Black Hole from Colors

Masanori Hanada University of Southampton

Sept 23, 2019 @ Corfu, Greece

M.H.-Maltz, 2016 M.H.-Ishiki-Watanabe, 2018 M.H.-Jevicki-Peng-Wintergert, 2019 M.H.-O'Bannon-Robinson, in preparation • Confinement phase: $E \sim N^0$

• Deconfinement phase: $E \sim N^2$

• Confinement phase: $E \sim N^0$

• Deconfinement phase: E ~ N²

What if $E \sim N^2/100$?

Heuristic justification

(more precise argument is given later)

Why doesn't a part of the volume deconfine?

Why doesn't a part of the volume deconfine?

Deconfinement takes place even in matrix model, which has no spatial dimensions.

Why don't all N² d.o.f. gently excited?

Why don't all N² d.o.f. gently excited?

In quantum mechanics, parametrically small excitation is impossible.

Why should symmetry preserved partly?

Why should symmetry preserved partly?

It is natural to expect a large symmetry at saddle point.

Phase Diagrams

Hagedorn transition Gross-Witten-Wadia transition Gauge symmetry breaking

(more precise argument is given later)

Gross-Witten-Wadia transition

Μ

- Polyakov loop $P = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}$
- Phase distribution:

Polyakov loop

$$P = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}$$

• Phase distribution:

Gross-Witten-Wadia transition = "partial deconfinement → complete deconfinement" transition

Polyakov loop

$$P = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}$$

• Phase distribution:

• Polyakov loop P =

$$\mathbf{P} = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}$$

• Phase distribution:

transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

 $SU(N) \rightarrow SU(M) \times SU(N-M) \times U(1) \rightarrow SU(N)$

transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

$$SU(N) \rightarrow SU(M) \times SU(N-M) \times U(1) \rightarrow SU(N)$$

No need for center symmetry. No need for chiral symmetry. Applies to QCD.

Where did it come from?

J. Maltz

E. Berkowitz

Berkowitz-M.H.-Maltz, 2016, PRD (Higgsing version) M.H.-Maltz, 2016, JHEP; Susskind, unpublished

Black Hole in $AdS_5 \times S^5 = 4d N = 4 SYM on S^3$

Hagedorn String

Large BH E ~ N²T⁴

diagonal elements = particles (D-branes) off-diagonal elements = open strings

(Witten, 1994)

black hole = bound state of D-branes and strings

N_{BH} D-branes form the bound state

U(N_{BH}) is deconfined — 'partial deconfinement'

It can explain E ~ N^2T^{-7} for 4d SYM, $N^{3/2}T^{-8}$ for ABJM

(String Theory \rightarrow 10d) (M-Theory \rightarrow 11d)

(MH-Maltz, 2016)

Why is positive specific heat natural?

T~E/N²

 $T' \sim E'/N^2$

N² is fixed \rightarrow T'>T if E' > E

Why can negative specific heat appear?

 N_{BH} is a function of E_{BH}

Berkowitz-M.H.-Maltz, 2016, PRD (Higgsing version) M.H.-Maltz, 2016, JHEP

Explicit demonstration in simple theories

M.H., Jevicki, Peng, Wintergerst, 1909.09118 [hep-th]

"Partial deconfinement \rightarrow complete deconfinement" in SU(M) theory.

M.H., Maltz, 2016

Polyakov loop

$$P = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}$$

• Phase distribution:

$$\rho(\theta) = \left(1 - \frac{M}{N}\right)\rho_{\text{confine}}(\theta) + \frac{M}{N} \cdot \rho_{\text{GWW}}(\theta; M)$$
$$= \frac{1}{2\pi} \left(1 - \frac{M}{N}\right) + \frac{M}{N} \cdot \rho_{\text{GWW}}(\theta; M).$$

Holds in all examples we have studied.

M.H.-Ishiki-Watanabe, 2018

not SU(N)-invariant

 $|E; \mathrm{SU}(M)\rangle$

At weak coupling, this is an energy eigenstate. $S = S_{\rm GWW}(M)$

(Analytic calculation doable for weakly coupled QCD on S³, O(N) vector model, matrix model)

M.H.-Jevicki-Peng-Wintergerts, 2019

'Spontaneous gauge symmetry breaking'

M.H.-Jevicki-Peng-Wintergerts, 2019

- Global part of gauge symmetry breaks spontaneously.
- It is convenient to fix the local part, like usual Higgsing.
- 'Gauge symmetry breaking' provides us with a 'useful fiction' which makes physics understandable.

transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

 $SU(N) \rightarrow SU(M) \times SU(N-M) \times U(1) \rightarrow SU(N)$

transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

$$SU(N) \rightarrow SU(M) \times SU(N-M) \times U(1) \rightarrow SU(N)$$

No need for center symmetry. No need for chiral symmetry. Applies to QCD.

QCD at zero chemical potential Mc E/N^2 M_{c} Nc Nc Nf T_2 M_{c} Nc T_1

M.H.-O'Bannon-Robinson, in preparation

Quantum Entanglement

between color d.o.f.

- Typically, ground state of interacting system is highly entangled.
- Thermal excitations can destroy the entanglement.

- Typically, ground state of interacting system is highly entangled.
- Thermal excitations can destroy the entanglement.

Confined → ground state up to 1/N corrections

- Typically, ground state of interacting system is highly entangled.
- Thermal excitations can destroy the entanglement.

Confined → ground state up to 1/N corrections

Large entanglement can survive even at finite temperature.

Entanglement between color d.o.f. \rightarrow geometry outside the horizon?

Summary

transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

 $SU(N) \rightarrow SU(M) \times SU(N-M) \times U(1) \rightarrow SU(N)$

No need for center symmetry. No need for chiral symmetry. Applies to QCD.