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In June 2017, with 2 weeks, 4 groups proposed independently to use ML in ST
[He `17; Krefl,Seung `17; Ruehle `17; Carifio,Halverson,Krioukov,Nelson `17]

Structure of vacua (Unsupervised ML)
• Clustering, Feature extraction
• Topological data analysis

Figure 6: Rigid Calabi-Yau vacua projected onto axiodilaton with Lmax = 150. Each point
in the diagram represents multiple inequivalent vacua. The relative sizes of the voids depend
on number-theoretic aspects of the complex rational value of the axiodilaton at the center.

However, tadpole cancellation with finite Lmax means that most points in the axiodilaton

moduli space are not represented in the distribution. Specifically, many hyperplanes fail to

hit integer points in flux space before reaching the limits in flux space imposed by tadpole

cancellation. These � values are not present in the resulting distribution.

Given a � that is present in the distribution, its nearest neighbors are found by rotating

the corresponding hyperplane in flux space until it hits a point with integer fluxes within

the bounds imposed by tadpole cancellation. For concreteness, take � = i�. If such a � is

present one of the corresponding vacua takes the form if1
h2
. Without loss of generality assume

that f1 and h2 have no common factors and that both are positive. The nearest vacuum on

the imaginary axis takes the form i

⇣
f1
h2

�
a
b

⌘
with a, b > 0. (One should use a plus sign for

f1 = h2 to stay in the fundamental domain.) To find the nearest neighbor, one minimizes a
b

over the naturals subject to the constraint Nflux = b
2
f1h2 � abh

2
2  Lmax.

As an example, for Lmax = 150, the nearest neighbors of 2i on the imaginary axis are 16±1
8 i

, while the nearest neighbor of 3
2i is

21�1
14 i. (Sometimes the plus sign takes one outside the

tadpole bound, so that the nearest neighbor above is farther away than the nearest neighbor

below.) Similar arguments to the above apply for nearest neighbors in other directions. Since

b scales as
p
Lmax in this discussion, we also come to understand the previously known fact

that the voids shrink as
p
1/Lmax as Lmax is increased [6, 69].
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[Cole,Shiu `17,`18] Figure 2: The landscape of O(700,000) 6-II models extracted from the autoencoder: Each point corre-
sponds to a 6-II model and MSSM-like models are highlighted as red triangles. It turns out
that MSSM-like models populate eleven separated islands. We color these islands in green and
label them by R1, . . . , R11. In addition, all 6-II models outside these islands are colored in
blue and defined to live in the region R0.

parametrizations from the latent layer.

3.3 A chart of 6-II models and cluster selection
The result of the autoencoder is depicted in figure 2. It represents a chart of the landscape
of O(700,000) 6-II models of the training and validation sets, where the two-dimensional
coordinates of each 6-II model are extracted from the two-dimensional latent layer of the
autoencoder.

The landscape turns out to be separated into various islands. We identify 18 MSSM-like
models among the O(700,000) 6-II models and highlight them as red triangles in figure 2.
Interestingly, one can see that the MSSM-like 6-II models cluster on a few islands and are not
distributed over the entire chart. Note that during training, the autoencoder neural network had
no information about a model being MSSM-like or not. Still, the MSSM-like 6-II models are
clustered. Hence, it seems that the autoencoder was able to identify common properties among
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[Mutter,Parr,Vaudrevange `18]
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In June 2017, with 2 weeks, 4 groups proposed independently to use ML in ST
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Conjecture generation (Intelligible AI)
• Decision Trees
• Regression
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Figure 2. The logarithm of the average number of FRST per polytope. The green dots are
predictions of our learned model, and the rest of the data is from [17]. Note the accuracy of model
in recovering known results represented by the blue dots and grey stars. The erratic behavior for
h11 ≥ 27 correlates with being the tail of the polytope distribution.
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Figure 3. Red (blue) dots are the total number of facets (reflexive polytopes) at a given value of
h11(B). Left: the full plot. Right: magnification of the h11 ≥ 20 region.

This average number of triangulations per polytope at a fixed value of h11 is presented in

Figure 2. The red line, gray stars, and blue dots were obtained in [17], where the gray

stars and blue dots were predicted with different methods. The green dots are the new

predictions of our model. The predictions are so accurate that the green dots are mostly

covering the blue dots, when they exist.

It is also important that our model makes accurate predictions beyond the data on

which it trained. Specifically, it trained on data with h11 ≤ 21 and the predicted values at

– 13 –

[Carifio,Halverson,Krioukov,Nelson `17; Altman,Carifio,Halverson,Nelson `18]
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Figure 6: Rigid Calabi-Yau vacua projected onto axiodilaton with Lmax = 150. Each point
in the diagram represents multiple inequivalent vacua. The relative sizes of the voids depend
on number-theoretic aspects of the complex rational value of the axiodilaton at the center.

However, tadpole cancellation with finite Lmax means that most points in the axiodilaton

moduli space are not represented in the distribution. Specifically, many hyperplanes fail to

hit integer points in flux space before reaching the limits in flux space imposed by tadpole

cancellation. These � values are not present in the resulting distribution.

Given a � that is present in the distribution, its nearest neighbors are found by rotating

the corresponding hyperplane in flux space until it hits a point with integer fluxes within

the bounds imposed by tadpole cancellation. For concreteness, take � = i�. If such a � is

present one of the corresponding vacua takes the form if1
h2
. Without loss of generality assume

that f1 and h2 have no common factors and that both are positive. The nearest vacuum on

the imaginary axis takes the form i

⇣
f1
h2

�
a
b

⌘
with a, b > 0. (One should use a plus sign for

f1 = h2 to stay in the fundamental domain.) To find the nearest neighbor, one minimizes a
b

over the naturals subject to the constraint Nflux = b
2
f1h2 � abh

2
2  Lmax.

As an example, for Lmax = 150, the nearest neighbors of 2i on the imaginary axis are 16±1
8 i

, while the nearest neighbor of 3
2i is

21�1
14 i. (Sometimes the plus sign takes one outside the

tadpole bound, so that the nearest neighbor above is farther away than the nearest neighbor

below.) Similar arguments to the above apply for nearest neighbors in other directions. Since

b scales as
p
Lmax in this discussion, we also come to understand the previously known fact

that the voids shrink as
p
1/Lmax as Lmax is increased [6, 69].
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Figure 2: The landscape of O(700,000) 6-II models extracted from the autoencoder: Each point corre-
sponds to a 6-II model and MSSM-like models are highlighted as red triangles. It turns out
that MSSM-like models populate eleven separated islands. We color these islands in green and
label them by R1, . . . , R11. In addition, all 6-II models outside these islands are colored in
blue and defined to live in the region R0.

parametrizations from the latent layer.

3.3 A chart of 6-II models and cluster selection
The result of the autoencoder is depicted in figure 2. It represents a chart of the landscape
of O(700,000) 6-II models of the training and validation sets, where the two-dimensional
coordinates of each 6-II model are extracted from the two-dimensional latent layer of the
autoencoder.

The landscape turns out to be separated into various islands. We identify 18 MSSM-like
models among the O(700,000) 6-II models and highlight them as red triangles in figure 2.
Interestingly, one can see that the MSSM-like 6-II models cluster on a few islands and are not
distributed over the entire chart. Note that during training, the autoencoder neural network had
no information about a model being MSSM-like or not. Still, the MSSM-like 6-II models are
clustered. Hence, it seems that the autoencoder was able to identify common properties among

5
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In June 2017, with 2 weeks, 4 groups proposed independently to use ML in ST
[He `17; Krefl,Seung `17; Ruehle `17; Carifio,Halverson,Krioukov,Nelson `17]

[Halverson,Nelson,Ruehle `17]

Search the landscape (Semi-supervised ML)
• MC tree searches
• Dynamic programming in MDP
• Reinforcement Learning
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<latexit sha1_base64="EBKOX7XV90OPwIniUPpM92ILfRg=">AAACBXicbVDJSgNBEO1xjXGLetRDYxA8hRkV9CIGvXiSEcwCyRB6OpWkSc9Cd40Yhrl48Ve8eFDEq//gzb+xsxw08UHB470qqur5sRQabfvbmptfWFxazq3kV9fWNzYLW9tVHSWKQ4VHMlJ1n2mQIoQKCpRQjxWwwJdQ8/tXQ792D0qLKLzDQQxewLqh6AjO0Eitwl4T4QFTN2tqZLyvQF6cj6UbN2sVinbJHoHOEmdCimQCt1X4arYjngQQIpdM64Zjx+ilTKHgErJ8M9EQmzWsCw1DQxaA9tLRFxk9MEqbdiJlKkQ6Un9PpCzQehD4pjNg2NPT3lD8z2sk2DnzUhHGCULIx4s6iaQY0WEktC0UcJQDQxhXwtxKeY8pxtEElzchONMvz5LqUck5Ltm3J8Xy5SSOHNkl++SQOOSUlMk1cUmFcPJInskrebOerBfr3foYt85Zk5kd8gfW5w9UF5kW</latexit>

?
!

? !?! !



Definitions
Problem: A problem                  is a map from 

instances to outputs
Dec. Problem:

F : I ! B
<latexit sha1_base64="t47/4MT7XN/ZJJCdDDGNMY9TmfQ=">AAAB+XicbVBNSwMxEJ2tX7V+rXr0EiyCp7KrguKpVBC9VbAf0C4lm6ZtaDZZkmylLP0nXjwo4tV/4s1/Y9ruQVsfDDzem2FmXhhzpo3nfTu5ldW19Y38ZmFre2d3z90/qGuZKEJrRHKpmiHWlDNBa4YZTpuxojgKOW2Ew5up3xhRpZkUj2Yc0yDCfcF6jGBjpY7r3l7ftxXrDwxWSj6hSscteiVvBrRM/IwUIUO14361u5IkERWGcKx1y/diE6RYGUY4nRTaiaYxJkPcpy1LBY6oDtLZ5RN0YpUu6kllSxg0U39PpDjSehyFtjPCZqAXvan4n9dKTO8qSJmIE0MFmS/qJRwZiaYxoC5TlBg+tgQTxeytiAywwsTYsAo2BH/x5WVSPyv55yXv4aJYrmRx5OEIjuEUfLiEMtxBFWpAYATP8ApvTuq8OO/Ox7w152Qzh/AHzucPzeOTHQ==</latexit>

A problem where B = {yes, no}
<latexit sha1_base64="xrUXdb3aI7a8xlPZLLxIy+oNp50=">AAAB/XicbVDJSgNBEO1xjXEbl5uXwSB4kDATBb0IIV48RjALZELo6VSSJj09Q3eNGIfor3jxoIhX/8Obf2NnOWjig4LHe1VU1QtiwTW67re1sLi0vLKaWcuub2xubds7u1UdJYpBhUUiUvWAahBcQgU5CqjHCmgYCKgF/auRX7sDpXkkb3EQQzOkXck7nFE0UsveL136qY9wj+kA9MmjjIb+sGXn3Lw7hjNPvCnJkSnKLfvLb0csCUEiE1TrhufG2EypQs4EDLN+oiGmrE+70DBU0hB0Mx1fP3SOjNJ2OpEyJdEZq78nUhpqPQgD0xlS7OlZbyT+5zUS7Fw0Uy7jBEGyyaJOIhyMnFEUTpsrYCgGhlCmuLnVYT2qKEMTWNaE4M2+PE+qhbx3mi/cnOWKpWkcGXJADskx8cg5KZJrUiYVwsgDeSav5M16sl6sd+tj0rpgTWf2yB9Ynz8DU5WX</latexit>

Usually easier to make statements for dec. problems



Definitions
Problem: A problem                  is a map from 

instances to outputs
Dec. Problem:

F : I ! B
<latexit sha1_base64="t47/4MT7XN/ZJJCdDDGNMY9TmfQ=">AAAB+XicbVBNSwMxEJ2tX7V+rXr0EiyCp7KrguKpVBC9VbAf0C4lm6ZtaDZZkmylLP0nXjwo4tV/4s1/Y9ruQVsfDDzem2FmXhhzpo3nfTu5ldW19Y38ZmFre2d3z90/qGuZKEJrRHKpmiHWlDNBa4YZTpuxojgKOW2Ew5up3xhRpZkUj2Yc0yDCfcF6jGBjpY7r3l7ftxXrDwxWSj6hSscteiVvBrRM/IwUIUO14361u5IkERWGcKx1y/diE6RYGUY4nRTaiaYxJkPcpy1LBY6oDtLZ5RN0YpUu6kllSxg0U39PpDjSehyFtjPCZqAXvan4n9dKTO8qSJmIE0MFmS/qJRwZiaYxoC5TlBg+tgQTxeytiAywwsTYsAo2BH/x5WVSPyv55yXv4aJYrmRx5OEIjuEUfLiEMtxBFWpAYATP8ApvTuq8OO/Ox7w152Qzh/AHzucPzeOTHQ==</latexit>

A problem where B = {yes, no}
<latexit sha1_base64="xrUXdb3aI7a8xlPZLLxIy+oNp50=">AAAB/XicbVDJSgNBEO1xjXEbl5uXwSB4kDATBb0IIV48RjALZELo6VSSJj09Q3eNGIfor3jxoIhX/8Obf2NnOWjig4LHe1VU1QtiwTW67re1sLi0vLKaWcuub2xubds7u1UdJYpBhUUiUvWAahBcQgU5CqjHCmgYCKgF/auRX7sDpXkkb3EQQzOkXck7nFE0UsveL136qY9wj+kA9MmjjIb+sGXn3Lw7hjNPvCnJkSnKLfvLb0csCUEiE1TrhufG2EypQs4EDLN+oiGmrE+70DBU0hB0Mx1fP3SOjNJ2OpEyJdEZq78nUhpqPQgD0xlS7OlZbyT+5zUS7Fw0Uy7jBEGyyaJOIhyMnFEUTpsrYCgGhlCmuLnVYT2qKEMTWNaE4M2+PE+qhbx3mi/cnOWKpWkcGXJADskx8cg5KZJrUiYVwsgDeSav5M16sl6sd+tj0rpgTWf2yB9Ynz8DU5WX</latexit>

Usually easier to make statements for dec. problems

Problem:
Find the minimum of a scalar function f : R ! R

<latexit sha1_base64="wionWwDJREShBnYfSxcwbHcp31o=">AAACAnicbVDLSsNAFL2pr1pfUVfiJlgEVyVRQXFVdOOyin1AU8pkOmmHTmbCzEQoobjxV9y4UMStX+HOv3HSBtTWAwNnzrmXe+8JYkaVdt0vq7CwuLS8Ulwtra1vbG7Z2zsNJRKJSR0LJmQrQIowykldU81IK5YERQEjzWB4lfnNeyIVFfxOj2LSiVCf05BipI3UtffCCz9CehAE6e3Y1+Ln07XLbsWdwJknXk7KkKPWtT/9nsBJRLjGDCnV9txYd1IkNcWMjEt+okiM8BD1SdtQjiKiOunkhLFzaJSeEwppHtfORP3dkaJIqVEUmMpsQzXrZeJ/XjvR4XknpTxONOF4OihMmKOFk+Xh9KgkWLORIQhLanZ18ABJhLVJrWRC8GZPnieN44p3UnFvTsvVyzyOIuzDARyBB2dQhWuoQR0wPMATvMCr9Wg9W2/W+7S0YOU9u/AH1sc3yp2Xrg==</latexit>

Decision Problem:
Does there exist an             s.t.                 for some  ⇠ 2 R

<latexit sha1_base64="eKh6XLvZJZiG1oTLWtGXHqdO8YE=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRa0GXRjcsq9gFNKJPppB06mYSZSbGE/okbF4q49U/c+TdO2iy09cDA4Zx7uWdOkHCmtON8W6W19Y3NrfJ2ZWd3b//APjxqqziVhLZIzGPZDbCinAna0kxz2k0kxVHAaScY3+Z+Z0KlYrF41NOE+hEeChYygrWR+rbtPTGPCS/CehQE2cOsb1edmjMHWiVuQapQoNm3v7xBTNKICk04VqrnOon2Myw1I5zOKl6qaILJGA9pz1CBI6r8bJ58hs6MMkBhLM0TGs3V3xsZjpSaRoGZzBOqZS8X//N6qQ6v/YyJJNVUkMWhMOVIxyivAQ2YpETzqSGYSGayIjLCEhNtyqqYEtzlL6+S9kXNvaw59/Vq46aoowwncArn4MIVNOAOmtACAhN4hld4szLrxXq3PhajJavYOYY/sD5/AOQyk9E=</latexit>

x⇤ 2 R
<latexit sha1_base64="kJWPunDi4c1lNX7SWfVmwS5/Erw=">AAAB+XicbVDLSsNAFL2pr1pfUZduBosgLkqigi6LblxWsQ9oQphMp+3QySTMTIol9E/cuFDErX/izr9x0mahrQcGDufcyz1zwoQzpR3n2yqtrK6tb5Q3K1vbO7t79v5BS8WpJLRJYh7LTogV5UzQpmaa004iKY5CTtvh6Db322MqFYvFo54k1I/wQLA+I1gbKbDtp+DMY8KLsB6GYfYwDeyqU3NmQMvELUgVCjQC+8vrxSSNqNCEY6W6rpNoP8NSM8LptOKliiaYjPCAdg0VOKLKz2bJp+jEKD3Uj6V5QqOZ+nsjw5FSkyg0k3lCtejl4n9eN9X9az9jIkk1FWR+qJ9ypGOU14B6TFKi+cQQTCQzWREZYomJNmVVTAnu4peXSeu85l7UnPvLav2mqKMMR3AMp+DCFdThDhrQBAJjeIZXeLMy68V6tz7moyWr2DmEP7A+fwCGVZOV</latexit>

f(x⇤)  ⇠
<latexit sha1_base64="+gdUXl9uUdB8bKcYzKDSYy/xZqk=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBaheiiJCnosevFYwX5AE8tmO2mXbjZxd6Mtof/DiwdFvPpfvPlv3LY5aOuDgcd7M8zM82POlLbtbyu3tLyyupZfL2xsbm3vFHf3GipKJIU6jXgkWz5RwJmAumaaQyuWQEKfQ9MfXE/85iNIxSJxp0cxeCHpCRYwSrSR7oPysHNy7HJ4wO6QdYolu2JPgReJk5ESylDrFL/cbkSTEISmnCjVduxYeymRmlEO44KbKIgJHZAetA0VJATlpdOrx/jIKF0cRNKU0Hiq/p5ISajUKPRNZ0h0X817E/E/r53o4NJLmYgTDYLOFgUJxzrCkwhwl0mgmo8MIVQycyumfSIJ1SaoggnBmX95kTROK85Zxb49L1Wvsjjy6AAdojJy0AWqohtUQ3VEkUTP6BW9WU/Wi/Vufcxac1Y2s4/+wPr8AU4Nkbs=</latexit>

 Often, problems can be reformulated as dec. problems 
 with additional parameters, e.g.:



Reductions and hardness

A polytime reduction from                          to                              
is a PT algorithm            w/

F : I ! {yes, no}
<latexit sha1_base64="EexlkVXcMa6a5nxar+1ZyXVHnBA=">AAACCnicbVDLSgNBEJz1bXxFPXoZDYIHCbsqKJ5EQfQWwaiQDWF20kmGzM4sM71qWOLVi7/ixYMiXv0Cb/6Nk8fBV0FDUdVNd1eUSGHR9z+9kdGx8YnJqenczOzc/EJ+cenC6tRwKHMttbmKmAUpFJRRoISrxACLIwmXUfuo519eg7FCq3PsJFCNWVOJhuAMnVTLrx7vn4ZGNFvIjNE3NMxChFvMOmA375Tuht1avuAX/T7oXxIMSYEMUarlP8K65mkMCrlk1lYCP8FqxgwKLqGbC1MLCeNt1oSKo4rFYKtZ/5UuXXdKnTa0caWQ9tXvExmLre3EkeuMGbbsb68n/udVUmzsVTOhkhRB8cGiRiopatrLhdaFAY6y4wjjRrhbKW8xwzi69HIuhOD3y3/JxVYx2C76ZzuFg8NhHFNkhayRDRKQXXJATkiJlAkn9+SRPJMX78F78l69t0HriDecWSY/4L1/ARHpmyY=</latexit>

G : I 0 ! {yes, no}
<latexit sha1_base64="nRLLg5tuZA2GFlbJOr6xjWO36xk=">AAACC3icbVA9SwNBEN3z2/gVtbRZEkQLCXcqKFaihdpFMCrkQtjbTJIle7vH7pwajljb+FdsLBSx9Q/Y+W/cxBR+PRh4vDfDzLwokcKi7394I6Nj4xOTU9O5mdm5+YX84tK51anhUOFaanMZMQtSKKigQAmXiQEWRxIuos5h37+4AmOFVmfYTaAWs5YSTcEZOqmeLxztnayFRrTayIzR1zTMQoQbzLpgN26V7oW9er7ol/wB6F8SDEmRDFGu59/DhuZpDAq5ZNZWAz/BWsYMCi6hlwtTCwnjHdaCqqOKxWBr2eCXHl11SoM2tXGlkA7U7xMZi63txpHrjBm27W+vL/7nVVNs7tYyoZIUQfGvRc1UUtS0HwxtCAMcZdcRxo1wt1LeZoZxdPHlXAjB75f/kvPNUrBV8k+3i/sHwzimyAopkHUSkB2yT45JmVQIJ3fkgTyRZ+/ee/RevNev1hFvOLNMfsB7+wR5SJtY</latexit>

I ! I 0
<latexit sha1_base64="DLckm1toaDqIgIrHKNYtfskhQvs=">AAAB7nicbVDLSgMxFL3js9ZX1aWbYBFdlRkVdFl0Y3cV7APaoWTSTBuayQzJHaEM/Qg3LhRx6/e4829M21lo64HA4Zx7yT0nSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGd1O/9cS1EbF6xHHC/YgOlAgFo2ilVq2LMamd9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOyGnVumTMNb2KSQz9fdGRiNjxlFgJyOKQ7PoTcX/vE6K4Y2fCZWkyBWbfxSmktiM0+ykLzRnKMeWUKaFvZWwIdWUoW2oaEvwFiMvk+ZFxbusuA9X5eptXkcBjuEEzsGDa6jCPdShAQxG8Ayv8OYkzovz7nzMR1ecfOcI/sD5/AFCPY7a</latexit>

F (x) = yes , G(f(x)) = yes
<latexit sha1_base64="8w42VuB+S5YylKZYqafbkR9Fspc=">AAACGnicbVC7SgNBFJ31GeNr1dJmMAixCbsqaCOIglpYRDBGyIYwO7mbDJl9MHNXDUu+w8ZfsbFQxE5s/BsncQuNHhg4nHMud+7xEyk0Os6nNTE5NT0zW5grzi8sLi3bK6tXOk4VhxqPZayufaZBighqKFDCdaKAhb6Eut87Hvr1G1BaxNEl9hNohqwTiUBwhkZq2e5J+W7rwEO4w6wPeuCdQ4BKdLrIlIpv6Wk5MIGfiZZdcirOCPQvcXNSIjmqLfvda8c8DSFCLpnWDddJsJkxhYJLGBS9VEPCeI91oGFoxELQzWx02oBuGqVNg1iZFyEdqT8nMhZq3Q99kwwZdvW4NxT/8xopBvvNTERJihDx70VBKinGdNgTbQsFHGXfEMaVMH+lvMsU42jaLJoS3PGT/5Kr7Yq7U3EudkuHR3kdBbJONkiZuGSPHJIzUiU1wsk9eSTP5MV6sJ6sV+vtOzph5TNr5Besjy9PnKEL</latexit>



Reductions and hardness

P

A polytime reduction from                          to                              
is a PT algorithm            w/

F : I ! {yes, no}
<latexit sha1_base64="EexlkVXcMa6a5nxar+1ZyXVHnBA=">AAACCnicbVDLSgNBEJz1bXxFPXoZDYIHCbsqKJ5EQfQWwaiQDWF20kmGzM4sM71qWOLVi7/ixYMiXv0Cb/6Nk8fBV0FDUdVNd1eUSGHR9z+9kdGx8YnJqenczOzc/EJ+cenC6tRwKHMttbmKmAUpFJRRoISrxACLIwmXUfuo519eg7FCq3PsJFCNWVOJhuAMnVTLrx7vn4ZGNFvIjNE3NMxChFvMOmA375Tuht1avuAX/T7oXxIMSYEMUarlP8K65mkMCrlk1lYCP8FqxgwKLqGbC1MLCeNt1oSKo4rFYKtZ/5UuXXdKnTa0caWQ9tXvExmLre3EkeuMGbbsb68n/udVUmzsVTOhkhRB8cGiRiopatrLhdaFAY6y4wjjRrhbKW8xwzi69HIuhOD3y3/JxVYx2C76ZzuFg8NhHFNkhayRDRKQXXJATkiJlAkn9+SRPJMX78F78l69t0HriDecWSY/4L1/ARHpmyY=</latexit>

G : I 0 ! {yes, no}
<latexit sha1_base64="nRLLg5tuZA2GFlbJOr6xjWO36xk=">AAACC3icbVA9SwNBEN3z2/gVtbRZEkQLCXcqKFaihdpFMCrkQtjbTJIle7vH7pwajljb+FdsLBSx9Q/Y+W/cxBR+PRh4vDfDzLwokcKi7394I6Nj4xOTU9O5mdm5+YX84tK51anhUOFaanMZMQtSKKigQAmXiQEWRxIuos5h37+4AmOFVmfYTaAWs5YSTcEZOqmeLxztnayFRrTayIzR1zTMQoQbzLpgN26V7oW9er7ol/wB6F8SDEmRDFGu59/DhuZpDAq5ZNZWAz/BWsYMCi6hlwtTCwnjHdaCqqOKxWBr2eCXHl11SoM2tXGlkA7U7xMZi63txpHrjBm27W+vL/7nVVNs7tYyoZIUQfGvRc1UUtS0HwxtCAMcZdcRxo1wt1LeZoZxdPHlXAjB75f/kvPNUrBV8k+3i/sHwzimyAopkHUSkB2yT45JmVQIJ3fkgTyRZ+/ee/RevNev1hFvOLNMfsB7+wR5SJtY</latexit>

I ! I 0
<latexit sha1_base64="DLckm1toaDqIgIrHKNYtfskhQvs=">AAAB7nicbVDLSgMxFL3js9ZX1aWbYBFdlRkVdFl0Y3cV7APaoWTSTBuayQzJHaEM/Qg3LhRx6/e4829M21lo64HA4Zx7yT0nSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGd1O/9cS1EbF6xHHC/YgOlAgFo2ilVq2LMamd9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOyGnVumTMNb2KSQz9fdGRiNjxlFgJyOKQ7PoTcX/vE6K4Y2fCZWkyBWbfxSmktiM0+ykLzRnKMeWUKaFvZWwIdWUoW2oaEvwFiMvk+ZFxbusuA9X5eptXkcBjuEEzsGDa6jCPdShAQxG8Ayv8OYkzovz7nzMR1ecfOcI/sD5/AFCPY7a</latexit>

F (x) = yes , G(f(x)) = yes
<latexit sha1_base64="8w42VuB+S5YylKZYqafbkR9Fspc=">AAACGnicbVC7SgNBFJ31GeNr1dJmMAixCbsqaCOIglpYRDBGyIYwO7mbDJl9MHNXDUu+w8ZfsbFQxE5s/BsncQuNHhg4nHMud+7xEyk0Os6nNTE5NT0zW5grzi8sLi3bK6tXOk4VhxqPZayufaZBighqKFDCdaKAhb6Eut87Hvr1G1BaxNEl9hNohqwTiUBwhkZq2e5J+W7rwEO4w6wPeuCdQ4BKdLrIlIpv6Wk5MIGfiZZdcirOCPQvcXNSIjmqLfvda8c8DSFCLpnWDddJsJkxhYJLGBS9VEPCeI91oGFoxELQzWx02oBuGqVNg1iZFyEdqT8nMhZq3Q99kwwZdvW4NxT/8xopBvvNTERJihDx70VBKinGdNgTbQsFHGXfEMaVMH+lvMsU42jaLJoS3PGT/5Kr7Yq7U3EudkuHR3kdBbJONkiZuGSPHJIzUiU1wsk9eSTP5MV6sJ6sV+vtOzph5TNr5Besjy9PnKEL</latexit>



Reductions and hardness

P
NP co-NP

A polytime reduction from                          to                              
is a PT algorithm            w/

F : I ! {yes, no}
<latexit sha1_base64="EexlkVXcMa6a5nxar+1ZyXVHnBA=">AAACCnicbVDLSgNBEJz1bXxFPXoZDYIHCbsqKJ5EQfQWwaiQDWF20kmGzM4sM71qWOLVi7/ixYMiXv0Cb/6Nk8fBV0FDUdVNd1eUSGHR9z+9kdGx8YnJqenczOzc/EJ+cenC6tRwKHMttbmKmAUpFJRRoISrxACLIwmXUfuo519eg7FCq3PsJFCNWVOJhuAMnVTLrx7vn4ZGNFvIjNE3NMxChFvMOmA375Tuht1avuAX/T7oXxIMSYEMUarlP8K65mkMCrlk1lYCP8FqxgwKLqGbC1MLCeNt1oSKo4rFYKtZ/5UuXXdKnTa0caWQ9tXvExmLre3EkeuMGbbsb68n/udVUmzsVTOhkhRB8cGiRiopatrLhdaFAY6y4wjjRrhbKW8xwzi69HIuhOD3y3/JxVYx2C76ZzuFg8NhHFNkhayRDRKQXXJATkiJlAkn9+SRPJMX78F78l69t0HriDecWSY/4L1/ARHpmyY=</latexit>

G : I 0 ! {yes, no}
<latexit sha1_base64="nRLLg5tuZA2GFlbJOr6xjWO36xk=">AAACC3icbVA9SwNBEN3z2/gVtbRZEkQLCXcqKFaihdpFMCrkQtjbTJIle7vH7pwajljb+FdsLBSx9Q/Y+W/cxBR+PRh4vDfDzLwokcKi7394I6Nj4xOTU9O5mdm5+YX84tK51anhUOFaanMZMQtSKKigQAmXiQEWRxIuos5h37+4AmOFVmfYTaAWs5YSTcEZOqmeLxztnayFRrTayIzR1zTMQoQbzLpgN26V7oW9er7ol/wB6F8SDEmRDFGu59/DhuZpDAq5ZNZWAz/BWsYMCi6hlwtTCwnjHdaCqqOKxWBr2eCXHl11SoM2tXGlkA7U7xMZi63txpHrjBm27W+vL/7nVVNs7tYyoZIUQfGvRc1UUtS0HwxtCAMcZdcRxo1wt1LeZoZxdPHlXAjB75f/kvPNUrBV8k+3i/sHwzimyAopkHUSkB2yT45JmVQIJ3fkgTyRZ+/ee/RevNev1hFvOLNMfsB7+wR5SJtY</latexit>

I ! I 0
<latexit sha1_base64="DLckm1toaDqIgIrHKNYtfskhQvs=">AAAB7nicbVDLSgMxFL3js9ZX1aWbYBFdlRkVdFl0Y3cV7APaoWTSTBuayQzJHaEM/Qg3LhRx6/e4829M21lo64HA4Zx7yT0nSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGd1O/9cS1EbF6xHHC/YgOlAgFo2ilVq2LMamd9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOyGnVumTMNb2KSQz9fdGRiNjxlFgJyOKQ7PoTcX/vE6K4Y2fCZWkyBWbfxSmktiM0+ykLzRnKMeWUKaFvZWwIdWUoW2oaEvwFiMvk+ZFxbusuA9X5eptXkcBjuEEzsGDa6jCPdShAQxG8Ayv8OYkzovz7nzMR1ecfOcI/sD5/AFCPY7a</latexit>

F (x) = yes , G(f(x)) = yes
<latexit sha1_base64="8w42VuB+S5YylKZYqafbkR9Fspc=">AAACGnicbVC7SgNBFJ31GeNr1dJmMAixCbsqaCOIglpYRDBGyIYwO7mbDJl9MHNXDUu+w8ZfsbFQxE5s/BsncQuNHhg4nHMud+7xEyk0Os6nNTE5NT0zW5grzi8sLi3bK6tXOk4VhxqPZayufaZBighqKFDCdaKAhb6Eut87Hvr1G1BaxNEl9hNohqwTiUBwhkZq2e5J+W7rwEO4w6wPeuCdQ4BKdLrIlIpv6Wk5MIGfiZZdcirOCPQvcXNSIjmqLfvda8c8DSFCLpnWDddJsJkxhYJLGBS9VEPCeI91oGFoxELQzWx02oBuGqVNg1iZFyEdqT8nMhZq3Q99kwwZdvW4NxT/8xopBvvNTERJihDx70VBKinGdNgTbQsFHGXfEMaVMH+lvMsU42jaLJoS3PGT/5Kr7Yq7U3EudkuHR3kdBbJONkiZuGSPHJIzUiU1wsk9eSTP5MV6sJ6sV+vtOzph5TNr5Besjy9PnKEL</latexit>
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NP
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co-NP
hard

A polytime reduction from                          to                              
is a PT algorithm            w/

F : I ! {yes, no}
<latexit sha1_base64="EexlkVXcMa6a5nxar+1ZyXVHnBA=">AAACCnicbVDLSgNBEJz1bXxFPXoZDYIHCbsqKJ5EQfQWwaiQDWF20kmGzM4sM71qWOLVi7/ixYMiXv0Cb/6Nk8fBV0FDUdVNd1eUSGHR9z+9kdGx8YnJqenczOzc/EJ+cenC6tRwKHMttbmKmAUpFJRRoISrxACLIwmXUfuo519eg7FCq3PsJFCNWVOJhuAMnVTLrx7vn4ZGNFvIjNE3NMxChFvMOmA375Tuht1avuAX/T7oXxIMSYEMUarlP8K65mkMCrlk1lYCP8FqxgwKLqGbC1MLCeNt1oSKo4rFYKtZ/5UuXXdKnTa0caWQ9tXvExmLre3EkeuMGbbsb68n/udVUmzsVTOhkhRB8cGiRiopatrLhdaFAY6y4wjjRrhbKW8xwzi69HIuhOD3y3/JxVYx2C76ZzuFg8NhHFNkhayRDRKQXXJATkiJlAkn9+SRPJMX78F78l69t0HriDecWSY/4L1/ARHpmyY=</latexit>

G : I 0 ! {yes, no}
<latexit sha1_base64="nRLLg5tuZA2GFlbJOr6xjWO36xk=">AAACC3icbVA9SwNBEN3z2/gVtbRZEkQLCXcqKFaihdpFMCrkQtjbTJIle7vH7pwajljb+FdsLBSx9Q/Y+W/cxBR+PRh4vDfDzLwokcKi7394I6Nj4xOTU9O5mdm5+YX84tK51anhUOFaanMZMQtSKKigQAmXiQEWRxIuos5h37+4AmOFVmfYTaAWs5YSTcEZOqmeLxztnayFRrTayIzR1zTMQoQbzLpgN26V7oW9er7ol/wB6F8SDEmRDFGu59/DhuZpDAq5ZNZWAz/BWsYMCi6hlwtTCwnjHdaCqqOKxWBr2eCXHl11SoM2tXGlkA7U7xMZi63txpHrjBm27W+vL/7nVVNs7tYyoZIUQfGvRc1UUtS0HwxtCAMcZdcRxo1wt1LeZoZxdPHlXAjB75f/kvPNUrBV8k+3i/sHwzimyAopkHUSkB2yT45JmVQIJ3fkgTyRZ+/ee/RevNev1hFvOLNMfsB7+wR5SJtY</latexit>

I ! I 0
<latexit sha1_base64="DLckm1toaDqIgIrHKNYtfskhQvs=">AAAB7nicbVDLSgMxFL3js9ZX1aWbYBFdlRkVdFl0Y3cV7APaoWTSTBuayQzJHaEM/Qg3LhRx6/e4829M21lo64HA4Zx7yT0nSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGd1O/9cS1EbF6xHHC/YgOlAgFo2ilVq2LMamd9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOyGnVumTMNb2KSQz9fdGRiNjxlFgJyOKQ7PoTcX/vE6K4Y2fCZWkyBWbfxSmktiM0+ykLzRnKMeWUKaFvZWwIdWUoW2oaEvwFiMvk+ZFxbusuA9X5eptXkcBjuEEzsGDa6jCPdShAQxG8Ayv8OYkzovz7nzMR1ecfOcI/sD5/AFCPY7a</latexit>

F (x) = yes , G(f(x)) = yes
<latexit sha1_base64="8w42VuB+S5YylKZYqafbkR9Fspc=">AAACGnicbVC7SgNBFJ31GeNr1dJmMAixCbsqaCOIglpYRDBGyIYwO7mbDJl9MHNXDUu+w8ZfsbFQxE5s/BsncQuNHhg4nHMud+7xEyk0Os6nNTE5NT0zW5grzi8sLi3bK6tXOk4VhxqPZayufaZBighqKFDCdaKAhb6Eut87Hvr1G1BaxNEl9hNohqwTiUBwhkZq2e5J+W7rwEO4w6wPeuCdQ4BKdLrIlIpv6Wk5MIGfiZZdcirOCPQvcXNSIjmqLfvda8c8DSFCLpnWDddJsJkxhYJLGBS9VEPCeI91oGFoxELQzWx02oBuGqVNg1iZFyEdqT8nMhZq3Q99kwwZdvW4NxT/8xopBvvNTERJihDx70VBKinGdNgTbQsFHGXfEMaVMH+lvMsU42jaLJoS3PGT/5Kr7Yq7U3EudkuHR3kdBbJONkiZuGSPHJIzUiU1wsk9eSTP5MV6sJ6sV+vtOzph5TNr5Besjy9PnKEL</latexit>
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A polytime reduction from                          to                              
is a PT algorithm            w/

F : I ! {yes, no}
<latexit sha1_base64="EexlkVXcMa6a5nxar+1ZyXVHnBA=">AAACCnicbVDLSgNBEJz1bXxFPXoZDYIHCbsqKJ5EQfQWwaiQDWF20kmGzM4sM71qWOLVi7/ixYMiXv0Cb/6Nk8fBV0FDUdVNd1eUSGHR9z+9kdGx8YnJqenczOzc/EJ+cenC6tRwKHMttbmKmAUpFJRRoISrxACLIwmXUfuo519eg7FCq3PsJFCNWVOJhuAMnVTLrx7vn4ZGNFvIjNE3NMxChFvMOmA375Tuht1avuAX/T7oXxIMSYEMUarlP8K65mkMCrlk1lYCP8FqxgwKLqGbC1MLCeNt1oSKo4rFYKtZ/5UuXXdKnTa0caWQ9tXvExmLre3EkeuMGbbsb68n/udVUmzsVTOhkhRB8cGiRiopatrLhdaFAY6y4wjjRrhbKW8xwzi69HIuhOD3y3/JxVYx2C76ZzuFg8NhHFNkhayRDRKQXXJATkiJlAkn9+SRPJMX78F78l69t0HriDecWSY/4L1/ARHpmyY=</latexit>

G : I 0 ! {yes, no}
<latexit sha1_base64="nRLLg5tuZA2GFlbJOr6xjWO36xk=">AAACC3icbVA9SwNBEN3z2/gVtbRZEkQLCXcqKFaihdpFMCrkQtjbTJIle7vH7pwajljb+FdsLBSx9Q/Y+W/cxBR+PRh4vDfDzLwokcKi7394I6Nj4xOTU9O5mdm5+YX84tK51anhUOFaanMZMQtSKKigQAmXiQEWRxIuos5h37+4AmOFVmfYTaAWs5YSTcEZOqmeLxztnayFRrTayIzR1zTMQoQbzLpgN26V7oW9er7ol/wB6F8SDEmRDFGu59/DhuZpDAq5ZNZWAz/BWsYMCi6hlwtTCwnjHdaCqqOKxWBr2eCXHl11SoM2tXGlkA7U7xMZi63txpHrjBm27W+vL/7nVVNs7tYyoZIUQfGvRc1UUtS0HwxtCAMcZdcRxo1wt1LeZoZxdPHlXAjB75f/kvPNUrBV8k+3i/sHwzimyAopkHUSkB2yT45JmVQIJ3fkgTyRZ+/ee/RevNev1hFvOLNMfsB7+wR5SJtY</latexit>

I ! I 0
<latexit sha1_base64="DLckm1toaDqIgIrHKNYtfskhQvs=">AAAB7nicbVDLSgMxFL3js9ZX1aWbYBFdlRkVdFl0Y3cV7APaoWTSTBuayQzJHaEM/Qg3LhRx6/e4829M21lo64HA4Zx7yT0nSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGd1O/9cS1EbF6xHHC/YgOlAgFo2ilVq2LMamd9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOyGnVumTMNb2KSQz9fdGRiNjxlFgJyOKQ7PoTcX/vE6K4Y2fCZWkyBWbfxSmktiM0+ykLzRnKMeWUKaFvZWwIdWUoW2oaEvwFiMvk+ZFxbusuA9X5eptXkcBjuEEzsGDa6jCPdShAQxG8Ayv8OYkzovz7nzMR1ecfOcI/sD5/AFCPY7a</latexit>

F (x) = yes , G(f(x)) = yes
<latexit sha1_base64="8w42VuB+S5YylKZYqafbkR9Fspc=">AAACGnicbVC7SgNBFJ31GeNr1dJmMAixCbsqaCOIglpYRDBGyIYwO7mbDJl9MHNXDUu+w8ZfsbFQxE5s/BsncQuNHhg4nHMud+7xEyk0Os6nNTE5NT0zW5grzi8sLi3bK6tXOk4VhxqPZayufaZBighqKFDCdaKAhb6Eut87Hvr1G1BaxNEl9hNohqwTiUBwhkZq2e5J+W7rwEO4w6wPeuCdQ4BKdLrIlIpv6Wk5MIGfiZZdcirOCPQvcXNSIjmqLfvda8c8DSFCLpnWDddJsJkxhYJLGBS9VEPCeI91oGFoxELQzWx02oBuGqVNg1iZFyEdqT8nMhZq3Q99kwwZdvW4NxT/8xopBvvNTERJihDx70VBKinGdNgTbQsFHGXfEMaVMH+lvMsU42jaLJoS3PGT/5Kr7Yq7U3EudkuHR3kdBbJONkiZuGSPHJIzUiU1wsk9eSTP5MV6sJ6sV+vtOzph5TNr5Besjy9PnKEL</latexit>
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A polytime reduction from                          to                              
is a PT algorithm            w/

F : I ! {yes, no}
<latexit sha1_base64="EexlkVXcMa6a5nxar+1ZyXVHnBA=">AAACCnicbVDLSgNBEJz1bXxFPXoZDYIHCbsqKJ5EQfQWwaiQDWF20kmGzM4sM71qWOLVi7/ixYMiXv0Cb/6Nk8fBV0FDUdVNd1eUSGHR9z+9kdGx8YnJqenczOzc/EJ+cenC6tRwKHMttbmKmAUpFJRRoISrxACLIwmXUfuo519eg7FCq3PsJFCNWVOJhuAMnVTLrx7vn4ZGNFvIjNE3NMxChFvMOmA375Tuht1avuAX/T7oXxIMSYEMUarlP8K65mkMCrlk1lYCP8FqxgwKLqGbC1MLCeNt1oSKo4rFYKtZ/5UuXXdKnTa0caWQ9tXvExmLre3EkeuMGbbsb68n/udVUmzsVTOhkhRB8cGiRiopatrLhdaFAY6y4wjjRrhbKW8xwzi69HIuhOD3y3/JxVYx2C76ZzuFg8NhHFNkhayRDRKQXXJATkiJlAkn9+SRPJMX78F78l69t0HriDecWSY/4L1/ARHpmyY=</latexit>

G : I 0 ! {yes, no}
<latexit sha1_base64="nRLLg5tuZA2GFlbJOr6xjWO36xk=">AAACC3icbVA9SwNBEN3z2/gVtbRZEkQLCXcqKFaihdpFMCrkQtjbTJIle7vH7pwajljb+FdsLBSx9Q/Y+W/cxBR+PRh4vDfDzLwokcKi7394I6Nj4xOTU9O5mdm5+YX84tK51anhUOFaanMZMQtSKKigQAmXiQEWRxIuos5h37+4AmOFVmfYTaAWs5YSTcEZOqmeLxztnayFRrTayIzR1zTMQoQbzLpgN26V7oW9er7ol/wB6F8SDEmRDFGu59/DhuZpDAq5ZNZWAz/BWsYMCi6hlwtTCwnjHdaCqqOKxWBr2eCXHl11SoM2tXGlkA7U7xMZi63txpHrjBm27W+vL/7nVVNs7tYyoZIUQfGvRc1UUtS0HwxtCAMcZdcRxo1wt1LeZoZxdPHlXAjB75f/kvPNUrBV8k+3i/sHwzimyAopkHUSkB2yT45JmVQIJ3fkgTyRZ+/ee/RevNev1hFvOLNMfsB7+wR5SJtY</latexit>

I ! I 0
<latexit sha1_base64="DLckm1toaDqIgIrHKNYtfskhQvs=">AAAB7nicbVDLSgMxFL3js9ZX1aWbYBFdlRkVdFl0Y3cV7APaoWTSTBuayQzJHaEM/Qg3LhRx6/e4829M21lo64HA4Zx7yT0nSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGd1O/9cS1EbF6xHHC/YgOlAgFo2ilVq2LMamd9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOyGnVumTMNb2KSQz9fdGRiNjxlFgJyOKQ7PoTcX/vE6K4Y2fCZWkyBWbfxSmktiM0+ykLzRnKMeWUKaFvZWwIdWUoW2oaEvwFiMvk+ZFxbusuA9X5eptXkcBjuEEzsGDa6jCPdShAQxG8Ayv8OYkzovz7nzMR1ecfOcI/sD5/AFCPY7a</latexit>

F (x) = yes , G(f(x)) = yes
<latexit sha1_base64="8w42VuB+S5YylKZYqafbkR9Fspc=">AAACGnicbVC7SgNBFJ31GeNr1dJmMAixCbsqaCOIglpYRDBGyIYwO7mbDJl9MHNXDUu+w8ZfsbFQxE5s/BsncQuNHhg4nHMud+7xEyk0Os6nNTE5NT0zW5grzi8sLi3bK6tXOk4VhxqPZayufaZBighqKFDCdaKAhb6Eut87Hvr1G1BaxNEl9hNohqwTiUBwhkZq2e5J+W7rwEO4w6wPeuCdQ4BKdLrIlIpv6Wk5MIGfiZZdcirOCPQvcXNSIjmqLfvda8c8DSFCLpnWDddJsJkxhYJLGBS9VEPCeI91oGFoxELQzWx02oBuGqVNg1iZFyEdqT8nMhZq3Q99kwwZdvW4NxT/8xopBvvNTERJihDx70VBKinGdNgTbQsFHGXfEMaVMH+lvMsU42jaLJoS3PGT/5Kr7Yq7U3EudkuHR3kdBbJONkiZuGSPHJIzUiU1wsk9eSTP5MV6sJ6sV+vtOzph5TNr5Besjy9PnKEL</latexit>
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A polytime reduction from                          to                              
is a PT algorithm            w/

F : I ! {yes, no}
<latexit sha1_base64="EexlkVXcMa6a5nxar+1ZyXVHnBA=">AAACCnicbVDLSgNBEJz1bXxFPXoZDYIHCbsqKJ5EQfQWwaiQDWF20kmGzM4sM71qWOLVi7/ixYMiXv0Cb/6Nk8fBV0FDUdVNd1eUSGHR9z+9kdGx8YnJqenczOzc/EJ+cenC6tRwKHMttbmKmAUpFJRRoISrxACLIwmXUfuo519eg7FCq3PsJFCNWVOJhuAMnVTLrx7vn4ZGNFvIjNE3NMxChFvMOmA375Tuht1avuAX/T7oXxIMSYEMUarlP8K65mkMCrlk1lYCP8FqxgwKLqGbC1MLCeNt1oSKo4rFYKtZ/5UuXXdKnTa0caWQ9tXvExmLre3EkeuMGbbsb68n/udVUmzsVTOhkhRB8cGiRiopatrLhdaFAY6y4wjjRrhbKW8xwzi69HIuhOD3y3/JxVYx2C76ZzuFg8NhHFNkhayRDRKQXXJATkiJlAkn9+SRPJMX78F78l69t0HriDecWSY/4L1/ARHpmyY=</latexit>

G : I 0 ! {yes, no}
<latexit sha1_base64="nRLLg5tuZA2GFlbJOr6xjWO36xk=">AAACC3icbVA9SwNBEN3z2/gVtbRZEkQLCXcqKFaihdpFMCrkQtjbTJIle7vH7pwajljb+FdsLBSx9Q/Y+W/cxBR+PRh4vDfDzLwokcKi7394I6Nj4xOTU9O5mdm5+YX84tK51anhUOFaanMZMQtSKKigQAmXiQEWRxIuos5h37+4AmOFVmfYTaAWs5YSTcEZOqmeLxztnayFRrTayIzR1zTMQoQbzLpgN26V7oW9er7ol/wB6F8SDEmRDFGu59/DhuZpDAq5ZNZWAz/BWsYMCi6hlwtTCwnjHdaCqqOKxWBr2eCXHl11SoM2tXGlkA7U7xMZi63txpHrjBm27W+vL/7nVVNs7tYyoZIUQfGvRc1UUtS0HwxtCAMcZdcRxo1wt1LeZoZxdPHlXAjB75f/kvPNUrBV8k+3i/sHwzimyAopkHUSkB2yT45JmVQIJ3fkgTyRZ+/ee/RevNev1hFvOLNMfsB7+wR5SJtY</latexit>

I ! I 0
<latexit sha1_base64="DLckm1toaDqIgIrHKNYtfskhQvs=">AAAB7nicbVDLSgMxFL3js9ZX1aWbYBFdlRkVdFl0Y3cV7APaoWTSTBuayQzJHaEM/Qg3LhRx6/e4829M21lo64HA4Zx7yT0nSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGd1O/9cS1EbF6xHHC/YgOlAgFo2ilVq2LMamd9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOyGnVumTMNb2KSQz9fdGRiNjxlFgJyOKQ7PoTcX/vE6K4Y2fCZWkyBWbfxSmktiM0+ykLzRnKMeWUKaFvZWwIdWUoW2oaEvwFiMvk+ZFxbusuA9X5eptXkcBjuEEzsGDa6jCPdShAQxG8Ayv8OYkzovz7nzMR1ecfOcI/sD5/AFCPY7a</latexit>

F (x) = yes , G(f(x)) = yes
<latexit sha1_base64="8w42VuB+S5YylKZYqafbkR9Fspc=">AAACGnicbVC7SgNBFJ31GeNr1dJmMAixCbsqaCOIglpYRDBGyIYwO7mbDJl9MHNXDUu+w8ZfsbFQxE5s/BsncQuNHhg4nHMud+7xEyk0Os6nNTE5NT0zW5grzi8sLi3bK6tXOk4VhxqPZayufaZBighqKFDCdaKAhb6Eut87Hvr1G1BaxNEl9hNohqwTiUBwhkZq2e5J+W7rwEO4w6wPeuCdQ4BKdLrIlIpv6Wk5MIGfiZZdcirOCPQvcXNSIjmqLfvda8c8DSFCLpnWDddJsJkxhYJLGBS9VEPCeI91oGFoxELQzWx02oBuGqVNg1iZFyEdqT8nMhZq3Q99kwwZdvW4NxT/8xopBvvNTERJihDx70VBKinGdNgTbQsFHGXfEMaVMH+lvMsU42jaLJoS3PGT/5Kr7Yq7U3EudkuHR3kdBbJONkiZuGSPHJIzUiU1wsk9eSTP5MV6sJ6sV+vtOzph5TNr5Besjy9PnKEL</latexit>
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A polytime reduction from                          to                              
is a PT algorithm            w/

F : I ! {yes, no}
<latexit sha1_base64="EexlkVXcMa6a5nxar+1ZyXVHnBA=">AAACCnicbVDLSgNBEJz1bXxFPXoZDYIHCbsqKJ5EQfQWwaiQDWF20kmGzM4sM71qWOLVi7/ixYMiXv0Cb/6Nk8fBV0FDUdVNd1eUSGHR9z+9kdGx8YnJqenczOzc/EJ+cenC6tRwKHMttbmKmAUpFJRRoISrxACLIwmXUfuo519eg7FCq3PsJFCNWVOJhuAMnVTLrx7vn4ZGNFvIjNE3NMxChFvMOmA375Tuht1avuAX/T7oXxIMSYEMUarlP8K65mkMCrlk1lYCP8FqxgwKLqGbC1MLCeNt1oSKo4rFYKtZ/5UuXXdKnTa0caWQ9tXvExmLre3EkeuMGbbsb68n/udVUmzsVTOhkhRB8cGiRiopatrLhdaFAY6y4wjjRrhbKW8xwzi69HIuhOD3y3/JxVYx2C76ZzuFg8NhHFNkhayRDRKQXXJATkiJlAkn9+SRPJMX78F78l69t0HriDecWSY/4L1/ARHpmyY=</latexit>

G : I 0 ! {yes, no}
<latexit sha1_base64="nRLLg5tuZA2GFlbJOr6xjWO36xk=">AAACC3icbVA9SwNBEN3z2/gVtbRZEkQLCXcqKFaihdpFMCrkQtjbTJIle7vH7pwajljb+FdsLBSx9Q/Y+W/cxBR+PRh4vDfDzLwokcKi7394I6Nj4xOTU9O5mdm5+YX84tK51anhUOFaanMZMQtSKKigQAmXiQEWRxIuos5h37+4AmOFVmfYTaAWs5YSTcEZOqmeLxztnayFRrTayIzR1zTMQoQbzLpgN26V7oW9er7ol/wB6F8SDEmRDFGu59/DhuZpDAq5ZNZWAz/BWsYMCi6hlwtTCwnjHdaCqqOKxWBr2eCXHl11SoM2tXGlkA7U7xMZi63txpHrjBm27W+vL/7nVVNs7tYyoZIUQfGvRc1UUtS0HwxtCAMcZdcRxo1wt1LeZoZxdPHlXAjB75f/kvPNUrBV8k+3i/sHwzimyAopkHUSkB2yT45JmVQIJ3fkgTyRZ+/ee/RevNev1hFvOLNMfsB7+wR5SJtY</latexit>

I ! I 0
<latexit sha1_base64="DLckm1toaDqIgIrHKNYtfskhQvs=">AAAB7nicbVDLSgMxFL3js9ZX1aWbYBFdlRkVdFl0Y3cV7APaoWTSTBuayQzJHaEM/Qg3LhRx6/e4829M21lo64HA4Zx7yT0nSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGd1O/9cS1EbF6xHHC/YgOlAgFo2ilVq2LMamd9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOyGnVumTMNb2KSQz9fdGRiNjxlFgJyOKQ7PoTcX/vE6K4Y2fCZWkyBWbfxSmktiM0+ykLzRnKMeWUKaFvZWwIdWUoW2oaEvwFiMvk+ZFxbusuA9X5eptXkcBjuEEzsGDa6jCPdShAQxG8Ayv8OYkzovz7nzMR1ecfOcI/sD5/AFCPY7a</latexit>

F (x) = yes , G(f(x)) = yes
<latexit sha1_base64="8w42VuB+S5YylKZYqafbkR9Fspc=">AAACGnicbVC7SgNBFJ31GeNr1dJmMAixCbsqaCOIglpYRDBGyIYwO7mbDJl9MHNXDUu+w8ZfsbFQxE5s/BsncQuNHhg4nHMud+7xEyk0Os6nNTE5NT0zW5grzi8sLi3bK6tXOk4VhxqPZayufaZBighqKFDCdaKAhb6Eut87Hvr1G1BaxNEl9hNohqwTiUBwhkZq2e5J+W7rwEO4w6wPeuCdQ4BKdLrIlIpv6Wk5MIGfiZZdcirOCPQvcXNSIjmqLfvda8c8DSFCLpnWDddJsJkxhYJLGBS9VEPCeI91oGFoxELQzWx02oBuGqVNg1iZFyEdqT8nMhZq3Q99kwwZdvW4NxT/8xopBvvNTERJihDx70VBKinGdNgTbQsFHGXfEMaVMH+lvMsU42jaLJoS3PGT/5Kr7Yq7U3EudkuHR3kdBbJONkiZuGSPHJIzUiU1wsk9eSTP5MV6sJ6sV+vtOzph5TNr5Besjy9PnKEL</latexit>



Example of NP and undecidable problems
Surprising Fact: NP hard, NP complete, and undecidable problems exist



Example of NP and undecidable problems
Surprising Fact: NP hard, NP complete, and undecidable problems exist

Subset sum (NP-complete):
Given a set of integers, does there exist a subset whose elements sum 
to zero? (Relevant for fine-tuning                                                             )

[Denef,Douglas `06]
[Bousso, Polchinski `00; Arkani-Hamed,Dimopoulos,Kachru `05]



Example of NP and undecidable problems
Surprising Fact: NP hard, NP complete, and undecidable problems exist

Critical Point (NP hard):
Find the critical points of   V (�)

<latexit sha1_base64="8wVVccdW8t3FTWnOkLu6NE/JX6o=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsquCnosevFYwX5Au5Rsmm1Ds0lIskJZ+iO8eFDEq7/Hm//GtN2Dtj4YeLw3w8y8SHFmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMjLVhDaJ5FJ3ImwoZ4I2LbOcdpSmOIk4bUfju5nffqLaMCke7UTRMMFDwWJGsHVSu1XtqRE775crfs2fA62SICcVyNHol796A0nShApLODamG/jKhhnWlhFOp6VeaqjCZIyHtOuowAk1YTY/d4rOnDJAsdSuhEVz9fdEhhNjJknkOhNsR2bZm4n/ed3UxjdhxoRKLRVksShOObISzX5HA6YpsXziCCaauVsRGWGNiXUJlVwIwfLLq6R1UQsua/7DVaV+m8dRhBM4hSoEcA11uIcGNIHAGJ7hFd485b14797HorXg5TPH8Afe5w+Eio8G</latexit>

Subset sum (NP-complete):
Given a set of integers, does there exist a subset whose elements sum 
to zero? (Relevant for fine-tuning                                                             )

[Denef,Douglas `06]
[Bousso, Polchinski `00; Arkani-Hamed,Dimopoulos,Kachru `05]



Example of NP and undecidable problems
Surprising Fact: NP hard, NP complete, and undecidable problems exist

Critical Point (NP hard):
Find the critical points of   V (�)

<latexit sha1_base64="8wVVccdW8t3FTWnOkLu6NE/JX6o=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsquCnosevFYwX5Au5Rsmm1Ds0lIskJZ+iO8eFDEq7/Hm//GtN2Dtj4YeLw3w8y8SHFmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMjLVhDaJ5FJ3ImwoZ4I2LbOcdpSmOIk4bUfju5nffqLaMCke7UTRMMFDwWJGsHVSu1XtqRE775crfs2fA62SICcVyNHol796A0nShApLODamG/jKhhnWlhFOp6VeaqjCZIyHtOuowAk1YTY/d4rOnDJAsdSuhEVz9fdEhhNjJknkOhNsR2bZm4n/ed3UxjdhxoRKLRVksShOObISzX5HA6YpsXziCCaauVsRGWGNiXUJlVwIwfLLq6R1UQsua/7DVaV+m8dRhBM4hSoEcA11uIcGNIHAGJ7hFd485b14797HorXg5TPH8Afe5w+Eio8G</latexit>

Metastable Vacuum (co-NP hard):
Find the local minimum of         ,   V (�)

<latexit sha1_base64="8wVVccdW8t3FTWnOkLu6NE/JX6o=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsquCnosevFYwX5Au5Rsmm1Ds0lIskJZ+iO8eFDEq7/Hm//GtN2Dtj4YeLw3w8y8SHFmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMjLVhDaJ5FJ3ImwoZ4I2LbOcdpSmOIk4bUfju5nffqLaMCke7UTRMMFDwWJGsHVSu1XtqRE775crfs2fA62SICcVyNHol796A0nShApLODamG/jKhhnWlhFOp6VeaqjCZIyHtOuowAk1YTY/d4rOnDJAsdSuhEVz9fdEhhNjJknkOhNsR2bZm4n/ed3UxjdhxoRKLRVksShOObISzX5HA6YpsXziCCaauVsRGWGNiXUJlVwIwfLLq6R1UQsua/7DVaV+m8dRhBM4hSoEcA11uIcGNIHAGJ7hFd485b14797HorXg5TPH8Afe5w+Eio8G</latexit>

li  �i  ui
<latexit sha1_base64="g2j4aPB1+2z9s+W74FdI/gpCnWI=">AAAB/nicbZBNS8NAEIYn9avWr6p48rJYBE8lUUGPRS8eK9haaELYbCft0s2HuxuhhIJ/xYsHRbz6O7z5b9y2OWjrCwsP78wws2+QCq60bX9bpaXlldW18nplY3Nre6e6u9dWSSYZtlgiEtkJqELBY2xprgV2Uok0CgTeB8PrSf3+EaXiSXynRyl6Ee3HPOSMamP51QPhc1fgg5sO+IxI5nO/WrPr9lRkEZwCalCo6Ve/3F7CsghjzQRVquvYqfZyKjVnAscVN1OYUjakfewajGmEysun54/JsXF6JEykebEmU/f3RE4jpUZRYDojqgdqvjYx/6t1Mx1eejmP00xjzGaLwkwQnZBJFqTHJTItRgYok9zcStiASsq0SaxiQnDmv7wI7dO6c1a3b89rjasijjIcwhGcgAMX0IAbaEILGOTwDK/wZj1ZL9a79TFrLVnFzD78kfX5A0zZlbE=</latexit>

Subset sum (NP-complete):
Given a set of integers, does there exist a subset whose elements sum 
to zero? (Relevant for fine-tuning                                                             )

[Denef,Douglas `06]
[Bousso, Polchinski `00; Arkani-Hamed,Dimopoulos,Kachru `05]



Example of NP and undecidable problems
Surprising Fact: NP hard, NP complete, and undecidable problems exist

Critical Point (NP hard):
Find the critical points of   V (�)

<latexit sha1_base64="8wVVccdW8t3FTWnOkLu6NE/JX6o=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsquCnosevFYwX5Au5Rsmm1Ds0lIskJZ+iO8eFDEq7/Hm//GtN2Dtj4YeLw3w8y8SHFmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMjLVhDaJ5FJ3ImwoZ4I2LbOcdpSmOIk4bUfju5nffqLaMCke7UTRMMFDwWJGsHVSu1XtqRE775crfs2fA62SICcVyNHol796A0nShApLODamG/jKhhnWlhFOp6VeaqjCZIyHtOuowAk1YTY/d4rOnDJAsdSuhEVz9fdEhhNjJknkOhNsR2bZm4n/ed3UxjdhxoRKLRVksShOObISzX5HA6YpsXziCCaauVsRGWGNiXUJlVwIwfLLq6R1UQsua/7DVaV+m8dRhBM4hSoEcA11uIcGNIHAGJ7hFd485b14797HorXg5TPH8Afe5w+Eio8G</latexit>

Metastable Vacuum (co-NP hard):
Find the local minimum of         ,   V (�)

<latexit sha1_base64="8wVVccdW8t3FTWnOkLu6NE/JX6o=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsquCnosevFYwX5Au5Rsmm1Ds0lIskJZ+iO8eFDEq7/Hm//GtN2Dtj4YeLw3w8y8SHFmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMjLVhDaJ5FJ3ImwoZ4I2LbOcdpSmOIk4bUfju5nffqLaMCke7UTRMMFDwWJGsHVSu1XtqRE775crfs2fA62SICcVyNHol796A0nShApLODamG/jKhhnWlhFOp6VeaqjCZIyHtOuowAk1YTY/d4rOnDJAsdSuhEVz9fdEhhNjJknkOhNsR2bZm4n/ed3UxjdhxoRKLRVksShOObISzX5HA6YpsXziCCaauVsRGWGNiXUJlVwIwfLLq6R1UQsua/7DVaV+m8dRhBM4hSoEcA11uIcGNIHAGJ7hFd485b14797HorXg5TPH8Afe5w+Eio8G</latexit>

li  �i  ui
<latexit sha1_base64="g2j4aPB1+2z9s+W74FdI/gpCnWI=">AAAB/nicbZBNS8NAEIYn9avWr6p48rJYBE8lUUGPRS8eK9haaELYbCft0s2HuxuhhIJ/xYsHRbz6O7z5b9y2OWjrCwsP78wws2+QCq60bX9bpaXlldW18nplY3Nre6e6u9dWSSYZtlgiEtkJqELBY2xprgV2Uok0CgTeB8PrSf3+EaXiSXynRyl6Ee3HPOSMamP51QPhc1fgg5sO+IxI5nO/WrPr9lRkEZwCalCo6Ve/3F7CsghjzQRVquvYqfZyKjVnAscVN1OYUjakfewajGmEysun54/JsXF6JEykebEmU/f3RE4jpUZRYDojqgdqvjYx/6t1Mx1eejmP00xjzGaLwkwQnZBJFqTHJTItRgYok9zcStiASsq0SaxiQnDmv7wI7dO6c1a3b89rjasijjIcwhGcgAMX0IAbaEILGOTwDK/wZj1ZL9a79TFrLVnFzD78kfX5A0zZlbE=</latexit>

Diophantine equation (undecidable):
Does a set of coupled, non-linear Diophantine eqns have a solution?

Subset sum (NP-complete):
Given a set of integers, does there exist a subset whose elements sum 
to zero? (Relevant for fine-tuning                                                             )

[Denef,Douglas `06]
[Bousso, Polchinski `00; Arkani-Hamed,Dimopoulos,Kachru `05]



Example of NP and undecidable problems
Surprising Fact: NP hard, NP complete, and undecidable problems exist

Critical Point (NP hard):
Find the critical points of   V (�)

<latexit sha1_base64="8wVVccdW8t3FTWnOkLu6NE/JX6o=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsquCnosevFYwX5Au5Rsmm1Ds0lIskJZ+iO8eFDEq7/Hm//GtN2Dtj4YeLw3w8y8SHFmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMjLVhDaJ5FJ3ImwoZ4I2LbOcdpSmOIk4bUfju5nffqLaMCke7UTRMMFDwWJGsHVSu1XtqRE775crfs2fA62SICcVyNHol796A0nShApLODamG/jKhhnWlhFOp6VeaqjCZIyHtOuowAk1YTY/d4rOnDJAsdSuhEVz9fdEhhNjJknkOhNsR2bZm4n/ed3UxjdhxoRKLRVksShOObISzX5HA6YpsXziCCaauVsRGWGNiXUJlVwIwfLLq6R1UQsua/7DVaV+m8dRhBM4hSoEcA11uIcGNIHAGJ7hFd485b14797HorXg5TPH8Afe5w+Eio8G</latexit>

Metastable Vacuum (co-NP hard):
Find the local minimum of         ,   V (�)

<latexit sha1_base64="8wVVccdW8t3FTWnOkLu6NE/JX6o=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsquCnosevFYwX5Au5Rsmm1Ds0lIskJZ+iO8eFDEq7/Hm//GtN2Dtj4YeLw3w8y8SHFmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMjLVhDaJ5FJ3ImwoZ4I2LbOcdpSmOIk4bUfju5nffqLaMCke7UTRMMFDwWJGsHVSu1XtqRE775crfs2fA62SICcVyNHol796A0nShApLODamG/jKhhnWlhFOp6VeaqjCZIyHtOuowAk1YTY/d4rOnDJAsdSuhEVz9fdEhhNjJknkOhNsR2bZm4n/ed3UxjdhxoRKLRVksShOObISzX5HA6YpsXziCCaauVsRGWGNiXUJlVwIwfLLq6R1UQsua/7DVaV+m8dRhBM4hSoEcA11uIcGNIHAGJ7hFd485b14797HorXg5TPH8Afe5w+Eio8G</latexit>

li  �i  ui
<latexit sha1_base64="g2j4aPB1+2z9s+W74FdI/gpCnWI=">AAAB/nicbZBNS8NAEIYn9avWr6p48rJYBE8lUUGPRS8eK9haaELYbCft0s2HuxuhhIJ/xYsHRbz6O7z5b9y2OWjrCwsP78wws2+QCq60bX9bpaXlldW18nplY3Nre6e6u9dWSSYZtlgiEtkJqELBY2xprgV2Uok0CgTeB8PrSf3+EaXiSXynRyl6Ee3HPOSMamP51QPhc1fgg5sO+IxI5nO/WrPr9lRkEZwCalCo6Ve/3F7CsghjzQRVquvYqfZyKjVnAscVN1OYUjakfewajGmEysun54/JsXF6JEykebEmU/f3RE4jpUZRYDojqgdqvjYx/6t1Mx1eejmP00xjzGaLwkwQnZBJFqTHJTItRgYok9zcStiASsq0SaxiQnDmv7wI7dO6c1a3b89rjasijjIcwhGcgAMX0IAbaEILGOTwDK/wZj1ZL9a79TFrLVnFzD78kfX5A0zZlbE=</latexit>

Diophantine equation (undecidable):
Does a set of coupled, non-linear Diophantine eqns have a solution?

Cohomology (not NP):
Is                                           ? Given     , we cannot check this to be true in P. h•(X,V ) = (h0, h1, h2, h3)

<latexit sha1_base64="BK1faKDfUCZiGP8mkGES0lYkWIE=">AAACCXicbVC7SgNBFL3rM8bXqqXNYBASCGE3EbQRgjaWEcwDknWZnUyyQ2YfzMwKYUlr46/YWChi6x/Y+TdOki008cCBwzn3MnOPF3MmlWV9Gyura+sbm7mt/PbO7t6+eXDYklEiCG2SiEei42FJOQtpUzHFaScWFAcep21vdD3N2w9USBaFd2ocUyfAw5ANGMFKW66J/Puel3BOVbFTbpUui75rlX3X1qxq1kquWbAq1gxoWdiZKECGhmt+9foRSQIaKsKxlF3bipWTYqEY4XSS7yWSxpiM8JB2tQxxQKWTzi6ZoFPt9NEgEpqhQjP390aKAynHgacnA6x8uZhNzf+ybqIGF07KwjhRNCTzhwYJRypC01pQnwlKFB9rgYlg+q+I+FhgonR5eV2CvXjysmhVK3atUr09K9SvsjpycAwnUAQbzqEON9CAJhB4hGd4hTfjyXgx3o2P+eiKke0cwR8Ynz+g15e4</latexit>

hi
<latexit sha1_base64="aZ/zXTULzJiM1n+5CRkawCLtx9Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0MOrzfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBJfo3M</latexit>

Subset sum (NP-complete):
Given a set of integers, does there exist a subset whose elements sum 
to zero? (Relevant for fine-tuning                                                             )

[Denef,Douglas `06]
[Bousso, Polchinski `00; Arkani-Hamed,Dimopoulos,Kachru `05]



‣Choose a background geometry

‣ Find boundary conditions (branes, fluxes) s.t.

• Tadpole, K-Theory, existence of unbroken SUSY somewhere        
      Coupled Diophantine (undec.)

• CC is small       NP-complete (subset sum via BP) 

‣Minimize scalar potential

• Find critical points       NP hard

• Check that they are minima       co-NP hard

‣ Find massless spectrum

• Compute cohomology dims      Grobner basis (NP, double-exp)   

A typical workflow for constructing string models

)
<latexit sha1_base64="aa+RtvqzfdVoDKVWFQEMlw9hXxM=">AAAB8nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjFfkAayma7aZdudsPuRCmlP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUsENet63s7K6tr6xWdgqbu/s7u2XDg6bRmWasgZVQul2RAwTXLIGchSsnWpGkkiwVjS8mfqtR6YNV/IBRykLE9KXPOaUoJWCzj3vD5BorZ66pbJX8WZwl4mfkzLkqHdLX52eolnCJFJBjAl8L8VwTDRyKtik2MkMSwkdkj4LLJUkYSYcz06euKdW6bmx0rYkujP198SYJMaMksh2JgQHZtGbiv95QYbxVTjmMs2QSTpfFGfCReVO/3d7XDOKYmQJoZrbW106IJpQtCkVbQj+4svLpFmt+OeV6t1FuXadx1GAYziBM/DhEmpwC3VoAAUFz/AKbw46L8678zFvXXHymSP4A+fzB5JpkXE=</latexit>

)
<latexit sha1_base64="aa+RtvqzfdVoDKVWFQEMlw9hXxM=">AAAB8nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjFfkAayma7aZdudsPuRCmlP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUsENet63s7K6tr6xWdgqbu/s7u2XDg6bRmWasgZVQul2RAwTXLIGchSsnWpGkkiwVjS8mfqtR6YNV/IBRykLE9KXPOaUoJWCzj3vD5BorZ66pbJX8WZwl4mfkzLkqHdLX52eolnCJFJBjAl8L8VwTDRyKtik2MkMSwkdkj4LLJUkYSYcz06euKdW6bmx0rYkujP198SYJMaMksh2JgQHZtGbiv95QYbxVTjmMs2QSTpfFGfCReVO/3d7XDOKYmQJoZrbW106IJpQtCkVbQj+4svLpFmt+OeV6t1FuXadx1GAYziBM/DhEmpwC3VoAAUFz/AKbw46L8678zFvXXHymSP4A+fzB5JpkXE=</latexit>

)
<latexit sha1_base64="aa+RtvqzfdVoDKVWFQEMlw9hXxM=">AAAB8nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjFfkAayma7aZdudsPuRCmlP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUsENet63s7K6tr6xWdgqbu/s7u2XDg6bRmWasgZVQul2RAwTXLIGchSsnWpGkkiwVjS8mfqtR6YNV/IBRykLE9KXPOaUoJWCzj3vD5BorZ66pbJX8WZwl4mfkzLkqHdLX52eolnCJFJBjAl8L8VwTDRyKtik2MkMSwkdkj4LLJUkYSYcz06euKdW6bmx0rYkujP198SYJMaMksh2JgQHZtGbiv95QYbxVTjmMs2QSTpfFGfCReVO/3d7XDOKYmQJoZrbW106IJpQtCkVbQj+4svLpFmt+OeV6t1FuXadx1GAYziBM/DhEmpwC3VoAAUFz/AKbw46L8678zFvXXHymSP4A+fzB5JpkXE=</latexit>

)
<latexit sha1_base64="aa+RtvqzfdVoDKVWFQEMlw9hXxM=">AAAB8nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjFfkAayma7aZdudsPuRCmlP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUsENet63s7K6tr6xWdgqbu/s7u2XDg6bRmWasgZVQul2RAwTXLIGchSsnWpGkkiwVjS8mfqtR6YNV/IBRykLE9KXPOaUoJWCzj3vD5BorZ66pbJX8WZwl4mfkzLkqHdLX52eolnCJFJBjAl8L8VwTDRyKtik2MkMSwkdkj4LLJUkYSYcz06euKdW6bmx0rYkujP198SYJMaMksh2JgQHZtGbiv95QYbxVTjmMs2QSTpfFGfCReVO/3d7XDOKYmQJoZrbW106IJpQtCkVbQj+4svLpFmt+OeV6t1FuXadx1GAYziBM/DhEmpwC3VoAAUFz/AKbw46L8678zFvXXHymSP4A+fzB5JpkXE=</latexit>

)
<latexit sha1_base64="aa+RtvqzfdVoDKVWFQEMlw9hXxM=">AAAB8nicbVBNS8NAEJ34WetX1aOXYBE8laQKeix68VjFfkAayma7aZdudsPuRCmlP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUsENet63s7K6tr6xWdgqbu/s7u2XDg6bRmWasgZVQul2RAwTXLIGchSsnWpGkkiwVjS8mfqtR6YNV/IBRykLE9KXPOaUoJWCzj3vD5BorZ66pbJX8WZwl4mfkzLkqHdLX52eolnCJFJBjAl8L8VwTDRyKtik2MkMSwkdkj4LLJUkYSYcz06euKdW6bmx0rYkujP198SYJMaMksh2JgQHZtGbiv95QYbxVTjmMs2QSTpfFGfCReVO/3d7XDOKYmQJoZrbW106IJpQtCkVbQj+4svLpFmt+OeV6t1FuXadx1GAYziBM/DhEmpwC3VoAAUFz/AKbw46L8678zFvXXHymSP4A+fzB5JpkXE=</latexit>
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‣ Of course not. So how does it help?

‣ In practice, don’t need to solve arbitrarily large examples

‣ Don’t need to solve exactly (approximate a solution) and cross-check 
(Euler Number, anomalies, Stability)

‣ Problem might have more substructure / symmetries that simplify the 
computation

• Solving general Diophantine undecidable

• Solving quad. Diophantine like                             is NP-complete

• Solving linear Diophantine is in P

• Finding vacua is NP, finding near-vacua is in P    

Can ML solve NP or undec in P?

ax2
1 + bx2 = c
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Machine learning the landscape of IIA 
toroidal orientifolds
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‣ Want to explore the string landscape 
(“environment”)

‣ Done by “workers” that are conditioned

‣ At any given moment, a worker is in a specific 
string configuration (“state”) defined by 
discrete topological data (branes, flux, cycles, 
…)

‣ Workers change state by taking “actions” to 
reach new states (“elements of the environ-
ment”)

‣ They select these actions via some “policy”

‣ Depending on the chosen action they receive 
a pos/neg “reward” 

‣ Via this reinforcement, the agent learns a 
policy that, given a state, selects an action 
that maximises its “return” (accumulated long-
term reward)

+ + +

Return

Reinforcement Learning - Basics



‣Can (have to for three generations) tilt torus (2 different 
complex structure choices compatible with orientifold) 

‣D6 brane: 4D Minkowski + a line on each torus

‣Can stack multiple D6 branes on top of each other

‣Brane stacks     Tuple:

D6 branes

, (N,n1,m1, n2,m2, n3,m3)

T 2T 2 T 2



‣ Tadpole cancellation: Balance D6 / O6 charges:

‣K-Theory: Global consistency constraint:

D6 Branes - Consistency Conditions
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‣SUSY:

‣Pheno:                                      + MSSM particles

‣Massless         ’s:

8a = 1, . . . ,# stacks

SU(3)⇥ SU(2)⇥ U(1)
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D6 Branes - Consistency Conditions

Tr 2 ker({Nkmk
i })

i = 1, 2, 3 (three tori)

r = 1, . . . , dim(ker({Nkmk
i }))

k = 1, . . . ,#U brane stacks

(generically) = k � 3



Learn TC condition 
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(a) Mean score. (b) Average number of steps. (c) Entropy.

Figure 3: Plots illustrating how the agent learns to solve the IIA tadpole constraint.

The results of the run are shown in Figure 3. We plot on the x-axis the total number of
steps all agents have taken together. All data in the plots is recorded for the 10 evaluation
runs, which occur every 105 steps. Let us explain the plots in more detail.

Figure 3a illustrates that the agent learns to solve TC around roughly O(106) steps.
Note that the punishment (4.9) is an order O(10) number (unless the distance is smaller
than 8, in which case the agent is not punished at all) while the reward is 106. Initially, the
agent randomly performs actions leading to states that do not satisfy the tadpole. Each
such action is punished by an order one number. After 104 steps, the episode ends and the
agent is reset. At that point the agent will have received a total negative reward of order
O(105). This explains the average reward score in the first 106 steps. After that,the agent
starts to learn how to solve the tadpole constraint. If it solves the constraint in k of the 10

test runs, it will receive an average reward of 0.1(k ⇥ 106 � (10� k)⇥ 105), which explains
why the points for the average score occur around k ⇥ 105 for k 2 [�1, 10], depending on
how often the agent manages to solve the constraint within the 10 test runs.

Figure 3b illustrates that the agent is not only learning to solve the tadpole constraint,
but that it is getting more and more efficient in doing so. We show on the y-axis the average
number of steps per episode. An agent that never finds a TC state is reset after 104 steps,
so this is the upper bound in this plot. Note that we record only finished episodes, so the
actual number can be somewhat larger if the agent is just about to finish an episode when
the data is written to disk; in the worst case, this can lead to a factor of 2 in the averaged
number of steps. In the beginning, the average number of steps is around O(104), indicating
that most agents are reset without finding TC states. After about 106 steps, as the agent
learns how to solve TC, the average number of steps per episode drops to few ⇥ 103. At
around 2 ⇥ 106 steps, the agent solve TC in all test runs (cf. Figure 3a). Nevertheless, the
agent is still improving its efficiency, i.e. the number of steps it needs to take in order to
find tadpole cancelling solutions. At the end, the average number of steps has dropped to
O(100). Note that, due to the reward structure, the agent is not incentivized to solve the
TC constraints in as little steps as possible (which is O(10)) as long as it stays close enough

– 39 –



Learn TC+K+SUSY condition 

#stacksX

a=1

0

BB@

Na na
1 na

2 na
3

�Na na
1 m

a
2m

a
3

�Nama
1 n

a
2 m

a
3

�Nama
1m

a
2 n

a
3

1

CCA =

0

BB@

8
4
4
8

1

CCA

Figure 4: Plots illustrating how the agent learns to solve multiple RL-tasks: First to solve
the IIA tadpole constraint, then the K-theory constraint, and finally the SUSY constraints.

(within a total distance of �TC  8) to a tadpole cancelling solution.
We also want to know whether the agent is actually exploring the landscape and using

its learned heuristics to solve the Diophantine equations or whether it is just randomly
stumbling upon a solution and keeps reproducing that (exploration vs exploitation). As a
measure for how diverse the solutions found by the agents are we look at the entropy of
the agents in Figure 3c. As we can see, the entropy is roughly constant (if anything, it is
increasing over time), which indicates that the agent takes different actions and thus arrives
at different states. We also confirm this by explicitly looking at the solutions the agents
finds. Since we are using the stacking agent, which is based on the A,B,C brane construction,
we know that the solutions are genuinely different and not related by a symmetry action to
one another.

Finally, we show the average score for a multi-tasking agent that successively learns
to solves tadpole cancellation, K-Theory, and SUSY in Figure 4. In the beginning, the
agent does not solve any of the consistency requirements and is receives a punishment
proportional to the tadpole distance as in the TC case, thus ending up at �105. Again,
after having taken around 106 steps, the agent has learned how to solve TC, for which it
receives the TC_Reward = 106 and is now also testing for the K-theory constraint. Once
it receives feedback on its performance with regard to K, it learns to solve TC and K
simultaneously between 106 and 5 ⇥ 106 steps, which is rewarded with TCK_Reward = 109.
Once TCK is solved, the SUSY constraints start to be checked. After 6 ⇥ 106, the agent
learns to incorporate these as well, leading to fully consistent TCKS models and a reward
of TCKS_Reward = 1012.

We can also demonstrate learning of the different constraints by studying the relative
frequency with which the agent finds models that satisfy the various constraints. We find
that in the beginning for less than 3 ⇥ 106 steps, when the agent has not yet learned to
produce models that satisfy the TC or K constraint, the ratio between models with TC

– 40 –
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Learn SUSY+TC condition 
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Figure 5: RL learning a human-derived strategy to solve SUSY and tadpole conditions.

and TCK is 1 : 5. This is consistent with the statistics of [41], where the authors also
find a reduction factor of 5 from imposing the K theory constraint on the untwisted torus
(however, they impose K theory last, i.e. their models satisfy already the SUSY constraint).
At the end of the run, the reduction factor has dropped to 3, indicating that the agent is
doing better in finding models that satisfy the K-theory constraint as compared to randomly
sampling the landscape. Of course, our numbers are too small for reliable statistics, but
since we already reproduce the factor of 5, we are optimistic that our sampling size is
sufficient. Likewise, we see a drop in the ratio of TCK to TCKS from initially around 5
down to 3 as soon as the agent learns to take SUSY into account.

4.5 Learning a Human-Derived Strategy: Filler Branes

The last section demonstrates that the RL agent learns a strategy to solve the coupled
Diophantine equations in the TCKS setup. There is no human-derived strategy for doing
this, and we are not attempting to find out the strategy employed by the agent, which in
general falls in the realm of intelligible AI, an area of active research.

Instead, we look at a slightly modified setup in which humans have derived a strategy
to partially decouple the system of equations. The strategy is to use so-called “filler"
branes (see, e.g., [49]). These are D6-branes that do not contribute to the supersymmetry
conditions, but do contribute to the tadpole cancellation conditions. Therefore, one may
add filler branes to supersymmetric D6-brane configurations in order to try to satisfy the
tadpole cancellation conditions, but without spoiling the supersymmetry conditions. In
the language of [38], it is C-branes that do not contribute to the SUSY conditions, and
therefore should be identified as filler branes. The filler brane strategy cannot be utilized in
the setup of Section 4.4 (which sought to solve the tadpole cancellation conditions first since
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and TCK is 1 : 5. This is consistent with the statistics of [41], where the authors also
find a reduction factor of 5 from imposing the K theory constraint on the untwisted torus
(however, they impose K theory last, i.e. their models satisfy already the SUSY constraint).
At the end of the run, the reduction factor has dropped to 3, indicating that the agent is
doing better in finding models that satisfy the K-theory constraint as compared to randomly
sampling the landscape. Of course, our numbers are too small for reliable statistics, but
since we already reproduce the factor of 5, we are optimistic that our sampling size is
sufficient. Likewise, we see a drop in the ratio of TCK to TCKS from initially around 5
down to 3 as soon as the agent learns to take SUSY into account.

4.5 Learning a Human-Derived Strategy: Filler Branes

The last section demonstrates that the RL agent learns a strategy to solve the coupled
Diophantine equations in the TCKS setup. There is no human-derived strategy for doing
this, and we are not attempting to find out the strategy employed by the agent, which in
general falls in the realm of intelligible AI, an area of active research.

Instead, we look at a slightly modified setup in which humans have derived a strategy
to partially decouple the system of equations. The strategy is to use so-called “filler"
branes (see, e.g., [49]). These are D6-branes that do not contribute to the supersymmetry
conditions, but do contribute to the tadpole cancellation conditions. Therefore, one may
add filler branes to supersymmetric D6-brane configurations in order to try to satisfy the
tadpole cancellation conditions, but without spoiling the supersymmetry conditions. In
the language of [38], it is C-branes that do not contribute to the SUSY conditions, and
therefore should be identified as filler branes. The filler brane strategy cannot be utilized in
the setup of Section 4.4 (which sought to solve the tadpole cancellation conditions first since
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‣ Finding viable vacua requires solving nested hard 
and undecidable problems

‣ By finding structures and/or making approximations 
you can tackle these problems

‣ For toroidal orientifold example we found

• ML (RL) finds strategies to solve string consistency 
constraints

• ML recovers human-derived strategies and finds 
new ones

Conclusions
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