the e�ective Lagrangian takes the form which identically coincides with

(6.92). This confirms the expression (6.92) being without imaginary part (5.88).

One can consider the above approach of calculating the e�ective action as alternative to a

standard loop expansion in the following sense: the expansion is organised by rearrange the
††In the SU(2) case Wµ = 1Ô

2 (A1
µ + A2

µ), Aµ = A3
µ and W = W1 = ≠iW2 as it is defined in [26, 33, 38, 40].
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6 Generalisation

±1, ± 2, ± 3, .... (6.74)

7 Scattering Amplitudes and Splitting Functions
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4

< 1, 2 >< 2, 3 >< 3, 1 >

3
< 1, 2 >

< 2, 3 >

42s≠2
.(7.75)

These are the vertices which reduce to the standard triple YM vertex when s = 1. Using
these vertices one can compute the scattering amplitudes of vector and tensor bosons.
The colour-ordered scattering amplitudes involving two tensor-bosons of helicities h =
±s, one negative helicity vector-boson and (n ≠ 3) vector-bosons of positive helicity
were found in [?]:

M̂n(1+
, ..i

≠
, ...k

+s
, ..j

≠s
, ..n

+) = ig
n≠2(2fi)4

”
(4)(P aḃ) < ij >

4
r

n

l=1 < ll + 1 >

1
< ij >

< ik >

22s≠2
,

(7.76)
where n is the total number of particles and the dots stand for any number of positive
helicity vector-bosons, i is the position of the negative-helicity vector, while k and j

are the positions of the tensors with helicities +s and ≠s respectively.
”The fact that electromagnetic radiation can be transformed into electron-positron

pairs and vice versa leads to fundamentally new features in quantum electrodynamics.
One of the most important consequences is that, even in the vacuum, the Maxwell
equation have to be exchanged by more complicated formulas. In general, it will be
not possible to separate processes in the vacuum from those involving electron-positron
pairs since electromagnetic fields can create pairs if they are strong enough. Even if
they are not strong enough to create pairs they will, due to the virtual possibility of
creating pairs, polarise the vacuum and therefore change the Maxwell equations” [7].
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Contribution of the higgs mode is only through the integration measure 

C.A.Flory. Covariant constant chromomagnetic fields and elimination of the one-loop  
instabilities, SLAC-PUB-3244, October 1983. 
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Further treatment of the unstable mode has been given by Flory. He demonstrated that a 
completely real energy density appears when one include the quartic terms of the Yang-
Mills action for these modes. The argument of Flory is that the imaginary part of the effective 
action is an artefact of the one loop approximation.   

One should use the complete Lagrangian for the unstable modes and not just the quadratic 
terms used in the one loop approximation. This calculation leads to the same expression for 
the real part of the Lagrangian and without imaginary part. 

C.A.Flory. Covariant constant chromomagnetic fields and elimination of the one-loop  
instabilities, SLAC-PUB-3244, October 1983. 

He demonstrated that a completely real energy density appears when one include
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where n is the total number of particles and the dots stand for any number of positive
helicity vector-bosons, i is the position of the negative-helicity vector, while k and j

are the positions of the tensors with helicities +s and ≠s respectively.
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this leads to the renormalised
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where a = gH/µ
2. Taking the integrals one can get the energy density of the vacuum
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2

where the invariant F is positive and correspond to the magnetic field configurations

F = 1
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ú
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with its new minimum outside of the origin
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14 Renormalisation Group and E�ective Lagrangian
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and demonstrate that the e�ective action is renormalisation group invariant
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where we have introduced the Casimir operator C2(G) = N for the gauge group G = SU(N).
The vacuum magnetic permeability introduced in (2.33) in the one-loop approximation (5.80)
will take the form [8]

µvac = g
2

ḡ2(t) ¥ 1 + 11g
2
N

48fi2 ln 2g
2F

µ4 , G = 0. (5.89)

Let us consider the value of the field strength tensor F0 at which the energy momentum tensor
vanishes ‘(F0) = 0

2g
2F0 = µ

4 exp (≠ 96fi
2

11g2N
+ 1) (5.90)

(shown on see Fig.2). The e�ective coupling constant (5.88) at this field has the value

ḡ
2(F0) = 96fi

2

11N
. (5.91)

It follows from this expression that the e�ective coupling constant at the intersection point F0
is much smaller than one

ḡ
2(F0) = 96fi

2

11N
π 1 if N ∫ 96fi

2

11 (5.92)

and the energy density curve ‘(F) (5.95) intersect the horizontal zero energy line at the nonzero
angle

tan ◊ = 11
96fi2 g

2
N > 0 (5.93)

(see Fig.2). This means that the energy density curve is approaching the point of zero energy
density from below and proves that the true vacuum situated below the perturbative vacuum.
If in addition to the above three properties the energy curve ‘(F) is a continuous function of
the field F from point F0 until the zero value F = 0, then the minimum of the energy density
can be defined by its extremum, where the derivative (5.86) vanishes. This complete the prove
that the true QCD vacuum lies below the perturbative vacuum and that there exists a nonzero
energy gap between perturbative and non-perturbative vacuum. The vacuum is characterises
by the nonzero value of the chromomagnetic field strength tensor of order (5.84) and energy
density [9]. Indeed for the energy momentum tensor (3.48) we shall get

Tµ‹ = T
Y M

µ‹

Ë
1 + 11g

2
N

96fi2 ln 2g
2F

µ4

È
≠ gµ‹

11g
2
N

96fi2 F , G = 0. (5.94)

The vacuum energy density is [9]:

T00 = ‘(F) = F + 11g
2
N

96fi2 F
1

ln 2g
2F

µ4 ≠ 1
2
. (5.95)

with its minimum at (5.84)

< 2g
2F >vac= µ

4 exp (≠ 96fi
2

11g2N
). (5.96)

Substituting this value into the expression for the energy momentum tensor (5.94) we shall get
the expression which is proportional to the metric tensor gµ‹

< Tµ‹ >vac= ≠gµ‹

11
96fi2 N < g

2F >vac (5.97)
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(see Fig.2). This proves that the true QCD vacuum situated below the perturbative vacuum
and that there exists a nonzero energy gap between perturbative and non-perturbative vacuum.

It follows also that the energy density curve is approaching the zero energy density point
from below. If in addition to the above properties, the energy density curve ‘(F) is a continuous
function of the field F from point F0 until the zero value F = 0, then the minimum of the
energy density can be defined by its extremum, where its derivative vanishes. The vacuum is
characterises by the nonzero value of the chromomagnetic field strength tensor of order (1.12)
and energy density ........[9]. For the energy momentum tensor (3.48) we shall get
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Y M
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The vacuum energy density is [9]:
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. (1.11)

with its minimum at
< 2g

2F >vac= µ
4 exp (≠ 96fi

2

11g2N
). (1.12)

Only at the minimum, in the true vacuum, the energy momentum tensor is proportional to
the metric tensor gµ‹ . Indeed substituting the vacuum value into the expression for the energy
momentum tensor (1.10) we shall get

< Tµ‹ >vac= ≠gµ‹

11
96fi2 N < g

2F >vac . (1.13)

It is therefore a relativistically invariant characterisation of the vacuum with its negative energy
density ‘vac and the pressure Pvac = ≠‘vac. This become a source which contribute into the
e�ective cosmological constant

‘vac = c
4�eff

8fiG
= ≠ 11

96fi2 N < g
2F >vac . (1.14)

The chromomagnetic condensate (1.12) is of order �4
QCD

and the vacuum energy density is
about ‘vac ¥ ≠10≠6

GeV
4 . The value observed in the experiments []

‘� = c
4�obser

8fiG
¥ 10≠47

GeV
4

is about 41 decimal places smaller and positive. In the recent article [] it was suggested a possible
cancelation mechanism between chromomagnetic and its ”mirror chromomagnetic” condensate.

• 80 Years of the Heisenberg-Euler Lagrangian (1936 - 2016) [1, 2, 3, 4]

• Schwinger E�ective Lagrangians. Vacuum Polarisation and Anomalies [5].

• Coleman-Weinberg Lagrangian. Dynamical Symmetry breaking [6].

• 40 Years of the discovery of Magnetic Gluon Condensation - (1977-2017) [7, 9, 10]

• Extension of the Yang-Mills Theory [32].
2

(see Fig.2). This proves that the true QCD vacuum situated below the perturbative vacuum
and that there exists a nonzero energy gap between perturbative and non-perturbative vacuum.

It follows also that the energy density curve is approaching the zero energy density point
from below. If in addition to the above properties, the energy density curve ‘(F) is a continuous
function of the field F from point F0 until the zero value F = 0, then the minimum of the
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is about 43 decimal places smaller and positive.
In the recent article [] it was suggested a possible cancelation mechanism between chromo-

magnetic and its ”mirror chromoelectric” condensate.

‘
MQCD

vac = ≠ 11
96fi2 N < g

2FMQCD
>vac , FMQCD = H̨a

2 ≠ Ęa

2

2 < 0. (1.15)

thus
‘ = ‘

MQCD

vac + ‘
QCD

vac ¥ 0. (1.16)

• 80 Years of the Heisenberg-Euler Lagrangian (1936 - 2016) [1, 2, 3, 4]
2

G.S. 1977

at the vacuum state

Figure 2: The graph shows the qualitative behaviour of the vacuum energy ‘(H̨2) (2.36),(5.97)
(the blue line) and of the e�ective coupling constant ē

2(H̨2) (3.58) ( the green dashed line) as
the functions of the background magnetic field. E�ective coupling constant tends to infinity at
e

2H̨2 = µ
4
e

24fi
2
/e

2- the Moscow zero (the red dashed line).

The vacuum energy density is [9]:

T00 = ‘(F) = F + 11g
2
N

96fi2 F
1

ln 2g
2F

µ4 ≠ 1
2
. (5.97)

with its minimum at (5.86)

< 2g
2F >vac= µ

4 exp (≠ 96fi
2

11g2N
). (5.98)

Substituting this value into the expression for the energy momentum tensor (5.96) we shall get
the expression which is proportional to the metric tensor gµ‹

< Tµ‹ >vac= ≠gµ‹

11
96fi2 N < g

2F >vac (5.99)

and is therefore a relativistically invariant characterisation of the vacuum with its negative
energy density ‘vac and the pressure Pvac = ≠‘vac

< Tµ‹ >vac =

Q

cccccccca

‘vac 0 0 0

0 ≠Pvac 0 0

0 0 ≠Pvac 0

0 0 0 ≠Pvac

R

ddddddddb

.

The relation ‘vac = ≠Pvac between energy density ‘vac and pressure Pvac in (5.99) is relativis-
tically invariant [27, 28] and is a primary source contributing into the e�ective cosmological
constant

‘vac = c
4

8fiG
�vac = ≠ 11

96fi2 N < g
2F >vac . (5.100)
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Integration over F gives the trace

Tµµ = 4
⁄

g
2

ḡ2
—̄(ḡ)

ḡ
dF . (6.118)

If one consider the approximation in which the e�ective coupling constant (3.52) is field inde-

pendent ḡ(t) © g when this formula, after integration over F , will reduce to the one given in

literature [49, 50, 51]

Tµµ = 4 —̄(g)
g

F , (6.119)

otherwise the field dependence of the energy momentum trace is defined through the beta func-

tions and e�ective coupling constant and has more complicated dependence on field strength

tensor F .

7 Cosmological Constant Problem

As is follows from (6.100) in the ground state the following relation take place ‘vac = ≠Pvac

between energy density ‘vac and pressure Pvac. It is a relativistically invariant characterisation of

the vacuum [15, 16] and represent a field theoretical contribution into the e�ective cosmological

constant �eff

‘vac = c
4

8fiG
�eff = ≠ b

192fi2 < 2g
2F >vac = ≠ b

192fi2 �4
QCD. (7.120)

The chromomagnetic condensate (6.97) is of order �4
QCD

and the vacuum energy density is

negative and is about ‘vac ¥ ≠b 10≠8
GeV

4 . The value of the cosmological constant measured in

the observation of the high-z Type Ia supernovae [19, 20, 21, 22] and by the Plank Collaboration

[23, 24] ‘� = c
4�obser/8fiG ¥ 10≠47

GeV
4 is about 39 decimal places smaller and positive. It is

important to mention that the energy gap depends on a gauge group and a matter content, the

b parameter, as well as of the temperature of the Universe [].

In the recent article [59] it was suggested a possible cancelation mechanism between chromo-

magnetic and its ”mirror chromoelectric” condensates. In this proposal, which involves adding

to the SM particles a mirror world (dark matter) [60, 61, 62, 63, 64, 65], the entire SM is repli-

cated in a mirror world. The new Z2 symmetry interchanges SM with the mirror SM, ensuring

identical particles and interactions. It is conjectured that the quantum vacua of the ”Mirror SM”

contribute to the cosmological constant on the same footing as the SM, since mirror particles are

expected to gravitate in the same way as the usual ones, and that the mirror chromoelectric gluon

condensate contribute to the energy density of the universe with positive sign and thus may, in

23

To calculate the energy momentum tensor Tµ‹ in pure SU(N) YM theory one should use the

expression (1.2) and in the case of QCD, in the limit of chiral fermions, one should also add the

quark contribution (1.3) using the substitution 11N æ b = 11N ≠ 2Nf

Tµ‹ = T
Y M

µ‹

Ë
1 + b g

2

96fi2 ln 2g
2F

µ4

È
≠ gµ‹

b g
2

96fi2 F , G = 0. (1.11)

The vacuum energy density T00 © ‘(F) has therefore the form [13]

‘(F) = F + b g
2

96fi2 F
1

ln 2g
2F

µ4 ≠ 1
2
. (1.12)

The energy density has its new minimum outside of the perturbative vacuum state < G
2
µ‹ >= 0,

at the Lorentz and renormalisation group invariant field strength [13]†

< 2g
2F >vac= µ

4 exp (≠ 96fi
2

b g2(µ)) = �4
QCD, (1.13)

where b = 11N ≠ 2Nf and characterises the dynamical breaking of scaling invariance in YM

theory

Tµµ = ≠ b

48fi2 < 2g
2F >vac .

Substituting the vacuum field intensity (1.13) into the expression for the energy momentum tensor

(1.11) we shall get that in the vacuum the tensor Tµ‹ is proportional to the space-time metric gµ‹

< Tµ‹ >vac= ≠gµ‹

b

96fi2 < g
2F >vac . (1.14)

In this form the energy momentum tensor represent the relativistically invariant equation of state

‘vac = ≠Pvac which uniquely characterises the vacuum [15, 16] with its negative energy density

‘vac. The above vacuum energy momentum tensor will generate the e�ective cosmological constant

�eff of the form:

‘vac = c
4�eff

8fiG
= ≠ b

96fi2 < g
2F >vac= ≠ b

192fi2 �4
QCD , (1.15)

where the chromomagnetic condensate (1.13) is < 2g
2F >vac= �4

QCD
. The magnetic permeability

(1.6) in the vacuum state (1.13) is equal to zero:

µ
QCD

vac = 1 + b g
2

96fi2 log < 2g
2F >vac

µ4 = 0. (1.16)

†The discovery of the chromomagnetic gluon condensation in [13] initiated series of publications (see references
in the Conclusion section). In particular after two hours theoretical seminar on chromomagnetic gluon condensation
delivered by the author in ITEP in October 1977. At end of the seminar one of the participant Victor Novikov,
in our way back to the metro station by tram, remarked to the author that the theoretical prediction of the
chromomagnetic condensate just announced [13] can be crucial in improving the naive sum rule equations [56] by
introducing the chromomagnetic condensate and of the corresponding power corrections. The sum rule equations
[56] were not saturated by perturbative contributions. A year later, his proposal was realised in [57].
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†The discovery of the chromomagnetic gluon condensation in [13] initiated series of publications (see references
in the Conclusion section). In particular after two hours theoretical seminar on chromomagnetic gluon condensation
delivered by the author in ITEP in October 1977. At end of the seminar one of the participant Victor Novikov,
in our way back to the metro station by tram, remarked to the author that the theoretical prediction of the
chromomagnetic condensate just announced [13] can be crucial in improving the naive sum rule equations [56] by
introducing the chromomagnetic condensate and of the corresponding power corrections. The sum rule equations
[56] were not saturated by perturbative contributions. A year later, his proposal was realised in [57].

3

It is useful to derive the expression of the e�ective Lagrangian using the renormalisation

group equation [13, 14]. The solution of the renormalisation group equation in terms of e�ective

coupling constant ḡ(g, t), with the boundary condition ḡ(g, 0) = g, has the form [13, 14]

ˆL
ˆF = ≠ g

2

ḡ2(t) ,
dḡ

dt
= —(ḡ) , t = 1

2 ln(2g
2F/µ

4). (1.17)

The derivative (1.17) of the e�ective Lagrangian has transparent expression in terms of the

e�ective coupling constant and allows to obtain the e�ective Lagrangian by integration over F

L(F) = ≠µ
4

⁄
e

2t

ḡ2(t)dt , t = 1
2 ln(2g

2F/µ
4) (1.18)

in all order of the perturbative expansion and find out the expressions for the physical quantities

beyond the one-loop approximation. One can calculate di�erent observables of physical interest,

that will include the e�ective energy momentum tensor, vacuum energy density, the magnetic

permeability, the e�ective coupling constants and their behaviour as a function of the external

fields. In particular the energy momentum tensor (1.7) will take the form

Tµ‹ = ≠
1
Gµ⁄G‹⁄ ≠ gµ‹

1
4G

2
⁄fl

2
g

2

ḡ2(t) + gµ‹

1 ⁄
e

2t

ḡ2(t)dt ≠ 1
2

e
2t

ḡ2(t)
2
µ

4 (1.19)

and the vacuum energy density can be expressed in terms of the trace Tµµ

T00 = H̨a

2

2
g

2

ḡ2(t) + 1
4Tµµ, G = 0, (1.20)

where the trace of the energy momentum tensor Tµµ is given by the following expression

Tµµ = 4µ
4

⁄
e

2t
—(ḡ(t))
ḡ(t)3 dt , t = 1

2 ln(2g
2F/µ

4). (1.21)

The last formula provides all-loop expression for the conformal anomaly in gauge field theories‡.

Considering the value of the field strength tensor F0 at which the vacuum energy density (1.12)

vanishes ‘(F0) = 0, the point F0 shown on Fig.2, one can observe that the e�ective coupling

constant (1.17) at this field strength has the value 96fi
2

11N≠2Nf

and tends to zero as N æ Œ.

The energy density curve ‘(F) (1.12) intersect the horizontal zero energy line at the nonzero

angle ◊ > 0 (see (6.108) and Fig.2). It is also important that the energy density curve can be

continuously extended from the point F0 deep into the negative energy density region arbitrary

close to the value of the vacuum condensate < F >vac by considering a larger values of N and
‡If one consider the approximation in which ḡ(t) is field independent ḡ(t) © g then (1.21) will reduce to the one

given in literature [49, 50, 51, 52].
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Mirror  QCD and Cosmological Constant

Chromomagnetic condensate in QCD

Chromoelectric condensate  in MQCD

(see Fig.2). This proves that the true QCD vacuum situated below the perturbative vacuum
and that there exists a nonzero energy gap between perturbative and non-perturbative vacuum.

It follows also that the energy density curve is approaching the zero energy density point
from below. If in addition to the above properties, the energy density curve ‘(F) is a continuous
function of the field F from point F0 until the zero value F = 0, then the minimum of the
energy density can be defined by its extremum, where its derivative vanishes. The vacuum is
characterises by the nonzero value of the chromomagnetic field strength tensor of order (1.12)
and energy density ........[9]. For the energy momentum tensor (3.50) we shall get

Tµ‹ = T
Y M

µ‹

Ë
1 + 11g

2
N

96fi2 ln 2g
2F

µ4

È
≠ gµ‹

11
96fi2 g

2
NF , G = 0. (1.10)

The vacuum energy density is [9]:

T00 = ‘(F) = F + 11g
2
N

96fi2 F
1

ln 2g
2F

µ4 ≠ 1
2
. (1.11)

with its minimum at
< 2g

2F >vac= µ
4 exp (≠ 96fi

2

11g2N
). (1.12)

Only at the minimum, in the true vacuum, the energy momentum tensor is proportional to
the metric tensor gµ‹ . Indeed substituting the vacuum value into the expression for the energy
momentum tensor (1.10) we shall get

< Tµ‹ >vac= ≠gµ‹

11
96fi2 N < g

2F >vac . (1.13)

It is therefore a relativistically invariant characterisation of the vacuum with its negative energy
density ‘vac and the pressure Pvac = ≠‘vac. This become a source which contribute into the
e�ective cosmological constant

‘vac = c
4�eff

8fiG
= ≠ 11

96fi2 N < g
2F >vac , F = H̨a

2 ≠ Ęa

2

2 > 0. (1.14)

The chromomagnetic condensate (1.12) is of order �4
QCD

and the vacuum energy density is
about ‘vac ¥ ≠10≠4

GeV
4 . The value observed in the experiments []

‘� = c
4�obser

8fiG
¥ 10≠47

GeV
4

is about 43 decimal places smaller and positive.
In the recent article [] it was suggested a possible cancelation mechanism between chromo-

magnetic and its ”mirror chromoelectric” condensate.

‘
MQCD

vac = ≠‘vac = = ≠ 11
96fi2 N < g

2FMQCD
>vac FMQCD

< 0 (1.15)

thus
‘ = ‘

MQCD

vac + ‘
QCD

vac ¥ 0. (1.16)

• 80 Years of the Heisenberg-Euler Lagrangian (1936 - 2016) [1, 2, 3, 4]

• Schwinger E�ective Lagrangians. Vacuum Polarisation and Anomalies [5].

• Coleman-Weinberg Lagrangian. Dynamical Symmetry breaking [6].

• 40 Years of the discovery of Magnetic Gluon Condensation - (1977-2017) [7, 9, 10]

• Extension of the Yang-Mills Theory [32].
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2

2 < 0. (1.15)

thus
‘ = ‘

MQCD

vac + ‘
QCD

vac ¥ 0. (1.16)

• 80 Years of the Heisenberg-Euler Lagrangian (1936 - 2016) [1, 2, 3, 4]
2

R.Pasechnik et.al. arXiv:1804.09826



Thank You !


