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Gravity is one of the biggest puzzles in physics.
There are two main reasons,
A quantum field theory of gravity suffers from divergences.

The cosmological constant problem, aka the value of the energy density of the
vacuum has an extremely small value.

Until now, the only theory that gives a consistent description of quantum gravity is
string theory, which provides a natural cutoff, the string scale, protecting the theory
from divergences.

On the other hand, new holographic ideas relate large-N gauge theories to string
theories (which contain gravity) providing a different approach to this problem.
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* In this talk we will focus on the assumption that all interaction in nature are described by

four-dimensional quantum field theories. Ciritsic

* The Standard Model is just a small sector of the Cosmos and it couples to the rest of
the universe via messengers.

* The “rest of the universe” is a hidden, in the IR (and consequently to us), 4D quantum

field theory (which is in principle arbitrary). Nielsen

+ In this framework, gravity is emergent.
* In the present talk we will focus on other emergent fields: the axions.

+ These fields are the instanton densities a ~ Tr[F A F] of the hidden sector.

+ They are protected by their topological invariance and therefore they do not acquire
heavy masses in contrary to other scalar operators.
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messengers

+ Standard Model is just a small part of the Cosmos.

+ The “rest of the universe” is a hidden in the IR (and consequently to us) 4D quantum
field theory which is in principle arbitrary.

* The two separate sectors are connected via messenger fields.
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+ The Hidden QFTy:

It is UV-complete: all the extreme UV region are either asymptotically free or
conformal.

Size is enormous and its structure is random. Nielsen

However, we will assume SU(N,) with N, from large (to astronomical) values.

At weak coupling (IR) the hidden theory contains: vectors A¥, scalars ¢ and
spin-1/2 particles yr (the simplest QFTs).
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» messengers

* Messengers
They transform under both the SM and the hidden sector.
They are massive and they can be heavy/light (depending on the hidden sector).

In our case we assume to be heavy.
Kiritsis
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UV picture messengers

| =l
messenger mass mixing terms between the two sectors

IR picture
fu o gur

TrIF A F] ~ a(x)
Tr[F - F] ~ ¢

operators in Hidden Sector » weakly coupled fields for the visible Sector
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Emergent Gravity

* In this framework, gravity is an avatar of the Hidden QFT, and the graviton is
Kiritsis
hidd
TIUI; en

M4

huy o

+ It is massless and realise the correct action (at linear or non-linear level)
1
Sept = Syis + /d4x k. (TW + (27T)4)\_1 (1 + 5)\—1[\—1)”,”)

o / d4$\/§(A+ 16717GR)

where 4 the coupling between the stress tensors of the hidden and visible theories.
Baggioli, Betzios, Kiritsis, Niarchos
(2m)°

A4 (T hidden)

Guv —|_77pu/ ‘|‘h;u/

+ The cosmological constant is given by A = —

* The theorem of Weinberg-Witten is inapplicable in this case since the final gravitational
theory has a non-trivial cosmological constant.



Emergent Axions

+ Qur goal now is to study other low energy effects of the QF T, on the SM.



Emergent Axions

+ Qur goal now is to study other low energy effects of the QF T, on the SM.
+ We will focus on axions a: pseudoscalar fields with
» a) a shift symmetry and

+ b) they couple to instanton densities.



Emergent Axions

+ Qur goal now is to study other low energy effects of the QF T, on the SM.
+ We will focus on axions a: pseudoscalar fields with

» a) a shift symmetry and

+ b) they couple to instanton densities.

* In this talk, we will argue that axions naturally appear in the above framework.



Emergent Axions

+ Qur goal now is to study other low energy effects of the QF T, on the SM.
+ We will focus on axions a: pseudoscalar fields with
» a) a shift symmetry and
+ b) they couple to instanton densities.
* In this talk, we will argue that axions naturally appear in the above framework.

+ They are a = Tr[F A F], “composite” operators of the fields of the hidden sector.



Emergent Axions

+ Qur goal now is to study other low energy effects of the QF T, on the SM.
+ We will focus on axions a: pseudoscalar fields with
» a) a shift symmetry and
+ b) they couple to instanton densities.
* In this talk, we will argue that axions naturally appear in the above framework.
+ They are a = Tr[F A F], “composite” operators of the fields of the hidden sector.

+ In contrary to other scalar operators, they do not acquire masses of the messenger scale
M and therefore they can be light and visible at low energies.



Emergent Axions

+ Qur goal now is to study other low energy effects of the QF T, on the SM.
+ We will focus on axions a: pseudoscalar fields with
» a) a shift symmetry and
+ b) they couple to instanton densities.
* In this talk, we will argue that axions naturally appear in the above framework.
+ They are a = Tr[F A F], “composite” operators of the fields of the hidden sector.

+ In contrary to other scalar operators, they do not acquire masses of the messenger scale
M and therefore they can be light and visible at low energies.

* Qur goal is to study their properties in various different cases and compare with data.
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Why axions!

+ The emergent field a = Tr[F A F]is CP-odd (pseudoscalar).

* Isit an axion?

*  As we will show,
» It couples linearly to the SM instanton density Tr[ﬁ AF | TrlEFAF] — a Tr|F A F]
» There is an associated U(1) symmetry which is broken by instantons.

* Therefore we certainly have an ALP (axion-like-particle).

* Whether it is a QCD axion (potential has a min at 0) has to be checked.
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+ In this framework, SM and hidden instanton densities mix Tr[F A F ]Tr[ﬁ AF I

+ To check this, we assume fermionic massive messengers, charged under both SM and
hidden sector and consider a 1-loop amplitude
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+ The effective action finally is
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Mixing of instanton densities

+ In this framework, SM and hidden instanton densities mix Tr[F A F ]Tr[ﬁ AF I

+ To check this, we assume fermionic massive messengers, charged under both SM and
hidden sector and consider a 1-loop amplitude

Pi )2
L ;
q
4 | { % den QFTy
o 43
1%, ;93\

+ The effective action finally is

2 2
__gSMgQFT 4 . & f M2, g N (F ~ Z 9
Sers = 90(47r)2M4/d :c[(F FYF-F)+2(F -F) + (F/\F)(F/\F).+2(F/\F)}

| =~

* Qur goal is to focus in this coupling.
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* We want to examine the effect of a generic scalar-scalar interaction between two
theories and the IR “resolution”.

+ Consider the interaction between two theories T; (= Hidden) and 7, (= SM)
S = 51|01] + S2|02] + )\/d4:1: O1(x)O2(x)
where O; = Tr[F; A F}] are operators of dimension A; ( = 4).

* Following the standard procedure (Schwinger functional, Legendre transformations)
we get

G22(p)G1y ()
1 — A2Gh1(p)Gaz(p)

G11(p)
1 — A2G11(p)Gaz(p)

where G;(p) = (O{p)O«(-p)); -

= G11(p) + b %
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+ This is the propagator of the O, in the presence of the interaction term 10,0, .
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+ Next, we want to evaluate the effective mass and decay constant of the operator O, of
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Integrating out a pseudo-scalar

+ Next, we want to evaluate the effective mass and decay constant of the operator O, of
the 7, theory as being an axion field a coupled to 75.

+ We rewrite the action in the form

5251[01]+SQ[02]+)\/d4$ 01 a=0 =
S = d*x a(x)Kqa(x) + S2|02] + g [ d*x

2

* The inverse propagator of the axion is given by
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+ Next, we want to evaluate the effective mass and decay constant of the operator O, of
the 7, theory as being an axion field a coupled to 75.

+ We rewrite the action in the form

5251[01]+SQ[02]+)\/d4$ 01 a=0O =
S = d*x a(x)Kqa(z) + S2|02] + g [ d*x a

2

* The inverse propagator of the axion is given by

= = ——

iaa(-p))| ), = —2 gi((];))%z(p) = 2 +m2)+OpY

+ In order to “read” the mass m, and decay constant f, we need the to expand the G’s.

+ We have several different options/regimes.
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+ We will assume from now on that 7| = hidden and 7-”2 = SM.

+ Also we assume that the hidden theory 7 is strongly coupled with mass gap m,,.
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+ We will assume from now on that 7| = hidden and 7_”2 = SM.

Fixing m, & f,

+ Also we assume that the hidden theory 7 is strongly coupled with mass gap m,,.

+ Since mgy; = Aycp, there are three different remaining scales m,, M, p in the problem.

* We have the following options to explore:

v

p <L mgy,my KM

v

my, <K p < mgy,

v

meyy < p < my,

v

mey, M, <K p <M
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* In that region we need the IR expansion of the correlators.
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+ For generic scalar operator, with a scale m (mass gap) and an UV scale M, the UV scale
is dominant and we have (m < M)
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+ However, instanton densities O ~ Tr[F A F] are protected by symmetries and they are
UV insensitive Vicari Panagopoulos, Gursoy Kitirsis Nitti
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+ However, instanton densities O ~ Tr[F A F] are protected by symmetries and they are
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* Therefore, their masses are given by the mass gap of the hidden theory and not by the
large messenger masses M.
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Assume that @,, b, ~ 1 we have m, & f, as functions of our parameters g, n,, M.
Therefore, the mass m, has two contributions:

- the SM quantum effects ~ AZQCD/ f, as with standard axions and

- a contribution from the hidden theory order m,; .., (unlike fundamental axions).
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# The result is similar to the previous case. The leading contribution is coming from the

hidden theory.
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+ In this category we also have the case where the hidden theory is conformal (m;, — 0).
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+ Again, deeper analysis is needed for these models.



Phenomenological Windows =

Florida: red

<

Dark Matter axions

107%° eV < mPM < 10718 eV

Dark Energy axions

1072 eV < m2% < 107 oV

5 RBF: blue
o T T T T :[TTT':i4
— o . A=
\ & et gl !
”' I i = 3
= : .1
- ° A <!
—ol O o o
> (@) |8 — <E- i
e (= o, Bto
e ey e i
£ L] 1
u® Sk ©) 3 :FU)
S o e
g (>]5 =Y 1| O
oF a= =)
L S5 =l e)
s >< | II:L
B 5 H 2
:
oF
(=1
o
Sl
— L
c &~
10=5 g2 107
Maxion [€V]

Axions as Inflatons: (very much model dependent)

Heavy Axions (m, > 1eV)

mg > 10 MeV and 7., <107%s  or

QCD axions

10712 eV < m@“P <1072 eV
10° GeV < f9°P < 10'° GeV

Mg < 10 eV and 7., > 10** s




Comparison with data

+ For mg,,, m;, < M (only these can be compared with experimental data), we have

4 3
m, ~ my, M Nfama



Comparison with data

+ For mg,,, m;, < M (only these can be compared with experimental data), we have
- 3
m, ~ my, M Nfama
+ From the assumption mg,;, << M, and the weakest bound for f, < M, we get

m, > 10eV : composite axions —— heavy axions



Comparison with data

+ For mg,,, m;, < M (only these can be compared with experimental data), we have
my ~ m, M* ~ fm;
+ From the assumption mg,;, << M, and the weakest bound for f, < M, we get
m, > 10eV : composite axions —— heavy axions
+ If in addition we consider the relation between mg,,, m, we have
it my, <mg,, wehave mgy, <M < 10TeV

»ifmg, <m, wehave mg,<m,~m, Lf < Mp



Comparison with data

+ For mg,,, m;, < M (only these can be compared with experimental data), we have
m, ~ ny, M* ~ £ m’
+ From the assumption mg,;, << M, and the weakest bound for f, < M, we get
m, > 10eV : composite axions —— heavy axions
+ If in addition we consider the relation between mg,,, m, we have
it my, <mg,, wehave mgy, <M < 10TeV
»ifmg, <m, wehave mg,<m,~m, Lf < Mp

+ For QCD axions we have:  (m,f,)""* ~ (m,A}cp)"* ~ 107'GeV ~ mgy,

In our case M* ~ m (m,f.)""* ~ m,mq,, violating our initial assumption.
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Conclusions

+ We consider Cosmos as the SM and a hidden 4D QFT which communicate via massive
messengers.

* In this frame work gravity is emerging via the stress tensor of the hidden sector.

* As a byproduct we have axions (instanton densities) which, in contrary to other scalar
operators, are not suppressed by the large messenger masses.

+ The hidden instanton density generates an emergent axion coupled to the SM. The
characteristic decay constant of the emergent axion is

M

Mhidden

4
f ~ Mhidden ( > > Miidden

where m, ;.. the characteristic scale of the hidden theory.
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Conclusions

+ The mass of the emergent axion has two contributions.

- One due to SM quantum effects ~ A2QCD/ f., as with standard axions.

- In addition (unlike fundamental axions), has also a contribution from the hidden
theory order my,; ;... .

+ Some regions of the parameter space of our models provide non-standard non-local
kinetic terms and deeper study is required.



