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Observations show that the expansion of the Universe is accelerating (SNe, PLANCK).

Is this compatible with theory?

SEC is satisfied by the stress tensor of D=10 and D=11 supergravities.

The acceleration of the Universe thus presents a challenge to String/M-theory.
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Computing the Ricci tensor, one obtains
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Therefore an accelerating universe requires R00 < 0

However, from the Einstein equations
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The Strong Energy Condition (SEC) on the matter stress tensor requires that RHS be non-negative.

(Physically, it means that gravity is attractive; the source of the Newtonian potential is always of the same sign. 
SEC rules out antigravity).



But a no-go theorem establishes that there are no compactifications to de Sitter space
in 10/11 supergravities

Gibbons (1985) & hep-th/0301117; Maldacena-Nuñez hep-th/0007018

The basic idea is as follows. Consider a compactification
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Therefore R00 > 0  if the Strong Energy Condition is satisfied in D-dimensions

This, however, does not rule out acceleration: Here we were looking at time-independent
compactifications.

Since we are interested in cosmological solutions,  it is natural to assume that the warp factor and 
the internal metric are also time dependent. 

From the four-dimensional viewpoint, this implies that there are time-dependent scalar fields.

The GMN no-go theorem rules out de Sitter solutions arising from static compactifications.



Are there non-singular time-dependent compactifications to de Sitter 

space obeying SEC?

SHORT ANSWER:  YES
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The Strong Energy Condition is satisfied

However, as we will discuss, the 5D stress tensor that supports this solution of the 5D Einstein 
equations does not satisfy the Dominant Energy Condition (DEC)



No-Go theorems for general (time-dependent) warped compactifications

Consider a time-dependent compactification
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The condition for the 4d metric to be in the Einstein-frame is
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The Einstein-frame condition is required since otherwise the Newton constant would be time-dependent, 
and this would be in conflict with observations.

It is convenient to introduce the notation
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For simplicity, let us first consider the case when
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The STRONG ENERGY CONDITION (SEC) is
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We can get rid of the last term by integrating over y-coordinates. This gives
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The inequality can be further simplified by using the Einstein-frame condition. 
We first assume that time-independence is imposed before integrating:
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Suppose that there is a time t0 for which Omega’ = 0 and S’ = 0. Then the above SEC  inequality  
implies that,  at this time,
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which is the inequality found by [Vafa et al, arXiv:1806.08362]. 

1) It does not exclude acceleration. Indeed S’’ can be positive if Omega’’ is negative.
This  is precisely the mechanism for cosmologies exhibiting transient acceleration: the acceleration 
occurs as the volume of the compact space passes through a minimum value, corresponding to a 
maximum of Omega(t).

2) It does not even exclude late-time eternal acceleration. The assumption that there is a specific time 
t0 where the first time derivatives vanish does not apply to the late-time power law attractor.
Here we disagree with the conclusion in  Vafa et al that SEC rules out accelerating cosmologies.
In that paper use is made of the bound (1) for the late-time attractor of an exponential potential. But
this has non zero first derivatives Omega’  and S’ . 
Indeed, we will see late time acceleration is compatible with SEC



Search now for de Sitter solutions

In the case of time-independent compactifications, one would just get

No-go theorem for dS
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Therefore, H = 0, as known.

Consider now a time-dependent compactification with S = exp(Ht) at late times.
the  S’’ term will dominate unless Omega also increases exponentially.
So we consider the ansatz:
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But this equation has no real solutions. 
This completely rules out de Sitter compactifications of the assumed form.
What about our example?
The Einstein-frame condition is implemented in integrated form. In this case, there are compactifications 
to de Sitter space consistent with SEC.



Einstein frame condition in the integrated form
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The inequality that we used to rule out de Sitter was obtained considering compactifications
implementing the Einstein-frame condition prior to integration over y:

In general, the integrand may depend on time:

The time dependence may disappear only upon integration. 
The only general requirement is the Einstein-frame condition in 
integrated form:

The resulting inequality

involves terms of different signs and does not lead to any definite conclusions.

Einstein frame condition in our de Sitter example:

It is time-independent as a consequence of periodicity.

And R00 > 0 at all times!!
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GENERAL NO GO THEOREM – USING DOMINANT ENERGY CONDITION
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Note that X := 0 if the Einstein-frame condition is implemented prior to integration.
In this case, we see that the above inequality is satisfied if the compact space metric h is 
time independent. 
But we have already established that such compactifications violate SEC.

More generally, one has <X> = 0, as a consequence of the integrated Einstein frame 
condition.



The above inequality is violated by our de Sitter example, because any periodic function X whose 
integral is zero on a period, will have at least two zeros and in one of them dX/dt > 0.
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<X> = 0 implies that there are regions in the compact space B where X is positive and regions 
where X is negative.  

In general we have a partition  BBBB  0

In neighborhoods of B0 , where X = 0, we must have dX/dt < 0 for all times to satisfy DEC.
Then the space B+ shrinks, because points in B+ near B0 , where X is near zero, will move to B- . 
As a result, the volume of B + shrinks to zero size leading to a delta function singularity.
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Therefore it is not possible to have non-singular compactifications to dS satisfying DEC



Accelerating universes in String theory

a < 1 gives rise to an eternally accelerating cosmology with a future event horizon.
But this potential does not arise from string/M-theory compactifications. 
Only a > 1 arises in practice.

Compactifications giving rise to a positive potential include:

• Flux compactifications:  a > sqrt[3]

• Hyperbolic compactifications. They lead to 1 < a < sqrt[3]

While none of the examples can lead to late time (eternal) acceleration, they can lead to transient
acceleration [Townsend, Wohlfarth, hep-th/03003097; Townsend hep-th/0308149] 

The Einstein equations give

Many compactifications of M-theory lead to exponential potentials. 
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Consider first an exponential potential
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Therefore R00 < 0 in the time interval when , implying an accelerating cosmology during this time interval.         0

DO THE STRONG AND DOMINANT ENERGY CONDITIONS RULE OUT ACCELERATION?



For example, consider a compactification on a maximally symmetric space Xn with flux:
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Here epsilon = +/- 1 corresponds to sphere or hyperbolic space.

Even when b = 0, i.e. no flux,  compactification on the hyperbolic space leads to transient
periods of acceleration (the potential is monotonic so necessarily there is a turning point).
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The equations of motion are
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They can be solved exactly [J.R., hep-th/0403010]

2 x Kinetic energy
Potential energy

Recalling that

the period of accelerated expansion
corresponds to the time interval between the
intersection points of 2 x kinetic energy and 
the potential energy
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For a > 1, at late times the kinetic energy dominates and the expansion is decelerating.

Is there any way to have an accelerating universe at late times in String theory?



Power-law acceleration
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The expansion is accelerating provided eta > 1.

The Strong Energy Condition now becomes
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Let us return to our compactification and now assume a  late-time behavior

Thus there are accelerating cosmologies
satisfying the Strong Energy Condition.

So let us examine the implications of this cosmology.
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Decompactification
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This implies that the compact space is expanding.

Therefore the accelerating expansion of the universe requires decompactification.

Additionally, sigma < 1 tells us that this expansion is decelerating.
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NO GO-THEOREM FOR POWER-LAW ACCELERATION

What is the four-dimensional stress tensor that supports this FLRW metric?

Computing Einstein tensor for the FLRW metric one obtains
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The four-dimensional stress tensor is that of a perfect fluid with mass density \rho 
and pressure p satisfying the continuity equation 

The equation of state is
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The standard no-go theorem forbids de Sitter cosmologies having w = -1.
We have now arrived  at a  much stronger  restriction on w (for the late time attractor).

Using, the bound on \eta, we obtain The expansion is accelerated when w < -1/3. This
shows, in particular, that the SEC can be violated in
the lower dimension even though it is not violated in
the higher dimension.



This may be compared with current experimental bounds

Considering the Dark Energy as a dynamical fluid with equation of state

PLANCK adopts the parametrization

[Planck Collaboration, “Planck 2018 results. VI. Cosmological parameters,”  arXiv:1807.06209].

w = -1 is consistent with a cosmological constant.

Thus w is near w = -1, but, according to the best experimental fit,

w seems to be increasing with time, as w1 appears to be negative.

wp 

WLRSD,/BAOPlanck72.0,20.076.0

SNeBAOPlanck28.0,08.096.0

))(1()(

62.0
54.010

31.0
27.010

10













ww

ww

wtSwaw



Late-time Stress Tensor                           

where 
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The required stress tensor supporting this cosmology is determined from the Einstein equations. 
Computing the Einstein tensor, one obtains
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Weak Energy Condition: Using the bounds on \eta and \xi, it follows that the energy density is positive definite.

Similarly, the bounds on \eta and \xi imply that both pressures are negative definite.

01,0
2

0 


 
n

n

The stress tensor is conserved by the Bianchi identities RgRGG 


2

1
,0 



DOMINANT ENERGY CONDITION

The Dominant Energy Condition (DEC) is needed for causality.
In particular, DEC ensures that there is no superluminal propagation, as  vs = Sqrt[p/rho] < 1.
In addition, DEC is needed for the proof of positive energy in GR, which is a
necessary condition for stability of the Minkowski space [Christodoulou, Klainerman, 1993].

Note, in particular, that DEC implies the weak energy condition

We must require that
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For the present accelerated cosmology, the stress tensor satisfies the Dominant energy
condition automatically once SEC is satisfied. To prove this, one has to take into account the
bound on xi.

Consider for example

Similarly one can prove the other conditions.

Thus the accelerating cosmology is supported by physical matter, described by a conserved
stress tensor satisfying both strong and dominant energy conditions.



Accelerating cosmologies with two scalar fields

Another way to circumvent the limitations to acceleration implied by the positivity bounds is 
to consider two interacting scalar fields. An example is provided by the following Lagrangian
for a dilaton and an axion parametrizing the hyperbolic space H2
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For constant \chi,  there is no accelerating cosmologies if \lambda >1.

Recall that                                                   

If the kinetic term dominates at late times, then R00 > 0 .
As a result, 
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and the expansion is decelerating.

To get late-time acceleration, we need that the interaction with the other scalar field slows 
down the \sigma field rolling down the potential, so that the kinetic term is always smaller 
than the potential.

So let us study solutions with non-constant \chi , to see if kinetic energy can be transferred 
through the interaction so that \sigma is slowed down and R00 becomes negative at late times



Thus there are accelerating cosmologies for any \lambda,  as long as \mu >  2\lambda.

The stronger the coupling \mu, the more damped is the rolling down the exponential potential due 
to transfer of potential energy to the axion, which raises the critical value of V’/V corresponding to 
a crossover from deceleration to acceleration.

A mechanic analog is the rolling of a disc of large moment of inertia down a hill under the influence 
of gravity; potential energy is transferred not only to kinetic energy of downward motion but also 
to rotational kinetic energy, which slows the downward motion. 
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Accelerated expansion occurs when

There is in fact a FLRW solution with non-constant \chi , found by
[J. Sonner and P. K. Townsend, hep-th/0608068]
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CONCLUSIONS

De Sitter Space

• The Strong Energy Condition rules out compactification to de Sitter space if the compact
space is time-independent.

• We have shown that allowing for time dependence, the resulting SEC inequality does not
rule out compactifications to de Sitter.
We have presented a compactification to dS supported by a stress tensor satisfying SEC.

• Combining SEC and DEC, we have proven a general no-go theorem excluding any (non-
singular) time-dependent compactification to dS space.

Accelerating cosmologies

• We have seen that the SEC, by itself, does not prevent compactification to universes that
undergo late-time (eternal) accelerated expansion.

• Our compactifications lead to FLRW universes filled with a perfect fluid that has a constant
w =p/rho, on which the SEC imposes w > -1/2.

• An interesting property of our examples is that accelerated expansion of the FLRW universe
requires expansion of the compact space. The universe will eventually decompactify.


