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c.f.) Harolod Steinacher’s talk yesterday

a conjectured nonperturbative formulation of superstring theory

1
Sp = —4—92 tr([Apu, AJ][AF, AY])

S0O(9,1) symmetr
St = — o tr(Wa(C M) sl A, Wsl) (.1) sy Y
2g

N x N Hermitian matrices

0,---,9) Lorentz vector
= 1,---,16) Majorana-Weyl spinor

Lorentzian metric n = diag(-1,1,---,1)
is used to raise and lower indices.

Wick rotation (Ag = —iAi1g, TI9=1ilqp)
# Euclidean matrix model SO(10) symmetry

c.f.) Stratos Papadoudis’ talk in the next session



Crucial properties of the type |IB matrix model

as a nonperturbative formulation of superstring theory

® The connection to perturbative formulations can be seen manifestly
by considering type |IB superstring theory in 10d.

worldsheet action, light-cone string field Hamiltonian, etc.

® |t is expected to be a nonperturbative formulation of v
the unique theory underlying the web of string dualities. HA Het Esx Es
IIB Het SO(32)

® The model has 10D N = 2 SUSY, which cannot be I

realized in quantum field theories without gravity.
The low energy effective theory should inevitably include quantum gravity |

In the SUSY algebra, translation is realized as AH —> AM + aul,

which suggests that the space-time is represented as the eigenvalue distribution of AM :

Geometry emerges from matrix degrees of freedom dynamically in this approach .
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1. Definition of the Lorentzian type |IB
matrix model



Regularizing the Lorentzian model

® Unlike the Euclidean model,
the Lorentzian model is NOT well defined as it is.

Z = / dA dw (oS = / dASHPFM(A)

pure phase factor polynomial in A

(which is real,
unlike the Euclidean case)

We definitely need some sort of regularization :
IR cutoffs in both temporal and spatial directions

® Difficult to study by Monte Carlo methods due to the sign problem.

We use the complex Langevin method,
which has developed significantly in recent years.



IR cutoffs as a regularization

® Pure imaginary action is hard to deal with numerically.

m=) We deform the model by introducing two parameters (s,k).

7 = f dA e~ SAPFA(A)

S(A) = Nge 3(1- "){Qtr[AO,A] 1tr[A@, 312}

Ag — e—i’fﬂ/ (s,k) = (0,0) corresponds to
Hermitian the Lorentzian model.
“s” : Wick rotation parameter on the worldsheet
“k” . Wick rotation parameter in the target space

Introduce the IR cutoffs so that
the extent in temporal and spatial directions become finite.

1 2 2
—tr (A = kL
N (4o) " In what follows, we set L =1
1

Ntr(Ai)2 = I° without loss of generality.
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In this talk, we focus on the case k=

IR cutoffs

— 1
5 1 ikr 1 2 -
S Npe i5(1-5) {—e hmy [Ap, Ai]Q — —tr[A;, Aj]Q} Nt" (Apg)® =

1
Ntr(Ai)Q = 1

The first term can be made real positive by choosing e_%(l_s)e_ﬂm = —1
» | — 1 _2|_ 5 We focus on this case for the moment.
k

Our previous work

Kim-J.N.-Tsuchiya,

PRL 108 (2012) 011601 o
The limits

1) N —
2) (s,k) —(0,0)
should be taken eventually.

S

Lorentzian model



Extracting time-evolution from the Lorentzian model

Kim-J.N.-Tsuchiya PRL 108 (2012) 011601 [arXiv:1108.1540]

ayp < - < ay

\

definition of time “t”

1 n
= — Z Ay 44
ni=1

| The state of the universe A;(t) at time ¢

A; has a band diagonal structure

non-trivial dynamical property




2. Complex Langevin method



The complex Langevin method
Parisi ('83), Klauder ('83)

[ = fd:l? reR MC methods inapplicable
due to sign problem !
complex

Complexify the dynamical variables, and consider their
(fictitious) time evolution :

z(”)(t) _ a:(")(t) + iy(”)(t)

defined by the complex Langevin equation

d Gaussian noise (real) . X
— M) =" (1)) +@ probability o e =2 J dtn(®)
1 ow(x)

(©) = 1im (OCED @), V) =06 o

t—00

Rem 1: When w(x) is real positive, it reduces to one of the usual MC methods.

1 Ow(x)
w(x) Ox

should be evaluated for complexified variables by analytic continuation.

Rem 2 : The drift term v(z) =

and the observables O(x)



Complex Langevin equation

The effective action
—iT(1—s) 1 _ikn 1
Serr = NBe 21 '->{2e Tt [Xo, Xi)? — tr [XiaX']Q}
—|—%Ntr (A)2 + %Ntr (Ag)2

N-1
—logA(a) = ) 4
a=1

Complex Langevin equation

dt O1q t 7l
d(Ai)a,b _ aSeﬂ’
7 — 6(A¢)ba, + (nz)ab

Tq :complex variables, Ai : general complex matrices.

In this work, we omit the fermionic matrices, and consider
6d version instead of 10d to reduce computation time.



3. Emergence of (3+1)-dimensional
expanding behavior



Results at (s,k)=(-1,0)
in the 6D bosonic model

Our previous work

Kim-J.N.-Tsuchiya,
PRL 108 (2012) 011601

We focus on this line for the moment.

_1+s
2

k

S
\__1/ Lorentzian model 1

k =0 = no tilt in the time direction (real time).
Boltzmann weight = e o

1 1
S =Ngs {—Etr [Ao, A;]° + Ztr [A;, Aj]Q} » no sign problem

in this case !




Emergence of (3+1)-dim. expanding behavior

N=128, xk=0.02,

4 N

small

f=38,

(s,k) =(—-1,0), n=16

eigenvalues of T;;(t) = %tr {Xi(t)Xj(t)}

'5 ! ! ! ! ! ! ! ! ! \7
10 005 0.1 015 0.2 025 03 035 04 045 05

10°

Xi(0) = (A0 + AL 1)

SSB : SO(5) = SO(3) occurs at some point in time.




1 1
S = Ng —Etl’ [Ao,A@']Q Ztr [AiaAj]2 '

The mechanism of the SSB

favors Aj close to diagonal

~

small

-~

\ favors maximal non-commutativity
between A;

maximize NC = —tr [ﬂi(t),ﬁj(t)]Q
for tr (4;(t))? = const.

Az(t) X O for:=1,2,3
A(t) = 0 for i > 4

up to SO(5) rotation

Aoki-Hirasawa-J.N.-Ito-Tsuchiya, arXiv:1904.05914 [hep-th]



Confirmation of the mechanism

N=128, k=002, B=8, (s,k)=(=1,0), n=16

5 2
eigenvalues of Q = ) {Xz-(t)}

=1

1 - -
Xi(t) = S(A(®) + A1)
/ \ 2. | | | | | | ‘
small o
101’ S ?"’
F b
......................................... 4 <
10° i i3
A. —_
1T — v
Qmall /
— 4l ‘ -. | »,i,;g 2 ‘ 5 | ] ‘ 3 ‘ ‘:
A’L(t) 10005 0.1 015 02 025 03 035 04 045 05

Only 2 Evs of Q become large suggesting the Pauli-matrix structure.




4. Emergence of a smooth space-time



Exploring the phase diagram near s = 0
k

Our previous work

Kim-J.N.-Tsuchiya,
PRL 108 (2012) 011601

We focus on this line for the moment.

—1

Lorentzian model

S =—-N§ {%tr [40, A;]° + r [A;, Aj]2}

Real part changes sign at s = 0.

Can we obtain (3+1)-dim. expanding behavior
with a smooth space-time structure ?

Note: Pauli-matrix structure is obtained by maximizing tr (Fij)2 !



s—= —1vVv.s. s~0

5 2
: 1 :
eigenvalues of T;;(t) = ﬁtr{Xi(t)Xj(t)} eigenvalues of Q = )  {X;(t)
10t ¢ 102+ ‘ ‘ ‘ ‘?::‘1 ‘ ‘
ol ] Fo
? (3+1)d expanding 10 ﬁ T o
4l T . % Pauli matrices
10 behavior 10°} 7 a *
S
10 S — — 1 10" ﬁﬁ.} @%%%
103 102 2,
10 103 Teiene
4 H gﬁ Pt s
1005 01 015 02 025 03 035 04 045 05 107005 0.1 015 02 025 03 035 04 045 05
N=128, k=002, B=8, (s,k)=(-1,0), n=16
10% ¢ 102 &
100 (3+1)d expanding 0t 4 % departure from
behavior #r=%  Pauli matrices
10t} 10° | “’ ;:x% :
s~ 0 sy
102 10t
10'27+ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ £
005 01 015 02 025 03 035 04 045 05

3L . . . . . . , , ,
100,05 0.1 015 02 025 0.3 035 04 045 05

N =128 ,

k= 0.02 ,

(s,k) = (—0.004,0.498) .

n=16



Hermiticity of the spatial matrices

N=128, k=0.02, B=8, (s k)=(-0.004,0498), n=16

4 N

small L - _nggg o
______________________________________ s ReR2(t) [
Y
Z A; (1)
Qmall ......................................... /
05| R ]
RQ(t) — ltl’ (A(t)Q) 005 01 015 02 025 03 035 04 045 05
(4
ey = —Fr i) = ()1’ 0<h(t) <1
Atr (Az(t)T/—lz(t)) Hermitian anti-Hermitian

Spatial matrices become close to Hermitian Classical solution seems to be
near the peak of Re R2(t). dominating in this region.



5. Summary and Discussions



Summary
k

Our previous work

Kim-J.N.-Tsuchiya,
PRL 108 (2012) 011601

)d expanding We focused on this line.

oth space-time

_____ o continuous

—1 Lorentzian model

® Transition from the Pauli matrices to a smooth space-time
seems to occur as we approach s=0.

® Complex Langevin simulation becomes unreliable due to growing non-
hermiticity when we decrease k from k=(1+s)/2 too much.

Can we approach the target (s,k)=(0,0) at larger N ?
Does the (3+1)d expanding smooth space-time survive there ?



Discussions

® Hermiticity of spatial matrices emerges as the space expands.

This suggests that a classical solution is dominating there.
If so, solving the classical eq. of motion is a sensible way
to explore the late time behavior of this model.

Possible emergence of the Standard Model from the intersecting branes
in the extra dimensions.

Chatzistavrakidis-Steinacker-Zoupanos (2011)
Aoki-J.N.-Tsuchiya (2014),

Hatakeyama-Matsumoto-J.N.-Tsuchiya-Yosprakob, in prep.
® Effects of the fermionic matrices ?

Not straightforward due to the “singular-drift problem” in the CLM
caused by the near-zero eigenvalues the Dirac operator.

Deformation of the Dirac operator (and extrapolations) may be needed.

Successful in Euclidean type IIB matrix model
Anagnostopoulos-Azuma-Ito-J.N.-Papadoudis JHEP 1802 (2018) 151



6. Backup slides



Partition function of the Lorentzian
type |IB matrix model

Kim-J.N.-Tsuchiya PRL 108 (2012) 011601 [arXiv:1108.1540]

partition function

z=| 1A AW (SoH50) = [ daepra(a)

This seems to be natural from the
connection to the worldsheet theory.

5 = [dPeyg (X0 XY STy X0, W)
§o = —162

The worldsheet coordinates should also be Wick-rotated.



Lorenzian v.s. Euclidean

The reason why no one dared to study
the Lorentzian model for many years:

Sb o< tr (Fu FFHY) = —2tr (Fo;)? + tr (£5)°

\ )
|

opposite sign

F/_Ly — _Z[A/J’7 Ay]

Once one Euclideanizesitby Ag = —tAq10,
Sp o tr (Fyu)? positive definite!

The flat direction ([Ay, Ay] ~ 0) is lifted
due to quantum effects. Aoki-lIso-Kawai-Kitazawa-Tada '99

Euclidean model is well defined without any need for cutoffs.
Krauth-Nicolai-Staudacher ('98),
Austing-Wheater ('01)

Monte Carlo studies :
e.g., Ambjorn-Anagnostopoulos-Bietenholz-Hotta-J.N., JHEP 0007 (2000) 013



How to treat the IR cutoffs

1
—tr(Ap)? = &

IR cutoffs N
Etr(Ai)Q = 1

Use the unconstrained matrices Au as fundamental variables and substitute

X — VKEAQ P A;
o JEtr (A2 L Rtr(a)?
N 0 N )

in the action and observables

T 1 . 1
S = NBe #2(1=9) {Ee—@’”tr [XO,X,L-]Q—Ztr [Xi,Xj]Q}

Nt (Ag) + Ntr (4))2

1 1
Add some functions of N (AO)Q,NU(AQQ so that the integral of A,u converges.



How to introduce the “time ordering”

7 = f dAgdA; ¢S = / do dA?;e_S

Ag = diag(aq, - ,an)
ap < ap < - << QN

Ala) = ]] (ca—ay)? : van der Monde determinant
a>b

Before complexification, we make the change of variables
N-1

O{]_:O, a2:eT17 0‘53:67-14_672: R aN:ZeTaa
a=1

in order to introduce the “time ordering”.

Then we complexify 7a (a=1,---,N—-1),



Can the Lorentzian type IIB matrix model generate
a smooth (3+1)D expanding space-time ?

® |t is nice that the generalized model at (s,k)=(-1,0)
has good properties such as

» band-diagonal structure mm) enables us to extract the time-evolution

» 3 extended spatial directions [> can be regarded as a “seed”
which expands with time of a smooth (3+1)D expanding space-time

(These properties can be understood just from the action.)

® Does a smooth (3+1)D expanding space-time appears
if one approaches s=0 (the target value) with fixed k=(1+s)/2 ?

(Eventually, we have to approach (s,k)=(0,0), the Lorentizan model.)



summary

The (generalized) Lorentzian type |IB matrix model

T 1 1
S=Ngp e_?’j(l_s) {Etl’ [Ao, AZ']Q — Ztr [A@, AJ]Q}

‘ Ag — e_ikﬂ/on

o . 1
S = Ng 6_17(1_8) {%e_mwtl’ [Ao, AZ‘]Q — Ztl’ [Ai, AJ]Q}

1 1
IR cutoffs : Ntr(Ao)2 =K, Ntr(A,&-)2 =1

Our previous work

Kim-J.N.-Tsuchiya,
PRL 108 (2012) 011601

AN L 1+ts

We focused on this line. -

) expanding
oth space-time (?)—

T (The limits )

it iinbe { 1) N — oo

"""""""""" 2) (s,k) — (0,0)
Lorentzian model (_should be taken eventually. )




Recent development : the condition for correct convergence
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The probability distribution of the magnitude of the drift term

Z

w(x)

= /dac w(x)

= (z+ia)? e—%/2

p=4

In this model, CLM fails at a < 3.7.

log-log plot

A=3.B ]
a=3.7 —— 4
a=3.8 -------- -
0=39 ——-- ]

o=4 —-— |
a=4.1 —-—
a=4.2 ——— 1

power-law fall off

caused by freduent visits to
" the singularitylat z = —ia

10°

PR |
10'
u

u=lv(z)| = — Z

102

should be suppressed exponentially in order for the method to be justified.
Nagata-J.N.-Shimasaki, Phys.Rev. D94 (2016) no.11, 114515.



Side remark: application to finite density QCD

40 ¢

32 |

quark number

Nagata-J.N.-Shimasaki : arXiv:1805.03964 [hep-lat]
lto-Matsufuru-J.N.-Shimasaki-Tsuchiya-Tsutsui, work in progress

24 +
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\ \ \ I .
CLM =+ -
CPQ o
plateau corresponding ]
to the emerge ni- sphere{zero mom.)
 Ix=Ly=1z=8 )ndensation of Cooper pairs
- Lt=16 I color supefconductivity (?)
- Nf = 4 staggered fermion
- 8=5.7, m=0.01
<\- results for phase-quenched model
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