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Abstract

The exceptional euclidean Jordan algebra J8
3 , consisting of 3× 3

hermitian octonion matrices, appears to be tailor made for the internal
space of the three generations of quarks and leptons. The maximal
rank subgroup of the authomorphism group F4 of J8

3 that respects the
lepton-quark splitting is (SU(3)c × SU(3)ew )/Z3. Its restriction to the
special Jordan H16(C)⊗H16(C) of J8

2 , the subalgebra of hermitian
matrices of the associative envelope of its complexification, involves 32
primitive idempotents giving the states of the first generation fermions.
The triality relating left and right Spin(8) spinors to 8-vectors
corresponds to the Yukawa coupling of the Higgs boson to quarks and
leptons.
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Motivation. Alternative approaches
The gauge group of the Standard model (SM),

GSM =
SU(3)× SU(2)× U(1)

Z6
= S(U(3)× U(2)) (1)

and its (highly reducible) representation for the first generation of basic
fermions, (

ν
e−

)
L
↔ (1,2)−1,

(
u
d

)
L
↔ (3,2) 1

3

(νR ↔ (1,1)0?), e−
R ↔ (1,1)−2, uR ↔ (3,1) 4

3
, dR(3,1)− 2

3
(2)

(the subscript standing for the value of the weak hypercharge Y ), look
rather baroque for a fundamental symmetry. Unsatisfied, the founding
fathers proposed Grand Unified Theories (GUTs) with (semi)simple
symmetry groups: SU(5) H. Georgi - S.L. Glashow (1974);
Spin(10) H. Georgi (1975), H. Fritzsch - P. Minkowski (1975);
Spin(6)× Spin(4) = SU(4)×SU(2)×SU(2)

Z2
J.C. Pati - Abdus Salam

(1973).
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The first two GUTs, based on simple groups, gained popularity in the
beginning, since they naturally accommodated the fundamental
fermions:

SU(5) : 32 = ΛC5 =
5⊕

ν=0

Λν , Λ1 =

(
ν

e−

)
−1
⊕ d̄ 2

3
= 5̄,

Λ3 =

(
u
d

)
1
3

⊕ u− 4
3
⊕ e+

2 = 10;

Spin(10) : 32 = 16L ⊕ 16R, 16L = Λ1 ⊕ Λ3 ⊕ Λ5. (3)

However the corresponding adjoint representations 24 (of SU(5)) and
45 (of Spin(10)) carry, besides the expected eight gluons and four
electroweak gauge bosons, unwanted leptoquarks; for instance,

24 = (8,1)0 ⊕ (1,3)0 ⊕ (1,1)0 ⊕ (3,2) 5
3
⊕ (3̄,2)− 5

3
. (4)

Moreover, the presence of twelve gauge leptoquarks in (4) yields a
proton decay rate that contradicts current experimental bounds.
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The Pati-Salam GUT is the only one which does not predict a gauge
triggered proton decay (it allows model dependent interactions with
scalar fields that would permit such a decay). Accordingly, the
Pati-Salam group appears in a preferred reduction of the Spin(10)
GUT. Intriguingly, a version of this symmetry is also encountered in the
noncommutative geometry approach to the SM. Concerning the most
popular nowadays supersymmetric GUTs the lack of experimental
evidence for any superpartner makes us share the misgivings
expressed forcefully by Peter Woit and others.
The noncommutative geometry approach, was started 15 years after
GUTs, ”at the height of the string revolution” and pursued vigorously by
Alain Connes, collaborators and followers.
The algebraic approach to quantum theory has, in fact, been initiated
back in the 1930’s by Pascual Jordan, who axiomatized the concept of
observable algebra, the prime example of which is the algebra of
complex hermitian matrices (or self-adjoint operators in a Hilbert
space) equipped with the symmetrized product

A ◦ B =
1
2

(AB + BA) (= B ◦ A). (5)
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Such a (finite dimensional) Jordan algebra should appear as an
”internal” counterpart of the algebra of smooth functions of classical
fields. In the case of a special Jordan algebra one can work with the
corresponding matrix algebra. In the noncommutative geometry
approach to the SM one arrives at the following finite algebra:

AF = C⊕H⊕ C[3] (6)

(A[n] standing for the algebra of n × n matrices with entries in the
coordinate ring A). The only hermitian elements of the quaternion
algebra H, however, are the real numbers, so AF does not appear as
the associative envelope of an interesting observable algebra. We
shall, by contrast, base our treatment on an appropriate finite
dimensional Jordan algebra suited for a quantum theory - permitting, in
particular, a spectral decomposition of observables.
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Euclidean Jordan algebras

An euclidean Jordan algebra is a real vector space J with a
commutative product X ◦ Y satisfying the formal reality condition

X 2
1 + ...+ X 2

n = 0⇒ X1 = ... = Xn = 0 (X 2
i := Xi ◦ Xi) (7)

and power associativity. These conditions are necessary and sufficient
to have spectral decomposition of any element of J and thus treat it as
an observable.
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In order to introduce spectral decomposition we need the algebraic
counterpart of a projector: e ∈ J satisfying e2 = e(6= 0) is called an
idempotent. Two idempotents e and f are orthogonal if e ◦ f = 0; then
multiplication by e and f commute and e + f is another idempotent.
The formal reality condition (7) allows to define partial order in J saying
that X is smaller than Y , X < Y , if Y − X can be written as a sum of
squares. Noting that f = f 2 we conclude that e < e + f . A non-zero
idempotent is called minimal or primitive if it cannot be decomposed
into a sum of (nontrivial) orthogonal idempotents. A Jordan frame is a
set of orthogonal primitive idempotents e1, ...,er satisfying

e1 + ...+ er = 1 (ei ◦ ej = δijei). (8)

Each such frame gives rise to a complete set of commuting
observables. The number of elements r in a Jordan frame is
independent of its choice and is called the rank of J.
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Each X ∈ J has a spectral decomposition of the form

X =
r∑

i=1

λiei , λi ∈ R, λ1 ≤ λ2 ≤ ... ≤ λr . (9)

For a X for which all λi in (9) are different the spectral decomposition is
unique. Such regular X form a dense open set in J. The rank of J coincides
with the degree of the characteristic polynomial for any X ∈ J:

Fr (t ,X ) = t r − a1(X )t r−1 + ...+ (−1)r ar (X ),

ak (X ) ∈ R, ak (αX ) = αk ak (X ) (α > 0). (10)

The roots of Fr are (t =)λ1, ..., λr (some of which may coincide). Given a
regular X the idempotents ei can be expressed as polynomial in X of degree
r − 1, determined from the system of equations

e1 + ...+ er = 1,
λ1e1 + ...+ λr er = X ,

......

λr−1
1 e1 + ...+ λr−1

r er = X r−1, (11)

whose Vandermonde determinant is non zero for distinct λi .
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We define a trace and an inner product in J. The trace, tr(X ), is a
linear functional on J taking value 1 on primitive idempotents:

tr(X ) =
∑

i

λi(= a1(X )), tr(1) = r , (12)

for X given by (9) (and a1(X ) of (10)). The inner product, defined as
the trace of the Jordan product, is positive definite:

(X ,Y ) := tr(X ◦ Y )⇒ (X ,X ) > 0 for X 6= 0. (13)

This justifies the name euclidean for a formally real Jordan algebra.
The last coefficient, ar , of (10) is the determinant of X :

ar (X ) = det(X ) = λ1...λr . (14)

If det(X ) 6= 0 then X is invertible and its inverse is given by

X−1 :=
(−1)r

det(X )
(X r−1 − a1(X )X r−1 + ...+ (−1)r−1ar−1(X )1). (15)

The theory of euclidean Jordan algebras is simplified by the fact that
any such algebra can be written as a direct sum of simple ones.
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The finite dimensional simple euclidean Jordan algebras were classified at
the dawn of the theory, in 1934, by Jordan, von Neumann and Wigner. They
can be labeled by two numbers, the rank r and the degree d (the dimension of
off diagonal elements) and split into four infinite series and one exceptional
algebra (proven to be non special by A.A. Albert also in 1934):

J1
r = Hr (R), r ≥ 1; J2

r = Hr (C), r ≥ 2;

J4
r = Hr (H), r ≥ 2; Jd

2 = JSpin(d + 1);

J8
3 = H3(O), dim(Jd

r ) =

(
r
2

)
d + r (16)

(dim(H(R)r ) =
(r+1

2

)
, dim(H(C)r ) = r2, dim(Jd

2 ) = d + 2, dim(J8
3 ) = 27). The

first three algebras in the above list consist of familiar hermitian matrices (with
entries in associative division rings). The spin factor Jd

2 ⊂ C`d+1 can be
thought as the set of 2× 2 matrices of the form

X = ξ1 + x̂ , ξ ∈ R, x̂2 = N(x)1, N(x) =
d∑
µ=0

x2
µ = −detx̂ , tr x̂ = 0. (17)
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There are three obvious repetitions in the list (16): the spin factors Jd
2

for d = 1,2,4 coincide with the first items in the three families of matrix
algebras in the list (16). We could also write

J8
2 = H2(O)(⊂ C`9); (18)

here (as in J8
3 )O stands for the nonassociative division ring of

octonions. The spin factor J8
2 (unlike J8

3 ) is special - as a
(10-dimensional) Jordan subalgebra of the (29-dimensional)
associative algebra C`9.
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Remarkably, an euclidean Jordan algebra gives room not only to the
observables of a quantum theory, it also contains its states: these are
the positive observables.
Each euclidean Jordan algebra J contains a convex, open cone C
consisting of all positive elements of J (i.e., all invertible elements that
can be written as sums of squares, so that all their eigenvalues are
positive). Jordan frames belong to the closure C̄ (in fact, to the
boundary) of the open cone, not to C itself, as primitive idempotents
(for r > 1) are not invertible.
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The states are (normalized) positive linear functionals on the space of
observables, so they belong to the closure of the dual cone

C∗ = {ρ ∈ J; (ρ,X ) > 0 ∀X ∈ C̄}. (19)

In fact, the positive cone is self-dual, C = C∗. An element ρ ∈ C̄ ⊂ J of
trace one defines a state assigning to any observable X ∈ J an
expectation value

< X >= (ρ,X ) = tr(ρ ◦ X ), ρ ∈ C̄, trρ (=< 1 >) = 1. (20)

The primitive idempotents define pure states; they are extreme points
in the convex set of normalized states. All positive states (in the open
cone C) are (mixed) density matrices. There is a distinguished mixed
state in Jd

r , the normalized unit matrix, called by Baez the state of
maximal ignorance:

< X >0=
1
r

tr(X ) (r = tr(1)). (21)

Any other state can be obtained by multiplying it by a (suitably
normalized) observable - thus displaying a state observable
correspondence.
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The cone C is homogeneous: it has a transitively acting symmetry
group that defines the structure group of the Jordan algebra,
Aut(C) =: Str(J), the product of a central subgroup R+ of uniform
dilations with a (semi)simple Lie group Str0(J). Here is a list of the
corresponding (semi)simple Lie algebras:

str0(J1
r ) = sl(r ,R), str0(J2

r ) = sl(r ,C), str0(J4
r ) = su∗(2r),

str0(Jd
2 ) = so(d + 1,1)(= spin(d + 1,1)), str0(J8

3 ) = e6(−26). (22)

The stabilizer of the point 1 of the cone is the maximal compact
subgroup of Aut(C) whose Lie algebra coincides with the derivation
algebra of J:

der(J1
r ) = so(r), der(J2

r ) = su(r), der(J4
r ) = usp(2r),

der(Jd
2 ) = so(d + 1)(= spin(d + 1)), der(J8

3 ) = f4. (23)

We shall argue that the exceptional Jordan algebra J8
3 should belong

to the observable algebra of the SM.
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Octonions in J8
3 . Quark-lepton symmetry

Why octonions?
The octonions O were originally introduced as pairs of quaternions (the
”Cayley-Dickson construction”). But it was the decomposition of O into
complex spaces,

O = C⊕ C3, x = z + Z, z = x0 + x7e7, Z = Z 1e1 + Z 2e2 + Z 4e4,

Z j = x j + x3je7; ejej+1 = ej+3(mod7), ejek + ek ej = −2δjk , j , k = 1, ...7, (24)

that led Feza Gürsey (and his student Günaydin) back in 1973 to apply it to
the quarks (then the newly proposed constituents of hadrons). They figured
out that the subgoup SU(3) of the automorphism group G2 of the octonions,
that fixes the first C in (24), can be identified with the quark colour group.
Gürsey tried to relate the non-associativity of the octnions to the quark
confinement - the unobservability of free quarks. Only hesitantly did he
propose ”as another speculation” that the first C in (24) ”could be related to
leptons”. Interpreting (24) as a manifestation of the quark-lepton symmetry
was only taken seriously in 1987 by A. Govorkov in Dubna.
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M. Dubois-Violette pointed out that, conversely, the unimodularity of
the quark’s colour symmetry yields - through an associated invariant
volume form - an essentially unique octonion product with a
multiplicative norm. The octonions (just like the quaternions) do not
represent an observable algebra. They take part, however, in the
exceptional Jordan algebra J8

3 whose elements obey the following
Jordan product rules:

X (ξ, x) =

 ξ1 x3 x∗
2

x∗
3 ξ2 x1

x2 x∗
1 ξ3


=

3∑
i=1

(ξiEi + Fi(xi)), Ei ◦ Ej = δijEi , Ei ◦ Fj =
1− δij

2
Fj ,

Fi(x) ◦ Fi(y) = (x , y)(Ei+1 + Ei+2), Fi(x) ◦ Fi+1(y) =
1
2

Fi+2(y∗x∗)

(25)

(indices being counted mod 3). It incorporates triality that will be
related to the three generations of basic fermions.
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Quark-lepton splitting of J8
3 and its symmetry

The automorphism group of J8
3 is the compact exceptional Lie group

F4 of rank 4 and dimension 52 whose Lie algebra is spanned by the
(maximal rank) subalgebra so(9) and its spinorial representation 16,
and can be expressed in terms of so(8) and its three (inequivalent)
8-dimensional representations:

der(J8
3 ) = f4 ∼= so(9) + 16 ∼= so(8)⊕ 8V ⊕ 8L ⊕ 8R; (26)

here 8V stands for the 8-vector, 8L and 8R for the left and right chiral
so(8) spinors. The group F4 leaves the unit element 1 = E1 + E2 + E3
invariant and transforms the traceless part of J8

3 into itself (under its
lowest dimensional fundamental representation 26).
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The lepton-quark splitting (24) of the octonions yields the following
decomposition of J8

3 :

X (ξ, x) = X (ξ, z) + Z , X (ξ, z) ∈ J2
3 = H3(C),

Z = (Z j
r , j = 1,2,4, r = 1,2,3) ∈ C[3]. (27)

The subgroup of Aut(J8
3 ) which respects this decomposition is the commutant

Fω
4 ⊂ F4 of the automorphism ω ∈ G2 ⊂ Spin(8) ⊂ F4 (of order three):

ωX (ξ, x) =
3∑

i=1

(ξiEi + Fi (ω7xi )), ω7 =
−1 +

√
3e7

2
(ω3 = 1 = ω3

7). (28)

It consists of two SU(3) factors (with their common centre acting trivially):

Fω
4 =

SU(3)c × SU(3)ew

Z3
3 (U,V ) : X (ξ, x)→ VX (ξ, z)V ∗ + UZV ∗. (29)

We see that the factor, U acts on each quark’s colour index j(= 1,2,4), so it
corresponds to the exact SU(3)c colour symmetry while V acts on the
leptons and on the flavour index r(= 1,2,3) and is identified with (an
extension of) the broken electroweak symmetry as it will be made clear by
restricting the quantum algebra to the first generation of fermions.
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The first generation algebra J8
2 and its euclidean

extension
The Jordan subalgebra J8

2 ⊂ J8
3 , orthogonal, say, to the projector E1,

J8
2 (1) = (1− E1)J8

3 (1− E1), (30)

is special, its associative envelope being C`9. Its automorphism group
is Spin(9) ⊂ F4, whose intersection with Fω

4 , that respects the
quark-lepton splitting, coincides with - and thus explains - the gauge
group of the SM:

GSM = Fω
4 ∩ Spin(9) = S(U(3)× U(2))(=

SU(3)× SU(2)× U(1)

Z6
).

(31)
The correct euclidean extension of J8

2 is the Jordan subalgebra of
hermitian matrices of the complexificatioin of its associative envelope
(the real and hermitian envelopes having both dimension 2× 162):

J8
2 ⊂ C`9 = R[16]⊕R[16]→ J2

16⊕ J2
16 ⊂ C`9(C) (J2

16 = H16(C)). (32)
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The resulting (reducible) Jordan algebra of rank 32 gives room
precisely to the state space (of internal quantum numbers) of
fundamental fermions of one generation - including the right handed
”sterile” neutrino. In fact, it is acted upon by the simple structure group
of J8

2 whose generators belong to the even part of the Clifford algebra
C`(9,1) isomorphic to C`9 and whose Dirac spinor representation
splits into two chiral Weyl spinors:

Str0(J8
2 ) = Spin(9,1) ⊂ C`0(9,1)(∼= C`9)⇒ 32 = 16L ⊕ 16R. (33)

The introduction of a rank 5 group like Spin(9,1), that is another real
form of the GUT’s Spin(10), gives room to one more quantum number
providing a natural labeling of the fundamental fermions of (any) one
generation.

Ivan Todorov (INRNE) Exceptional quantum algebra for SM LT13 22 / 29



As the quark colour is not observable we only have to distinguish
SU(3)c representations as labels: 3 for a quark triplet, (̄3 for an
antiquark) and 1 for an SU(3)c singlet. The electroweak labels are the
hypercharge Y and the (exactly conserved) electric charge
Q(= I3 + 1

2Y ). The extra quantum number coming from the structure
Lie algebra can be identified with the commutant B − L of su(3)c in the
Pati-Salam su(4) ⊂ so(9,1) (that is the difference between the baryon
and the lepton number). We have eight primitive idempotents
corresponding to the left and right (anti)leptons and eight (non
primitive) chiral (anti)quark idempotents (colour singlets of trace three);
for instance,

|νL >< νL| ↔ (1; Y = −1,Q = 0,B − L = −1),∑
j

|d j
L >< d j

L| ↔ (3;
1
3
,−1

3
,
1
3

). (34)
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Triality and Yukawa coupling
Associative trilinear form. The principle of triality
The trace of an octonion x =

∑
µ xµeµ is a real valued linear form on

O:
tr(x) = x + x∗ = 2x0 = 2Re(x) (e0 ≡ 1). (35)

It allows to define an associative and symmetric under cyclic
permutations normed triality form:

2t(x , y , z) = tr((xy)z) = tr(x(yz)) =: tr(xyz) = tr(zxy) = tr(yzx).
(36)

The normalization factor 2 is chosen to have:

|t(x , y , z|2 ≤ N(x)N(y)N(z), N(x) = xx∗(∈ R). (37)

While the norm N(x) and the corresponding scalar product are
SO(8)-invariant, the trilinear form t corresponds to the invariant
product of the three inequivalent 8-dimensional fundamental
representations of Spin(8), the 8-vector and the two chiral spinors S±.
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Theorem 5.1 (Principle of triality). For any g ∈ SO(8) there exists a
pair (g+,g−) of elements of SO(8), such that

g(xy) = (g+x)(g−y), x , y ∈ O. (38)

If the pair (g+,g−) satisfies (38) then the only other pair which obeys
the principle of triality is (−g+,−g−).
Corollary. If the triple g,g+,g− obeys (38) then the form t (36) satisfies
the invariance condition

t(g+x ,g−y ,g−1z) = t(x , y , z). (39)

Proposition 5.2 The set of triples
(g,g+, ,g−) ∈ SO(8)× SO(8)× SO(8) satisfying the principle of
triality form a group isomorphic to the double cover Spin(8) of SO(8).
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An example of a triple (g+,g−,g−1) satisfying (39) is provided by left-, right-
and bi-multiplication by a unit octonion:

t(Lux ,Ruy ,Bu∗z) = t(x , y , z), Lux = ux ,Ruy = yu,Bv z = vzv , uu∗ = 1.
(40)

The maps among g,g+,g− belong to the group of outer automorphisms of
the Lie algebra so(8) which coincides with the symmetric group S3 that
permutes the nodes of the Dynkin diagram for so(8). In particular, the map
permuting Lu,Ru,Bu∗ belongs to the cyclic group Z3:

ν : Lu → Ru → Bu∗ ⇒ ν3 = 1. (41)

Remark. The associativity law, expressed in terms of left (or right)
multiplication, reads

LxLy = Lxy , RxRy = Ryx . (42)

It is valid for complex numbers and for quaternions; for octonions Eq. (42)
only takes place for real multiples of powers of a single element. Left and
right multiplications by unit quaternions generate different SO(3) subgoups of
the full isometry group SO(4) of quaternions. By contrast, products of upto 7
left multiplications of unit octonions (and similarly of upto 7 Ru or Bu)
generate the entire SO(8).
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Speculations about Yukawa couplings
Proposition 5.3 The subgroup Spin(8) of F4 leaves the diagonal
projectors Ei in the generic element X (ξ, x) (25) of J8

3 invariant and
transforms the off diagonal elements as follows:

F1(x1) + F2(x2) + F3(x3)→ F1(gx1) + F2(g+x2) + F3(g−x3). (43)

Thus if we regard x1 as a Spin(8) vector, then x2 and x3 should
transform as S+ and S− spinors, respectively. It would be attractive to
interpret the invariant trilinear form t(x1, x2, x3) as the internal
symmetry counterpart of the Yukawa coupling between a vector and
two (conjugate) spinors. Viewing the 8-vector x1 as the finite geometry
image of the Higgs boson, the associated Yukawa coupling would be
responsible for the appearance of (the first generation) fermion
masses.
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There are, in fact, three possible choices for the SO(8) vector
representation, one for each generation i and for the associated
Jordan subalgebra

J8
2 (i) = (1− Ei)J8

3 (1− Ei), i = 1,2,3. (44)

According to Jacobson any finite (unital) module over J8
3 has the form

J8
3 ⊗ E for some finite dimensional real vector space E . The above

consideration implies that dim(E) should be divisible by three. The
analysis of Sect. 4, on the other hand, suggests that E should contain
a factor H16(C). A possible candidate satisfying both conditions is
E = H16(C)⊗H3(R). Then the rank 3× 32 of the Jordan module
J8

2 ⊗ E ⊂ J8
3 ⊗ E , would be equal to the total dimension of the internal

space of three generations of fermions.
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Using the classification of finite dimensional simple euclidean
observable algebras (of 1934) and the quark-lepton symmetry we
argue that the observable akgebra of the SM is a multiple of the
exceptional Jordan (also called Albert) algebra J8

3 that describes the
three generations of fundamental fermions. We postulate that the
symmetry group of the SM is the subgroup Fω

4 of Aut(J8
3 ) = F4 that

respects the quark-lepton splitting. Remarkably, the intersection of Fω
4

with the automorphism group Spin(9) of the subalgebra J8
2 ⊂ J8

3 of a
single generation is precisely the gauge group of the SM.
The next big problem we should face is to fix the appropriate J8

3
module and to write down the Lagrangian in terms of fields taking
values in this module.
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