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Preview

The context of my talk is the search for a theory of quantum gravity
beyond perturbation theory and the ongoing research program of
Causal Dynamical Triangulations (CDT) addressing the problem. Since
time is much too short for a comprehensive overview, | will merely
summarize the approach and then describe some new insights and
structural aspects it has brought into focus.

My presentation will be about

e motivation and context
e |attice gravity and CDT in a nutshell
e the role of diffeomorphisms

e making sense of Ricci curvature in a quantum context



Life in the Century of Gravity

e urgent: complete our guantum gravity theories to make reliable
predictions, minimizing free parameters and ad hoc assumptions

e my route: tackle qguantum gravity and geometry directly in a non-
perturbative, Planckian regime (no appeal to duality/dictionaries)

e the beauty of classical GR:
“theory of spacetime”, captured
by its curvature properties

e given the central role of curvature S22
CIaSS|Ca”y, |S |t aISO true that (©User:Johnstone, Wikipedia) (©R. Hurt/Caltech-JPL/EPA)

nonperturb. quantum gravity = theory of quantum curvature?

e So far, no-one has been able to make much sense of such a
proposition. We have recently initiated a line of research into how
to define and measure quantum Ricci curvature in quantum gravity.



The setting

e following the extremely successful example of QCD, we explore the
nonperturbative regime quantitatively by “lattice quantum gravity”

e |attice gauge field configurations a la Wilson (PRD 10 (1974) 2445)
are replaced by piecewise flat geometries (triangulations) a la
Regge (NUOVO Clm 19 (1961) 558) triangulated model of quantum space
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(© G. Bergner, Jena)

e modern implementation: Causal Dynamical Triangulations (CDT),
a nonperturbative, background-independent, manifestly diffeo-
morphism-invariant path integral, regularized on dynamical lattices

e N.B.: nontrivial scaling limit needed, no “fundamental discreteness”



Contrary to folklore, giving up smooth spacetimes and tensor cal-
culus is not a crazy idea, but has been key to recent progress in
quantum gravity (c.f. nonclassical ‘discrete geometry’ in maths).

M

e Classically, differentiable manifolds
| M provide powerful and extremely
«w | convenient models of spacetime.

| ® geometric properties encoded in
. B the Riemann curvature tensor Ry,v(x)

differentiable manifold M and a coordinate chart

® However, this description comes with an enormous redundancy,
the “freedom to choose coordinates” without affecting the physics.

e The “gauge” group of GR is the infinite-dim. group of coordinate
transformations (diffeomorphisms) on M. The key challenges of
quantum gravity are how to implement this symmetry and describe
physics in terms of diffeomorphism-invariant quantum observables.




CDT Quantum Gravity

The framework of Causal Dynamical Triangula-
tions (CDT), a nonperturbative candidate theory
of quantum gravity, has proven both fruitful and

: 3 ; part of a (pie-;:_e—;;\/ise flat)
well suited to studying the issue of observables. causal triangulation

Several quantum observables have been successfully defined and
implemented, and their expectation values been measured.

CDT employs a direct quantization of classical spacetime geometry =
Metrics(M)/Diff(M), using a lattice regularization. As one would expect in
standard QFT, the theory has divergences in the continuum limit as the UV
regulator is removed, which must be renormalized appropriately.

CDT dynamics: nonperturbative, background-independent, unitary path
integral; exactly soluble in D=2, Monte Carlo simulations in D=4.

CDT is a counterexample to the folklore that “putting gravity on
the lattice breaks diffeomorphism invariance”.




Quantum Gravity from CDT

The (formal, ill-defined) continuum gravitational path integra
Newton’s
EH
constant ZSG [ ]
GN) / Dg € 2 (“sum over
Einstein-Hilbert histories”)
. spacetimes L
cosmological constant geg

is turned into a finite regularized sum over triangulated spacetimes,

Z(@Gn,A) = Tim Y O el

a—0
UV cutoff N—o0 inequiv. bare, discretized
triangul.s EH action
Tega,N | Aut(T) |

# building blocks

whose continuum limits are investigated after an analytic continuation.
(N.B.: the inclusion of matter is straightforward)

1
Gn

gravity action: SFH — /d4:z:\/ det g(R[g, 0g, 0°g] — 2A)



What is the overall outlook of CDT QG?

® CDT quantum gravity depends on a minimalist set of ingredients —
metric d.o.f. and just two free parameters — and is conceptually simple.

® |t builds on a significant body of analytical and numerical results on
“dynamical triangulations” (a.k.a. “random geometry”) since the 1980s,
which give us a new view on geometry and the role of diffeomorphisms.
(2D DT quantum gravity reproduces results of contin. Liouville gravity.)

® One has been able to extract new and unique results from evaluating a
handful of nonperturbative quantum observables. These results are
robust and quantitative, and potentially falsifiable (very rare in QG!).

® causal structure plays a crucial role (Euclidean QG ‘not good enough’)

® quantitative 4D results have so far been obtained in a highly quantum-
fluctuating regime, far away from (semi-)classicality.

REVIEWS: J. Ambjgrn, A. Gorlich, J. Jurkiewicz & RL, Phys. Rep. 519 (2012)
127 [arXiv: 1203.3591]); NEW: RL, arXiv:1905.08669




The Emergence of Classicality from
Causal Dynamical Triangulations (CDT)

how to obtain a macroscopic
universe with a de Sitter shape:

From pure qguantum excitations, CDT generates a
spacetime with semiclassical properties dyna-
mically, without using a background metric.

Other key results/properties:

crucial role of causal structure from a superposition of
notion of discrete proper time (not coordinate time) "¢ Pt ntegralhistories
existence of a well-defined “Wick rotation” (unique)
amenable to computer simulations

nontrivial phase structure, with “classical” phases
second-order phase transitions (unique)
scale-dependent spacetime dimension (2 - 4)
applicability of renormalization group methods




What we have learned so far in CDT quantum gravity
about

(i) the phase structure and critical properties of the underlying
statistical system of ‘random geometry’,

(ii)) the system’s behaviour along RG trajectories, and

(iii) the properties of the dynamically generated “quantum
spacetime”

comes from measuring a few quantum observables.
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Crucial: QG without diffeomorphisms

Strategy: at a regularized level, represent curved spacetimes by sim-
plicial manifolds, following the profound, but underappreciated idea

of “General Relativity without Coordinates” (T. Regge, 1961). ts

e Use ‘piecewise flat’ gluings of 4D triangular building blocks Bt
(four-simplices) to describe intrinsically curved spacetimes.

e Geometry is specified uniquely by the edge lengths € of these =

simplices and how simplices are ‘glued’ together. No coordinates are
needed and the CDT path integral has no coordinate redundancies.

e distinct from Regge calculus: all

Av edges have identical length € = a
\/ \&€

>
: (up to global time vs. space scaling)

d=2 ' e study superpositions of such geo-

metries in continuum limit a—->0
Gluing five equilateral triangles around a vertex generates a
surface with Gaussian curvature (deficit angle €) at the vertex. (remOvaI Of UV CUt'Oﬁ:)



The challenge of “quantum curvature”

from classical

to quantum?

Individual spacetime geometries (= path integral histories) in CDT are
continuous, but not smooth, and far from (semi-)classical.

® \Which properties continue to hold on such spaces?
® How can we make sense of curvature and curvature tensors?

® How can we average/coarse-grain them?

We have successfully defined and tested quantum Ricci curvature.
(N. Klitgaard & RL, PRD 97 (2018) no.4, 0460008 and no.10, 106017,

work in progress with J. Brunekreef and N. Klitgaard)



Introducing quantum Ricci curvature

In D dimensions, the key idea is to compare the distance d between
two (D-1)-spheres with the distance 6 between their centres.

The sphere-distance criterion:

“On a metric space with positive
(negative) Ricci curvature, the distance
d of two nearby spheres S, and S’ is
smaller (bigger) than the distance 6 of
their centres.”

(c.t. Y. Ollivier, J. Funct. Anal. 256 (2009) 810)

Our variant uses the average sphere distance d of two
spheres of radius 6 whose centres are a distance 6 apart,

° [ q’
» involves only distance and volume measurements d

» the directional/tensorial character is captured by the “double sphere”
» coarse-graining is captured by the variable scale 6




Implementing guantum Ricci curvature

We measure the “quantum Ricci curvature K, at scale 87, A

J(Sg’ Sg’) / /
5 = Gl SR N0 =l ) < e, = e
on the quantum ensemble and compare it with the behaviour on simple
continuum “reference spaces” (constantly curved; ellipsoids; cones).
Remarkably, for the highly fractal quantum geometry of 2D quantum
gravity, quantum Ricci curvature displays

non-univ. constant

d
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Summary

Nonperturbative quantum gravity can be studied in a lattice setting,
in close analogy with lattice QCD, but taking into account the
dynamical nature of geometry, as exemplified by CDT.

The CDT approach has been making significant strides towards a full-
fledged quantum theory. Its well-defined computational lattice
framework allows for quantitative evaluation and “reality checks”.

The full power of Regge’s idea of describing geometry without
coordinates unfolds in nonperturbative QG in terms of CDT, yielding
a manifestly diffeomorphism-invariant formulation.

Despite the absence of smoothness, one can define a notion of
curvature that appears to be well-defined, including in a Planckian
regime, and gives us a new tool to understand the properties of
quantum gravity and the quantum geometry emergent from it.
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