
A graded geometric approach to E/M duality

Georgios Karagiannis

Rudjer Boskovic Institute, Zagreb, Croatia

based on [arXiv:1908.11663] with A. Chatzistavrakidis and P. Schupp

September 15, 2019

Recent Developments in Strings and Gravity
Corfu, Greece



Motivation

Mathematical: Develop a geometric framework suitable for studying mixed-symmetry
tensor fields ⇒ Graded Geometry

Physical: Embed the E/M duality into this geometric setting.

Provide a common starting point for the dualization of p-form fields and
mixed-symmetry tensors.

Unify different types of Abelian E/M duality, e.g. standard and exotic duality.

⇒ Goal: Find a universal geometric first-order parent Lagrangian!



Bipartite tensors in graded geometry

Bipartite tensors generalize differential forms; their components contain two sets of
antisymmetrized indices when expanded in some local coordinate system.

We will consider the graded supermanifold M = T [1]M ⊕ T [1]M, where M is the
D-dimensional Minkowski spacetime. M is eqquiped with the degree-0 coordinates
x i of M and two sets of degree-1 coordinates θi , χi satisfying:

θiθj = −θjθi , χiχj = −χjχi , θiχj = χjθi .

There is an isomorphism between functions on M and bipartite tensor fields on M,
namely C∞(M)|p,q ' Ωp,q(M). Thus, a (p, q) bipartite tensor living in Ωp,q(M) can
be expanded as

ωp,q(x , θ, χ) =
1

p!q!
ωi1...ip |j1...jq (x) θi1 . . . θipχj1 . . . χjq

If ωp,q ∈ Ωp,q and ζp′,q′ ∈ Ωp′,q′ then

(ωζ)p+p′,q+q′ :=
1

p!q!p′!q′!
ωi1...ip |j1...jqζip+1...ip+p′ |jq+1...jq+q′

θi1 . . . θip+p′χj1 . . . χjq+q′

and (ωζ)p+p′,q+q′ ∈ Ωp+p′,q+q′ .



Some useful maps - [de Medeiros, Hull ‘03]

Exterior derivatives: d = θi∂i : Ωp,q → Ωp+1,q , d̃ = χi∂i : Ωp,q → Ωp,q+1

Minkowski metric: η = ηij θ
iχj : Ωp,q → Ωp+1,q+1 , tr : Ωp,q → Ωp−1,q−1

Partial Hodge stars: ∗( ∗̃ ) : Ωp,q → ΩD−p,q(Ωp,D−q) defined by

∗ωp,q :=
1

p!(D − p)!q!
ε
i1...ip

ip+1...iD
ωi1...ip |j1...jq θ

ip+1 . . . θiDχj1 . . . χjq

∗̃ωp,q :=
1

p!(D − q)!q!
ε
j1···jq

jq+1...jD
ωi1...ip |j1...jq θ

i1 . . . θipχjq+1 . . . χjD

Transposition: > : Ωp,q → Ωq,p by (ω>)q,p = 1
p!q!

ωi1...ip j1...jqθ
j1 . . . θjqχi1 . . . χip

Co-differentials: d† = (−1)1+D(p+1) ∗ d∗ : Ωp,q → Ωp−1,q

d̃† = (−1)1+D(q+1) ∗̃ d̃ ∗̃ : Ωp,q → Ωp,q−1

Co-traces: σ = (−1)1+D(p+1) ∗ tr∗ : Ωp,q → Ωp+1,q−1

σ̃ = (−1)1+D(q+1) ∗̃ tr ∗̃ : Ωp,q → Ωp−1,q+1



Bipartite tensor representations of GL(D,R)

The space Ωp,q(M) contains all GL(D,R)-reducible bipartite tensors of type (p, q) .

Given any bipartite tensor ωp,q ∈ Ωp,q(M) there exists a unique bipartite tensor of the
same type, say ω[p,q], that satisfies the GL(D,R)-irreducibility conditions

σ ω[p,q] = 0 for p ≥ q

σ̃ ω[p,q] = 0 for p ≤ q

& ω[p,q] = ω̃[q,p] for p = q

The GL(D,R)-irreducible tensor ω[p,q] lives in a subspace Ω[p,q](M) ⊆ Ωp,q(M) and
can be obtained by acting on ωp,q with the Young Symmetrizer P[p,q] given by [de
Medeiros ‘04]

P[p,q] =


I +

∑q
n=1 cn(p, q)σnσ̃n for p ≥ q

I +
∑p

n=1 cn(q, p) σ̃nσn for p ≤ q



A suitable Hodge star and kinetic terms

We can also define a Hodge star operator ? : Ωp,q → ΩD−p,D−q by

?ωp,q :=
1

(D − p − q)!
ηD−p−q (ω>)q,p

[Chatzistavrakidis, Khoo, Roest, Schupp ‘17], which is related to ∗ ∗̃ωp,q via

?ωp,q = (−1)(D−1)(p+q)+pq+1 ∗ ∗̃
min(p,q)∑

n=0

(−1)n

(n!)2
ηn trn ωp,q

The standard gauge-invariant kinetic term for any irreducible ω[p,q] is then

Lkin(p, q) =

∫
θ,χ

dω[p,q] ? dω[p,q] , p + q + 1 ≤ D

where Berezin integration is used over θ and χ.

Examples: Lkin(0, 0) = Lscalar, Lkin(1, 0) = LMaxwell and Lkin(1, 1) = LLEH.



E/M duality and types of duals

Electric/Magnetic duality relates two different free gauge theories in flat spacetime, which
correspond to the same physical theory after full gauge fixing. Here we focus in Abelian
theories.
In addition, for any gauge field there are different types of duals. For our purposes, we will
consider the following:

Standard duals: These are obtained by dualizing the original field in one of its sets
of antisymmetrized indices. E.g. a p-form field only has one standard dual, while
a bipartite tensor field has two. Some examples are the 1-form dual of a 1-form in
D = 4 (self-duality) and the [2, 1] tensor (Curtright field) dual of the [1, 1] tensor
(linearized graviton) in D = 5.

Double duals: These duals do not exist for p-form fields. For bipartite tensors, they
correspond to dualizing both its form sectors. As an example, the double dual graviton
in D = 5 is a [2, 2] tensor.

Exotic duals: These are dual fields with additional sets of antisymmetrized indices
compared to the original field, each one of length (D − 2). Two examples are the
[2, 1] and the [2, 2] tensor duals of a 1-form and a 2-form, respectively, in D = 4.

[Hull, Henneaux, West, Bergshoeff, Sundell, Boulanger, ...]



The universal parent Lagrangian

The universal parent Lagrangian we propose, in D ≥ p + q + 1, reads as

L(p,q)
P (Fp,q, λp+1,q) =

∫
θ,χ

F ?OF +

∫
θ,χ

dF ∗ ∗̃λ

Depends on the 2 parameters {p, q}.

Involves two independent reducible bipartite tensors F and λ.

Contains an operator O(p,q), defined by O(p,q)dωp−1,q
!

= dω[p−1,q] + d̃(. . . ). Its closed
form contains the σ(σ̃) maps:

O(p,q) =


I +

q∑
n=1

cn(p − 1, q) σ̃n σn , p ≥ q + 1

I +
p−1∑
n=1

cn(q, p − 1)

(
σn σ̃n +

n∑
k=1

(−1)k
k−1∏
m=0

(n − m)2σn−k σ̃n−k

)
, p < q + 1



Dualization procedure: Step 1

Varying LP w.r.t. λp+1,q will give the Bianchi identity on Fp,q, namely dFp,q = 0.
Locally, this is solved by Fp,q = dωp−1,q. Note that ωp−1,q is GL-reducible.

Substituting Fp,q = dωp−1,q back into LP gives

L(p,q)
P,λ-on-shell =

∫
θ,χ

dωp−1,q ? dω[p−1,q] + s.t. ,

due to the action of O on the second F .

One can prove that L(p,q)
P,λ-on-shell is truly the kinetic term for the GL-irreducible field

ω[p−1,q], i.e.

L(p,q)
P,λ-on-shell =

∫
θ,χ

dω[p−1,q] ? dω[p−1,q] + s.t. = Lkin(ω[p−1,q]) ,

if and only if the parameters {p, q} take values in one of the four domains:

1 Domain I: {p ∈ [1,D − 1] , q = 0}: S.D. of a (p − 1)-form

2 Domain II: {p ∈ [2,D − 2] , q = 1}: S.D. of a [p − 1, 1] bipartite tensor

3 Domain III: {p = 1 , q ∈ [1,D − 2]}: E.D. of a q-form

4 Domain IV: {p = 2 , q ∈ [2,D − 3]}: D.D. of a [1,D − q − 2] bipartite tensor



Dualization procedure: Step 2

Alternatively, varying LP w.r.t. Fp,q will give a Hodge duality relation of the form

?O(p,q)Fp,q ∼
1

2
∗̃ d ∗ λp+1,q .

Solving in terms of Fp,q and substituting back into LP gives rise to a dual Lagrangian

depending only on λp+1,q, i.e. L(p,q)
P,F -on-shell(λp+1,q).

Decomposing λp+1,q into its traceless and trace parts

λp+1,q ≡ λ̂p+1,q + ηλ̊p,q−1 , trλ̂p+1,q
!

= 0

one can identify the GL-irreducible field ω̂[D−p−1,q] := ∗λ̂p+1,q with the E/M dual of
ω[p−1,q].

However, not in every case does the extra ‘trace‘ field λ̊p,q−1 vanish from the dual
Lagrangian. This only happens if {p ∈ [1,D− 1] , q = 0} or {p ∈ [2,D− 2] , q = 1},
i.e. in the first and second domains of applicability of the parent Lagrangian, in which
case the dual Lagrangian becomes the kinetic term for the dual field:

L(p,q)
P,F -on-shell =

∫
θ,χ

dω̂[D−p−1,q] ? dω̂[D−p−1,q] + s.t. = Lkin(ω̂[D−p−1,q])



Dualization procedure: Step 2

For the remaining domains {p = 1 , q ∈ [1,D − 2]} and {p = 2 , q ∈ [2,D − 3]}, the
λ̊p,q−1-dependence in the dual Lagrangian remains. However, the duality is manifest
at the level of the equations of motion.

Example: Consider the exotic dualization of a 1-form field, for which we use the
parent Lagrangian L(1,1)

P . Varying the dual Lagrangian w.r.t. the reducible field λ2,1

gives the e.o.m.

d ∗ d ω̂[D−2,1] − dd†ηλ̊1,0 +
1

D − 1
dη tr d†ηλ̊1,0 = 0 ⇒ tr2dd̃ ω̂[D−2,1] = 0

These equations are
(

D
D−3

)
in number, while after full g.f. they are

(
D−2
D−3

)
= D − 2.

Not so surprisingly, the equations of motion for a 1-form field after full g.f. are also
D−2 in number. Thus, the original and the dual Lagrangians imply the same number
of propagating physical d.o.f.

A similar argument holds also in the last domain {p = 2 , q ∈ [2,D − 3]}.
For any field ζ[p−1,q−1] one can define the Riemann-like tensor R[p,q](ζ) := dd̃ ζ. An
e.o.m. of the form trnR[p,q] = 0 would imply that R[p,q] = 0 for D < p + q + 1 − n
[Hull ‘01]. Thus, one has to pose weaker e.o.m. In the above example p = D− 1 and
q = 2, so the first e.o.m. with non-trivial solutions is tr2R[D−1,2](ω̂) = 0.



Examples - Maxwell field and linearized graviton

S.D. of Maxwell field: We set {p = 2, q = 0} (Domain I) and use the parent

Lagrangian L(2,0)
P . The previous dualization procedure will relate the Maxwell 1-form

field with its standard dual (D − 3)-form field.

S.D. of linearized graviton: We set {p = 2, q = 1} (Domain II) and use the parent

Lagrangian L(2,1)
P . This relates the linearized graviton with its standard dual [D−3, 1]

bipartite tensor field.

E.D. of Maxwell field: We set {p = 1, q = 1} (Domain III) and use the parent

Lagrangian L(1,1)
P . At the level of e.o.m., we then get the duality between the Maxwell

field and its exotic dual Â[D−2,1]:

d ∗ d A1,0 = 0 = tr2 R[D−1,2](Â)

D.D. of linearized graviton: We set {p = 2, q = D − 3} (Domain IV) and use the

parent L(2,D−3)
P . Again, we have a duality between the linearized graviton and its

double dual ĥ[D−3,D−3]:

d ? d h[1,1] = 0 = trD−3 R[D−2,D−2](ĥ)



Conclusion and Outlook

We have constructed a 2-parameter Lagrangian L(p,q)
P capable of dualizing:

1 p-form fields into their standard duals (Domain I)

2 [p, 1] bipartite tensors into their standard duals (Domain II)

3 p-form fields into their exotic duals (Domain III)

4 [p, 1] bipartite tensors into their double duals (Domain IV)

and, thus, achieved all of our initial goals.

Future directions:

Generalize for multipartite mixed-symmetry tensors. The formalism is obtained in a
straightforward way by considering M = T [1]M ⊕ · · · ⊕ T [1]M.

Study in more detail the exotic duality. For example, realize the infinite chain of
dualities of [Boulanger, Sundell, West ‘15] in this geometric setting.

Use this formalism to construct Galileon interactions for bipartite tensors [Chatzis-
tavrakidis, Khoo, Roest, Schupp ‘17]. Multipartite tensor Galileons?



THANK YOU


