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Recap - Machine Learning in String Theory

In June 2017, with 2 weeks, 4 groups proposed independently to use ML in ST
[He "17; Krefl,Seung "17; Ruehle "17; Carifio,Halverson,Krioukov,Nelson "17]



I

|
|

Recap - Machine Learning in String Theory

In June 2017, with 2 weeks, 4 groups proposed independently to use ML in ST

Structure of vacua (Unsuperwsed ML)
- Clustering, Feature extraction
- Topological data analysis

Im ¢
3.0

DROHRE I TN S SO DR

Gt b
; { :. AT \ :'\s.o’..s-,._ :f_:;z' i
5 {“‘ '-"!‘ "'-!’“ KR S i
o} q ‘%g "’;’#
3 *}( XY 33':3 ‘i‘ wt:
s

Foedeg StV
-': PP N

Re ¢
-04 -0.2 0.0 0.2 0.4

[Cole,Shiu "17, 18]

[He "17; Krefl,Seung "17; Ruehle "17; Carifio,Halverson,Krioukov,Nelson "17]

second latent dimension

first latent dimension

[Mutter,Parr,Vaudrevange 18]



Recap - Machine Learning in String Theory

In June 2017, with 2 weeks, 4 groups proposed independently to use ML in ST
[He "17; Krefl,Seung "17; Ruehle "17; Carifio,Halverson,Krioukov,Nelson "17]

Structure of vacua (Unsupervised ML)
- Clustering, Feature extraction
- Topological data analysis




Recap - Machine Learning in String Theory

In June 2017, with 2 weeks, 4 groups proposed independently to use ML in ST
[He "17; Krefl,Seung "17; Ruehle "17; Carifio,Halverson,Krioukov,Nelson "17]

| Bypass Computations (Supervised ML) [Wang,Zhang *18; Bull,He,Jejjala,Mishra "18; l
| - Deep neural networks Klaewer,Schlechter "18; He "18; Jejjala,Kar,Parrikar "19;

| . Support vector machlnes BU”,He,Jejjala,MIShra ‘19, He,Lee \19]

e »

I‘

|

| (.
[Ruehle "17]

. i

% \




Recap - Machine Learning in String Theory

In June 2017, with 2 weeks, 4 groups proposed independently to use ML in ST
[He "17; Krefl,Seung "17; Ruehle "17; Carifio,Halverson,Krioukov,Nelson "17]

Structure of vacua (Unsupervised ML) Bypass Computations (Supervised ML)
- Clustering, Feature extraction - Deep neural networks

- Topological data analysis - Support vector machines

NG




Recap - Machine Learning in String Theory

In June 2017, with 2 weeks, 4 groups proposed independently to use ML in ST

[He "17; Krefl,Seung "17; Ruehle "17; Carifio,Halverson,Krioukov,Nelson "17]

'

Conjecture generation (Intelligible Al)
- Decision Trees
- Regression

alue = [24, 27, 29]

x1 <-0.072
entropy = 1.581
samples = 80
\%

class = c3

‘x Trui/ \:alse =
0
X2 < 4.386 X2 =2.59 S
entropy = 0.211 entropy = 0.995 I l
samples = 30 samples = 50 =
value =[1, 0, 29] value =[23, 27, 0] 80
class = c3 class =c2 9

< RN

entropy = 0.0 entropy = 0.0 entropy = 0.0 entropy = 0.0
samples = 29 samples = 1 samples = 27 samples = 23
value = [0, 0, 29] value =[1, 0, 0] value = [0, 27, 0] value =[23, 0, 0]

class = c1

class = c3 class =c1 class = c2




Recap - Machine Learning in String Theory

In June 2017, with 2 weeks, 4 groups proposed independently to use ML in ST
[He "17; Krefl,Seung "17; Ruehle "17; Carifio,Halverson,Krioukov,Nelson "17]

Structure of vacua (Unsupervised ML) Bypass Computations (Supervised ML)
- Clustering, Feature extraction - Deep neural networks
- Topological data analysis - Support vector machines
‘ " b |
"8 ¢ 4. J )’\‘; e

Conjecture generation (Intelligible Al)
- Decision Trees
- Regression

y = 0.54587 — 2.7279 bt




Recap - Machine Learning in String Theory

In June 2017, with 2 weeks, 4 groups proposed independently to use ML in ST
[He "17; Krefl,Seung "17; Ruehle "17; Carifio,Halverson,Krioukov,Nelson "17]

e ]

. Search the landscape (Semi-supervised ML) |
~ + MC tree searches |
- Dynamic programming in MDP ]
- Reinforcement Learning




Recap - Machine Learning in String Theory

In June 2017, with 2 weeks, 4 groups proposed independently to use ML in ST
[He "17; Krefl,Seung "17; Ruehle "17; Carifio,Halverson,Krioukov,Nelson "17]

Structure of vacua (Unsupervised ML) Bypass Computations (Supervised ML)
- Clustering, Feature extraction -+ Deep neural networks
- Topological data analysis - Support vector machines
7%
£
Conjecture generation (Intelligible Al) Search the landscape (Semi-supervised ML)
- Decision Trees - MC tree searches
- Regression - Dynamic programming in MDP

) - Reinforcement Learning

y = 0.5458z — 2.7279 bt




Outline

> Computational complexity and decidability

e |ntro

* Computationally hard problems in string theory
> Machine learning the landscape of |lA toroidal

orientifolds

» Conclusion



Computational Complexity and
Decidability




Definitions

" Problem: A problem F': I — B is a map from
[ instances to outputs

Dec. Problem: A problem where B = {yes, no}

_ __

K Usually easier to make statements for dec. problems
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" Problem: A problem F:.:I— B IS a map from
l iInstances to outputs

Dec. Problem: A problem where B = {yes, no}

K Usually easrer to make statements for deo problems

_ _

\, Often problems can be reformulated as deo problems
with additional parameters, e.g.:

"~ Problem:

Find the minimum of a scalar function f : R — R

Decision Problem:
\\KDoes there exist an =, € R s.t. f(x.) < & forsome £ € R




Reductions and hardness
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is a PT algorithm I — I' W/ F(z) =yes & G(f(x)) =yes
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Reductions and hardness

-, NP PH co-NP .
hard hard

A polytime reduction from F : I — {yes, no} to G : I’ {S
“is a PT algorithm I — I' w/ F(xz) = yes & G(f(z)) = yes




Reductions and hardness
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Example of NP and undecidable problems

Surprising Fact: NP hard, NP complete, and undecidable problems exist

Subset sum (NP-complete):
Given a set of integers, does there exist a subset whose elements sum

to zero? (Relevant for fine-tuningsousso, Polchinski *00; Arkani-Hamed, Dimopoulos,Kachru 05])

o _ [Denef,Douglas 06]
Critical Point (NP hard):
Find the critical points of V' (¢)

Metastable Vacuum (co-NP hard):
Find the local minimum of V(¢), |; < ¢; < u;

Diophantine equation (undecidable):
Does a set of coupled, non-linear Diophantine egns have a solution?

Cohomology (nhot NP):
Is h*(X,V) = (hg, h1, ha, h3)? Given h;, we cannot check this to be true in P.



A typical workflow for constructing string models

> Choose a background geometry
> Find boundary conditions (branes, fluxes) s.t.

* Tadpole, K-Theory, existence of unbroken SUSY somewhere
—> Coupled Diophantine (undec.)

 CCis small = NP-complete (subset sum via BP)
> Minimize scalar potential

* Find critical points = NP hard

* Check that they are minima =- co-NP hard
> Find massless spectrum

* Compute cohomology dims = Grobner basis (NP, double-exp)



Can ML solve NP or undec in P?




Can ML solve NP or undec in P?

> Of course not. So how does it help?



Can ML solve NP or undec in P?

> Of course not. So how does it help?

> In practice, don’t need to solve arbitrarily large examples



Can ML solve NP or undec in P?

> Of course not. So how does it help?
> In practice, don’t need to solve arbitrarily large examples

> Don’t need to solve exactly (approximate a solution) and cross-check
(Euler Number, anomalies, Stability)



Can ML solve NP or undec in P?

> Of course not. So how does it help?
> In practice, don’t need to solve arbitrarily large examples

> Don’t need to solve exactly (approximate a solution) and cross-check
(Euler Number, anomalies, Stability)

> Problem might have more substructure / symmetries that simplify the
computation

e Solving general Diophantine undecidable
* Solving quad. Diophantine like am% + bxo = cis NP-complete
e Solving linear Diophantine is in P

* Finding vacua is NP, finding near-vacua is in P



Machine learning the landscape of ||A
toroidal orientifolds
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Reinforcement Learning - Basics

Want to explore the string landscape
(“environment”)

Done by “workers” that are conditioned

At any given moment, a worker is in a specific
string configuration (“state”) defined by
discrete topological data (branes, flux, cycles, Return

)

Workers change state by taking “actions” to
reach new states (“elements of the environ-
ment”)

They select these actions via some “policy”

Depending on the chosen action they receive
a pos/neg “reward”

Via this reinforcement, the agent learns a
policy that, given a state, selects an action
that maximises its “return” (accumulated long-
term reward)




Do branes

T? T2 T?

> Can (have to for three generations) tilt torus (2 different
complex structure choices compatible with orientifold)

> D6 brane: 4D Minkowski + a line on each torus
» Can stack multiple D6 branes on top of each other

> Brane stacks @Tuple: (N, ni,MmM1,MN2, M2, N3, mg)



D6 Branes - Consistency Conditions

> Tadpole cancellation: Balance D6 / O6 charges:

#stacks N® nclL ng ng 3
—N%nimsmg | | 4

; —N*m{nsm3 | | 4
—NmTms ng 3

> K-Theory: Global consistency constraint:

2N*“mImsms 2 0

#stacks Ny G 9 0
17%2 %3 mod _

Zl —N%nTmsns 2 0

- —2N*n¢ nd mé 2 0



D6 Branes - Consistency Conditions

»SUSY: Va =1, ..., # stacks

a a a . a a a
m{MyMg — J M1 NoTlg —

knimsng — ningms = 0

a _a «a ‘ a a a a. . a a a a. . a
ningmns — Jnimeoms — kminsms — fmimsnsg > 0

> Pheno: SU(3) x SU(2) x U(1) + MSSM particles

»Massless U(1l)'s: T, &

ker({N*m#})

i =1,2,3 (three tori)

k ]
A

,...,7#U brane stacks

r =

... dim(ker({ NF*m?1))

= k — 3 (generically)



Learn TC condition
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Learn TC+K+SUSY condition

Tadpole cancellation:

a a a a
#stacks Na nclb n2a n3a 8
g —N*m§ ngmg 4
—Nm§¢mg ng 8 D
3
K-Theory: 2
oS
>
#stacks 2Nam%mgmg 2 0 E
Z —N*m{ ng ng mod 21 | O
— —N%n$m§ns 2 | | O
—2N*n{ ngmsg 2 0
SUSY:

a a a ' a._a, «a a a a a . a a _
mimeoms — jmingng — knymsnsg — {ningms =0

a..a. a ' a a a a . a a a a a
ninens — jnimsms — kmingms — {mimsng > 0

1012 ]

106 -
10 -
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—101 ;
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—109

Mean score for TCKS
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Number of steps ~ x107




| earn SUSY+T1C condition

K-Theory:
#stacks QNQmemgmg
Z —N*m{ ng ng
— —N*nfm3ng
- —2N%n% ngmé
SUSY:

a a a q a a a
mimeoimg — J1M1NoMg

a. . a «a

. a a a a . a a a a. . a
ninens — jniymsms — kmingms — fmimsng > 0

Tadpole cancellation:

a a a a
N%nf ng ng

F#stacks a4 a - a
Ay @ gy A pony G
g —N*m{ ngms

a a a a
—N*mim3sns

mod

00 I B 00
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o O O O
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Conclusions

> Finding viable vacua requires solving nested hard
and undecidable problems

> By finding structures and/or making approximations
you can tackle these problems

> For toroidal orientifold example we found

ML (RL) finds strategies to solve string consistency
constraints

* ML recovers human-derived strategies and finds
new ones
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