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Preview

The	context	of	my	talk	is	the	search	for	a	theory	of	quantum	gravity	
beyond	perturba4on	theory	and	the	ongoing	research	program	of	
Causal	Dynamical	TriangulaJons	(CDT)	addressing	the	problem.	Since	
Jme	is	much	too	short	for	a	comprehensive	overview,	I	will	merely	
summarize	the	approach	and	then	describe	some	new	insights	and	
structural	aspects	it	has	brought	into	focus.		
		
My	presentaJon	will	be	about	
!• 	moJvaJon	and	context	
!• 	la@ce	gravity	and	CDT	in	a	nutshell	
!• 	the	role	of	diffeomorphisms		
		• 	making	sense	of	Ricci	curvature	in	a	quantum	context		



Life	in	the	Century	of	Gravity
• 	urgent:	complete	our	quantum	gravity	theories	to	make	reliable	
predicJons,	minimizing	free	parameters	and	ad	hoc	assumpJons			
!• 	my	route:	tackle	quantum	gravity	and	geometry	directly	in	a	non-
perturbaJve,	Planckian	regime	(no	appeal	to	duality/dicJonaries)	

!• 	the	beauty	of	classical	GR:	
				“theory	of	spaceJme”,	captured	
					by	its	curvature	properJes	
!• 	given	the	central	role	of	curvature		
					classically,	is	it	also	true	that			
!
							nonperturb.	quantum	gravity	=	theory	of	quantum	curvature?	
!
• 	So	far,	no-one	has	been	able	to	make	much	sense	of	such	a	
proposiJon.	We	have	recently	iniJated	a	line	of	research	into	how	
to	define	and	measure	quantum	Ricci	curvature	in	quantum	gravity.

(©User:Johnstone,	Wikipedia) (©R.	Hurt/Caltech-JPL/EPA)



The	se8ng	
• 	following	the	extremely	successful	example	of	QCD,	we	explore	the	
nonperturbaJve	regime	quanJtaJvely	by	“la8ce	quantum	gravity”			
!• 	la@ce	gauge	field	configuraJons	à	la	Wilson	(PRD	10	(1974)	2445)	
are	replaced	by	piecewise	flat	geometries	(triangulaJons)	à	la	
Regge	(Nuovo	Cim.	19	(1961)	558)		

!
!
!
!
!
!
!• 	modern	implementaJon:	Causal	Dynamical	Triangula>ons	(CDT),	
a	nonperturbaJve,	background-independent,	manifestly	diffeo-
morphism-invariant	path	integral,	regularized	on	dynamical	la@ces		

!• N.B.:	nontrivial	scaling	limit	needed,	no	“fundamental	discreteness”	
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triangulated	model	of	quantum	space



•	Classically,	differenJable	manifolds	
M	provide	powerful	and	extremely	
convenient	models	of	spaceJme.	
!•	geometric	properJes	encoded	in	

the	Riemann	curvature	tensor	Rκλμν(x)
differenJable	manifold	M	and	a	coordinate	chart	

!•	However,	this	descripJon	comes	with	an	enormous	redundancy,	
the	“freedom	to	choose	coordinates”	without	affecJng	the	physics.		
!•		The	“gauge”	group	of	GR	is	the	infinite-dim.	group	of	coordinate	

transformaJons	(diffeomorphisms)	on	M.	The	key	challenges	of	
quantum	gravity	are	how	to	implement	this	symmetry	and	describe	
physics	in	terms	of	diffeomorphism-invariant	quantum	observables.

Contrary	to	folklore,	giving	up	smooth	space>mes	and	tensor	cal-	
culus	is	not	a	crazy	idea,	but	has	been	key	to	recent	progress	in	
quantum	gravity	(c.f.	nonclassical	’discrete	geometry’	in	maths).	



The	framework	of	Causal	Dynamical	Triangula-	
>ons	(CDT),	a	nonperturbaJve	candidate	theory		
of	quantum	gravity,	has	proven	both	fruikul	and	
well	suited	to	studying	the	issue	of	observables.	
!Several	quantum	observables	have	been	successfully	defined	and	
implemented,	and	their	expectaJon	values	been	measured.	
!CDT	employs	a	direct	quanJzaJon	of	classical	spaceJme	geometry	=	
Metrics(M)/Diff(M),	using	a	la@ce	regularizaJon.	As	one	would	expect	in	
standard	QFT,	the	theory	has	divergences	in	the	conJnuum	limit	as	the	UV	
regulator	is	removed,	which	must	be	renormalized	appropriately.	
!CDT	dynamics:	nonperturbaJve,	background-independent,	unitary	path	
integral;	exactly	soluble	in	D=2,	Monte	Carlo	simulaJons	in	D=4.

part	of	a	(piecewise	flat)		
causal	triangulaJon

CDT	Quantum	Gravity

CDT	is	a	counterexample	to	the	folklore	that	“pu@ng	gravity	on	
the	la@ce	breaks	diffeomorphism	invariance”.	



Quantum	Gravity	from	CDT
The	(formal,	ill-defined)	conJnuum	gravitaJonal	path	integral	
!
!
!
!

is	turned	into	a	finite	regularized	sum	over	triangulated	spaceJmes,
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Z

spacetimes
g2G

Dg eiS
EH
GN,⇤[g]

Z(GN ,⇤) := lim
a!0
N!1

X

inequiv.
triangul.s
T2Ga,N

1

C(T )
eiS

Regge
GN,⇤ [T ]

|Aut(T)|

Newton’s		
constant

cosmological	constant

#	building	blocks

UV	cutoff

Einstein-Hilbert	
acJon

whose	conJnuum	limits	are	invesJgated	arer	an	analyJc	conJnuaJon.		
																		(N.B.:	the	inclusion	of	maser	is	straighkorward)

SEH =
1

GN

�
d4x

⇥
�det g(R[g, ⇥g, ⇥2g]� 2�)gravity	acJon:

(“sum	over		
					histories”)

bare,	discreJzed	
EH	acJon



What	is	the	overall	outlook	of	CDT	QG?
!•	CDT	quantum	gravity	depends	on	a	minimalist	set	of	ingredients	—	
metric	d.o.f.	and	just	two	free	parameters	—	and	is	conceptually	simple.	
!•	It	builds	on	a	significant	body	of	analyJcal	and	numerical	results	on	
“dynamical	triangulaJons”	(a.k.a.	“random	geometry”)	since	the	1980s,	
which	give	us	a	new	view	on	geometry	and	the	role	of	diffeomorphisms.	
(2D	DT	quantum	gravity	reproduces	results	of	conJn.	Liouville	gravity.)		

!•	One	has	been	able	to	extract	new	and	unique	results	from	evaluaJng	a	
handful	of	nonperturba>ve	quantum	observables.	These	results	are	
robust	and	quanJtaJve,	and	potenJally	falsifiable	(very	rare	in	QG!).	
!•	causal	structure	plays	a	crucial	role	(Euclidean	QG	‘not	good	enough’)			

!•	quanJtaJve	4D	results	have	so	far	been	obtained	in	a	highly	quantum-
fluctuaJng	regime,	far	away	from	(semi-)classicality.	

REVIEWS:	J.	Ambjørn,	A.	Görlich,	J.	Jurkiewicz	&	RL,	Phys.	Rep.	519	(2012)	
127	[arXiv:	1203.3591]);	NEW:	RL,	arXiv:1905.08669



The	Emergence	of	Classicality	from		
Causal	Dynamical	Triangula>ons	(CDT)

From	pure	quantum	excitaJons,	CDT	generates	a	
spaceJme	with	semiclassical	properJes	dyna-
mically,	without	using	a	background	metric.	

!•		crucial	role	of	causal	structure	
•		noJon	of	discrete	proper	Jme	(not	coordinate	Jme)	
•		existence	of	a	well-defined	“Wick	rotaJon”	(unique)	
•		amenable	to	computer	simulaJons	
•		nontrivial	phase	structure,	with	“classical”	phases	
•		second-order	phase	transiJons	(unique)	
•		scale-dependent	spaceJme	dimension	(2	→	4)	
•		applicability	of	renormalizaJon	group	methods

Other	key	results/proper>es:

how	to	obtain	a	macroscopic		
universe	with	a	de	Si:er	shape:

from	a	superposiJon	of	
“wild”	path	integral	histories:



What	we	have	learned	so	far	in	CDT	quantum	gravity	
about		

!
(i) the	phase	structure	and	criJcal	properJes	of	the	underlying	

staJsJcal	system	of	‘random	geometry’,	
(ii) the	system’s	behaviour	along	RG	trajectories,	and		
(iii) the	properJes	of	the	dynamically	generated	“quantum	

spaceJme”		
!

comes	from	measuring	a	few	quantum	observables.	



-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

-40 -30 -20 -10  0  10  20  30  40

<V
(t)

>

t

K0 = 2.200000, 6 = 0.600000, K4 = 0.925000, Vol = 160k

a = 8253   
b = 14.371   
w = 7.5353   

Monte Carlo
Fit, a sin3(t/b)

MC, <V(t)>
cos

red: size of typical 
quantum fluctuations

almost	perfect	
fit	to	cos3(t/b)

!20 !10 10 20

!0.3

!0.2

!0.1

0.1

0.2

(data	for	N4=80k)

first 	
order 

Cb CdS

second order

new (h.o.) phase 
transition

time 
t

V3(t)

(bare	inverse	Newton	constant)

(a
sy
m
m
et
ry
		p
ar
am

et
er
)

✔

✖
✔

✖

Phase	diagram	of	CDT	QG The	universe	is	de	SiUer-shaped

Volume	fluctua>ons	around	de	SiUer
Spectral	dimension	of	the	universe

(diffusion	Jme)

green: error bars

(s
pe

ct
ra
l	d
im

en
sio

n)
(s
pa
Ja

l	v
ol
um

e)

(proper	Jme)

(low-lying	eigenmode	matches	with	semiclassical	expectaJon)

“dynamical dimensional	
reduction” at Planckian 

scalesRES
ULT

S



Crucial:	QG	without	diffeomorphisms
!Strategy:	at	a	regularized	level,	represent	curved	spaceJmes	by	sim-
plicial	manifolds,	following	the	profound,	but	underappreciated	idea	
of	“General	RelaJvity	without	Coordinates”	(T.	Regge,	1961).		
!•		Use	‘piecewise	flat’	gluings	of	4D	triangular	building	blocks					
(four-simplices)	to	describe	intrinsically	curved	spaceJmes.	
!•		Geometry	is	specified	uniquely	by	the	edge	lengths	ℓ	of	these	

simplices	and	how	simplices	are	‘glued’	together.	No	coordinates	are	
needed	and	the	CDT	path	integral	has	no	coordinate	redundancies.

ε✂

d=2

α1α2

…

Gluing	five	equilateral	triangles	around	a	vertex	generates	a	
surface	with	Gaussian	curvature	(deficit	angle	ε)	at	the	vertex.	

•	disJnct	from	Regge	calculus:	all	
edges	have	idenJcal	length	ℓ	=	a	
(up	to	global	Jme	vs.	space	scaling)	
!•	study	superposiJons	of	such	geo-

metries	in	conJnuum	limit	a→0	
(removal	of	UV	cut-off)

ℓs

ℓs

ℓt



The	challenge	of	“quantum	curvature”

,

Individual	spaceJme	geometries	(=	path	integral	histories)	in	CDT	are	
conJnuous,	but	not	smooth,	and	far	from	(semi-)classical.	
! • 		Which	properJes	conJnue	to	hold	on	such	spaces?		
			• 		How	can	we	make	sense	of	curvature	and	curvature	tensors?		

!• 		How	can	we	average/coarse-grain	them?			
		We	have	successfully	defined	and	tested	quantum	Ricci	curvature.		
(N.	Klitgaard	&	RL,	PRD	97	(2018)	no.4,	0460008	and	no.10,	106017,	
work	in	progress	with	J.	Brunekreef	and	N.	Klitgaard)

from	classical

to	quantum?



Introducing	quantum	Ricci	curvature
In	D	dimensions,	the	key	idea	is	to	compare	the	distance	d	between	
two	(D-1)-spheres	with	the	distance	δ	between	their	centres.	

δ
p

Sp
Sp’

p’

d
_

_

Our	variant	uses	the	average	sphere	distance	d	of	two		
spheres	of	radius	δ	whose	centres	are	a	distance	δ	apart,	 δ δ

δp p’

q
q’

The	sphere-distance	criterion:										
“On	a	metric	space	with	posiPve	
(negaPve)	Ricci	curvature,	the	distance	
d	of	two	nearby	spheres	Sp	and	Sp’	is	
smaller	(bigger)	than	the	distance	δ	of	
their	centres.”

_

(c.f.	Y.	Ollivier,	J.	Funct.	Anal.	256	(2009)	810)

ε ε

_

D=2

‣ 	involves	only	distance	and	volume	measurements			
!‣ 	the	direcJonal/tensorial	character	is	captured	by	the	“double	sphere”	
!‣ 	coarse-graining	is	captured	by	the	variable	scale	δ	



We	measure	the	“quantum	Ricci	curvature	Kq	at	scale	δ”,

on	the	quantum	ensemble	and	compare	it	with	the	behaviour	on	simple	
conJnuum	“reference	spaces”	(constantly	curved;	ellipsoids;	cones).	
Remarkably,	for	the	highly	fractal	quantum	geometry	of	2D	quantum

Implemen>ng	quantum	Ricci	curvature
δp p’

d
_

d̄(S�
p , S�

p�)

�
= cq(1 � Kq(p, p�)), � = d(p, p�), 0 < cq < 3,

non-univ.	constant	

sphere:	Kq	>	0

flat	space:	Kq	=	0

hyperbolic	space:	Kq	<	0
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gravity,	quantum	Ricci	curvature	displays		
a	robust,	sphere-like	scaling	behaviour:

hd̄/�i

#	triangles	N∈[20k,	240k];	error	bars	too	small	to	be	shown

DTla@ce	artefacts		
for	δ	<	5	

sphere	



Summary

NonperturbaJve	quantum	gravity	can	be	studied	in	a	la8ce	se@ng,	
in	close	analogy	with	la@ce	QCD,	but	taking	into	account	the	
dynamical	nature	of	geometry,	as	exemplified	by	CDT.		
!The	CDT	approach	has	been	making	significant	strides	towards	a	full-
fledged	quantum	theory.	Its	well-defined	computaJonal	la@ce	
framework	allows	for	quanJtaJve	evaluaJon	and	“reality	checks”.						
!The	full	power	of	Regge’s	idea	of	describing	geometry	without	
coordinates	unfolds	in	nonperturbaJve	QG	in	terms	of	CDT,	yielding	
a	manifestly	diffeomorphism-invariant	formulaJon.	
!Despite	the	absence	of	smoothness,	one	can	define	a	noJon	of	
curvature	that	appears	to	be	well-defined,	including	in	a	Planckian	
regime,	and	gives	us	a	new	tool	to	understand	the	properJes	of	
quantum	gravity	and	the	quantum	geometry	emergent	from	it.	



 Thank you!

Corfu,	18	Sep	2019
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