The Steinmann Cluster Bootstrap for $\mathcal{N} = 4$ super Yang-Mills Amplitudes

Georgios Papathanasiou

Workshop on Connecting Insights in Fundamental Physics Corfu, September 1, 2019

1903.10890, 1906.07116 w/ Caron-Huot,Dixon,Dulat,McLeod,Hippel 1812.04640 w/ Drummond,Foster,Gürdogan

Outline

Motivation: Why Amplitudes in $\mathcal{N} = 4$ Super Yang-Mills?

Improving Perturbation Theory: The Amplitude Bootstrap Extended Steinmann relations/cluster adjacency Coaction principle 6 gluons though 7 loops/7 gluons through 4 loops

Conclusions & Outlook

Scattering amplitudes $A = \langle \mathsf{IN}|S|\mathsf{OUT} \rangle$: $d\sigma \propto |A|^2$

Scattering amplitudes $A = \langle \mathsf{IN}|S|\mathsf{OUT}\rangle$: $d\sigma \propto |A|^2$

Computing efficiently necessary in practice

Scattering amplitudes $A = \langle \mathsf{IN}|S|\mathsf{OUT}\rangle$: $d\sigma \propto |A|^2$

- Computing efficiently necessary in practice
- Understanding beyond Feynman diagrams mathematically important [Millenium Prize]

Focus on the simplest interacting 4D gauge theory

Focus on the simplest interacting 4D gauge theory

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory

$$\mathcal{L} = -\frac{1}{2g_{YM}^2} \text{Tr} F_{\mu\nu} F^{\mu\nu} + \text{fermions} + \text{scalars}$$

Focus on the simplest interacting 4D gauge theory

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory in planar limit, $N \rightarrow \infty$ with $\lambda = g_{YM}^2 N$ fixed:

▶ Planar MSYM ⇔ Free superstrings strongly coupled ⇔ weakly coupled ^[Maldacena]

Focus on the simplest interacting 4D gauge theory

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory in planar limit, $N \rightarrow \infty$ with $\lambda = g_{YM}^2 N$ fixed:

$$\mathcal{O} = \operatorname{Tr}[Z^4 W Z^2 W] \quad \Leftrightarrow \quad \bullet \quad \bullet$$

- Planar MSYM ⇔ Free superstrings strongly coupled ⇔ weakly coupled ^[Maldacena]
- Integrable structures ⇒ Exact physical quantities! [Arutyunov,...,Zarembo]

Focus on the simplest interacting 4D gauge theory

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory in planar limit, $N \rightarrow \infty$ with $\lambda = g_{YM}^2 N$ fixed:

- Planar MSYM ⇔ Free superstrings strongly coupled ⇔ weakly coupled ^[Maldacena]
- Integrable structures ⇒ Exact physical quantities! [Arutyunov,...,Zarembo]
- ▶ Amplitudes ⇔ Wilson Loops; Remarkable symmetries ^[Alday,Maldacena]

Focus on the simplest interacting 4D gauge theory

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory in planar limit, $N \rightarrow \infty$ with $\lambda = g_{YM}^2 N$ fixed:

- ▶ Planar MSYM ⇔ Free superstrings strongly coupled ⇔ weakly coupled ^[Maldacena]
- Integrable structures \Rightarrow Exact physical quantities! [Arutyunov,...,Zarembo]
- Amplitudes \Leftrightarrow Wilson Loops; Remarkable symmetries [Alday, Maldacena]

Ideal theoretical laboratory for developing new computational tools for QCD. E.g. method of symbols: $^{\rm [Goncharov,Spradlin,Vergu,Volovich\,]}$

Apply to $|gg \rightarrow Hg|^2$ for N³LO Higgs cross-section! [Anastasiou,Duhr et. al.]

Amplitudes A_n with n = 4, 5 particles already known to all loops!

Amplitudes A_n with n = 4, 5 particles already known to all loops!

More generally,

Amplitudes A_n with n = 4,5 particles already known to all loops!

More generally, in this talk,

Amplitudes A_n with n = 4, 5 particles already known to all loops!

More generally,

The most efficient method for computing planar \mathcal{N} = 4 amplitudes in general kinematics, at fixed order in the coupling.

A. Construct an ansatz for the amplitude assuming

- A. Construct an ansatz for the amplitude assuming
 - 1. What the general class of *functions* that suffices to express it is

- A. Construct an ansatz for the amplitude assuming
 - 1. What the general class of *functions* that suffices to express it is
 - 2. What the function arguments (encoding the kinematics) are

- A. Construct an ansatz for the amplitude assuming
 - 1. What the general class of *functions* that suffices to express it is
 - 2. What the function arguments (encoding the kinematics) are
- B. Fix the coefficients of the ansatz by imposing consistency conditions (e.g. known near-collinear or multi-Regge limiting behavior)

QFT Property Co

QFT Property Physical Branch Cuts	$\frac{\mathcal{L}_{6}^{(L)}}{\mathcal{L}_{6}^{(L)}, L = 3, 4}$
	\mathcal{A}_6 , $\mathcal{L} = 0, 1$
Galotto, Maldacena,	D l (II: 1 D

	QFT Property	Computation
	Physical Branch Cuts	$\mathcal{A}_6^{(L)}, L$ = 3, 4
	[Gaiotto,Maldacena, Sever,Vieira]	[Dixon,Drummond, (Henn,) Duhr/Hippel,Pennington]
	Cluster Algebras	$\mathcal{A}_{7,MHV}^{(3)}$
	[Golden,Goncharov,	[Drummond, GP,
	Spradlin, Vergu, Volovich]	Spradlin]
А		

$$\mathcal{A}_{MHV} = \mathcal{A}(--+\ldots+), \quad \mathcal{A}_{NMHV} = \mathcal{A}(--+\ldots+)$$

QFT Property	Computation
Physical Branch Cuts	$\mathcal{A}_6^{(L)}, L$ = 3, 4
[Gaiotto,Maldacena, Sever,Vieira]	[Dixon,Drummond, (Henn,) Duhr/Hippel,Pennington]
Cluster Algebras	${\cal A}_{7,{\sf MHV}}^{(3)}$
[Golden,Goncharov, Spradlin,Vergu,Volovich]	[Drummond, GP, Spradlin]
Steinmann Relation	$\mathcal{A}_6^{(5)}, \mathcal{A}_{7,NMHV}^{(3)}, \mathcal{A}_{7,MHV}^{(4)}$
[Steinmann]	[Caron-Huot,Dixon,] [Dixon,, GP,Spradlin]

$$\mathcal{A}_{\mathsf{MHV}} = \mathcal{A}(--+\ldots+), \quad \mathcal{A}_{\mathsf{NMHV}} = \mathcal{A}(--+\ldots+)$$

A

QFT Property	Computation
Physical Branch Cuts	$\mathcal{A}_6^{(L)}, L$ = 3, 4
[Gaiotto,Maldacena, Sever,Vieira]	[Dixon,Drummond, (Henn,) Duhr/Hippel,Pennington]
Cluster Algebras	${\cal A}^{(3)}_{7,{\sf MHV}}$
[Golden,Goncharov, Spradlin,Vergu,Volovich]	[Drummond, GP, Spradlin]
Steinmann Relation	$\mathcal{A}_6^{(5)}, \mathcal{A}_{7,NMHV}^{(3)}, \mathcal{A}_{7,MHV}^{(4)}$
[Steinmann]	[Caron-Huot,Dixon,] [Dixon,, GP,Spradlin]
Cluster Adjacency	${\cal A}_{7,{\sf NMHV}}^{(4)}$
[Drummond,Foster, Gurdogan]	[Drummond,Foster, Gurdogan, GP]
Extended Steinmann	$\Leftrightarrow \mathcal{A}_{6}^{(6)}, \mathcal{A}_{6,MHV}^{(7)}$
Coaction Principle	[Caron-Huot,Dixon,Dulat, McLeod,Hippel,GP]

$$\mathcal{A}_{\mathsf{MHV}} = \mathcal{A}(--+\ldots+)\,,\quad \mathcal{A}_{\mathsf{NMHV}} = \mathcal{A}(--+\ldots+)$$

 f_k is a MPL of weight k if its differential obeys

$$df_k = \sum_{\alpha} f_{k-1}^{(\alpha)} d \log \phi_{\alpha}$$

over some set of ϕ_{α} , with $f_{k-1}^{(\alpha)}$ functions of weight k-1.

 f_k is a MPL of weight k if its differential obeys

$$df_k = \sum_{\alpha} f_{k-1}^{(\alpha)} d\log \phi_{\alpha} \quad \text{e.g. } d\text{Li}_2(x) = -\log(1-x)d\log x,$$

over some set of ϕ_{α} , with $f_{k-1}^{(\alpha)}$ functions of weight k-1.

 f_k is a MPL of weight k if its differential obeys

$$df_k = \sum_{\alpha} f_{k-1}^{(\alpha)} d\log \phi_{\alpha} \quad \text{e.g. } d\text{Li}_2(x) = -\log(1-x)d\log x,$$

over some set of ϕ_{α} , with $f_{k-1}^{(\alpha)}$ functions of weight k-1.

Convenient tool for describing them: The **symbol** $S(f_k)$ encapsulating recursive application of above definition (on $f_{k-1}^{(\alpha)}$ etc)

$$\mathcal{S}(f_k) = \sum_{\alpha_1,\ldots,\alpha_k} f_0^{(\alpha_1,\alpha_2,\ldots,\alpha_k)} \left(\phi_{\alpha_1} \otimes \cdots \otimes \phi_{\alpha_k} \right).$$

 f_k is a MPL of weight k if its differential obeys

$$df_k = \sum_{\alpha} f_{k-1}^{(\alpha)} d\log \phi_{\alpha} \quad \text{e.g. } d\text{Li}_2(x) = -\log(1-x)d\log x,$$

over some set of ϕ_{α} , with $f_{k-1}^{(\alpha)}$ functions of weight k-1.

Convenient tool for describing them: The **symbol** $S(f_k)$ encapsulating recursive application of above definition (on $f_{k-1}^{(\alpha)}$ etc)

$$\mathcal{S}(f_k) = \sum_{\alpha_1,\ldots,\alpha_k} f_0^{(\alpha_1,\alpha_2,\ldots,\alpha_k)} \left(\phi_{\alpha_1} \otimes \cdots \otimes \phi_{\alpha_k} \right).$$

Collection of ϕ_{α} : symbol alphabet $| f_0^{(\alpha_1,...,\alpha_k)}$ rational

 f_k is a MPL of weight k if its differential obeys

$$df_k = \sum_{\alpha} f_{k-1}^{(\alpha)} d\log \phi_{\alpha} \quad \text{e.g. } d\text{Li}_2(x) = -\log(1-x)d\log x,$$

over some set of ϕ_{α} , with $f_{k-1}^{(\alpha)}$ functions of weight k-1.

Convenient tool for describing them: The **symbol** $S(f_k)$ encapsulating recursive application of above definition (on $f_{k-1}^{(\alpha)}$ etc)

$$\mathcal{S}(f_k) = \sum_{\alpha_1,\dots,\alpha_k} f_0^{(\alpha_1,\alpha_2,\dots,\alpha_k)} \left(\phi_{\alpha_1} \otimes \cdots \otimes \phi_{\alpha_k} \right).$$

Collection of ϕ_{α} : symbol alphabet $| f_0^{(\alpha_1,...,\alpha_k)}$ rational

Empeirical evidence: L-loop amplitudes=MPLs of weight k = 2L[Duhr,Del Duca,Smirnoy][Arkani-Hamed,Bourjaily,Cachazo,Goncharov,Postnikov,Trnka][GP] What are the right variables?

What are the right variables?

More precisely, what is the symbol alphabet?
More precisely, what is the symbol alphabet? For n = 6, from explicit 2-loop computation ^[Duhr,Del Duca,Smirnov]

$$\begin{split} \phi_{\alpha} &\in \Phi = \left\{ a, b, c, m_u, m_v, m_w, y_u, y_v, y_w \right\}, \\ a &= \frac{u}{vw}, \qquad m_u = \frac{1-u}{u}, \qquad u = \frac{x_{13}^2 x_{46}^2}{x_{14}^2 x_{36}^2} & \& \text{ cyclic } u \to v \to w \\ y_u &= \frac{u-z_+}{u-z_-}, \qquad y_v = \frac{v-z_+}{v-z_-}, \qquad y_w = \frac{w-z_+}{w-z_-}, \\ z_{\pm} &= \frac{1}{2} \Big[-1 + u + v + w \pm \sqrt{\Delta} \Big], \qquad \Delta = (1 - u - v - w)^2 - 4uvw. \end{split}$$

More precisely, what is the symbol alphabet? For n = 6, from explicit 2-loop computation ^[Duhr,Del Duca,Smirnov]

$$\begin{split} \phi_{\alpha} &\in \Phi = \left\{ a, b, c, m_u, m_v, m_w, y_u, y_v, y_w \right\}, \\ a &= \frac{u}{vw}, \qquad m_u = \frac{1-u}{u}, \qquad u = \frac{x_{13}^2 x_{46}^2}{x_{14}^2 x_{36}^2} & \& \text{ cyclic } u \to v \to w \\ y_u &= \frac{u-z_+}{u-z_-}, \qquad y_v = \frac{v-z_+}{v-z_-}, \qquad y_w = \frac{w-z_+}{w-z_-}, \\ z_{\pm} &= \frac{1}{2} \Big[-1 + u + v + w \pm \sqrt{\Delta} \Big], \qquad \Delta = (1 - u - v - w)^2 - 4uvw. \end{split}$$

Not every sequence of ϕ_{α} corresponds to a candidate amplitude:

More precisely, what is the symbol alphabet? For n = 6, from explicit 2-loop computation ^[Duhr,Del Duca,Smirnov]

$$\begin{split} \phi_{\alpha} &\in \Phi = \left\{ a, b, c, m_u, m_v, m_w, y_u, y_v, y_w \right\}, \\ a &= \frac{u}{vw}, \qquad m_u = \frac{1-u}{u}, \qquad u = \frac{x_{13}^2 x_{46}^2}{x_{14}^2 x_{36}^2} & \& \text{ cyclic } u \to v \to w \,. \\ y_u &= \frac{u-z_+}{u-z_-}, \qquad y_v = \frac{v-z_+}{v-z_-}, \qquad y_w = \frac{w-z_+}{w-z_-}, \\ z_{\pm} &= \frac{1}{2} \Big[-1 + u + v + w \pm \sqrt{\Delta} \Big], \qquad \Delta = (1 - u - v - w)^2 - 4uvw. \end{split}$$

Not every sequence of ϕ_{α} corresponds to a candidate amplitude:

 Locality: Amplitude singularities only when intermediate particles go on-shell ⇒ constrains first symbol entry to a, b, c.

More precisely, what is the symbol alphabet? For n = 6, from explicit 2-loop computation ^[Duhr,Del Duca,Smirnov]

$$\begin{split} \phi_{\alpha} &\in \Phi = \left\{ a, b, c, m_u, m_v, m_w, y_u, y_v, y_w \right\}, \\ a &= \frac{u}{vw}, \qquad m_u = \frac{1-u}{u}, \qquad u = \frac{x_{13}^2 x_{46}^2}{x_{14}^2 x_{36}^2} & \& \text{ cyclic } u \to v \to w \,. \\ y_u &= \frac{u-z_+}{u-z_-}, \qquad y_v = \frac{v-z_+}{v-z_-}, \qquad y_w = \frac{w-z_+}{w-z_-}, \\ z_{\pm} &= \frac{1}{2} \Big[-1 + u + v + w \pm \sqrt{\Delta} \Big], \qquad \Delta = (1 - u - v - w)^2 - 4uvw. \end{split}$$

Not every sequence of ϕ_{α} corresponds to a candidate amplitude:

- Locality: Amplitude singularities only when intermediate particles go on-shell ⇒ constrains first symbol entry to a, b, c.
- Integrability: For given S, ensures \exists function f with this symbol,

 $\partial_{u_i}\partial_{u_j}f=\partial_{u_j}\partial_{u_i}f \ \Rightarrow \text{linear relations between weights } k,k+1.$

$Steinmann \ Relations \ ^{[Steinmann][Cahill,Stapp][Bartels,Lipatov,Sabio \ Vera]}$

Steinmann Relations [Steinmann][Cahill,Stapp][Bartels,Lipatov,Sabio Vera]

Double discontinuities vanish for any set of overlapping channels

5

6

Steinmann Relations [Steinmann][Cahill,Stapp][Bartels,Lipatov,Sabio Vera]

Double discontinuities vanish for any set of overlapping channels

Channel labelled by Mandelstam invariant we analytically continue

Steinmann Relations [Steinmann][Cahill,Stapp][Bartels,Lipatov,Sabio Vera]

Double discontinuities vanish for any set of overlapping channels

- · Channel labelled by Mandelstam invariant we analytically continue
- \blacktriangleright Channels overlap if they divide particles in 4 nonempty sets. Here: $\{2\},\ \{3,4\},\ \{5\},\ {\rm and}\ \{6,7,1\}$

$Steinmann \ Relations \ ^{[Steinmann][Cahill,Stapp][Bartels,Lipatov,Sabio \ Vera]}$

Double discontinuities vanish for any set of overlapping channels

- · Channel labelled by Mandelstam invariant we analytically continue
- \blacktriangleright Channels overlap if they divide particles in 4 nonempty sets. Here: $\{2\},\ \{3,4\},\ \{5\},\ {\rm and}\ \{6,7,1\}$
- Focus on $s_{123} \propto \sqrt{a}$ & cyclic (s_{i-1i} more subtle)

[Caron-Huot, Dixon, McLeod, Hippel] [Dixon, Drummond, Harrington, McLeod, GP, Spradlin]

No b, c can appear after a in second symbol entry & cyclic

Steinmann relations

No b, c can appear after a in 2^{nd} symbol entry & cyclic

By inspecting known amplitude through five loops:

[Caron-Huot, Dixon, (Dulat,) McLeod, Hippel, GP]

No b, c can appear after a in any symbol entry & cyclic

By inspecting known amplitude through five loops:

[Caron-Huot, Dixon, (Dulat,) McLeod, Hippel, GP]

No b, c can appear after a in any symbol entry & cyclic

weight n	0	1	2	3	4	5	6	7	8	9	10	11	12	13
First entry	1	3	9	26	75	218	643	1929	5897	?	?	?	?	?
Steinmann	1	3	6	13	29	63	134	277	562	1117	2192	4263	8240	?
Ext. Stein.	1	3	6	13	26	51	98	184	340	613	1085	1887	3224	5431

Figure: Dimensions of the hexagon, Steinmann hexagon, and extended Steinmann hexagon spaces at symbol level.

Drastically reduces number of candidate amplitudes

By inspecting known amplitude through five loops:

[Caron-Huot, Dixon, (Dulat,) McLeod, Hippel, GP]

No b, c can appear after a in any symbol entry & cyclic

weight n	0	1	2	3	4	5	6	7	8	9	10	11	12	13
First entry	1	3	9	26	75	218	643	1929	5897	?	?	?	?	?
$\operatorname{Steinmann}$	1	3	6	13	29	63	134	277	562	1117	2192	4263	8240	?
Ext. Stein.	1	3	6	13	26	51	98	184	340	613	1085	1887	3224	5431

Figure: Dimensions of the hexagon, Steinmann hexagon, and extended Steinmann hexagon spaces at symbol level.

- Drastically reduces number of candidate amplitudes
- Must be consequence of original Steinmann holding on any Riemann sheet.

By inspecting known amplitude through five loops:

[Caron-Huot, Dixon, (Dulat,) McLeod, Hippel, GP]

No b, c can appear after a in any symbol entry & cyclic

weight n	0	1	2	3	4	5	6	7	8	9	10	11	12	13
First entry	1	3	9	26	75	218	643	1929	5897	?	?	?	?	?
$\operatorname{Steinmann}$	1	3	6	13	29	63	134	277	562	1117	2192	4263	8240	?
Ext. Stein.	1	3	6	13	26	51	98	184	340	613	1085	1887	3224	5431

Figure: Dimensions of the hexagon, Steinmann hexagon, and extended Steinmann hexagon spaces at symbol level.

- Drastically reduces number of candidate amplitudes
- Must be consequence of original Steinmann holding on any Riemann sheet.
- Potentially universal: Valid for *individual integrals*! [Drummond,Foster,Gürdogan][Caron-Huot,Dixon,Hippel,McLeod,GP,]

Space of MPLs of weight n, \mathcal{G}_n , endowed with coaction Δ that "decomposes" it into a tensor product ^{[Goncharov][Brown]}

$$\Delta \mathcal{G}_n \equiv \sum_{k=0}^n \Delta_{n-k,k} \mathcal{G}_n = \sum_{k=0}^n \mathcal{G}_{n-k} \otimes \left[\mathcal{G}_k \operatorname{mod}(i\pi) \right] \,.$$

Space of MPLs of weight n, \mathcal{G}_n , endowed with coaction Δ that "decomposes" it into a tensor product ^{[Goncharov][Brown]}

$$\Delta \mathcal{G}_n \equiv \sum_{k=0}^n \Delta_{n-k,k} \mathcal{G}_n = \sum_{k=0}^n \mathcal{G}_{n-k} \otimes \left[\mathcal{G}_k \operatorname{mod}(i\pi) \right] \,.$$

Also applies to transcendental numbers, e.g.

$$\Delta(i\pi) = (i\pi) \otimes 1, \quad \Delta(\zeta_3^2) = (\zeta_3^2) \otimes 1 + 2\zeta_3 \otimes \zeta_3 + 1 \otimes (\zeta_3^2).$$
(1)

Space of MPLs of weight n, \mathcal{G}_n , endowed with coaction Δ that "decomposes" it into a tensor product [Goncharov][Brown]

$$\Delta \mathcal{G}_n \equiv \sum_{k=0}^n \Delta_{n-k,k} \mathcal{G}_n = \sum_{k=0}^n \mathcal{G}_{n-k} \otimes \left[\mathcal{G}_k \operatorname{mod}(i\pi) \right] \,.$$

Also applies to transcendental numbers, e.g.

$$\Delta(i\pi) = (i\pi) \otimes 1, \quad \Delta(\zeta_3^2) = (\zeta_3^2) \otimes 1 + 2\zeta_3 \otimes \zeta_3 + 1 \otimes (\zeta_3^2). \tag{1}$$

Valid by construction on \mathcal{G} , upgrades symbols to functions.

Space of MPLs of weight n, \mathcal{G}_n , endowed with coaction Δ that "decomposes" it into a tensor product [Goncharov][Brown]

$$\Delta \mathcal{G}_n \equiv \sum_{k=0}^n \Delta_{n-k,k} \mathcal{G}_n = \sum_{k=0}^n \mathcal{G}_{n-k} \otimes \left[\mathcal{G}_k \operatorname{mod}(i\pi) \right] \,.$$

Also applies to transcendental numbers, e.g.

$$\Delta(i\pi) = (i\pi) \otimes 1, \quad \Delta(\zeta_3^2) = (\zeta_3^2) \otimes 1 + 2\zeta_3 \otimes \zeta_3 + 1 \otimes (\zeta_3^2).$$
(1)

Valid by construction on \mathcal{G} , upgrades symbols to functions. However, quite nontrivial closure, or "coaction principle" on certain subspaces $\mathcal{H} \subset \mathcal{G}$:

$$\Delta \mathcal{H} \subset \mathcal{H} \otimes \mathcal{G} . \tag{2}$$

Space of MPLs of weight n, \mathcal{G}_n , endowed with coaction Δ that "decomposes" it into a tensor product ^{[Goncharoy][Brown]}

$$\Delta \mathcal{G}_n \equiv \sum_{k=0}^n \Delta_{n-k,k} \mathcal{G}_n = \sum_{k=0}^n \mathcal{G}_{n-k} \otimes \left[\mathcal{G}_k \operatorname{mod}(i\pi) \right] \,.$$

Also applies to transcendental numbers, e.g.

$$\Delta(i\pi) = (i\pi) \otimes 1, \quad \Delta(\zeta_3^2) = (\zeta_3^2) \otimes 1 + 2\zeta_3 \otimes \zeta_3 + 1 \otimes (\zeta_3^2).$$
(1)

Valid by construction on \mathcal{G} , upgrades symbols to functions. However, quite nontrivial closure, or "coaction principle" on certain subspaces $\mathcal{H} \subset \mathcal{G}$:

$$\Delta \mathcal{H} \subset \mathcal{H} \otimes \mathcal{G} . \tag{2}$$

Example: If $\zeta_3 \notin \mathcal{H}$, then (1)-(2) imply $\zeta_3^2 \notin \mathcal{H}$. "Exclusion principle"!

Space of MPLs of weight n, \mathcal{G}_n , endowed with coaction Δ that "decomposes" it into a tensor product ^{[Goncharoy][Brown]}

$$\Delta \mathcal{G}_n \equiv \sum_{k=0}^n \Delta_{n-k,k} \mathcal{G}_n = \sum_{k=0}^n \mathcal{G}_{n-k} \otimes \left[\mathcal{G}_k \operatorname{mod}(i\pi) \right] \,.$$

Also applies to transcendental numbers, e.g.

$$\Delta(i\pi) = (i\pi) \otimes 1, \quad \Delta(\zeta_3^2) = (\zeta_3^2) \otimes 1 + 2\zeta_3 \otimes \zeta_3 + 1 \otimes (\zeta_3^2).$$
(1)

Valid by construction on \mathcal{G} , upgrades symbols to functions. However, quite nontrivial closure, or "coaction principle" on certain subspaces $\mathcal{H} \subset \mathcal{G}$:

$$\Delta \mathcal{H} \subset \mathcal{H} \otimes \mathcal{G} \,. \tag{2}$$

Example: If $\zeta_3 \notin \mathcal{H}$, then (1)-(2) imply $\zeta_3^2 \notin \mathcal{H}$. "Exclusion principle"! Previously observed in other settings. ^{[Schlotterer, Stieberger][Panzer, Schnetz][Schnetz]}

Apply to extended Steinmann hexagon space \mathcal{H}^{hex} of amplitude and its iterated derivatives, at point a = b = c = 1, or u = v = w = 1.

Apply to extended Steinmann hexagon space \mathcal{H}^{hex} of amplitude and its iterated derivatives, at point a = b = c = 1, or u = v = w = 1.

Weight	Multiple Zeta Values	Appear in $\left.\mathcal{H}^{hex}\right _{u,v,w o 1}$
0	1	1
1	-	-
2	ζ_2	ζ_2
3	ζ_3	_
4	ζ_4	ζ_4
5	ζ_5 , $\zeta_3\zeta_2$	$5\zeta_5 - 2\zeta_3\zeta_2$

Apply to extended Steinmann hexagon space \mathcal{H}^{hex} of amplitude and its iterated derivatives, at point a = b = c = 1, or u = v = w = 1.

Weight	Multiple Zeta Values	Appear in $\mathcal{H}^{hex}\big _{u,v,w o 1}$
0	1	1
1	-	-
2	ζ_2	ζ_2
3	ζ_3	_
4	ζ_4	ζ_4
5	ζ_5 , $\zeta_3\zeta_2$	$5\zeta_5 - 2\zeta_3\zeta_2$
5	ζ_5 , $\zeta_3\zeta_2$	$5\zeta_5 - 2\zeta_3\zeta_2$

 $\mathcal{A}_{\rm MHV}^{\rm fin, old\,(3)}(1,1,1) = \frac{413}{3}\,\zeta_6 + 8(\zeta_3)^2\,, \quad \mathcal{A}_{\rm NMHV}^{\rm fin, old\,(3)}(1,1,1) = -\frac{940}{3}\zeta_6 + 8(\zeta_3)^2$

Shift in *common* normalization factor containing known IR divergences, $\mathcal{A} = \mathcal{A}^{\text{IR,old}} \mathcal{A}^{\text{fin,old}} = (\rho \mathcal{A}^{\text{IR,old}}) (\mathcal{A}^{\text{fin,old}} / \rho), \quad \rho = 1 + 8(\zeta_3)^2 g^6 + \mathcal{O}(g^8),$

Apply to extended Steinmann hexagon space \mathcal{H}^{hex} of amplitude and its iterated derivatives, at point a = b = c = 1, or u = v = w = 1.

Weight	Multiple Zeta Values	Appear in $\left.\mathcal{H}^{hex}\right _{u,v,w o 1}$
0	1	1
1	-	-
2	ζ_2	ζ_2
3	ζ_3	-
4	ζ_4	ζ_4
5	ζ_5 , $\zeta_3\zeta_2$	$5\zeta_5 - 2\zeta_3\zeta_2$

 $\mathcal{A}_{\rm MHV}^{\rm fin,old\,(3)}(1,1,1) = \frac{413}{3}\zeta_6 + 8(\zeta_3)^2, \quad \mathcal{A}_{\rm NMHV}^{\rm fin,old\,(3)}(1,1,1) = -\frac{940}{3}\zeta_6 + 8(\zeta_3)^2$

Shift in *common* normalization factor containing known IR divergences, $\mathcal{A} = \mathcal{A}^{\text{IR,old}}\mathcal{A}^{\text{fin,old}} = (\rho \mathcal{A}^{\text{IR,old}})(\mathcal{A}^{\text{fin,old}}/\rho), \quad \rho = 1 + 8(\zeta_3)^2 g^6 + \mathcal{O}(g^8),$

• *Reduces* size of $\mathcal{H}^{hex} \Rightarrow$ Simpler to bootstrap at higher weight!

Six-gluon amplitude: Results I [Caron-Huot,Dixon,Dulat,McLeod,Hippel,GP'19A]

$\operatorname{Constraint}$	L = 1	L=2	L=3	L=4	L = 5	L=6
1. \mathcal{H}^{hex}	6	27	105	372	1214	3692?
2. Symmetry	(2,4)	(7, 16)	(22, 56)	(66, 190)	(197,602)	(567, 1795?)
3. Final-entry	(1,1)	(4,3)	(11,6)	(30, 16)	(85, 39)	(236, 102)
4. Collinear	(0,0)	(0,0)	$(0^*, 0^*)$	$(0^*,2^*)$	$(1^{*3}, 5^{*3})$	$(6^{*2}, 17^{*2})$
5. LL MRK	(0,0)	(0,0)	(0,0)	(0,0)	$(0^*, 0^*)$	$(1^{*2}, 2^{*2})$
6. NLL MRK	(0,0)	$(0,\!0)$	(0,0)	$(0,\!0)$	$(0^*, 0^*)$	$(1^*, 0^{*2})$
7. NNLL MRK	(0,0)	$(0,\!0)$	$(0,\!0)$	$(0,\!0)$	(0,0)	$(1, 0^*)$
8. N ³ LL MRK	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(1,0)
9. Full MRK	(0,0)	$(0,\!0)$	$(0,\!0)$	$(0,\!0)$	(0,0)	(1,0)
10. T^1 OPE	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(1,0)
11. T^2 OPE	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)

Table 1. Remaining parameters in the ansätze for the (MHV, NMHV) amplitude after each constraint is applied, at each loop order. The superscript "*" ("*n") denotes an additional ambiguity (nambiguities) which arises only due to lack of knowledge of the cosmic normalization constant ρ at the given stage. The "?" indicates an ambiguity about the number of weight 12 odd functions that are "dropouts"; they are allowed at symbol level but not function level. The seven-loop MHV amplitude was constrained in a somewhat different order. As the parameter counts are not directly comparable it is omitted from the table.

Six-gluon amplitude: Results II

Figure: Normalized perturbative coefficients of the MHV amplitude (remainder), $R_6^{(L)}(u, u, u)/R_6^{(L)}(1, 1, 1)$, for L = 2 to 7, plotted along with the strong-coupling result of AGM. The curves all have a remarkably similar shape for $u \leq 1$.

What is the symbol alphabet for n-particle scattering?

What is the symbol alphabet for n-particle scattering?

 Variables a_m of a Grassmannian Gr(4, n) cluster algebra! [Golden,Goncharov,Spradlin,Vergu,Volovich]

What is the symbol alphabet for n-particle scattering?

 Variables a_m of a Grassmannian Gr(4, n) cluster algebra! [Golden,Goncharov,Spradlin,Vergu,Volovich]

Emerge when parametrizing planar *n*-particle massless kinematics in terms of *n* momentum twistors Z_i on \mathbb{CP}^3 ($Z_i \sim \lambda Z_i$),

 $x_i \sim Z_{i-1} \wedge Z_i$

 $(x_i - x_j)^2 \sim \epsilon_{IJKL} Z_{i-1}^I Z_i^J Z_{j-1}^K Z_j^L = \det(Z_{i-1} Z_i Z_{j-1} Z_j) \equiv \langle i - 1ij - 1j \rangle$

What is the symbol alphabet for n-particle scattering?

 Variables a_m of a Grassmannian Gr(4, n) cluster algebra! [Golden,Goncharov,Spradlin,Vergu,Volovich]

Emerge when parametrizing planar *n*-particle massless kinematics in terms of *n* momentum twistors Z_i on \mathbb{CP}^3 ($Z_i \sim \lambda Z_i$),

 $x_i \sim Z_{i-1} \wedge Z_i$

 $(x_i - x_j)^2 \sim \epsilon_{IJKL} Z_{i-1}^I Z_i^J Z_{j-1}^K Z_j^L = \det(Z_{i-1} Z_i Z_{j-1} Z_j) \equiv \langle i - 1ij - 1j \rangle$

Cluster "A-coordinates" a_m : Certain homogeneous polynomials of $\langle ijkl \rangle$,

What is the symbol alphabet for n-particle scattering?

 Variables a_m of a Grassmannian Gr(4, n) cluster algebra! [Golden,Goncharov,Spradlin,Vergu,Volovich]

Emerge when parametrizing planar *n*-particle massless kinematics in terms of *n* momentum twistors Z_i on \mathbb{CP}^3 ($Z_i \sim \lambda Z_i$),

 $x_i \sim Z_{i-1} \wedge Z_i$

 $(x_i - x_j)^2 \sim \epsilon_{IJKL} Z_{i-1}^I Z_i^J Z_{j-1}^K Z_j^L = \det(Z_{i-1} Z_i Z_{j-1} Z_j) \equiv \langle i - 1ij - 1j \rangle$

Cluster "A-coordinates" a_m : Certain homogeneous polynomials of $\langle ijkl \rangle$,

• Grouped into overlapping subsets $\{a_1, \ldots, a_n\}$ of rank n, the clusters

What is the symbol alphabet for n-particle scattering?

 Variables a_m of a Grassmannian Gr(4, n) cluster algebra! [Golden,Goncharov,Spradlin,Vergu,Volovich]

Emerge when parametrizing planar *n*-particle massless kinematics in terms of *n* momentum twistors Z_i on \mathbb{CP}^3 ($Z_i \sim \lambda Z_i$),

 $x_i \sim Z_{i-1} \wedge Z_i$

 $(x_i - x_j)^2 \sim \epsilon_{IJKL} Z_{i-1}^I Z_i^J Z_{j-1}^K Z_j^L = \det(Z_{i-1} Z_i Z_{j-1} Z_j) \equiv \langle i - 1ij - 1j \rangle$

Cluster "A-coordinates" a_m : Certain homogeneous polynomials of $\langle ijkl \rangle$,

- Grouped into overlapping subsets $\{a_1, \ldots, a_n\}$ of rank n, the clusters
- Constructed recursively from initial cluster via mutations

Cluster adjacency

Cluster adjacency

Remarkably, extended Steinmann relations are equivalent to rule: [Drummond,Foster,Gürdogan'17]

Two symbol letters are adjacent only if they belong to the same cluster

Cluster adjacency

Remarkably, extended Steinmann relations are equivalent to rule: [Drummond,Foster,Gürdogan'17]

Two symbol letters are adjacent only if they belong to the same cluster

In fact, for NMHV, *cluster adjacency* somewhat stronger: Relates transcendental to rational part of the amplitude [Drummond,Foster,Gürdogan'18]

Cluster adjacency

Remarkably, extended Steinmann relations are equivalent to rule: [Drummond,Foster,Gürdogan'17]

Two symbol letters are adjacent only if they belong to the same cluster

In fact, for NMHV, *cluster adjacency* somewhat stronger: Relates transcendental to rational part of the amplitude [Drummond,Foster,Gürdogan'18]

Application: the 4-loop NMHV 7-particle amplitude, and its multi-Regge limit

[Drummond,Foster,Gürdogan,Papathanasiou]

Cluster adjacency

Remarkably, extended Steinmann relations are equivalent to rule: [Drummond,Foster,Gürdogan'17]

Two symbol letters are adjacent only if they belong to the same cluster

In fact, for NMHV, *cluster adjacency* somewhat stronger: Relates transcendental to rational part of the amplitude [Drummond,Foster,Gürdogan'18]

Application: the 4-loop NMHV 7-particle amplitude, and its multi-Regge limit

[Drummond,Foster,Gürdogan,Papathanasiou]

Bootstrap application to \mathcal{A}_5 in QCD

[Gehrmann,Henn,Lo Presti] [Abreu,Dormans,Febres Cordero,Ita,Page,Sotnikov]

For $n \ge 8$, Gr(4, n) cluster algebra becomes infinite

For $n \ge 8$, Gr(4, n) cluster algebra becomes infinite

▶ However, in multi-Regge limit, $Gr(4, N) \rightarrow A_{N-5} \times A_{N-5}$: finite! [Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek]

For $n \ge 8$, Gr(4, n) cluster algebra becomes infinite

- ▶ However, in multi-Regge limit, $Gr(4, N) \rightarrow A_{N-5} \times A_{N-5}$: finite! [Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek]
- Recently, "tropicalization" proposed to tame this infinity in general kinematics [Arkani-Hamed,Lam,Spradlin;to appear] [Drummond,Foster,Gurdogan,Kalousios]
- Can correspond to amplitude for MHV case at most. [Henke,GP;in progress] Verification/Refinement?

In this presentation, I talked about the beauty, simplicity and utility of amplitudes in maximally supersymmetric Yang-Mills theory.

In this presentation, I talked about the beauty, simplicity and utility of amplitudes in maximally supersymmetric Yang-Mills theory.

I demonstrated that exploiting expected analytic structure of amplitudes tremendously improves perturbation theory:

In this presentation, I talked about the beauty, simplicity and utility of amplitudes in maximally supersymmetric Yang-Mills theory.

I demonstrated that exploiting expected analytic structure of amplitudes tremendously improves perturbation theory:

• Extended Steinmann relation/cluster adjacency: Potential universality

In this presentation, I talked about the beauty, simplicity and utility of amplitudes in maximally supersymmetric Yang-Mills theory.

I demonstrated that exploiting expected analytic structure of amplitudes tremendously improves perturbation theory:

- Extended Steinmann relation/cluster adjacency: Potential universality
- Coaction principle: $\Delta A = A \otimes ...$, "superselection rule"

In this presentation, I talked about the beauty, simplicity and utility of amplitudes in maximally supersymmetric Yang-Mills theory.

I demonstrated that exploiting expected analytic structure of amplitudes tremendously improves perturbation theory:

- Extended Steinmann relation/cluster adjacency: Potential universality
- Coaction principle: $\Delta A = A \otimes ...$, "superselection rule"
- Applied to determine 6 gluons/7 loops, 7 gluons/4 loops

In this presentation, I talked about the beauty, simplicity and utility of amplitudes in maximally supersymmetric Yang-Mills theory.

I demonstrated that exploiting expected analytic structure of amplitudes tremendously improves perturbation theory:

- Extended Steinmann relation/cluster adjacency: Potential universality
- Coaction principle: $\Delta A = A \otimes ...$, "superselection rule"
- Applied to determine 6 gluons/7 loops, 7 gluons/4 loops

Ultimately, can the integrability of planar SYM theory, together with a thorough knowledge of the analytic structure of its amplitudes, lead us to the theory's exact S-matrix?

In this presentation, I talked about the beauty, simplicity and utility of amplitudes in maximally supersymmetric Yang-Mills theory.

I demonstrated that exploiting expected analytic structure of amplitudes tremendously improves perturbation theory:

- Extended Steinmann relation/cluster adjacency: Potential universality
- Coaction principle: $\Delta A = A \otimes ...$, "superselection rule"
- Applied to determine 6 gluons/7 loops, 7 gluons/4 loops

Ultimately, can the integrability of planar SYM theory, together with a thorough knowledge of the analytic structure of its amplitudes, lead us to the theory's exact S-matrix?

Higher-point bootstrap? All-order resummation? QCD applications?

Factor out normalization factor containing known IR divergences \mathcal{A}^{IR} ,

$$\mathcal{A} = \mathcal{A}^{\mathsf{IR}} \mathcal{A}_{\mathsf{fin}}.$$

Factor out normalization factor containing known IR divergences \mathcal{A}^{IR} ,

$$\mathcal{A} = \mathcal{A}^{\mathsf{IR}} \mathcal{A}_{\mathsf{fin}}.$$

Meaningful to tune \mathcal{A}^{IR} , so that the finite \mathcal{A}_{fin} we compute, becomes *simpler/minimal*. Possible choices:

Factor out normalization factor containing known IR divergences \mathcal{A}^{IR} ,

$$\mathcal{A} = \mathcal{A}^{\mathsf{IR}} \mathcal{A}_{\mathsf{fin}}.$$

Meaningful to tune \mathcal{A}^{IR} , so that the finite \mathcal{A}_{fin} we compute, becomes *simpler/minimal*. Possible choices:

• Originally $\mathcal{A}^{\mathsf{IR}} = \mathcal{A}^{\mathsf{BDS}}$, essentially the exponentiated $\mathcal{A}^{(1)}$.

Factor out normalization factor containing known IR divergences \mathcal{A}^{IR} ,

$$\mathcal{A} = \mathcal{A}^{\mathsf{IR}} \mathcal{A}_{\mathsf{fin}}.$$

Meaningful to tune \mathcal{A}^{IR} , so that the finite \mathcal{A}_{fin} we compute, becomes *simpler/minimal*. Possible choices:

- Originally $\mathcal{A}^{\mathsf{IR}} = \mathcal{A}^{\mathsf{BDS}}$, essentially the exponentiated $\mathcal{A}^{(1)}$.
- ▶ Next, $\mathcal{A}^{IR} = \mathcal{A}^{BDS-like}$, all finite $s_{i-1ii+1}$ dependence removed. ⇒ Only then \mathcal{A}_{fin} satisfies (extended) Steinmann relations!
- Most recently, "cosmic normalization" $\mathcal{A}^{IR} = \mathcal{A}^{BDS-like}\rho$,

[Caron-Huot,Dixon,Dulat,McLeod,Hippel,GP'19A+B]

Factor out normalization factor containing known IR divergences \mathcal{A}^{IR} ,

$$\mathcal{A} = \mathcal{A}^{\mathsf{IR}} \mathcal{A}_{\mathsf{fin}}.$$

Meaningful to tune \mathcal{A}^{IR} , so that the finite \mathcal{A}_{fin} we compute, becomes *simpler/minimal*. Possible choices:

- Originally $\mathcal{A}^{\mathsf{IR}} = \mathcal{A}^{\mathsf{BDS}}$, essentially the exponentiated $\mathcal{A}^{(1)}$.
- ▶ Next, $\mathcal{A}^{IR} = \mathcal{A}^{BDS-like}$, all finite $s_{i-1ii+1}$ dependence removed. ⇒ Only then \mathcal{A}_{fin} satisfies (extended) Steinmann relations!
- Most recently, "cosmic normalization" $\mathcal{A}^{IR} = \mathcal{A}^{BDS-like}\rho$,

[Caron-Huot, Dixon, Dulat, McLeod, Hippel, GP'19A+B]

$$\rho(g^2) = 1 + 8(\zeta_3)^2 g^6 - 160\zeta_3\zeta_5 g^8 + \left[1680\zeta_3\zeta_7 + 912(\zeta_5)^2 - 32\zeta_4(\zeta_3)^2\right] g^{10} - \left[18816\zeta_3\zeta_9 + 20832\zeta_5\zeta_7 - 448\zeta_4\zeta_3\zeta_5 - 400\zeta_6(\zeta_3)^2\right] g^{12} + \mathcal{O}(g^{14})$$

so as to satisfy (cosmic Galois) coaction principle.

Factor out normalization factor containing known IR divergences \mathcal{A}^{IR} ,

$$\mathcal{A} = \mathcal{A}^{\mathsf{IR}} \mathcal{A}_{\mathsf{fin}}.$$

Meaningful to tune \mathcal{A}^{IR} , so that the finite \mathcal{A}_{fin} we compute, becomes *simpler/minimal*. Possible choices:

- Originally $\mathcal{A}^{\mathsf{IR}} = \mathcal{A}^{\mathsf{BDS}}$, essentially the exponentiated $\mathcal{A}^{(1)}$.
- ▶ Next, $\mathcal{A}^{IR} = \mathcal{A}^{BDS-like}$, all finite $s_{i-1ii+1}$ dependence removed. ⇒ Only then \mathcal{A}_{fin} satisfies (extended) Steinmann relations!
- Most recently, "cosmic normalization" $\mathcal{A}^{IR} = \mathcal{A}^{BDS-like}\rho$,

[Caron-Huot, Dixon, Dulat, McLeod, Hippel, GP'19A+B]

$$\rho(g^2) = 1 + 8(\zeta_3)^2 g^6 - 160\zeta_3\zeta_5 g^8 + \left[1680\zeta_3\zeta_7 + 912(\zeta_5)^2 - 32\zeta_4(\zeta_3)^2\right] g^{10} - \left[18816\zeta_3\zeta_9 + 20832\zeta_5\zeta_7 - 448\zeta_4\zeta_3\zeta_5 - 400\zeta_6(\zeta_3)^2\right] g^{12} + \mathcal{O}(g^{14})$$

so as to satisfy (cosmic Galois) coaction principle.Call (N)MHV $A_{fin}(E) \mathcal{E}$.

B. Identifying the Amplitude within $\mathcal{H}^{\mathsf{hex}}\!\!:$ Additional Constraints

1. Discrete symmetries, e.g. $p_i \rightarrow p_{i+1}$ due to trace cyclicity

B. Identifying the Amplitude within \mathcal{H}^{hex} : Additional Constraints

- 1. Discrete symmetries, e.g. $p_i \rightarrow p_{i+1}$ due to trace cyclicity
- 2. Dual superconformal symmetry \Rightarrow constrains last symbol entry [Caron-Huot,He]

B. Identifying the Amplitude within $\mathcal{H}^{\mathsf{hex}}$: Additional Constraints

- 1. Discrete symmetries, e.g. $p_i \rightarrow p_{i+1}$ due to trace cyclicity
- 2. Dual superconformal symmetry \Rightarrow constrains last symbol entry [Caron-Huot,He]
- 3. Collinear limit: After removing universal soft and collinear divergences, finite amplitude remainder obeys $\lim_{i \to 1} ||_i A_n = A_{n-1}$

B. Identifying the Amplitude within $\mathcal{H}^{\mathsf{hex}}$: Additional Constraints

- 1. Discrete symmetries, e.g. $p_i \rightarrow p_{i+1}$ due to trace cyclicity
- 2. Dual superconformal symmetry \Rightarrow constrains last symbol entry [Caron-Huot,He]
- 3. Collinear limit: After removing universal soft and collinear divergences, finite amplitude remainder obeys $\lim_{i \to 1} ||_i A_n = A_{n-1}$
- 4. Additional limits: multi-Regge and near-collinear (OPE) expansion

New effective d.o.f. \Rightarrow dispersion integrals

B. Identifying the Amplitude within \mathcal{H}^{hex} : Additional Constraints

- 1. Discrete symmetries, e.g. $p_i \rightarrow p_{i+1}$ due to trace cyclicity
- 2. Dual superconformal symmetry ⇒ constrains last symbol entry [Caron-Huot,He]
- Collinear limit: After removing universal soft and collinear divergences, finite amplitude remainder obeys lim_{i+1||i} A_n = A_{n-1}
- 4. Additional limits: multi-Regge and near-collinear (OPE) expansion

New effective d.o.f.⇒dispersion integrals

$$A_{6}^{\mathsf{MRL}} = \sum_{n} \left(\frac{z}{z^{*}}\right)^{\frac{n}{2}} \int \frac{d\nu}{2\pi} \chi_{\nu_{1}} \bar{\chi}_{\nu_{1}} |z|^{2i\nu} e^{-L\omega_{\nu}} =$$

[Bartels,Lipatov] [Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek] [Basso,Sever,Vieira]

B. Identifying the Amplitude within \mathcal{H}^{hex} : Additional Constraints

- 1. Discrete symmetries, e.g. $p_i \rightarrow p_{i+1}$ due to trace cyclicity
- 2. Dual superconformal symmetry ⇒ constrains last symbol entry [Caron-Huot,He]
- 3. Collinear limit: After removing universal soft and collinear divergences, finite amplitude remainder obeys $\lim_{i \to 1} ||_i A_n = A_{n-1}$
- 4. Additional limits: multi-Regge and near-collinear (OPE) expansion

New effective d.o.f.⇒dispersion integrals

$$A_{6}^{\mathsf{MRL}} = \sum_{n} \left(\frac{z}{z^{*}}\right)^{\frac{n}{2}} \int \frac{d\nu}{2\pi} \chi_{\nu_{1}} \bar{\chi}_{\nu_{1}} |z|^{2i\nu} e^{-L\omega_{\nu}} =$$

Can evaluate in principle at any loop order, ^{[GP][GP,Drummond]} using nested summation algorithms ^[Moch,Uwer,Weinzierl]

Beyond Perturbation Theory: Coupling Resummation

Beyond Perturbation Theory: Coupling Resummation

For a subspace of n = 6 pentagon-ladder integrals, can resum to all loops!

[Caron-Huot, Dixon, McLeod, GP, von Hippel]

Beyond Perturbation Theory: Coupling Resummation

For a subspace of n = 6 pentagon-ladder integrals, can resum to all loops!

[Caron-Huot,Dixon,McLeod,GP,von Hippel]

Obtain extremely simple formula,

$$\Omega \equiv \sum_{L} g^{2L} \Omega^{(L)} = \int_{-\infty}^{\infty} \frac{d\nu}{2i} z^{i\nu/2} \frac{F_{+\nu}^{j}(x) F_{+\nu}^{j}(y) - F_{-\nu}^{j}(x) F_{-\nu}^{j}(y)}{\sinh(\pi\nu)},$$

where $g^2 = \frac{\lambda}{16\pi^2}$ and F_{ν}^j normalized hypergeometric functions:

$$F_{\nu}^{j}(x) \equiv \frac{\Gamma(1+\frac{i\nu+j}{2})\Gamma(1+\frac{i\nu-j}{2})}{\Gamma(1+i\nu)} x^{i\nu/2} {}_{2}F_{1}(\frac{i\nu+j}{2},\frac{i\nu-j}{2},1+i\nu,x), \quad j \equiv i\sqrt{\nu^{2}+4g^{2}}$$

From asymptotic analysis of $_2F_1$, also obtain expansion of finite-coupling Ω around $g \to \infty$, $^{[Lantos, Papathanasiou; to appear]}$

From asymptotic analysis of $_2F_1$, also obtain expansion of finite-coupling Ω around $g \to \infty$, ^[Lantos, Papathanasiou; to appear]

$$\Omega \simeq -2\pi g \left(\frac{1}{x} - 1\right)^{1/4} \left(\frac{1}{y} - 1\right)^{1/4} \cosh[g(\phi(x) - \phi(y))] e^{-2\pi g},$$

where $\phi(x) = \arccos(2x-1)$, $u_1 = \frac{1}{1+\sqrt{xy/z}}$, $u_2 = \frac{1}{1+\sqrt{xyz}}$, $\frac{u_3}{(1-x)(1-y)} = u_1u_2$

From asymptotic analysis of $_2F_1$, also obtain expansion of finite-coupling Ω around $g \to \infty$, $^{[Lantos, Papathanasiou; to appear]}$

$$\Omega \simeq -2\pi g \left(\frac{1}{x} - 1\right)^{1/4} \left(\frac{1}{y} - 1\right)^{1/4} \cosh[g(\phi(x) - \phi(y))] e^{-2\pi g},$$

where $\phi(x) = \arccos(2x-1)$, $u_1 = \frac{1}{1+\sqrt{xy/z}}$, $u_2 = \frac{1}{1+\sqrt{xyz}}$, $\frac{u_3}{(1-x)(1-y)} = u_1u_2$

Interpretation as a long string, as expected from gauge/string duality $_{\rm [Alday,Maldacena]}$

From asymptotic analysis of $_2F_1$, also obtain expansion of finite-coupling Ω around $g \to \infty$, $^{[Lantos, Papathanasiou; to appear]}$

$$\Omega \simeq -2\pi g \left(\frac{1}{x} - 1\right)^{1/4} \left(\frac{1}{y} - 1\right)^{1/4} \cosh[g(\phi(x) - \phi(y))] e^{-2\pi g},$$

where $\phi(x) = \arccos(2x-1)$, $u_1 = \frac{1}{1+\sqrt{xy/z}}$, $u_2 = \frac{1}{1+\sqrt{xyz}}$, $\frac{u_3}{(1-x)(1-y)} = u_1u_2$

Interpretation as a long string, as expected from gauge/string duality $_{\rm [Alday,Maldacena]}$

Can systematically compute any subleading term at strong coupling!

Results: Steinmann Heptagon Symbols

Weight $k =$	1	2	3	4	5	6	7	8
Heptagon Symbols	7	42	237	1288	6763	?	?	?
Steinmann Relation	7	28	97	322	1030	3192	9570	?
MHV Final Entry	0	1	0	1	1	2	1	4
Well-defined $i i+1$	-	0	-	0	-	0	-	0

Results: Steinmann Heptagon Symbols

Weight $k =$	1	2	3	4	5	6	7	8
Heptagon Symbols	7	42	237	1288	6763	?	?	?
Steinmann Relation	7	28	97	322	1030	3192	9570	?
MHV Final Entry	0	1	0	1	1	2	1	4
Well-defined $i i + 1$	-	0	-	0	-	0	-	0

The symbol of the 3-loop 7-particle MHV amplitude is the only weight-6 heptagon symbol which satisfies the last-entry condition and which is finite in the 7 \parallel 6 collinear limit.^[Drummond,GP,Spradlin]
Results: Steinmann Heptagon Symbols

Weight $k =$	1	2	3	4	5	6	7	8
Heptagon Symbols	7	42	237	1288	6763	?	?	?
Steinmann Relation	7	28	97	322	1030	3192	9570	?
MHV Final Entry	0	1	0	1	1	2	1	4
Well-defined $i i+1$	-	0	-	0	-	0	-	0

The symbol of the 3-loop 7-particle MHV amplitude is the only weight-6 heptagon symbol which satisfies the last-entry condition and which is finite in the 7 \parallel 6 collinear limit.^[Drummond,GP,Spradlin]

Weight $k =$	1	2	3	4	5	6	7	8
Hexagon Symbols	3	9	26	75	218	643	?	?
Steinmann Relation	3	6	13	26	51	98	184	340
MHV Final Entry	0	3	4	11	21	41	76	142
Well-defined $i i + 1$	-	0	-	2	-	11	-	43

GP — The Steinmann Cluster Bootstrap

Results: Steinmann Heptagon Symbols

Weight $k =$	1	2	3	4	5	6	7	8
Heptagon Symbols	7	42	237	1288	6763	?	?	?
Steinmann Relation	7	28	97	322	1030	3192	9570	?
MHV Final Entry	0	1	0	1	1	2	1	4
Well-defined $i i+1$	-	0	-	0	-	0	-	0

The symbol of the 4-loop 7-particle MHV amplitude is the only weight-8 Steinmann heptagon symbol satisfying the final-entry condition with finite $i \parallel i+1$ limit. ^[Dixon,Drummond,Harrington,McLeod,GP,Spradlin]

Weight $k =$	1	2	3	4	5	6	7	8
Hexagon Symbols	3	9	26	75	218	643	?	?
Steinmann Relation	3	6	13	26	51	98	184	340
MHV Final Entry	0	3	4	11	21	41	76	142
Well-defined $i i+1 $	-	0	-	2	-	11	-	43

GP — The Steinmann Cluster Bootstrap

Cluster algebras ^[Fomin,Zelevinsky]

They are commutative algebras with

• Distinguished set of generators a_i , the *cluster variables*

They are commutative algebras with

- Distinguished set of generators a_i, the cluster variables
- Grouped into overlapping subsets $\{a_1, \ldots, a_n\}$ of rank n, the clusters

They are commutative algebras with

- Distinguished set of generators a_i , the *cluster variables*
- Grouped into overlapping subsets $\{a_1, \ldots, a_n\}$ of rank n, the clusters
- · Constructed recursively from initial cluster via mutations

They are commutative algebras with

- Distinguished set of generators a_i , the *cluster variables*
- Grouped into overlapping subsets $\{a_1, \ldots, a_n\}$ of rank n, the clusters
- Constructed recursively from initial cluster via mutations

Can be described by quivers.

They are commutative algebras with

- Distinguished set of generators a_i , the *cluster variables*
- Grouped into overlapping subsets $\{a_1, \ldots, a_n\}$ of rank n, the clusters
- · Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A_3 Cluster algebra

They are commutative algebras with

- Distinguished set of generators a_i, the cluster variables
- Grouped into overlapping subsets $\{a_1, \ldots, a_n\}$ of rank n, the clusters
- Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A_3 Cluster algebra

Mutate a_2 : New cluster

General rule for mutation at node k:

```
1. \forall i \rightarrow k \rightarrow j, add i \rightarrow j, reverse i \leftarrow k \leftarrow j, remove \rightleftharpoons.
```

They are commutative algebras with

- Distinguished set of generators a_i , the *cluster variables*
- Grouped into overlapping subsets $\{a_1, \ldots, a_n\}$ of rank n, the clusters
- · Constructed recursively from initial cluster via mutations

General rule for mutation at node k:

1. $\forall i \rightarrow k \rightarrow j$, add $i \rightarrow j$, reverse $i \leftarrow k \leftarrow j$, remove \rightleftharpoons .

2. In new quiver/cluster, $a_k \rightarrow a'_k = \left(\prod_{\text{arrows } i \rightarrow k} a_i + \prod_{\text{arrows } k \rightarrow j} a_j\right)/a_k$

Momentum Twistors $Z^{I \ [\mathrm{Hodges}]}$

▶ Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors $X^{M} \in \mathbb{R}^{2,4}$, $X^{2} = 0$, $X \sim \lambda X$.

- ► Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors $X^M \in \mathbb{R}^{2,4}, X^2 = 0, X \sim \lambda X.$
- Repackage vector X^M of SO(2,4) into antisymmetric representation

$$X^{IJ} = -X^{JI} = \bigcup \text{ of } SU(2,2)$$

- ▶ Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors $X^M \in \mathbb{R}^{2,4}$, $X^2 = 0$, $X \sim \lambda X$.
- Repackage vector X^M of SO(2,4) into antisymmetric representation

$$X^{IJ} = -X^{JI} = - of SU(2,2)$$

► Can build latter from two copies of the fundamental $Z^I =$, $X^{IJ} = Z^{[I}\tilde{Z}^{J]} = (Z^I\tilde{Z}^J - Z^J\tilde{Z}^I)/2 \text{ or } X = Z \land \tilde{Z}$

- ▶ Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors $X^M \in \mathbb{R}^{2,4}, X^2 = 0, X \sim \lambda X.$
- Repackage vector X^M of SO(2,4) into antisymmetric representation

$$X^{IJ} = -X^{JI} = - of SU(2,2)$$

- ► Can build latter from two copies of the fundamental $Z^I =$, $X^{IJ} = Z^{[I}\tilde{Z}^{J]} = (Z^I\tilde{Z}^J - Z^J\tilde{Z}^I)/2 \text{ or } X = Z \land \tilde{Z}$
- After complexifying, Z^I transform in SL(4, C). Since Z ~ tZ, can be viewed as homogeneous coordinates on P³.

- ▶ Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors $X^M \in \mathbb{R}^{2,4}$, $X^2 = 0$, $X \sim \lambda X$.
- Repackage vector X^M of SO(2,4) into antisymmetric representation

$$X^{IJ} = -X^{JI} = - of SU(2,2)$$

- ► Can build latter from two copies of the fundamental $Z^I =$, $X^{IJ} = Z^{[I}\tilde{Z}^{J]} = (Z^I\tilde{Z}^J - Z^J\tilde{Z}^I)/2 \text{ or } X = Z \land \tilde{Z}$
- After complexifying, Z^I transform in SL(4, C). Since Z ~ tZ, can be viewed as homogeneous coordinates on P³.
- Can show

$$(x-x')^2 \propto 2X \cdot X' = \epsilon_{IJKL} Z^I \tilde{Z}^J Z'^K \tilde{Z}'^L = \det(Z \tilde{Z} Z' \tilde{Z}') \equiv \langle Z \tilde{Z} Z' \tilde{Z}' \rangle$$

- ▶ Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors $X^M \in \mathbb{R}^{2,4}, X^2 = 0, X \sim \lambda X.$
- Repackage vector X^M of SO(2,4) into antisymmetric representation

$$X^{IJ} = -X^{JI} = - of SU(2,2)$$

- ► Can build latter from two copies of the fundamental $Z^I =$, $X^{IJ} = Z^{[I}\tilde{Z}^{J]} = (Z^I\tilde{Z}^J - Z^J\tilde{Z}^I)/2 \text{ or } X = Z \land \tilde{Z}$
- After complexifying, Z^I transform in SL(4, C). Since Z ~ tZ, can be viewed as homogeneous coordinates on P³.
- Can show

$$(x-x')^2 \propto 2X \cdot X' = \epsilon_{IJKL} Z^I \tilde{Z}^J Z'^K \tilde{Z}'^L = \det(Z \tilde{Z} Z' \tilde{Z}') \equiv \langle Z \tilde{Z} Z' \tilde{Z}' \rangle$$

$$(x_{i+i} - x_i)^2 = 0 \implies X_i = Z_{i-1} \wedge Z_i$$

Can realize $\operatorname{Conf}_n(\mathbb{P}^3)$ as $4 \times n$ matrix

 $(Z_1|Z_2|\ldots|Z_n)$

modulo rescalings of the n columns and SL(4) transformations, which resembles a Graßmannian Gr(4, n).

Can realize $\operatorname{Conf}_n(\mathbb{P}^3)$ as $4 \times n$ matrix

 $(Z_1|Z_2|\ldots|Z_n)$

modulo rescalings of the *n* columns and SL(4) transformations, which resembles a Graßmannian Gr(4, n).

Gr(k, n): The space of k-dimensional planes passing through the origin in an *n*-dimensional space.

Can realize $\operatorname{Conf}_n(\mathbb{P}^3)$ as $4 \times n$ matrix

 $(Z_1|Z_2|\ldots|Z_n)$

modulo rescalings of the *n* columns and SL(4) transformations, which resembles a Graßmannian Gr(4, n).

Gr(k,n): The space of k-dimensional planes passing through the origin in an *n*-dimensional space. Equivalently the space of $k \times n$ matrices modulo GL(k) transformations:

Can realize $\operatorname{Conf}_n(\mathbb{P}^3)$ as $4 \times n$ matrix

 $(Z_1|Z_2|\ldots|Z_n)$

modulo rescalings of the *n* columns and SL(4) transformations, which resembles a Graßmannian Gr(4, n).

Gr(k,n): The space of k-dimensional planes passing through the origin in an *n*-dimensional space. Equivalently the space of $k \times n$ matrices modulo GL(k) transformations:

• k-plane specified by k basis vectors that span it $\Rightarrow k \times n$ matrix

Can realize $\operatorname{Conf}_n(\mathbb{P}^3)$ as $4 \times n$ matrix

 $(Z_1|Z_2|\ldots|Z_n)$

modulo rescalings of the *n* columns and SL(4) transformations, which resembles a Graßmannian Gr(4, n).

Gr(k, n): The space of k-dimensional planes passing through the origin in an *n*-dimensional space. Equivalently the space of $k \times n$ matrices modulo GL(k) transformations:

- k-plane specified by k basis vectors that span it $\Rightarrow k \times n$ matrix
- Under *GL*(*k*) transformations, basis vectors change, but still span the same plane.

Can realize $\operatorname{Conf}_n(\mathbb{P}^3)$ as $4 \times n$ matrix

 $(Z_1|Z_2|\ldots|Z_n)$

modulo rescalings of the *n* columns and SL(4) transformations, which resembles a Graßmannian Gr(4, n).

Gr(k, n): The space of k-dimensional planes passing through the origin in an *n*-dimensional space. Equivalently the space of $k \times n$ matrices modulo GL(k) transformations:

- k-plane specified by k basis vectors that span it $\Rightarrow k \times n$ matrix
- Under *GL*(*k*) transformations, basis vectors change, but still span the same plane.

Comparing the two matrices,

$$\operatorname{Conf}_n(\mathbb{P}^3) = Gr(4,n)/(C^*)^{n-1}$$

• Graßmannians Gr(k,n) equipped with cluster algebra structure ^[Scott]

- Graßmannians Gr(k,n) equipped with cluster algebra structure ^[Scott]
- Initial cluster made of a special set of Plücker coordinates $\langle i_1 \dots i_k \rangle$

- Graßmannians Gr(k,n) equipped with cluster algebra structure ^[Scott]
- Initial cluster made of a special set of Plücker coordinates $\langle i_1 \dots i_k \rangle$
- Mutations also yield certain homogeneous polynomials of Plücker coordinates

- Graßmannians Gr(k,n) equipped with cluster algebra structure ^[Scott]
- Initial cluster made of a special set of Plücker coordinates $\langle i_1 \dots i_k \rangle$
- Mutations also yield certain homogeneous polynomials of Plücker coordinates
- Crucial observation: For all known cases, symbol alphabet of *n*-point amplitudes for n = 6, 7 are Gr(4, n) cluster variables (also known as \mathcal{A} -coordinates) [Golden,Goncharov,Spradlin,Vergu,Volovich]

- Graßmannians Gr(k,n) equipped with cluster algebra structure ^[Scott]
- Initial cluster made of a special set of Plücker coordinates $\langle i_1 \dots i_k \rangle$
- Mutations also yield certain homogeneous polynomials of Plücker coordinates
- Crucial observation: For all known cases, symbol alphabet of *n*-point amplitudes for n = 6, 7 are Gr(4, n) cluster variables (also known as \mathcal{A} -coordinates) [Golden,Goncharov,Spradlin,Vergu,Volovich]

Fundamental assumption of "cluster bootstrap"

Symbol alphabet is made of cluster A-coordinates on $Conf_n(\mathbb{P}^3)$. For the heptagon, 42 of them.

Locality: Amplitudes may only have singularities when some intermediate particle goes on-shell.

Locality: Amplitudes may only have singularities when some intermediate particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when

$$(p_i + p_{i+1} + \dots + p_{j-1})^2 = (x_j - x_i)^2 \propto \langle i - 1 \, i \, j - 1 \, j \rangle \to 0$$

Locality: Amplitudes may only have singularities when some intermediate particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when

$$(p_i + p_{i+1} + \dots + p_{j-1})^2 = (x_j - x_i)^2 \propto \langle i - 1 \, i \, j - 1 \, j \rangle \to 0$$

Singularities of generalised polylogarithm functions are encoded in the first entry of their symbols.

First-entry condition: Only (i-1ij-1j) allowed in the first entry of S

Locality: Amplitudes may only have singularities when some intermediate particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when

$$(p_i + p_{i+1} + \dots + p_{j-1})^2 = (x_j - x_i)^2 \propto \langle i - 1 \, i \, j - 1 \, j \rangle \to 0$$

Singularities of generalised polylogarithm functions are encoded in the first entry of their symbols.

First-entry condition: Only (i-1ij-1j) allowed in the first entry of S

Define **(Steinmann)** n-gon symbol: An integrable symbol of the corresponding n-gon alphabet that obeys first-entry condition (and the Steinmann relation).

MHV Constraints: Yangian anomaly equations

MHV Constraints: Yangian anomaly equations

 Tree-level amplitudes exhibit (usual + dual) superconformal symmetry [Drummond,Henn,Korchemsky,Sokatchev]
MHV Constraints: Yangian anomaly equations

- Tree-level amplitudes exhibit (usual + dual) superconformal symmetry [Drummond,Henn,Korchemsky,Sokatchev]
- Combination of two symmetries gives rise to a Yangian [Drummond,Henn,Plefka][Drummond,Ferro]

MHV Constraints: Yangian anomaly equations

- Tree-level amplitudes exhibit (usual + dual) superconformal symmetry [Drummond,Henn,Korchemsky,Sokatchev]
- Combination of two symmetries gives rise to a Yangian [Drummond,Henn,Plefka][Drummond,Ferro]
- Although broken at loop level by IR divergences, Yangian anomaly equations governing this breaking have been proposed ^[Caron-Huot,He]

Consequence for MHV amplitudes: Their differential is a linear combination of $d \log \langle i j - 1 j j + 1 \rangle$, which implies

Last-entry condition: Only (ij-1jj+1) may appear in the last entry of the symbol of any MHV amplitude.

Imposing Constraints: The Collinear Limit

It is baked into the definition of the BDS-subtracted n-particle L-loop MHV remainder function that it should smoothly approach the corresponding (n-1)-particle function in any simple collinear limit:

$$\lim_{i+1||i|} R_n^{(L)} = R_{n-1}^{(L)}.$$

Imposing Constraints: The Collinear Limit

It is baked into the definition of the BDS-subtracted *n*-particle *L*-loop MHV remainder function that it should smoothly approach the corresponding (n-1)-particle function in any simple collinear limit:

$$\lim_{i+1||i|} R_n^{(L)} = R_{n-1}^{(L)}.$$

For n = 7, taking this limit in the most general manner reduces the 42-letter heptagon symbol alphabet to 9-letter hexagon symbol alphabet, plus nine additional letters.

Imposing Constraints: The Collinear Limit

It is baked into the definition of the BDS-subtracted *n*-particle *L*-loop MHV remainder function that it should smoothly approach the corresponding (n-1)-particle function in any simple collinear limit:

$$\lim_{i+1||i|} R_n^{(L)} = R_{n-1}^{(L)}.$$

For n = 7, taking this limit in the most general manner reduces the 42-letter heptagon symbol alphabet to 9-letter hexagon symbol alphabet, plus nine additional letters.

A function has a well-defined $i+1 \parallel i$ limit only if its symbol is independent of all nine of these letters.