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Introduction

Some motivations for noncommutative (NC) space(time) algebras:

e To avoid UV divergences in QFT [Snyder 1947,...].

e As an arena for formulating QG compatible with Ax 2 L,
[Mead 1966, Doplicher et al 1994-95,...].

e As an arena for unifying interactions [Connes-Lott '92,...]

Given a quantum theory 7 on a commutative space how to find
NC candidates 7 approximating 77  One possible mechanism:

Let # = Hilbert space of the system S, A= Lin(H), HC H a
subspace, P :H +— H its projection. Then

A=Lin(H) ={A=PAP |Ac A} £ A.

In particular, if [x;, x;] = 0, in general [X;,Xj] # 0.
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If PH = HP (H = Hamiltonian of S) then no change in dynamics
Withilﬁ. If H = subspace with energies E < E = cutoff,
then 7T is a low-energy effective approximation of 7.

Prototype: Landau model in D=2; E = Eg implies [x1,%] = <.

When may this be useful? E. g.:

=L . . . : _
e If H ™ is practically not accessible in preparing the initial state,
nor through the interactions with the environment or the
measurement apparatus, then 7 on # (smaller) is enough.

e If at E > E we expect new physics not accountable by 7, then
T may also help to figure out a new theory 77 valid for all E.

(Of course, the two may co-exist.)

If H is invariant under some group G, then H, P, T will be.



INTRODUCTION

Consider quantum mechanics (QM) on RP, Hamiltonian H(x, p).
dim(H) ~ Vol(Bg)/h®,
Be={(x,p) eR?P | H(x,p) < E} = classical phase space below E.

H=p’= I p?

B

p

dim(#) ~ Vol(Z;) = oo

oD

confining

Xz

X2

dim(%) ~ Vol(.B;)<eo

Xy

X;
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Adding a ‘dimensional reduction’ mechanism we can obtain a NC,
fuzzy approximation of QM on submanifolds of RP.
Here a sphere S9, d = D—1 [GF, F. Pisacane 2017-19].

Consider a quantum particle in RP
configuration space with Hamiltonian

H = —%A YV ()

we fix the minimum Vg = V(1) of the

the confining potential V(r) so that

the ground state has energy Ey = 0.
Choose V/(r) and E fulfilling

V(r)~ Vo+2k(r—1)> (2)

if V(r) < E; so that V(r) has a har- Figure 1 : Three-dimensional
E Vo plot of V(r)

monic behavior for [r—1|<y/=52.
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The minimum on the sphere r=1 is sharp if V"(1)=4k>>0.

E low enough to eliminate radial excitations from Spectrum(H).
Then: H = L2; the x; generate all A, [X,Xj] ~ —‘f 3 la Snyder.

Choose E = E(A) = A(A+d—1), k= k(A) > /\2(A+1)2;

diverging with AeN. We thus find

(Ha, Ay) 2% (H, A) = (52(50’), Lin(,c2(sd)))

This is a O(D)-covariant fuzzy sphere {SZ}aen = {(Ha, Ar) Fren,
i.e. sequence of finite-dim approximations of ordinary QM on S911

After briefly reviewing the features of S, S/%, here | will present
various systems of coherent states (SCS) on them and discuss their
localization both in configuration and (angular) momentum space.

Finally, | will compare our 5,‘\’ with other fuzzy spheres, in
particular 5,2\ with Madore-Hoppe Fuzzy sphere.

LA fuzzy space is a sequence {An}nen of finite-dimensional algebras such
that A, =3 A =algebra of regular functions on an ordinary-manifold.
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PRELIMINARIES

Preliminaries - Localization on RP, S¢ and S¢

A good measure of the localization of a state 1) in configuration
space RP is its spacial dispersion, i.e. the expectation value on )

(Ax)? = Z’D (Ax;)? = (x*) — (3)

x = (x1,.., %), (X) = ({x1), ..., (x,)) is the average position in RD;
x? = > i1 Xixi measures the square distance from the origin;
x—(x) measures the displacement from (x);

(3) is the average of the square of the latter, O(D)-invariant.

We adopt it also on 59, 5/‘\1:

if ¢ is localized in a small -
region ¢ C S9 around a

point u = (x) € S9 then
(Ax)? essentially reduces

to the average square dis-
placement in the tangent (
plane at u, as wished: \
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Preliminaries - Coherent states

Schrédinger introduced canonical SCS on R? {¢,},cq € H
(2=CP) to saturate Heisenberg uncertainty relation (HUR)
Ax;Ap; > h/2. Heisenberg-Weyl group G maps ¢, — ¢,.
Properties:

1. Strong continuity of ¢, as a function of z € Q;

2. ldentity Resolution: [ = /dz P,, P,=|p:){(¢]; (4)
Q

3. Completeness: Span{¢,|z€Q} =H. <=2

Generic manifold M: 1,2 define strong SCS, 1,3 define weak SCS;
Q = topological space, dz = suitable integration measure on (2.
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Assume Lie group G acts on H via unitary irrep T; fix ¢pgeH.
for all g€ G let po=T(g)po, H={h€ G| ¢} = exp[ia(h)]po}.
Then |¢g)(dg| = |Pgh)(Pgh| = P, depends only on z € Q = G/H.
If 3 left-invariant measure dg on G s.t. [ |[(¢o,T(g)¢0)|? dg < oo
(<= G compact) then (4) holds with dz o dg [Perelomov, Gilmore].

Perelomov: the CS closest states to classical ones are obtained
from a ¢9 maximizing H; for G = SO(3) it is H = SO(2), and
these SCS minimize the dispersion

(AL =37 (ALY =(1?) - (5)
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Coherent and localized states on Sp
B := {Yn,¥a-1,...,p_p} = orthonormal basis of Hx such that

14968 [ gpay if ~A<En<A-1

Ly, = nipy, Xptpp = (6)

0 otherwise,

where L = L, xi = xq + ixa, k = k(A) fulfills (??). S% =3 st
L,xy,x_ and x> = x? + x5 fulfill the O(2)-equivariant relations

[Lxe] = £x1, xif=x_, LT=1, (M)
2L ANA+1 ~
[x+,X—]=—?+ {14- ( k+ )} <P/\—P7/\> =L, (8)
L2 ANA+1)] Pa+P-
x2:1+k—[1+ (: )} e 9)

where P, : H — Ct, (projection). We point out that:
e x? # 1is a function of L?; if n # 4N eigenvectors 1, have
eigenvalues ~ 1, slightly growing with |n| and "o,

e The ordered monomials XJ’; L' x" [with degrees h,/, n bounded by
(72?1 make 11n 2 hacic of +he (9A L1)2_dim vertar cnace ninderlvine
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O(2)-covariant UR and strong SCS systems on Si
Axy, Ax, may vanish separately, but not simultaneously, because

(x> (Bxy ~ 15 (11)

2
HUR: ALAx > |<’;2>|, ALAx, > |<’;1>|, AL(Ax)? > % (12)

for both S, S3; derived from (7), saturated by the v, (AL = 0).

A
Theorem V3 € (R/27Z)*M SP = { 55 > \/%)w”}
- aeN=S51

2A+1

™ Jo

SP is fully O(2)-covariant if B_, = B,. On all w8 it is (L) =0,
(ALY = @ whereas (Ax)? is minimized by the ¢, = w?, with

(AX)2 /\—11— 1 (1 * 31/\> (14)

is a strong SCS: I = d P2 PS = wh(wh ). (13)
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O(2)-invariant weak SCS minimizing (Ax)?

Since (Ax)? is O(2)-invariant, so is the set W! of states minimizing it.

Hence if x € W?, then W! = {X = eiaLx} 02 [; is a weak SCS.
- —o —Jagl0,27
We have shown that
> > 35
0 < (Ax),, = (Ax)y < Arie (15)

The x  are closest to classical states(=points) of S, and S' <> W'.

Within the class of strong SCS, ¢, are closest to classical points of S?,
and St & St= {batacp.2n]-
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Coherent and localized states on Si

Let Ly =L +il,, Lo = L3, Xy = X1 £ ixo, Xp = X3.
By = {¢;n}/:o,1,...,

L2y =11+ 19", Lsp" = mpp. (16)
where L2 = L;L;. On the ¥/ the L,,x, (a=0,+,—) act as follows:

Loy = myp", Ly = /(IFm)(IEm+1)pr*,  (17)

AT+ q BITYNET ifL<A,

A me_ . = orthonormal basis of Hx such that

I+1
XY = c,A;""m ,’(Tf if | =A, (18)
0 otherwise,
0,m __ I+m)(/— +.m _ i i —1
where AP = fEmCm g o o [OEmEm-D

a,m —a,m+a IZ (19)
B EA,+1’ , =c+1=0, ¢g=4/1+7 1</ <A,

where k is a function of A fulfilling (?7).
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The L;, x; and x? = x;x; fulfill the following O(3)-covariant relations:

i =x, LI=L, [L,x]=iex, [Li,L}]=ie"Lly, xiL;=0,

(1~ )
[X,'7Xj] = IEJth <_k+K’D/\>7 X2 = 1—"_%_ |:1 + (A—Zl) :|2/\+1P/\7

Snyder— like N
Hf\ZO [L2_l(/ + 1)/] = O ani ,(L3—m/)P/ — 0 (X:t)2/\+1 _ O,

here K = k 41 2A+1, P/ = projection on L2 = /(/+1) eigenspace. Note:
e x2 = 1is a function of L?; if / < A the eigenvectors 1]" have
eigenvalues ~ 1, slightly growing with / and "o,
e Ordered monomials in x;, L; [with degrees bounded by (20)3] make
up a basis of Ax=End(H,): express P; as polynomials in L2.

o The x; generate the x-algebra Ap, because also the L; can be
expressed as non-ordered polynomials in the x;.

e Actually there are x-algebra isomorphisms

(20)

An ~ My(C) ~ wa[Uso(4)], N = (A+1)?, (21)

TA =7 ® T unitary representation of Uso(4)~ Usu(2) ® Usu(2)
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O(3)-covariant UR and strong SCS systems on Si

Proposition The UR (AL)? > |(L)| < (L?) > |(L)|(J(L)] +1) (22)
holds on Ha; is saturated by Bloch CS ¢, = wa(g)) € Vi, g€SO(3).
Holds and new also as A — oo, i.e. on H = L2(5?).

[Li,L;] = ie"™ e = ALALy > 1|(L3)| + permutations = (AL)?>3|(L)|
[Lixj] = ie" = ALiAx; > [(x3)|, & permutations. Saturable? Boh
Again, Axi, Axp, Axz may vanish separately, not simultaneously, because

(AX) (Ax)mln ﬁ (23)
Set T =mp=reducible unitary repr. of SO(3) on Hp, w = Z Z
B —
Theorem S¥ = {w, = mA(g)w geso(3) s @ strong SCS if
h

Z |w, |? = /\2f11 V1, it is also is fully O(3)-covariant if w)' = w,

A+ 1)
p= OIS /S M@ =) (24)
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M1

L3¢® = 0 = nontrivial isotropy subgroup H = {e'¥3 |y € R} ~ SO(2):
resolution of the identity integrating over S%2 ~ SO(3)/H > g = e®hBe/?%:

A .
Choosing w = ¢ = 3" e/ V2 3 ¢ (R/27Z)M.
i=0

"“/ /dasmaPﬁ PY = ¢l ), oL = mlg)e” (25)

Hence Sg = {¢J} 452 is a family of fully O(3)-covariant, strong SCSs.
On it (AL)? is independent of 3, while (Ax)? is smallest on the ¢3:

A(A+2)
2 b

2 __
(AL = A+1°

(Ax)? < (26)
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O(3)-invariant weak SCS minimizing (Ax)?

Since (Ax)? is O(3)-invariant, so is the set W? of states minimizing it.
Look for x € W? s.t. (x3) = |[(x)|; then W? = {x, = mn(&)x}ges00)-
We have shown that L3x = 0 = J nontrivial isotropy subgroup

H = {e'¥t |1 € R} ~ SO(2), whence W? = {x, = mr(g)x}ges-
W2 is a weak SCS.

The X, are closest to classical states(=points) of S2, and S? <+ W2,

At order O(1/A?) x coincides with the eigenvector X of x; with highest
eigenvalue. We have shown that

0 < (Ax)?, = (Ax)? 11

min X < m (27)

Within the class of strong SCS, the ¢, are closest to classical points of
S% and S% & 82 = {¢g}sese.
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Discussion and conclusions

We have built a sequence (Ap, Ha) of finite-dim, O(D)-covariant

(D = d+1) approximations of QM of a spinless particle on the sphere
S x2 > 1 collapses to 1 as A — co.

Achieved imposing E < A(A+d—1) on QM of a particle in RP subject to
a sharp confining potential V/(r) on the sphere r = 1.

Ap are fuzzy approximations of the whole algebra of observables of the
particle on S¢ (phase space algebra).

Ap ~ ma[Uso(D+1)], with a suitable irrep mp of Uso(D+1) on Ha.

Hn carries a reducible representation of the Uso(D) subalgebra generated
by the Lj:  Ha = irreps fulfilling L2 < A(A+d—1).

The same decomposition holds for the subspace Cx C Ap of completely
symmetrized polynomials in the X'

As A — 0o these resp. become the decompositions (29) of £2(S9) and of
C(S9) acting on £2(SY).
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5,2\ vs. Madore-Hoppe Fuzzy Sphere S2 (seminal fuzzy space):
A, ~ M,(C), generated by coordinates x' (i = 1,2, 3) fulfilling

[x',x]] = Lg’jkxk r?=xx'=1 neN\ {1} (28)

) m ) ) 1

(28) are covariant under SO(3), but not under the whole O(3); in
particular not under parity x' — —x".
In fact L' = x'v/n?—1/2 make up the standard basis of so(3) in the irrep
(1, Vi) characterized by L'L' = I(I + 1), n = 2/+1.
Does S2 approximate the configuration space algebra of a particle on 52?7
Problems: a) parity; b) V; is irreducible.
Our [X;,Xj] = 'LT” + ... are O(3)-covariant: a) solved. Moreover,

A 2A
Ha~PVv, A=PV. (29)
1=0 =0

As A — oo we get £2(S%) ~ P Vi: b) solved, C(S?)~ P V.
1=0 1=0
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On Madore FS
, 2 1

min = ] T 41

(/ =cutoff) whereas on our fuzzy sphere S2

(Ax)

11

(Ax)%nin < m
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The fuzzy spheres of dimension d = 4 [Grosse, Klimcik, Presnajder 1996],
d > 3 [Ramgoolam 2001, Dolan, O’'Connor 2003, ...], are based on
End(V) where V carries a particular irrep of SO(d + 1).

x? is central, can be set=1.

Also Snyder-like commutation relations, hence O(d + 1)-covariant.

In [Steinacker et al. 2016-19] fuzzy 4-spheres Sy, through reducible repr.
of Uso(5) obtained decomposing irreps m of Uso(6) with suitable highest
weights (N, ny, np); so End(V) ~ w[Uso(6)], in analogy with our result.
The elements X' of a basis of so(6) \ so(5) (as a vector space) play the
role of noncommuting cartesian coordinates.

Hence, the SO(5)-scalar x2 = X' X" is no longer central, but its spectrum
is still very close to 1 only if N > nq, no;

if n = np = 0 then x> =1 (= irrep), and one recovers the fuzzy
4-sphere [Grosse, Klimcik, Presnajder 1996].

Here x? ~ 1 is guaranteed by adopting x' = g(L?)X'g(L?) rather than
X' as noncommutative cartesian coordinates, and x% = x'x’ .
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